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ABSTRACT 
 

SPECIFICATION, CONTROL, AND APPLICATIONS OF Z-SOURCE CIRCUIT 

BREAKERS FOR THE PROTECTION OF DC POWER NETWORKS 

Sagar Bhatta 

Old Dominion University, 2021 

Director: Dr. Yucheng Zhang 

 

 

 

There is a highly-increasing demand for the DC power transmission and distribution in 

modern power systems for the integration of newly-installed renewable energy resources and 

storage systems to the existing utilities. Application of DC power systems in electric ships, battery 

energy devices, high-voltage DC networks, smart grids, electric vehicles, microgrids, and wind 

farms is a recent trend that is being highly investigated. The fault protection of DC systems is an 

essential but challenging issue that needs careful attention to maintain system operation reliability 

and device safety. In this research, the specification, control, and application of Z-source breakers 

(ZCBs) are investigated for DC network protection. Initially, the power loss associated with the 

topology of ZCBs is a key consideration in the design, and thus, the most efficient ZCB topology 

is identified. In this study, the topology of inter-cross-connected bi-directional ZCB (ICC-BZCB) 

was selected due to its least power loss when operating in a steady-state condition. Based on ICC-

BZCB, a new approach of parameter specification is proposed by considering the reverse-recovery 

time of thyristors. The proposed approach ensures the turnoff action of ZCB in practical 

application. Its effectiveness was verified by experimental tests on a hardware testbed in the 

laboratory. Secondly, a new method of specifying the Z-source capacitances is proposed to identify 

the high-impedance faults in DC power networks. The method defines the principle of HIF 

detection and interruption by monitoring the status of Z-source capacitances. Finally, the 

assessment of cable length limit for ZCB application is analyzed for the DC system applications. 



 
 

It has been found that the cable length limit decreases along with the decreasing fault current level, 

as well as the increasing power delivery level. The cutoff performance of the ZCBs is significantly 

impacted by the line parameters of the power cables. The outcomes of this research benefit the 

component design and application design of ZCB devices, which would promote the technology 

readiness level of ZCB’s practice in the DC system protection.
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CHAPTER 1  

INTRODUCTION 

 

1.1 Direct Current Systems 

The interconnection of microgrids with wind, solar, and plugin electric vehicles that leads 

to the formation of smart grids is the future of power systems. A DC network integrating DC-

nature renewable energy sources and distributed generators can be a viable solution for renewable 

energy harvesting, local power reliability, and smart grid automation. Environmental and 

economic concerns led to the development of renewable energy sources and distributed 

generations in the past decades. Distributed energy resources such as solar and fuel cells are 

emerging in electric power systems as a part of DC microgrids/nanogrids, MVDC, and HVDC 

transmission and distribution networks. The electric grid is one of the largest infrastructure 

networks ever developed. The existing unidirectional electric grid originated in the late nineteenth 

century, where the electricity is delivered to the consumers through a complex electrical network 

involving the process of generation → transmission → distribution. The concept of microgrid 

as seen in Fig. 1.1 transforms the existing unidirectional electric grid to an active bidirectional 

network (i.e., generation → transmission → distribution → distributed generations) [1, 2].  

DC microgrid with the advantages of lower line losses, high power quality, easy and 

flexible control is an effective solution to meet the growing demand for power utilization. It acts 

as an energy collection base for various renewable energy resources and distributed generators in 

modern power systems. It can provide a long-term sustainable solution for future energy demands. 

The DC microgrid systems’ reliability and efficiency are higher than those of the AC systems [3]. 

Traditionally, AC systems were generally preferred for high-voltage, high-power transmission for 
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long-distance power delivery due to the affordability of power transformers. However, the 

advancement in power electronics technology, and the development of highly efficient AC/DC 

and DC/DC converters, have exceedingly increased the attraction of using DC systems. Also, 

applications such as DC or hybrid AC/DC grid networks with distributed energy resources [4, 5] 

and the MVDC power architecture of future naval vessels [6, 7] examines the implementation of 

DC power distribution system. The preliminary dissertation focuses on the application, advantages 

of DC loads/distribution systems along with the challenges, and possible solutions associated with 

the existing problem of DC network protection. 

 

 

Figure 1.1 Microgrid Energy Systems [8] 
(See Appendix A1 for copyright information) 
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1.2 Applications of DC System 

Direct current devices operating from low to high voltage levels are widely implemented 

in modern society due to the advantages of reduction in the use of copper, higher controllability, 

lower cost, and easier interconnections. DC power supply is considered as a substitute electric 

power carrier for the increasing demand of energy utilization. The increasing interest in the DC 

distribution system is due to the rapid increase in DC type load and expansion of DC type 

distributed generation technology such as photo voltaic (PV) generation [9]. Low voltage 

applications utilizing DC power include charging batteries, automotive applications, consumer 

electronics, aircraft applications, electric vehicles, etc. A DC supply generated via solar cells, 

thermocouples, and batteries can be the power source to a portable solar system power in the 

photovoltaic industry.  

 

 

Figure 1.2 Example of DC Loads 
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Fig. 1.2 shows some appliances employing DC power that we use in our day-to-day life. 

Nearly all commercial and residential energy is consumed in direct current. A high-voltage power 

transmission utilizes DC for the bulk transmission of current as high-voltage direct current 

(HVDC) systems are less expensive and more efficient. Lower emission levels and higher 

operating efficiencies have greatly enhanced the application of small distributed generation (DG) 

systems, typically around 100 kW, amongst industries and utilities [10]. Advancements in 

semiconductor technology have led to the exponential growth in DC systems. Voltage levels can 

be easily stepped up or stepped down using these semiconductor devices, which makes the DC 

system feasible, leading us towards the digital ages. 

 

1.3 Advantages of DC over Traditional AC Systems 

Implementation of various AC to DC converters can be avoided if a DC distribution 

network is employed as the primary electric grid for the power supply. Compared to a traditional 

AC grid, the DC distribution grid has proven to offer more efficient and reliable energy transfer 

[11]. Thus, the advantages of DC distribution over the traditional AC distribution include: 

• Since DC has no frequency component, only real power is developed and delivered, whereas 

AC has both real (delivered) and reactive (absorbed) power. Thus, there is no need for reactive 

power compensation in DC power transfer.  

• There is no skin effect for DC transmission; thus, the DC cable’s entire diameter can be used 

for power transmission, whereas in AC distribution for 60 Hz system, only the outer 8.5 mm 

of the cable can be used for power transmission, which reduces the efficiency significantly. 

• The problems with harmonics, unbalances, synchronization, and reactive power flows are 

eliminated for DC distribution systems. 
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• For a similar power transfer, corona loss is less in HVDC transmission lines than the HVAC 

transmission lines.  

• Voltage source converters (VSCs) designed using the semiconductor devices are used to 

control the DC system, which acts to load changes in a fraction of nanoseconds. In contrast, 

the traditional AC system uses mechanical governors to correct any load changes requiring a 

longer time period.  

• A fewer number of lines is needed for power transmission in a DC network, which reduces the 

overall power loss. The flow of power through a DC link is highly accurate and lossless. 

• HVDC overhead lines have lesser interference with the nearby communication lines compared 

to an HVAC line. 

• Over a specific distance, which is also known as the break-even distance, as seen in Fig. 1.3, 

the transmission of power in an HVDC line becomes cheaper than the HVAC lines. 

 

 

Figure 1.3 Transmission line distance vs. Investment cost for AC and DC systems 
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• Based on the neutral reference point arrangement, a DC system requires only two to three 

conductors. In contrast, the AC system requires a minimum of four conductors for three-phase 

operations, increasing the overall system’s cost. 

• HVDC line offers better voltage regulations due to the absence of inductance in DC, thus, 

offering greater controllability than HVAC. 

 

1.4 Protection of DC Systems  

The protection of DC systems by interrupting the fault current in the event of a fault is an 

important issue that needs to be addressed carefully. Protection is one of the important aspects that 

should be considered from the beginning of system design to achieve cost-effective operation and 

high system reliability. For a DC power system, the maximum available short-circuit current is the 

sum of that delivered by the charging system, battery, and loads (if applicable). The interrupting 

capacity or short-circuit current withstanding capability of a distribution system, or the overcurrent 

protection devices should be higher than the maximum short-circuit current available for the 

system voltage and ambient temperature [12]. The technology using DC power is not matured or 

developed and also lacks enough standards compared to AC, which makes the protection of the 

DC network more complex. Event-based protection is needed to ensure the protection of a DC 

distribution system under various circumstances since the DC system is more dynamic than the 

AC system [13]. The primary challenges associated with the protection of a DC system are lack of 

current zero-crossing point, cases of severe overvoltage while interrupting the large direct current, 

and the requirement of fast interruption speed. Due to the small system inductance, the fault current 

develops promptly in the DC distribution systems, which requires fast protection to improve the 

system reliability [14]. Thus, it is challenging to design a protective device that can detect, locate, 
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and interrupt the fault fast enough in a DC network to protect it from the impacts of the fast-rising 

speed of fault currents.  

1.4.1 Lack of Zero-Crossing Point 

Unlike the traditional AC systems, the DC system lacks a natural zero-crossing point. The 

zero-crossing in AC helps to extinguish the arc faster as arc energy reduces significantly near the 

current zero instant. The AC and DC breakers’ requirements vary vastly due to the absence of a 

natural current zero-crossing point in the DC systems. The short-circuit currents in a DC system 

need rapid interruption and energy dissipation stored in the system’s inductors [15]. A natural zero-

crossing point occurs once every 10 milliseconds for a 50 Hz AC system and every 8.3 

milliseconds for a 60 Hz AC system. Fig. 1.4 shows a repetitive current-zero crossing [16], which 

helps for the fault isolation in case of an AC fault by opening any mechanical switch that opens 

the contact far enough to overcome the voltage differential between the two switch contacts.  

 

 

Figure 1.4 AC fault vs. DC fault 
(See Appendix A2 for copyright information) 
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In case of a fault occurring in an AC system, the breaker arcs through the high current period 

and only attempt to clear the fault upon reaching a current zero point. A similar fault current 

isolation mechanism creating a zero-crossing point is needed for a DC circuit. The existing method 

uses an active or passive commutation circuit for creating a zero current level in the DC systems. 

Precharged capacitors are inserted across the main interrupter element through some switching 

devices in the active commutation method. The direct current in the interrupter is driven to zero 

when a surge current is encountered due to the capacitor’s insertion. Likewise, a series LC circuit 

in parallel to the interrupter element forms a passive commutation circuit. A current oscillation in 

the LC circuit is achieved when the interrupter opens and creates an arc voltage. The capacitor 

used for the passive commutation circuit is not precharged. Now, using the negative resistance 

characteristics of the arc and with proper selection of the natural frequency of the commutating 

circuit, the current zero points are created when the current oscillations grow in the circuit. The 

resistive energy absorbers are connected in parallel to the interrupter in both active and passive 

commutation schemes in order to dissipate the additional energy remaining in the system. The 

passive commutation method is simple and more reliable compared to the active commutation 

method. 

1.4.2 Interruption Speed 

A DC circuit breaker (DCCB) can be broadly classified into mechanical and solid-state 

categories. A mechanical DCCB consists of a conventional AC circuit breaker (ACCB) parallel 

with the resonant circuit. The fault interruption time, i.e., time from the fault inception to the 

instance of current interruption is typically 30 to 70 milliseconds for an AC system as standardized 

by IEEE. This time period is too long for DC networks’ protection because a short-circuit fault 

occurring in a DC system can penetrate faster and deeper into the system since the DC system has 
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low impedance compared to the AC system. Likewise, the VSCs used in a DC system can supply 

the fault current greater than two to three times the nominal current for a few milliseconds. After 

this period, a voltage collapse is experienced in the system as the VSC converters cannot take fault 

current for such a long interval. Thus, a DC fault needs to be cleared in a fraction of milliseconds, 

which cannot be accomplished using a mechanical DCCB.  

 

 

Figure 1.5 Fault clearance time in case of AC and DC faults  

 

In the past decades, the superconducting fault current limiter has also been studied 

extensively to interrupt a DC fault [17]. A fault current level close to the rated values is easily 

interrupted using a superconducting fault current limiter at a sufficiently quick time. However, it 

lacks the ability to isolate the fault completely. When a superconducting fault current limiter is 

used in series with a mechanical DCCB, it can interrupt a fault current approximately 2 p.u. the 



10 
 

nominal current [18]. A major drawback of using this method is the high cost of superconducting 

components. Thus, solid-state breakers that can interrupt the fault current in a few milliseconds 

are studied to protect the DC network. Fig. 1.5 shows the fault clearance time required in the case 

of AC and DC faults [19, 20]. The ongoing research focuses on protecting a DC distribution system 

within a time frame as fast as 0.5 milliseconds. 

 

1.5 Existing Solutions and its Associated Challenges 

Several methods have been proposed to protect the multi-terminal DC (MTDC) systems 

[21, 22]. The methods studied for extinguishing the DC fault current include applying AC circuit 

breakers (ACCBs) on the AC side of the VSCs, IGBT circuit breakers (IGBT-CBs) at each end of 

the DC branch line, and IGBT-CBs placed between the DC network and each VSC. The 

handshaking method using an AC circuit breaker and DC switchgear was introduced in [23] to 

protect the VSC based MTDC system. However, due to slow system recovery, this method poses 

a significant threat to the protection of large scale MTDC systems. Thus, there are several ways 

that can be implemented for the protection of a DC system, as explained below. 

1.5.1 Entire System Shutdown 

DC faults can be eliminated from a system by de-energizing it. In this approach, the DC 

supply is switched off when a fault is encountered in the network. After the generation sources are 

off, the additional energy developed in the system is discharged through the fault. This method is 

suitable in the case of a two-terminal system or the HVDC system, where shutting down the whole 

system has the same effect as isolating the fault. However, in systems with multiple generations 

involved, shutdown to the entire system causes significant power loss. Also, a coordinated 
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shutdown is needed to secure all sources from the fault at the same time, especially, to protect any 

converter that supplies the fault current standalone in case of fault encountered in the system.  

1.5.2 Fuses 

Fuses are commonly used in low-voltage DC (LVDC) applications, ranging up to several 

hundred volts depending upon the system dynamics. A fuse characteristic depends on the current-

time and voltage rates calculated in root-mean-square (RMS) values. It has the advantage of low 

cost and is commonly used for DC traction, mining, and battery protection. In case of fault 

encountered in a network, a fuse melts the metallic element present in it, creating an open contact 

for isolating the fault. However, a fuse cannot be used in HVDC applications since, for large 

current surges, the air between the two contacts of a fuse ionizes, forming a path for the fault 

current to flow. This causes the fault to remain uncleared. The other drawback of using a fuse is 

its malfunction in case of a slight overcurrent. A fuse should be quickly melted in case of a short 

time constant. However, for a larger time constant, a fuse’s melting time becomes relatively long, 

which resists the arc from cooling in a quick time interval [24]. Also, predicting the voltage 

transient state and the rise-time constant of the current transient in case of fuse opening is difficult 

[25]. Thus, fuses cannot be considered as a viable solution for the protection of DC systems. 

1.5.3 Circuit Breakers 

A circuit breaker is a device that locally determines the fault and stops the current flow 

using a switch. It operates based on the current and voltage ratings given in the RMS value. The 

switch in a circuit breaker can be mechanical or solid-state. A circuit breaker responds to a fault 

faster than a fuse, is more reliable, and more sensitive. Unlike fuses, which only operate once, a 

circuit breaker can be used multiple times by simply resetting it after the breaker opens. It protects 

various fault conditions that include over-current, under-voltage, overpower, and rate of current 
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change. They are the most flexible and dependable circuit protection devices that work for all 

voltage levels. However, the fault isolation using a circuit breaker requires a careful inspection in 

highly inductive DC systems. There are several DC circuit breakers (DCCBs) that can be 

implemented for DC network protection.  

1.5.3.1 Mechanical DC Circuit Breaker 

The mechanical DCCB was initially studied in the 1980s [26, 27]. They utilize the 

technology of an AC circuit breaker. A mechanical DCCB creates a gap between the contacts 

whenever a fault is encountered in the system. The medium used for arc extinction between the 

two contacts can be air, vacuum, oil, or SF6 gas. An arc is formed between the contacts due to the 

opening of the breaker which is counteracted and discharged through the parallel capacitor (Cc). 

The combination of Cc with an inductor (Lc) superimposes the oscillating current on the main fault 

current and thus, creating a zero-crossing point in the main fault current path as seen in Fig. 1.6 

[28]. The excess energy generated from the transient surge is dissipated from the circuit as heat in 

the surge arrestor. 

 

 

Figure 1.6 Mechanical DC circuit breaker 
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A mechanical DCCB with the ratings of 250 kV, 8 kA, and 80 kV, 10 kA has been studied 

in [27] and [29], respectively. For commercial use, smaller rated versions are available in the 

market. An accurate model of mechanical DCCB composed of a DC reactor, the main breaker, LC 

resonant circuit, an injecting switch, an arrester MOV, a residual switch, and a charging circuit 

involving a DC voltage source which is suitable for the grid level study of a DC grid is introduced 

in [30]. The advantage of using such circuit breakers is its higher efficiency and robustness. Since 

a mechanical DCCB does not involve any semiconductor devices, the on-state power losses are 

negligible. However, it has a slow response to faults which can cause major damage to the DC 

systems in an event of fault occurrence. 

1.5.3.2 Solid-State Circuit Breakers 

The solid-state circuit breakers (SSCBs) are like the mechanical circuit breakers but do not 

draw an arc when the breaker opens. It is also known as a power electronic protection device which 

can solve the limitations of fuses and traditional circuit breakers [31]. It opens a doped channel 

within the semiconductor device that stops the electron flow as the devices open. High voltage 

blocking capability, fast switching speed, and effective direct current interruption are notable 

features of an SSCB [32, 33]. It consists of a snubber circuit, as seen in Fig. 1.7 that absorbs the 

additional energy developed in the system during faults. The design considerations for a snubber 

circuit includes high reliability in low-voltage medium-capacity applications, low insertion 

impacts on fault current clearing, minimum cost and size, and less overvoltage stress on SSCB 

during the SSCB turn off process [34]. Various solid-state devices can be used for creating an 

SSCB, which includes silicon-controlled rectifier (SCR), insulated-gate bipolar transistor (IGBT), 

gate turn-off thyristor (GTO), integrated gate-commutated thyristors (IGCT), metal oxide field-

effect transistor (MOSFET), and so on. The GTO application in an SSCB has an advantage of low 
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on-state voltage and high-voltage blocking capability [35]. Likewise, using IGBTs, an SSCB has 

a fast interruption time of microseconds along with an ability to withstand high short-circuit 

current [36]. IGCTs have the features of both IGBTs (high voltage and current ratings) and GTOs 

(low conduction losses). An SSCB is fast in operation and fully controllable. However, with 

IGBTs, a significant amount of power is lost during on-state operations, which reduces the overall 

efficiency of the breaker. Also, the drawback of using a GTO is its low switching speed.  

 

 

Figure 1.7 Solid-state circuit breaker 

 

1.5.3.3 Hybrid Circuit Breakers 

A hybrid DCCB is composed of an ultrafast disconnector (UFD), the main breaker 

comprising hundreds of IGBTs, a load commutation switch (LCS), and surge arresters [37]. It is a 

combination of arc-based circuit breaker (ACB) and power electronic circuit breaker (PECB) in 

parallel. Several configurations of hybrid DCCBs have been proposed that operate in medium and 

high voltage DC systems to break the direct current faster with more efficiency [38-40]. During 

normal operation, current flows through the LCS and the UFD. It combines the feature of the high 

efficiency of a mechanical breaker and the fast turn-off speed of the power electronic circuit 
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breakers. Since the LCS consists of a few IGBTs, the losses in a hybrid DCCB are small. When a 

fault occurs, the commutating switch turns off, thereby directing the fault current through the main 

breaker. The voltage rating of LCS must be higher than the on-state voltage of the main breaker 

[37]. The rate at which the fault current flows through the main breaker keeps rising continuously 

at a very high rate. Thus, a current limiting reactor is used to lower this rise in the DC fault current. 

The arc drawn across the contacts of the mechanical switch is removed by opening the switch 

under no-current condition. During this period, the main breaker turns off, and the flow of fault 

current is ceased, thereby clearing the system’s fault. The power levels achieved by a hybrid DCCB 

is relatively high compared to the other breakers as its on-state power loss through the 

commutating switch is minimal. Also, its efficiency is similar to ACBs. However, they have an 

increased response time and are more expensive compared to the PECBs. Thus, managing fault 

currents in the semiconductor switch using a hybrid DCCB is difficult. Also, there are complexities 

involved in controlling the current commutation in hybrid configurations. 

 

1.6 Problem Statement 

The preliminary dissertation focuses on the challenges associated with the protection of 

DC systems and presents a solution to overcome those problems. The on-state power loss is an 

important factor that requires careful attention to design any solid-state DC circuit breaker 

topology. Thus, the most efficient breaker topology is identified and analyzed for various short-

circuit faults in theory, analytical review, computer simulation, and finally, in test prototype 

experimentation. A new method for detecting DC circuit breaker parameters is detailed, which 

overcomes the problems of the already existing methods. The breaker is tested for a short-circuit 

case under both low-impedance and high-impedance cases. The study shows a further specification 
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is needed to the breaker parameters that enable the breaker to freely detect and interrupt both low 

and high impedance faults occurring in the network. Finally, the practical application of the 

selected breaker is studied by implementing it in the DC transmission/distribution lines.  

 

1.7 Dissertation Outline 

The dissertation is organized as follows: In Chapter 2, an overview of the existing Z-source 

circuit breaker (ZCB) topologies are presented. These breakers are studied and analyzed, 

considering the power loss and efficiency aspects. The best breaker topology in terms of efficiency 

is selected for further investigation. Chapter 3 proposes a new method using the relation of thyristor 

tripping time to detect the parameter of a ZCB topology. Furthermore, after the parameter detection, 

the breaker is designed for laboratory experiments, which is then tested for different short-circuit 

current. In Chapter 4, a new method specifying the parameters of the ZCB topology is proposed to 

successfully operate a ZCB when a high impedance fault is encountered in the DC systems. This 

chapter also derives a relation between the minimum fault resistance and the maximum Z-source 

capacitance required in order to trip the breaker for interrupting the high impedance faults. Chapter 

5 covers the practical application of a ZCB when implemented in a DC transmission/distribution 

line. The effective cable length limit for the protection of DC power networks using a ZCB is 

assessed, and the relation between maximum cable length and load power requirements is 

established. Finally, Chapter 6 draws the overall conclusion of this dissertation report. The results 

in Chapter 2 have been reported in the conference proceedings in reference [41]. Likewise, the 

findings in Chapter 3 are published in [42, 43]. The outcomes of Chapter 4 are reported in the 

journal [44] and the conference proceedings in reference [45] and finally, the results of Chapter 5 

are published in [46]. 
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CHAPTER 2 

Z-SOURCE CIRCUIT BREAKER: A REVIEW OF EXISTING TOPOLOGIES 

 

2.1 Z-source Circuit Breaker 

To overcome the problems associated with various DCCBs and facilitate the coordination 

of cascaded breakers, a resonant style DC circuit breaker named the Z-source breaker (ZCB) is 

proposed. A ZCB, as seen in Fig. 2.1 is a thyristor (SCR) based DC circuit breaker which uses a Z-

source impedance network that automatically interrupts the load-carrying currents at an extremely 

high speed [47]. An improved version of the first proposed topology of the ZCB, which has a 

capability to handle load change conditions and limitations of the capacitor current, is introduced 

in [48]. Due to the feature of automatic fault isolation with zero detection delay, the ZCB is very 

favorable for short-circuit protection. It operates based on the interaction between LC elements and 

the SCR in a resonant circuit. A fraction of the transient fault current is supplied through the Z-

source capacitors in an event of a fault that forces a current zero-crossing in the SCR. The fault 

current path does not incorporate the source and the SCR.  

The concept of a Z-source circuit was initially proposed by F.Z Peng in [49], introducing a 

Z-source inverter that could interface to a voltage or a current source and utilize the short-circuit 

state to achieve a voltage boost. The LC connection in a Z-source circuit could operate in both boost 

and buck mode. This concept of “Z-source” was later adopted into ZCB for the protection of the 

DC network. Based on the application, a ZCB is classified into two categories: unidirectional ZCB 

(UZCB) and bidirectional ZCB (BZCB). As per the title, a UZCB can interrupt fault current in only 

one direction (i.e., fault introduced at the output of the ZCB), whereas a BZCB can interrupt power 

exchanges between DC microgrids in both directions (i.e., either at the input or output terminal of 
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the ZCB). The BZCB is advantageous compared to the UZCB in applications such as DC 

microgrids as they realize the bi-directional flow of energy. 

 

 

Figure 2.1 Classical Z-source circuit breaker 

 

A ZCB is a unique form of solid-state circuit breaker that typically consists of inductors, 

SCR/diodes, and auxiliary capacitors to realize the SCR’s commutation. SCRs with an ability to 

handle high voltage/large current are robust and inexpensive, which justifies its application in a 

ZCB circuit. During fault conditions, the inductor current cannot change instantaneously. Thus, the 

high-frequency fault current passes through the Z-source capacitors and the SCR. This eventually 

drops the SCR current to zero and turns it off. After the SCR commutates off, the LC branches 

create a resonance circuit that dissipates the remaining energy from the ZCB circuit, which is a 

common principle that every ZCB topologies follow. The natural commutation of a Z-source 

configuration clears the fault in the system. Once the fault is cleared, control signals can be used to 

disable sending the gate pulses to the SCR. The control circuit is simplified, only to detect the level 
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of the SCR current and its operating state, i.e., whether the SCR has commutated off or the SCR 

current has fallen off to a particular value. The combination of a Z-source breaker and the power 

electronic converters can be used to handle the fault in a DC converter system. A notable feature of 

ZCB is its cascaded breaker coordination. In an instance of fault occurrence, only the breaker closest 

to the fault switches OFF, allowing the rest of the system to operate normally. The path followed 

by the fault current in the event of fault forms a Z-shaped structure, as seen in Fig. 2.2, where the 

fault current is supplied by the Z-source capacitor (CZCB). 

 

 

Figure 2.2 Conduction path of transient fault current 

 

2.2 Application of SCRs in ZCB Circuit 

Thyristors are the power semiconductor devices that are extensively used in power 

electronic circuits due to their higher efficiency and robust nature [50-52]. They can be 

implemented in an advanced gate driver module with input-output isolation and gate drive circuits, 

microprocessor control, protection, diagnostic circuits, and a controlled power supply. Initially, a 
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gate signal is required to turn the SCR on, which can be removed once it turns on and achieves a 

steady-state operation [3, 47, 49]. The gate trigger circuit for an SCR can be realized by simple R 

or RC networks. A positive voltage applied between the gate, and the cathode of the SCR increases 

its anode current, which eventually turns on the SCR. Conversely, to turn off the SCR, its forward 

current is reduced to a value lower than the holding current for a sufficiently long time such that 

enough reverse recovery charges are accumulated during the commutation. An SCR is bi-stable in 

operation, i.e., it operates from nonconducting to conducting state and vice versa. Fig. 2.3 shows 

the driver circuit of an SCR with a 5-VDC power supply that provides driving current to its gate to 

turn it on. The value of resistors (R1 & R2) in Fig. 2.3 are selected such that the maximum gate 

current does not exceed the threshold current value, which is 15 mA for the SCR used for our 

laboratory experiments. The value of resistors is calculated as: R1 = 1100 Ω and R2 = 430 Ω, 

respectively. Once the SCR turns on, the gate signal can be removed. Thus, gate drivers are only 

used for turning on the SCR during the operation of a ZCB, whereas it is turned off via the post 

fault commutation in the Z-source circuit.  

 

 

Figure 2.3 Driver circuit for thyristor (SCR) 
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2.3 Existing Topologies of ZCB 

In this section, some of the existing topologies of ZCB are studied. Several ZCB topologies 

(cross and parallel), including the UZCB and BZCB, have been proposed and discussed in [47, 53, 

54]. The main limitation of a UZCB is its unidirectional power flow, which is not suitable for a 

microgrid system that depends on the power flow in both directions. Thus, the initially introduced 

topology of UZCB is modified to obtain the BZCB topology. The number of components associated 

with a BZCB topology is twice as many as the UZCB. For example, a UZCB topology can operate 

with a single semiconductor device during normal operation, whereas at least two semiconductor 

devices are required by any BZCB topology. Modifications to an existing ZCB topology to allow 

step load changes were performed in [48] and [55]. The ZCB circuits are simplified and analyzed 

during steady-state operation, which helps in the power loss assessment. A study of three different 

existing BZCB topologies is performed. These topologies vary in LC configuration, however, 

follow the same operating principle. 

2.3.1 Uncontrolled-Rectifier-Based Bi-directional ZCB 

The topology of uncontrolled-rectifier-based bi-directional ZCB (URB-BZCB) introduced 

in [56] has only one SCR and two inductors in the middle of a rectifier bridge, as shown in Fig 2.4. 

The diode rectifier’s full-bridge structure enables the ZCB to interrupt fault current in both 

directions, thus making the topology bidirectional. The circuit breaker responds to the fault on both 

input and output terminals. The main feature of a URB-BZCB topology is its ability to maintain the 

advantages of other series UZCB topologies yet, allowing a bi-directional current flow. The 

parameters of the URB-BZCB are determined using the minimum detectable fault ramp rate (Frr), 

the minimum fault conductance, step load change, and maximum allowable load current slew rate 

[56]. In the event of fault occurrence, like every other ZCB topology, the fault current flows through 



22 
 

the Z-source capacitors (C1 and C2) as the current in Z-source inductors (L1 and L2) cannot change 

instantaneously. 

The ZCB parameters responsible for the steady-state current flow during normal operation 

of the circuit consists of line inductance (LL), diodes (D1 and D4), Z-source inductors (L1 and L2), 

SCR (T1), and Z-source capacitors (C1 and C2), respectively. The diodes D1 and D4 are conducting 

the steady-state current, whereas D2 and D3 are in the reverse-blocking state. Therefore, the path 

that the current flows can be either “LL – D1 – L1 – T1 – L2 – D4 – load,” or “LL – D1 – L1 – T1 – C2 

– load”, or “LL – D1 – L1 – C1 – D4 – load,” depending on current-flow direction. Fig. 2.5 shows the 

equivalent circuit of current flow from the ideal DC voltage source (Vs) to the RC load. The 

inductors LL, L1, and L2 carry load current. This equivalent circuit is used to analyze the power loss 

of URB-BZCB during normal operation. Since the breaker follows the convention of a BZCB, it 

would operate in the same manner even if the load and source connections are swapped. 

 

 

Figure 2.4 Topology of uncontrolled-rectifier-based bi-directional ZCB (URB-BZCB) 
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For the steady-state power loss analysis, the power loss across the ZCB components (LL, 

L1, L2, D1, D4, T1, C1, and C2), as seen in Fig. 2.5 is evaluated. The ZCB is used to protect an RC 

load consisting of RL and CL. Initially, to turn the circuit breaker from off-state to on-state, a pulse 

signal is injected into the gate of the SCR (T1). As the circuit breaker reaches the steady-state, the 

pulse gating signal can be released to avoid turning off by transients at power on. 

 

 

Figure 2.5 Equivalent circuit of URB-BZCB for power loss calculation 

 

2.3.2 Inter-Cross-Connected Bi-directional ZCB  

The second ZCB taken into consideration is the inter-cross-connected bi-directional ZCB 

(ICC-BZCB) from [57], as shown in Fig. 2.6. This is also a bidirectional circuit breaker with an 

ability to limit and interrupt fault current in both directions. An ICC-ZCB consists of two SCRs, 

two inductors, three capacitors, and two diodes that follows the same operating principle as other 

ZCB topologies with the high-frequency currents passing through the auxiliary Z-source capacitors 

in the event of fault occurrence, which is responsible for the commutation of SCR.  
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Two pairs of SCR and diode forming a parallel connection are inter-connected with each 

other. An RC load that consists of RL and CL represents a parallel connection of the RC circuit, as 

seen in Fig. 2.6. A notable feature of this topology is the presence of common ground between the 

load and the power source. Also, unlike other topologies, the transient fault current drawn from 

the generation source is minimal in an ICC-BZCB design. It is a multifunction device. Apart from 

its circuit-breaking feature, an ICC-BZCB can also be used for power flow direction control along 

with the fault current limiting and interrupting applications. 

 

 

Figure 2.6 Topology of inter-cross-connected bi-directional ZCB (ICC-BZCB) 

 

During normal operating conditions, the SCR (T2) and the diode (D1) are reverse biased in 

the ICC-BZCB. The breaker makes a connection between the DC power source and the load via 

the Z-source parameters L1, L2, T1, D2, C1, and C2. Thus, the power loss across these six ZCB 

components are considered for overall efficiency evaluation. The voltage across the capacitor C0 
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prior to the fault is charged up to the source voltage (Vs). Fig. 2.7 is the equivalent circuit of ICC-

BZCB for power loss calculation. 

 

 

Figure 2.7 Equivalent circuit of ICC-BZCB for power loss calculation 

 

2.3.3 Traditional Series-Connected Bi-directional ZCB 

The third candidate is the traditional series-connected bi-directional ZCB (SC-BZCB) from 

[58], as shown in Fig. 2.8. The topology of SC-BZCB has an antiparallel-connected SCR pair 

connecting in series with LC resonant circuits, which makes it unique from the other two 

topologies. Each inductor has a freewheeling diode in parallel. Thus, the number of passive 

components involved in the traditional SC-BZCB circuit is higher in comparison to the ICC-BZCB 

and URB-BZCB topologies. Some notable drawbacks of this design are absence of common 

neutral and low-pass frequency response characteristics. Also, the SC-BZCB is not suitable for the 

input filtering of power converters and has a high spike in input current due to the reverse recovery 

of SCRs [56]. 
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Figure 2.8 Topology of traditional series-connected bi-directional ZCB (SC-BZCB) 

 

 

Figure 2.9 Equivalent circuit of SC-BZCB for power loss calculation 

 

During normal operation, depending on the current-flow direction from source to the load, 

the SCR (T1) and diodes (D1 and D4) operates in conduction mode. In contrast, the SCR (T2) and 

diodes (D2 and D3) are reversely biased. The current flows through all four inductors (L1-L4), 

capacitors (C1-C4), and the SCR (T1). Thus, there are eleven ZCB components considered for the 
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efficiency analysis, which includes D1, D4, L1, L2, L3, L4, C1, C2, C3, C4, and T1, respectively. 

Fig. 2.9 is the equivalent circuit of SC-BZCB for power loss calculation. 

 

2.4 Efficiency/Power Loss Analysis  

The power loss and efficiency evaluation of the three BZCB topologies presented in 

Section 2.3 during normal operation is performed. Power loss analysis is a major consideration in 

breaker selection. Due to the presence of semiconductor devices, the conduction loss associated 

with them must be considered while designing a ZCB model. Every single power electronic 

component associated with the ZCB topology that participates in its equivalent circuit for power 

loss calculation contributes to the overall power loss of ZCB during steady-state normal operation. 

The maximum efficiency depends on the selection of power components. The power loss equations 

for inductors, capacitors, diodes, and SCRs are considered for overall efficiency evaluation.  

2.4.1 Inductor Loss 

The power loss in an inductor includes winding/copper loss and core loss. Core loss depends 

on the type of core used. Typically, an iron alloy core, a good conductor of electricity, is considered 

for designing an inductor. Due to short fault time in DC systems, the core loss of the inductor can 

be ignored. Thus, only the copper loss due to the winding’s DC resistance and the RMS current 

through the inductor is considered for overall power loss calculation, which can be calculated using 

(1-4). The winding resistance (RDC) can be obtained from the inductor datasheet. 

 

 𝑃𝑙𝑜𝑠𝑠,𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 = 𝑃𝑙𝑜𝑠𝑠,𝑐𝑜𝑟𝑒 + 𝑃𝑙𝑜𝑠𝑠,𝑐𝑜𝑝𝑝𝑒𝑟 (1) 

For the DC supply,  

 𝑃𝑙𝑜𝑠𝑠,𝑐𝑜𝑟𝑒 ≈ 0 (2) 
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Thus, 

 𝑃𝑙𝑜𝑠𝑠,𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 = 𝑃𝑙𝑜𝑠𝑠,𝑤𝑖𝑛𝑑𝑖𝑛𝑔 = 𝐼𝑟𝑚𝑠
2 ∙ 𝑅𝐷𝐶            (3) 

 
𝑅𝐷𝐶 = 𝜌

𝑁𝑙𝑚

𝐴𝑤
 

(4) 

where, 

RDC is the DC resistance of the inductor, in Ω. 

N is the number of winding turns. 

lm is the mean length per turn, in cm. 

Aw is the area of the wire, in cm2. 

𝜌 = 1.762 ∗ 10−6(Ώ − cm). 

2.4.2 Thyristor (SCR) Loss 

The thyristor is a half-controlled, unidirectional power semiconductor device that conducts 

current only in one direction. It can be controlled only for turning on but not for the turn off process. 

There are three different kinds of power loss that occurs in a thyristor. These losses are off-state 

loss, switching loss, and conduction loss. Leakage current in the device results in the off-state loss, 

which typically is a minimal value and thus can be neglected in this study. The switching loss is 

transient loss during the turn-on and the reverse recovery processes of the thyristor. The conduction 

loss depends on the on-state resistance in SCR and the current level during conduction mode. It 

can also be calculated using the forward voltage drop of the thyristor given in equation (7), 

determined by its PN junction characteristics. In practice, a thyristor with a low on-state voltage 

drop should be selected in order to improve efficiency significantly. In general,  

 
𝑃𝑙𝑜𝑠𝑠,𝑆𝐶𝑅 = 𝑃𝑜𝑓𝑓−𝑠𝑡𝑎𝑡𝑒 + 𝑃𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 + 𝑃𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (5) 

  For the ZCB application, the switching loss is almost equal to zero. Thus, only the 

conduction loss of the SCR is considered in this study, which can be calculated using equation (6). 
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𝑃𝑙𝑜𝑠𝑠,𝑆𝐶𝑅 = 𝐼2 ∙ 𝑅 (6) 

Also,  

 𝑃𝐿𝑜𝑠𝑠,𝑆𝐶𝑅 = 𝑉𝐹. 𝐼 (7) 

where,  

I is the current through SCR, in amps. 

R is the on-state resistance of SCR, in ohms. 

VF is the forward voltage drop of SCR, in volts. 

2.4.3 Diode Loss 

 A diode is a power electronic device that allows current to flow through it only in a 

forward-biased condition, whereas it blocks the current flow when it is reversely biased. The power 

loss in a diode is determined based on its forward voltage. Thus, to minimize the power loss, diodes 

with a low forward voltage drop should be considered for practical applications. The forward 

voltage drop in a diode under similar working conditions is generally lower than that of the 

thyristor. Hence, the power loss is also low. The energy lost on a power diode is dissipated as heat, 

considered the power loss. This power loss of diode can be calculated by using equation (8): 

 𝑃𝐷𝑖𝑜𝑑𝑒 = 𝑉𝐹. 𝐼𝑑  (8) 

where, 

VF is the forward voltage across the diode, in volts. 

Id is the current flowing through the diode, in amps. 

2.4.4 Capacitor Loss 

A capacitor is a device consisting of two conductive metallic plates separated by an 

insulating dielectric. The dielectric medium between the two plates can be made of glass, ceramic, 

air, etc. The capacitor loss includes the leakage current loss and the equivalent-series-resistance 

(ESR) loss. ESR of a capacitor is a sum of its in-phase AC resistance, including dielectric 
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resistance, terminal leads, and plate material at a particular frequency. The ESR loss can be 

calculated using (9) and (10). The higher the value of ESR, the more is the loss in the capacitor 

and vice versa. Since we are working with a DC system, the ESR losses are neglected for this 

study. The only capacitor loss taken into consideration is due to the parallel internal 

(insulation/leakage) resistance of a capacitor, calculated with (11). The value of this parallel 

insulation/leakage resistance is extremely high (in Mega Ohms) as obtained from the capacitor’s 

datasheet. Thus, the overall loss in a capacitor is negligible in this study. 

 𝑃𝐸𝑆𝑅 = 𝑉𝑅𝑀𝑆
2. 𝜔. 𝐶. tan (𝛿)  (9) 

 
tan(𝛿) =

1

𝑄
=

𝐸𝑆𝑅

𝑋𝐶
 

(10) 

where,  

VRMS is the voltage across the resonant capacitor, in volts. 

Q is the quality factor. 

XC is the reactance of the capacitor, in ohms. 

 
𝑃𝐼𝑅 =

𝑉𝑠
2

𝐼𝑅
 

(11) 

where, 

 Vs is the supply voltage, in volts. 

 IR is the insulation/leakage resistance of the capacitor, in ohms. 

 

2.5 Comparison of the Power Loss and Efficiency Analysis  

The power loss and efficiency of the three ZCB topologies presented in Section 2.3 are 

compared under the same working conditions. The source voltage (Vs = 400 V), load capacitance 
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(CL = 500 μF), and the load power (PL = 16 kW) are all set at the same value for the three case 

studies. The on-resistance of SCR is set to 0.1 Ω. The specification of ZCB parameters is identified 

for the total power loss analysis. Each topology’s total power loss is the sum of individual losses 

associated with the ZCB components during the steady-state condition. The voltage drop across 

the components and the current information is used for the overall power loss evaluation. It can be 

calculated using equation (12).  

 𝑃𝑙𝑜𝑠𝑠_𝑡𝑜𝑡𝑎𝑙 = ∑(𝑃𝑙𝑜𝑠𝑠,𝑖𝑛𝑑𝑢𝑐𝑡𝑜𝑟 + 𝑃𝑙𝑜𝑠𝑠,𝑑𝑖𝑜𝑑𝑒 + 𝑃𝑙𝑜𝑠𝑠,𝑆𝐶𝑅 + 𝑃𝐼𝑅) 
(12) 

The parameter identification method using the minimum detectable fault ramp rate and 

fault conductance, as presented in [56], is used for specifying the values of the components of the 

URB-BZCB topology as listed in Table 1. In order to maintain uniformity, these parameters are 

also applicable to the study case of SC-BZCB. The insulation resistance of the capacitor is obtained 

as: IR ≥ 10000 Ω-F at 20 °C, 500 V-DC, 60 seconds, and the ESR value is selected as 0.4 Ω. 

 

Table 1. ZCB component specification for the topology of URB-BZCB and SC-BZCB 

Parameter Value Remarks 

C1 = C2 = CZCB 33 µF Z-source capacitors 

L1 = L2 = LZCB 1 mH Z-source inductors 

LL 5 mH Line inductance 

VF 1.1 V Diode forward voltage 

IR 303 MΩ Leakage/Insulation resistance 

ESR 0.4 Equivalent Series Resistance 

F 500 Hz Resonance frequency 

Vs 400 V Source voltage 

Load power 16 kW Overall load 
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Likewise, the parameter values of an ICC-BZCB are also derived using the relations of 

minimum detectable fault conductance and the minimum required fault conductance ramp rate as 

given in [57] and listed in Table 2.  

 

Table 2. Parameters used for the design of an ICC-BZCB topology 

Parameter Value Remarks 

C1 = C2 = C0 = CZCB 45 µF Z-source capacitors 

L1 = L2 = LZCB 1 mH Z-source inductors 

VF 1.1 V Diode forward voltage 

IR 222 MΩ Leakage/Insulation resistance 

ESR 0.4  Equivalent Series Resistance 

F 1000 Hz Resonance frequency 

Vs 400 V Source voltage 

Load power 16 kW Overall load 

 

 

Equivalent circuits for the three ZCB topologies given in Fig. 2.5, 2.7, and 2.9 are used for 

the total power losses calculation under a common load condition. The ZCB parameters used for 

designing the three topologies are obtained from Tables 1 & 2, respectively. Equation 12 is used 

for calculating the total power loss. Finally, efficiency is evaluated, as presented in Table 3.   

 

Table 3. Overall power loss and efficiency evaluation 

Topology Total Power Loss Overall 

Efficiency (%) in watts in % 

URB-BZCB 260.588 1.6286 98.3714 

ICC-BZCB 211.132 1.32 98.68 

SC-BZCB 262.176 1.6386 98.3614 
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The difference in power loss and the efficiencies in these three topologies is due to the 

difference in the number of power electronic components present in the ZCB topology for steady-

state power loss evaluation. Table 4 shows the number of components associated with the power 

loss assessment for the three topologies considered. 

 

Table 4. Number of components associated with the ZCB topology for power loss evaluation 

Category URB-BZCB ICC-BZCB SC-BZCB 

Number of Inductors 3 2 4 

Number of Capacitors 2 3 4 

Number of Diodes 2 1 2 

Number of Thyristors 1 1 1 

 

2.6 Summary 

In this chapter, a brief review of three existing bi-directional Z-source circuit breaker 

topologies that include the topology of URB-BZCB, ICC-BZCB, and SC-BZCB, is performed. The 

three ZCB models are analyzed concerning the power loss and efficiency aspects. Based on the 

calculations, with a requirement of energizing the same load, it is found that the ICC-BZCB has the 

least power loss during the normal steady-state operation. The calculations show that the most 

significant power loss evaluation parameters are the switching devices, i.e., diode and thyristor. 

Since the topologies of URB-BZCB and SC-BZCB have two diodes in their circuits compared to 

the ICC-BZCB topology with one diode, they have slightly higher power loss than the ICC-BZCB 

during normal operating conditions. This analysis has been later studied in  [59-61] which also 

shows that power loss in their respective proposed ZCB topologies is significantly reduced with the 

presence of fewer number of semiconductor devices. 
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CHAPTER 3 

PARAMETER IDENTIFICATION OF ZCB TO ENSURE SUCCESSFUL TURNOFF OF 

SCR IN PRACTICAL APPLICATIONS 

 

3.1 Introduction 

Recently, the application of DC power systems has become a leading developer of real-time 

data management software solutions and smart grid automation for power generators, large energy 

consumers, and utility industries. This is due to the integration of DC-nature renewable energy 

sources with the distributed generators. Direct current systems are growing as a primary source of 

power supply due to the development of several DC renewable energy resources like solar and fuel 

cells and its application in high-power, low-loss power electronics, and power semiconductor 

devices in the past decades. Moreover, reduction in copper use, higher controllability, lower cost, 

and easier interconnections are some notable advantages of DC over AC systems. DC power supply 

is considered as a substitute electric power carrier for the increasing demand of energy utilization. 

The demand is ever-raising due to its higher overall efficiency for DC loads, easier integration of 

renewable and distributed energy sources, and uninterruptible power supply with readily available 

energy storage elements [62-64]. Applications such as electric ships, wind farms, data centers, 

microgrids, and smart homes can benefit from using DC electric power. 

For further research, the topology of ICC-BZCB is considered as it is found to be the most 

efficient among the other existing ZCB topologies. Analysis of power losses associated with its 

individual components at various tripping times (SCR turn-off time) is performed to protect a DC 

load. The auxiliary Z-source capacitors C1, and C2 are used to realize SCRs’ commutation [57]. 

Statistical values of the ZCB parameters (Z-source inductors, Z-source capacitors, load capacitor, 

load resistor) are evaluated for various tripping times. Hence the overall power loss in the circuit is 
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determined. An appropriate core selection method for designing a Z-source inductor is proposed by 

comparing the tripping time and inductive permeability. 

 

3.2 Component Sizing Criteria for ICC-BZCB 

The previously proposed method for detecting the ICC-BZCB parameters used the 

minimum detectable fault ramp rate and the minimum detectable conductance relations [57]. In 

this study, a new method is introduced for detecting the ZCB parameters using the relation of SCR 

tripping time [42]. The tripping time of ZCB is the time period between the initial fault occurrence 

and the SCR regaining its forward blocking capability. In an ICC-BZCB, during normal operating 

conditions, the thyristor (T2) and the diode (D1) are reverse biased. The breaker makes a connection 

between the load and the power source via thyristor (T1) and diode (D2), as seen in Fig. 2.7. The 

tripping time for the thyristor is set to different values, and the corresponding values of Z-source 

inductors (L1 and L2), Z-source capacitors (C0, C1, C2), load capacitor (CL) is evaluated. A 

comparison is made between the overall power loss in the circuit for different sets of Z-source 

parameter values. The numerical values for ICC-BZCB parameters are calculated using the 

thyristor current equation, and the minimum detectable fault ramp rate equation derived in [57]. 

The thyristor current is given as follows: 

 

𝑖𝑆𝐶𝑅(𝑡) = 𝐼𝑙𝑜𝑎𝑑 −
2𝐶𝑉𝑠𝑘

2𝐶 + 3𝐶𝐿
𝑡 +

𝑘𝑉𝑠

2𝐶 + 3𝐶𝐿
(

1

4𝐿
+

3𝐶𝑘

2𝐶 + 3𝐶𝐿
) 𝑡3 

(13) 

where, 

           iscr is thyristor current in Amps. 

           Iload is load current in Amps. 

           C is Z-source capacitance in Farads. 

           CL is load capacitance in Farads. 
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           Vs is source voltage in Volts. 

           k is the minimum detectable fault ramp rate in Ω−1. 𝑠−1 

           L is Z-source inductance in Henry. 

           t is tripping time of SCR in secs. 

The relation for calculating the minimum detectable fault ramp is given in equation (14). 

 
     𝑘 =  

1

𝑅𝑓
∗

1

𝑡
    

(14) 

where,  

              tripping time (t in secs) is the varying parameter. 

The numerical values of the ZCB components for various tripping times are calculated by 

substituting the value of k obtained from equation (14) in equation (13 & 15) and solving them. 

 
  𝑘 =

81

32𝐶2𝑅𝑓
2

(2𝐶 + 3𝐶𝐿) 
(15) 

The value of Z-source inductors can be determined using the relation in (16). 

 
         𝐿 ≫

1

30
𝐶𝑅𝑓

2 
(16) 

Since equation (13) is a third-order equation in tripping time (t), three different sets of 

values for Z-source parameters are obtained. The value of ‘t’ is varied, and ZCB parameters are 

evaluated for different cases. Out of the three possible sets of values obtained using (13), one pair 

consisted of negative values, which is neglected. The remaining two sets of values are considered 

for overall power loss calculation and ZCB design considerations. The value of Z-source inductor 

(L) calculated using (16) is amplified by 10 times the actual calculated value in order to prevent 
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any possible spike in the source current that may arise while tripping the ZCB when a fault is 

encountered in the system. Also, with a high inductance value, the current flowing through the 

inductor can be preserved constantly during fault conditions. The inductor value should not have 

any effects on the thyristor current. Tables 5 and 6 represent two sets of Z-source parameter values 

for varying tripping times. The tripping times for the ZCB are varied within an interval of (5 μs -

1000 μs), and the corresponding ZCB parameters for the respective tripping times are evaluated. 

 

Table 5. ICC-BZCB parameters (set-1) for various tripping times 

Tripping time 

(t in µs) 

Z-Source Inductance 

 (L1, L2 in mH) 

Z-source Capacitance 

(C0, C1, C2 in µF) 

Load Capacitance 

(CL in µF) 

5 0.615 1.15 0.63 

10 1.23 2.3 1.26 

20 2.5 4.6 2.5 

100 12.3 23.07 12.6 

500 61.5 115.35 63.25 

1000 123 230.7 126 

 

 

 

 

Table 6. Second set of Z-source parameters specified for ICC-BZCB 

Tripping time 

(t in µs) 

Z-Source Inductance 

(L1, L2 in mH) 

Z-source Capacitance 

 (C0, C1, C2 in µF) 

Load Capacitance 

(CL in µF) 

5 0.22 0.42 0.3 

10 0.45 0.84 0.61 

20 0.9 1.7 1.25 

100 4.5 8.4 6.1 

500 22.4 42 30.5 

1000 45 84 61 
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3.3 Inductor Design Principle 

An inductor is selected based on two key factors: inductance required with DC bias (L) and 

the DC current (I). For inductor design, magnetic powder cores are selected as they have 

outstanding magnetic characteristics, including high resistivity, low power losses, and stability 

under high DC bias conditions.  In order to determine the core size and the required number of turns 

for an inductor design, the LI2 chart for the magnetic powder cores in [65] is used to locate the 

permeability of the core. For our design, the SCR tripping time (t) is set as 10 μs, source voltage 

(Vs) is 240 V, and the load resistance (RL) is 80 Ω. Using equations (13-16), the Z-source inductor 

is calculated as 1.23 mH.  

 

𝑁 = √
𝐿103

𝐴𝐿
 

(17) 

 
𝐻 =

𝑁𝐼

𝑙𝑒
 

(18) 

where, 

 L is the required inductance, in μH. 

 AL is the inductance factor, in nH/T2. 

 le is the path length, in mm. 

The core selected for this inductor design is a toroid with a part number C055076A2 [65]. 

Using the inductance factor (AL) obtained from the datasheet of the core, the number of turns 

required for the inductor design (N) is calculated using (17). Then, the DC bias (H) is evaluated 

using (18), which is compared with the permeability curve to determine any roll off in the per-unit 

value of initially determined permeability. The ratio between the surface area of inductor windings 

(Swire) to total surface area (Stotal) of the core is considered less than 0.4 to ensure that the inductor 

does not saturate under normal and fault conditions. Fig. 3.1 shows the inductor designed with (L 

= 1.23 mH) for the laboratory experiment. 
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Figure 3.1 Inductor Designed for Lab Test (L = 1.23 mH) 

 

Table 7. Specifications of the inductor designed in lab 

Inductor Specifications Value 

Inductance (L) 1.23 mH 

DC current (I) 3 A 

LI2 11.07 mH-A2 

Material Magnetic Powder Core 

Shape Toroid 

Permeability  60 μ 

Inductance factor (AL) 56 nH/T2 

Outer Diameter (OD) 36.7 mm 

Inner Diameter (ID) 21.54 mm 

Core Height (HT) 11.35 mm 

Path length (le) 89 mm 

Area of Cross Section 67 mm2 

Number of turns (N) 149 

AWG Wire 18 

Diameter of Wire 1.024 mm 

Area of wire (A) 0.824 mm2 

Swire 122.71 mm2 

Stotal 364.4 mm2 

Ratio between Swire / Stotal (R) 0.337 < 0.4 
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Table 7 above shows the specifications used for the inductor design in the laboratory for 

making the ZCB circuit. The number of turns required for the inductor was calculated as 149 turns 

using (17). The loss in an inductor designed using the magnetic powder cores with varying 

permeability for three different cases of tripping times is studied. The inductance value for each 

case is calculated using equation (13-16). The inductance value is kept unchanged while varying 

the permeability of the core. The variation in the permeability value realized using the LI2 chart 

changes the core’s effective inductance (AL) accordingly. Any alterations in the AL value also 

change the required number of turns (windings) for an inductor design, which directly impacts on 

the overall power loss evaluation. Table 8 illustrates these details. 

 

Table 8. Inductor loss (winding loss) evaluation for (t = 100, 500, 1000 µs) 

Parameter Permeability  

(μ) 

Inductance 

(AL) 

Inductor winding 

loss (in watts) 

Remarks 

t = 100 µs  

L = 4.5 mH 

14 44 10.78 𝝁 ≥ 𝟏𝟐𝟓 

(inductor 

saturates) 

26 82 7.89 

60 189 5.2 

125 394 N/A 

t = 500 µs  

L = 22.4 mH 

14 26 15.99 𝝁 ≥ 𝟔𝟎; 

(inductor 

saturates) 

26 48 11.76 

60 111 N/A 

t = 1000 µs 

L = 45 mH 

14 37 17.2 𝝁 ≥ 𝟐𝟔; 

(inductor 

saturates) 
26 68 N/A 
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The winding loss in an inductor is calculated using equation (3 & 4). Using the findings of 

Table 8, a relation between the available inductor core permeability and the ZCB tripping time is 

established. It is observed that as the value of tripping time increases, the inductor design cannot 

account for a higher permeability value as the inductor goes into saturation mode. The permeability 

versus DC bias curve is a primary parameter to determine the saturation point. Likewise, the 

relation between the permeability of the core and the number of windings required for the inductor 

design is also studied, as seen in Fig. 3.2. The relation is inversely proportional, i.e., for an inductor 

design, as the permeability of the core increases, the number of turns required reduces accordingly. 

Similarly, keeping the permeability of a material constant, the number of windings required is 

directly proportional to the SCR tripping times (Fig. 3.3).  

 

 

Figure 3.2 Relation between the permeability of the core and the number of inductor windings 
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Figure 3.3 Graph showing a relation between SCR tripping time vs. Number of inductor 

windings 

 

In totality, a general relation is established between inductor windings, tripping time of 

SCR, and permeability of inductor core. Initially, the inductance value is calculated using the SCR 

trip time, which is then is used to determine the number of turns required for the inductor design. 

A relation between the selected inductor core’s permeability to the number of inductor windings, 

SCR tripping time, and inductor loss is established. The key conclusions drawn from this study 

are: 

(a) the higher the value of permeability, the lower the number of turns (inductor windings) 

required 

(b)  for a constant permeability, the number of inductor windings is directly proportional 

to the SCR tripping times 
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(c) the overall power loss is directly influenced by the core’s permeability and the SCR 

tripping times (Fig. 3.4) [43].  

 

 

Figure 3.4 Inductor power loss vs. permeability of core at various tripping times 

(See Appendix A3 for copyright information) 

 

 

The increase in the SCR’s tripping time limits the selection of the inductor core with 

different permeability values. As seen in Fig. 3.4, the inductor core selection options for t = 10 μs 

is wide with different available core permeabilities. However, as t increases, the available core for 

an inductor design gets limited with the permeability. Thus, when t = 1000 μs, only one option of 

inductor core is available for the design. Also, the inductor loss is directly related to the SCR 

tripping time, i.e., for a constant permeability of a core, the inductor loss is higher for a higher 

tripping time and vice versa. This can be observed for the case with μ = 14 in Fig. 3.4.  
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3.4 Assessment of Steady-State Power Loss of ICC-BZCB at Various Tripping Times 

The overall power loss in an ICC-BZCB during the steady-state normal operation is the sum 

of individual loss associated with every single component that participates in its equivalent circuit. 

The equations and considerations of power losses are presented for inductors, capacitors, diodes, 

and SCRs in [41]. For the total power loss analysis, the respective specification of ZCB components 

is identified and evaluated for various tripping times. The total power loss is the sum of individual 

losses in (12). The load-power requirements are set uniform for all the cases with the source voltage 

(Vs = 240 V), load current (IL = 3 A), and fault resistance (RL = 40 Ω). The on-resistance of SCR is 

set to 0.1 Ω. 

All the components associated with the ICC-BZCB topology are chosen carefully, reducing 

the overall power loss. The inductor with the best applicable permeability (highest possible) is 

selected. Table 9 presents the required set of data to evaluate the loss in each ZCB components. 

The Z-source parameter values for an ICC-BZCB with various tripping times are calculated using 

equations (13-16). Table 5 specifies the ZCB parameters that are chosen for overall power loss 

analysis. The total power losses of ICC-BZCB topology under a common load condition for 

various tripping times are calculated. It can be seen in Table 10 that the SCR tripping time has a 

direct relationship with the overall power loss. As the value of tripping time increases, overall 

power loss in the circuit also increases, thus reducing the DC network’s overall efficiency. The 

efficiency of a breaker is maximum when the tripping time is short. From this analysis, it can be 

concluded that the tripping time of ZCB is a primary factor that needs to be considered while 

designing a Z-source breaker.  
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Table 9. Specification of required set of data for component power loss calculation 

Parameter Value Remarks 

ID Varies Internal diameter of magnetic powdered core (inductor) 

OD Varies External diameter of magnetic powdered core (inductor) 

AL Based on 

permeability 

Inductance of core (inductor) 

VF 1.1V Diode forward voltage 

IR 300 MΩ Leakage/Insulation Resistance of capacitor 

ESR 0.4 Equivalent Series Resistance of capacitor 

Vs 240 V Source Voltage 

IL 3A Load Current 

F Variable Resonance Frequency 

PL 720W Load Power 

 

 

Table 10. ICC-BZCB parameters for overall power loss calculation using values from Table 8 

Input Parameters Overall Power Loss Overall 

Efficiency 

(%) 

Tripping time 

(t in μs) 

Inductor Permeability 

(μ) 

in watts in % 

10 125 9.314 1.29 98.71 

20 60 12.46 1.73 98.27 

100 60 14.6 2.03 97.97 

500 26 27.74 3.85 96.15 

1000 14 38.60 5.36 94.64 

 

3.5 Experimental Validation 

3.5.1 Steady-state Power Loss Assessment 

A testbed is devised in the lab, as shown in Fig. 3.5. The Z-source capacitors, SCR, and 

diodes are selected such that it meets the load current requirements of our testbed designed using 
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the parameters specified in Table 11. The datasheet of SCR [66], diodes [67], Z-source capacitors 

[68], and the load capacitor [69] are used for the selection of the given components such that they 

are able to handle the desired load current requirements of 3 A. A thermal metallic AC circuit 

breaker with the 6 A AC 360 V DC ratings [70] along with the 10 A cartridge fuses [71] are placed 

in series between the main DC power supply and Z-source inductor to provide double-layer 

protection to the DC source. The “Fault Emulation Board” represents a parallel combination of six 

240 Ω resistors offering a 40 Ω fault resistance.  

 

 

Figure 3.5 Testbed of ICC-BZCB designed in lab 

 

During the experiment, a fault is emulated by sending a control signal to the IGBT [72] on 

the fault emulation board through the dSpace controller. The gate driver circuit of the IGBT is 

energized with a 12-VDC voltage supply. Once the IGBT turns on, the additional resistive 

branches on board are brought into operation, and then the LC resonant branch of ZCB is triggered 
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to turn off the SCR. A detailed observation is made on the voltage across all components of ZCB 

for variable supply, as seen in Fig. 3.6. The source voltage is chosen, ranging between 40 V – 240 

V with an increment of 40 V in each interval. 

 

Table 11. Laboratory testbed design parameters for ICC-BZCB 

Testbed design parameters Value 

Desired tripping time (t) 10 μs 

Source voltage (Vs) 240 V 

Load current (IL) 3 A 

Load power (PL) 720 W 

Z-source inductance (L1, L2) 1.23 mH 

Z-source capacitance (C0, C1, C2) 2.2 μF 

Load capacitance (CL) 1.26 μF 

 

 

The Z-source inductors are designed and manufactured using the method illustrated in 

Section 3.3. The core is carefully selected which meets the desired inductance requirement of DC 

bias and the DC current. The SCR is initially turned on with a 5 V supply that is connected to its 

gate terminal. Once the SCR turns on, the gate signal can be removed as the SCR is now fully 

equipped to operate in a steady-state condition. Now, the ICC-BZCB is fully equipped to be 

supplied with the DC source. From the calculations, a safe voltage limit for this particular ICC-

BZCB design is up to 240 V. Thus, the source voltage was varied such that the maximum voltage 

limit is within the safety threshold limit. The voltage drop across each ZCB component (Z-source 

capacitors, inductors, power diodes, and SCR) is measured during the steady-state operation with 

the help of a multimeter as represented in Fig. 3.6. These results can be used to assess the power 
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loss distribution of components in ICC-BZCB when there is a rated load with a configured tripping 

time of 10 µs. 

 

 

Figure 3.6 Voltage distribution of ICC-BZCB for efficiency evaluation 

 

Table 12. Efficiency evaluation for variable (Vs) during steady-state rated-load (RL = 80 Ω) 

VS  

(V) 

IS  

(A) 

VL 

(V) 

IL 

(A) 

Efficiency 

(%) 

40 0.45 37.91 0.455 95.828 

80 0.92 77.72 0.932 98.417 

120 1.40 117.41 1.410 98.541 

160 1.88 157.70 1.890 99.087 

200 2.36 197.66 2.367 99.123 

240 2.84 238.04 2.847 99.426 
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A steady-state power loss analysis is performed (as seen in Table 12) to calculate overall 

efficiency during the rated-load (RL = 80 Ω) operation. The source voltage is varied at an interval 

of 40 V. The corresponding power loss associated with the ICC-BZCB topology is calculated to 

make an appropriate overall efficiency assessment. It is observed that the ICC-BZCB is most 

efficient when operated at the voltage level that is initially used for determining the breaker 

parameters. As the source voltage reduces, the breaker’s efficiency reduces accordingly, as seen 

in Table 12. 

 

Table 13. Steady-state power loss analysis of ICC-BZCB 

Test Conditions: 

 

Supply Voltage (Vs)= 240 V 

Load Resistance (RL) = 80 Ω 

Load Capacitance (CL) = 1.26 µF 

Inductance (L1 & L2) = 1.23 mH 

Capacitance (C1, C2 & C0) = 2.3µF 

 

ZCB 

Component 

Power Loss Analysis 

(in %) 

Theoretical Experimental 

L1 0.13 0.094 

L2 0.13 0.097 

C1 & C2 2.66 × 10−5 ≈ 0 

 (Negligible) 

1.1 × 10−6 

≈ 0 

Diode (D2) 0.042 0.17 

SCR (T1) 0.125 0.213 

Overall 

Power Loss 

0.427 0.574 

 

Now, as the breaker efficiency is recorded maximum at 240 V, the individual loss 

associated with all the breaker components at Vs = 240 V is identified to detect the parameter 

contributing the most significant loss. From the observation (as seen in Table 13), it can be 

concluded that the experimental power loss associated with the Z-source inductors and capacitors 

is very minimal, and most of the loss in the breaker is noted at the switching devices, i.e., diode 
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and the SCR. The practical efficiency calculated using the input/output load power in Table 12 

matches the efficiency evaluation using the individual loss in the ZCB components in Table 13.  

3.5.2 Fault Analysis 

After performing the steady-state efficiency analysis, the next step was to inject a fault into 

the ICC-BZCB design via the fault emulation branch (consisting of 40 Ω fault resistance in series 

with an IGBT). As the fault was encountered in the system, the breaker was unable to trip the fault 

current with the specifications that were used for designing the ZCB. The practical observations did 

not satisfy the simulation results that led to the fault remaining uncleared. Thus, the flaw in the 

existing parameter identification method was detected. A new method of configuring Z-source 

capacitors for ICC-BZCB is proposed considering the SCR’s reverse recovery time [42]. 

A. IGBT Gate Driver Circuit 

 

 

Figure 3.7 Gate driver circuit of IGBT 
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A fault can be emulated by turning an IGBT “ON” to bring a group of resistors online, 

which is a branch connected in parallel to RL. Fig. 3.7 represents the gate driver circuit of an IGBT 

constructed using an IR2125 controller. A 12-VDC power supply is used to energize the controller, 

and a step-up signal is injected into the “IN” pin to close the IGBT for the tripping of the ZCB. 

The step-up signal is conveniently generated in the hardware testbed by using the dSpace-1104 

R&D Controller with integrated modules in the MATLAB/Simulink software. 

B. Differences in Simulation and Experimental Observations 

As stated earlier, “The tripping time of a ZCB is the time period between the initial fault 

occurrence and the SCR regaining its forward blocking capability i.e., (0 – t2) in Fig 3.8.” The 

existing parameter identification method does not consider the reverse-recovery time (i.e., the 

turnoff time) of SCR properly and neglects it from the tripping time (ttripping). The turnoff time (toff) 

of the SCR is defined as the time interval between the anode current becoming zero and the SCR 

regaining a forward blocking capability i.e., t1 – t2 as seen in Fig 3.8. Thus, the ZCB fails to operate.  

 

 

Figure 3.8 SCR current after a fault with consideration of the reverse-recovery time 
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There are several existing methods for evaluating the ZCB parameters. The ramp rate of 

fault current and the current magnitude are used to determine ZCB’s parameters in [53, 56, 57]; 

the Z-source parameters are evaluated based on the required resonant time in [3, 47]; and a step-

change in fault current is applied to determine the minimum value of Z-source capacitances and 

inductances in [73], which is extended from the method of [3] and [53]. Each of these methods is 

based on ZCB topologies theoretically that treats the SCR as an ideal model. For a successful 

turnoff of the SCR, the turnoff time (toff), which is the period from (t1 – t2), in Fig. 3.8 should be 

considered for practical applications.  

 

Table 14. Measured value of components on hardware testbed 

Parameter Value Remark 

C0 = C1 = C2 2.2 μF VMax = 400 V 

L1 = L2 1.27 mH Max. DC current = 10 A 

CL 1.3 μF VMax = 400 V 

RL 80 Ω Max. DC current = 4.5 A 

 

 

Thus, an appropriate parameter identification method considering the entire tripping time 

of the SCR should be considered for designing a ZCB topology. If the parameter values are not 

specified correctly, then any fault in the system may remain unclear, which poses a significant 

threat to the DC systems. The neglection of SCR turnoff time in the existing method will result in 

disastrous consequences in DC circuits if the SCR fails to trip in practical applications. Fig 3.9 

shows a comparison between the two SCR current waveforms from simulation and experimental 

testbed. The configurations for both the simulation and experimental cases are kept uniform with 

identical parameters of Table 14. The SCR was unable to turnoff for the experimental test due to 
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the requirement of reverse-recovery even though its current reaches below zero for a small fraction 

of time after a fault. 

 

 

Figure 3.9 SCR current for simulation and practical test 

 

C. Z-source Capacitor Configuration Method 

An adequate amount of negative current flowing into the anode of the SCR builds a 

forward-voltage blocking capability which is a key consideration for achieving a successful 

reverse-recovery of the SCR. A new method of configuring Z-source capacitances is proposed to 

supplement the existing parameter identification method and guarantee the turnoff of SCR applied 

in practice [42]. The new method consists of these two steps: 

1) Identifying ZCB parameters under a boundary condition: For a successful turnoff of the 

ZCB, an SCR should have at least two zero-crossing points i.e., t1 & t2 as seen in Fig. 3.8. A 

boundary condition is defined as the instance where the SCR has a single point in time to reach 
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zero current after a fault is encountered in the system. The SCR current for the case with 

boundary condition drops below the zero current level for a certain period and then 

immediately spikes back which causes the fault to remain uncleared in the system as observed 

from the experimental waveform in Fig. 3.9. A boundary condition differentiates the case of 

absolute failure from the case of possible failure in SCR’s turnoff. The absolute failure in 

SCR’s turnoff refers to the case where the SCR doesn’t reach a zero current at all when the 

ZCB is triggered in an event of a fault. In contrast, a possible failure in SCR’s turnoff refers to 

the case where the SCR current meets the requirement of two zero-crossing points, however, 

the turnoff of SCR now depends on the negative area that the two points cover. A mathematical 

relation for the boundary condition is derived in (19) and the calculated Z-source capacitance 

for this case is used as a base value for CZCB adjustments in step #2. 

 

{

𝑖𝑆𝐶𝑅(𝑡𝑡𝑟𝑖𝑝𝑝𝑖𝑛𝑔) = 0

𝑑𝑖𝑆𝐶𝑅(𝑡)

𝑑𝑡
|𝑡=𝑡𝑡𝑟𝑖𝑝𝑝𝑖𝑛𝑔

= 0
    

(19) 

2) Re-evaluating the ZCB parameters: The ZCB parameters identified from step #1 were not 

able to generate sufficient negative current for SCR to internally establish its depletion region. 

Thus, a correction equation given in (20) is used to further specify the Z-source capacitance. 

Following the new parameter identification method, a set of Z-source parameters are used as 

listed in Table 14, when the desired tripping time is set to 10 µs. A correction should be made 

to these parameters to generate enough negative current and remove excess carriers in the SCR 

p-n junction internally. The reverse current contribution of the Z-source capacitor for SCR’s 

turnoff increases accordingly by increasing the capacitance value. Therefore, in order to meet 

the SCR’s turnoff requirement, a correction equation is developed to adjust the Z-source 
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capacitance. Since ‘C0’ in an ICC-BZCB topology can contribute to the bidirectional fault 

protection, it is suggested to adjust C0 for achieving a successful turnoff of ZCB in the event 

of a fault occurrence at either terminal (i.e., input or output side). The coefficient of “a” is 

defined in (20) as the ratio of the actual capacitance (as “Co_adjusted”), which is required to turn 

the SCR off in practical applications, to the boundary capacitance of Co_boundary (calculated 

using the relations in 13-16). 

 
a =

𝐶0_𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑

𝐶0_𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
 

(20) 

Considering the accumulation of enough negative electrons to build up the depletion region 

in an SCR, a correction equation is developed for Z-source capacitance adjustment using Fig. 3.10 

[42]. A relationship between the SCR current, the required tripping time (ttripping), and the SCR 

turnoff time (toff) are developed for the boundary condition and the case with adjusted Z-source 

capacitance. As seen in Fig 3.10, the SCR current curve in red has only one zero-touching point at 

t = ttripping for the boundary condition. Thus, to turn off the SCR for this case, the SCR current 

should remain in the negative region for an additional time of toff. According to the SCR’s turnoff 

features, the enclosed area of “Area-A” can provide sufficient negative electron for turning it off. 

In contrast, to turn off the SCR for a given tripping time, the attenuation in SCR current can be 

intensified by increasing the Z-source capacitance by the ratio ‘a’. This forced turnoff region is the 

enclosed area of “Area-B” in Fig 3.10.  

A correction equation of (21) for the Z-source capacitors is finally derived by using the 

relation based on “Area-A = Area-B.” The ZCB design using the boundary condition from step #1 

is adjusted by adding additional capacitance to C (i.e., C0, C1, and C2).  
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 4

(𝑎2 + 𝑎 + 2)
=

𝑡𝑡𝑟𝑖𝑝𝑝𝑖𝑛𝑔

𝑡𝑡𝑟𝑖𝑝𝑝𝑖𝑛𝑔 + 𝑡𝑜𝑓𝑓
 

(21) 
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Figure 3.10 Relationship between SCR current, required tripping time (ttripping), and the SCR 

turnoff time (toff). 

(See Appendix A4 for copyright information) 

 

 

 

D. Test for Validation of Capacitance Correction 

The derived correction equation of (21) for capacitance C0 is justified by this test. The 

required tripping time (ttripping) for the hardware testbed design is 10 μs, and the maximum turnoff 

time (toff) of the SCR component applied is 45 μs from the manufacturer’s datasheet. The threshold 

of C0 is calculated as 8.8 μF using equation (21). Therefore, to ensure the turnoff of the SCR, three 

additional capacitors of 2.2 μF should be added in parallel to the original C0. Fig. 3.11 shows the 

anode current in SCR after a fault is triggered. Each film capacitor of capacitance 2.2 μF is added 

into the C0 value on the testbed incrementally. In Fig. 3.11, there are five curves representing the 

SCR current for C0 = (4.4, 6.6, 8.8, 11.0, 13.2) μF. When C0 is lower than the threshold of 8.8 μF 
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calculated using (21), i.e., 4.4 μF and 6.6 μF, the SCR current cannot be interrupted, and thus the 

DC protection fails. In contrast, the SCR current can be successfully cut off when the C0 reaches 

the threshold value or higher, i.e., 8.8 μF, 11.0 μF, and 13.2 μF, to protect the DC circuit. The fault 

cases’ experiments were performed at a lower voltage level of Vs = 120 V, considering the safety 

constraints of the laboratory DC source which has a maximum supply current limit of 8 A. This 

resulted in the pre-fault SCR current of 1.5 A and maintained the uncontrolled fault currents under 

4.5 A to protect laboratory equipment. The expected fault current was 9 A for the original design 

with a supply voltage of 240 V. All the other tests are performed under the rated voltage of 240 V. 

Thus, to successfully trip the breaker, a proper adjustment in the Z-source capacitor (C0) enables 

the operation of a ZCB when there is a fault encountered in the system. Hence the test for 

capacitance correction is validated. 

 

 

Figure 3.11 SCR current during fault 
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The post-fault SCR currents (zoomed-in) changing along with the increase of capacitance 

in C0 is shown in Fig. 3.12. An increment in the value of C0 within the unit time increases the 

accumulated electrons for reverse recovery accordingly, therefore, turning off the ZCB. There are 

two cases of failed SCR turnoff behaviors as observed in the tests of Fig. 3.11 and Fig. 3.12, 

respectively. Since the capacitance C0 = 4.4 μF and 6.6 μF is less than the threshold value of 8.8 

μF calculated using the relation in (21), the fault remains uncleared for these values of 

capacitances. Thus, the general usage of equation 21 is verified using Fig 3.11 and Fig. 3.12. The 

anode current of the SCR is represented by the curve for C0 = 8.8 μF in Fig. 3.13 after a fault is 

triggered. It should be noticed that even after an appropriate adjustment and correction made to 

the capacitance (C0) in consideration of the SCR’s reverse-recovery time, the fault current through 

the SCR was cut off within the desired tripping time of 10 μs. Thus, the capacitance adjustment 

does not alter the turnoff time of the SCR. 

 

 

Figure 3.12 SCR current (zoomed-in) during turnoff process 
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Further, this test was performed on 5 samples of the identical model of SCRs. The same 

threshold in capacitance correction was demonstrated by the testing results (i.e., all the SCR 

samples turned off successfully when the C0 reached a value equal to or higher than 8.8 μF). Also, 

the reverse was true for all the SCR samples, i.e., the breaker did not turn off for the cases with C0 

= 4.4 μF and 6.6 μF, respectively. The fault current waveforms for the 5 different samples of SCR 

with C0 set at 8.8 μF can be observed in Fig. 3.13. The tripping time of these 5 SCR samples noted 

from the measurement ranges between (10.0 μs, 10.8 μs) which was within the threshold of the 

tripping time that was chosen initially to determine the ZCB parameters. The uniqueness of each 

sample causes these minor differences and is in a reasonable range. The effectiveness of the 

proposed Z-source capacitor configuration is verified by this test which ensures the SCR’s turnoff 

in practical applications. 

 

 

Figure 3.13 SCR current and the trip signal for a configured tripping time of 10 μs (SCR current, 

in green dashed line; fault tripping signal, in orange solid line) 
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E. Featured Waveforms During SCR turn off 

This section demonstrates the featured waveforms of components on the testbed during the 

fault current interruption of the ZCB. The Z-source capacitor (C0) is set to 8.8 μF for this study. A 

comparison of experiment and simulation waveforms of the SCR’s voltage is shown in Fig 3.14. 

Likewise, Fig. 3.15 and 3.16 represent the current through the SCR (ISCR) and the current from the 

DC source (IS), respectively. The measurement data were recorded in an oscilloscope during the 

hardware experiment and the simulation data was obtained from the MATLAB/Simulink 

modeling. Both these data were then imported into the OriginLab software to generate Fig. 3.14, 

3.15, and 3.16 for comparison. As seen in the three figures, the experiment result matches the 

simulation analysis well. 

 

 

Figure 3.14 Voltage across the SCR (Exp: solid orange line, Sim: dashed blue line) 
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Figure 3.15 Current through the SCR (Exp: solid red line, Sim: dashed blue line) 

(See Appendix A4 for copyright information) 

 

As shown in the zoomed-in version of Fig. 3.15, the SCR current was cut off within the 

desired timeframe of 10 μs. A damped resonant phenomenon was observed for the initial 5 ms 

from the instance of fault occurrence that reduced the DC source current to zero. During this 

resonance phenomenon, the source current attains its highest value after the SCR is turned off as 

shown in Fig. 3.16. The theoretical study of the ZCB topology demonstrates that this peak current 

will never exceed two times its rated current value and only remains in that peak level for tens of 

microseconds. The peak current in the source as observed in the simulation and experimental case 

(Fig. 3.16) when a fault occurs was in the range of 4.5 A, which is less than twice the steady-state 

current, i.e., 6 A. Thus, it has no influence on the security of switching and other components in 

the circuit which makes the ICC-BZCB safe & reliable to operate for the protection of DC systems.  
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Figure 3.16 Current from the DC source (Exp: solid orange line, Sim: dashed blue line) 

 

Fig. 3.17 demonstrates the waveforms of featured resonant circuit components (i.e., C0, C1, 

C2, D2, L1, and L2) and the load during the transient period of SCR turnoff. The energy in LC 

components is released via resonance after the SCR turns off, eventually, turning off the load 

following its RC feature. As seen in Fig. 3.17 (e) & (f), the current through the inductor does not 

change instantaneously. Thus, the fault current passes through the Z-source capacitors (C0, C1, & 

C2) when a fault occurs in the system. Fig. 3.17 (a), (b), & (c) illustrates the current and voltage 

waveforms of Z-source capacitors (C0, C1, & C2), respectively. The resonance in LC components 

helps in the commutation of the SCR. Finally, the remaining energy in the system is released before 

the breaker is reset for the next cycle of operation. The load current goes to zero as the Z-source 

breaker trips successfully in the event of a fault as seen in Fig. 3.17 (g). The voltage and current 

waveform of the diode (D2) is shown in Fig. 3.17 (d). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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(g) 

(a) voltage and current of C0 (current, solid blue 

line; voltage, dashed red line)  

(b) voltage and current of C1 (current, solid blue 

line; voltage, dashed red line)  

(c) voltage and current of C2 (current, solid blue 

line; voltage, dashed red line)  

(d) voltage and current of diode D2 (current, solid 

blue line; voltage, dashed red line)  

(e) voltage and current of inductor L1 (current, solid 

blue line; voltage, dashed red line) 

(f) voltage and current of inductor L2 (current, solid 

blue line; voltage, dashed red line) 

(g) voltage and current at load (current, solid blue 

line; voltage, dashed red line). 

Figure 3.17 Experiment waveforms of featured components in the ZCB circuit 

 

F. Effect of Parameter Revision on ZCB’s Power Delivery Efficiency 

The Z-source capacitance adjustment is applied, and the power delivery efficiency of the 

ICC-BZCB with the adjusted C0 is re-evaluated and compared to the original case in Fig 3.6. The 

comparison of voltage distribution in the ZCB components between the original and the adjusted 

cases is demonstrated in Fig. 3.18. A numerical analysis of power loss for the two cases i.e., with 

and without the Z-source capacitance adjustments can be seen in Table 15. The same value of 

parameters as listed in Table 13 are used for the ZCB design. Since the only parameter adjusted is 

the Z-source capacitance (C0), it is noticed that the efficiency has a minor decrease of only 0.35 % 

caused by this adjustment. This 0.35 % drop is distributed evenly among all the ZCB parameters 

as observed in the adjusted case of Table 15. The maximum loss can be seen on the switching 

devices i.e., the diode and the SCR. The breaker’s overall efficiency for both adjusted and 

preliminary cases is greater than 99 %, which makes the ZCB an efficient candidate for the 

protection of DC systems.  
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Table 15. Power loss comparison for preliminary and adjusted case of C0 in the ICC-BZCB 

ZCB Component Experimental Power Loss (in %) 

Preliminary Adjusted 

L1 0.094 0.138 

L2 0.097 0.16 

C1 & C2 1.1 × 10−6 ≈ 0 

(NEGL.) 

1.54 × 10−6 ≈ 0 

(NEGL.) 

Diode (D2) 0.17 0.28 

SCR (T1) 0.213 0.346 

Overall Power Loss 0.574 0.924 

Efficiency 99.426 99.076 

* NEGL. stands for Negligible. 

 

 

 

 
Figure 3.18 Comparison of voltage distribution of ZCB components between the original and 

adjusted cases 
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3.6 Summary 

A relationship between steady-state power loss and required tripping time for ZCB is 

studied based on the topology of ICC-BZCB. From the analysis, it is found that the voltages of the 

capacitors and inductors in ZCB increase along with source voltage, while the voltage of SCR and 

power diode remains constant. The tripping time of SCR is a major consideration when evaluating 

the overall power loss in the ZCB during normal steady-state operation when there is a requirement 

of energizing the same load. In general, for selecting an inductor, it can be concluded that as the 

permeability of the inductor increases, losses associated with it decreases accordingly. For a 

constant permeability, the required number of inductor windings increases with an increase in 

tripping time of SCR, which in turn increases overall power loss in the DC network. 

A novel method of configuring Z-source capacitors is proposed to ensure the turnoff of SCR 

in an ICC-BZCB. The correction equation of Z-source capacitance is developed to accumulate 

enough negative SCR current for the depletion region buildup and thus guarantee the success rate 

of ZCB in DC circuit protection. Simultaneously, the new method can preserve the required tripping 

time to improve the controllability of ZCB. The experiments on a hardware testbed verified the 

effectiveness of the method. In addition, it was found that the correction and adjustment of the Z-

source capacitor has a negligible effect on ZCB’s power delivery efficiency. 

Therefore, with this novel method of Z-source capacitor configuration, the ZCB can be a 

good candidate for the protection of the distributed energy resources, HVDC transmission, and 

MVDC distribution networks as defined in the IEEE Std. 1547-2018. Based on the demonstrated 

behavior of ZCB in response to faults, the coordination of ZCBs and other switchgear can be 

maintained efficiently to enhance the reliability of the hierarchical protection scheme for pure DC 

systems and hybrid AC/DC power networks. 
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CHAPTER 4 

HIGH IMPEDANCE FAULT DETECTION USING ICC-BZCB 

 

4.1 Introduction 

Integration of digital communication and sensing technologies has played a major role in 

the rapid development of modern power systems in the past few decades. It improves the 

efficiency, reliability, and control flexibility in electric power networks. The previously 

unnoticeable disturbances are now detected easily due to advancements in technology and 

automation in the transmission/distribution system. The over-current protection devices easily 

detect the low-impedance faults caused by the high conductivity elements. However, real-time 

monitoring and locating the High-Impedance Faults (HIFs) are still challenging tasks that need 

careful attention. The detection of these low-grade faults has now been a challenge for the 

distribution engineers for many years.  

The HIF occurs in a medium-voltage power system when there is an electrical contact 

between an energized conductor and a highly resistive surface (such as sand, asphalt, tree branches, 

etc.) They do not draw enough current needed to operate the conventional overcurrent protection 

devices such as relays, fuses, and reclosers. The most common cause for the occurrence of a HIF 

is breaking an overhead conductor and falling to the ground, which in most cases results in a fire 

hazard, as seen in Fig. 4.1. A HIF’s characteristics are very similar to that of the noisy, small, and 

poorly behaved single-phase load [74]. This results in the HIF remaining uncleared and exposes 

the person to a high risk of electric shock. The possibility of fire hazards can impose a threat to the 

livestock and can cause significant damages to properties [75].  
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Figure 4.1 A downed conductor arcs to the wet grass [76, 77] 

 

The utilities for public safety often install expensive and sophisticated commercial or self-

developed HIF detection devices. The two most commonly installed products are the High 

Impedance Fault Analysis System (HIFAS) from Nordon Technologies and the Digital Feeder 

Monitor (DFM) from General Electric [78]. Integration of renewable energy resources in DC 

format has led to the fast development of the DC transmission and distribution systems in the past 

decades. Sometimes, a fault impedance in the low-voltage DC system is comparable to the nominal 

ratings. This results in the low magnitude short-circuit currents producing the electric arcs with 

high-frequency contents [79]. Thus, the HIF condition in DC power systems should be detected 

and subsequently isolated to minimize any significant danger. 

The research in the past shows that though most of the HIFs are different from each other, 

they do have some similar characteristics that one uses to detect the presence of a fault. Thus, the 
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techniques implementing the manipulation and processing of voltage and current measurements 

during the HIF conditions are used to overcome the problem of HIFs for the power grids. A HIF 

is detected by extracting the HIF characteristics using the wavelet transform-based method by 

decomposing a signal into different frequency bands and locations in time, as introduced in [80, 

81]. The study in [82] presents a method of placing multiple smart meters across the power network 

for HIF detection. Additionally, a short-time Fourier transform approach was proposed in [83], 

where the phase current’s main harmonic components are extracted to identify HIF occurrence. In 

[84], the waveform distortion analysis with the solid electrical breakdown theory was performed 

to detect the HIF in a network. Likewise, the HIF condition in [85] was detected using the quasi 

differential zero sequence protection to analyse the current zero-sequence RMS value on feeders. 

A study of the change in impedance characteristics by injecting a high-frequency current signal 

into the grid to impose voltage on its node for detecting the HIF was performed in [86]. Similarly, 

a decision tree-based methodology for the detection of a HIF was implemented in [78]. Despite 

the wide variety of existing methods, due to the limitations such as lack of versatility, improper 

defining of effective variables, and associated limits, detection of HIF in a power system may 

remain unnoticed [87]. 

 

4.2 ZCB and HIF Detection/Interruption Modes 

A new method specifying the parameters of the ICC-BZCB to detect and interrupt HIFs is 

proposed that enables a new function of ICC-BZCB. The system reliability can be vastly improved 

with the application of the proposed method that can be easily integrated into a power network. 

The proposed method can identify HIF conditions by monitoring the status of Z-source 

capacitances. The operation of ZCB in case of a HIF can be classified into two modes: a) HIF 
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Detection Mode (HD-Mode); b) HIF Interruption Mode (HI-Mode). The HD-Mode is defined as 

the voltage oscillation on Z-source capacitances that demonstrates the HIF occurrence but no HIF 

interruption, whereas the HI-Mode is defined as the response of the ZCB to a HIF in order to cut 

it off. This is an easy and efficient way in practical application to realize the HDM/HIM 

specification in ZCB.  

 

4.3 Method of HIF Detection/Interruption with Z-source Breaker 

 

 

Figure 4.2 SCR currents of ZCB in two different cases of fault current to prove the feasibility of 

ZCB control 

(See Appendix A5 for copyright information) 

 

 

A new design methodology for detecting and interrupting the HIF specifying the ICC-

BZCB parameters is proposed. A proper component sizing enables HIF detection/interruption in 

the ICC-BZCB. The application of this method is studied and verified in a 240-V, 3-A DC system. 
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The ZCB parameters for the chosen system are obtained from Table 11. The ICC-BZCB designed 

in the laboratory can trigger any fault current higher than or equal to the minimum detectable fault 

current as selected by the operator, which is two times the rated load current, i.e., 2 * IL = 6 A. 

 

 

Figure 4.3 Graph showing the relation between Rf and CZCB-Mul 

 

The preliminary design is studied for two different cases of fault currents: Case I with a 

fault current IF = 5 A, which is less than twice the rated load current; and Case II with IF = 7 A, 

which is higher than twice the rated load current. Fig. 4.2 shows the operation of a ZCB designed 

with the specification illustrated in Table 11 for the two different fault current cases. It is observed 

that the breaker is irresponsive in Case I with IF = 5 A, whereas the fault current is cut off 

successfully in Case II, i.e., IF = 7 A [45]. This test shows that specifying the parameters of ZCB 

can be a possible solution for the HIF in a DC system. 
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A new method specifying the Z-source capacitances (CZCB) is proposed to control ZCB 

operating into the HD-Mode and HI-Mode freely. In this method, the relative response of an ICC-

BZCB is studied by increasing all the Z-source capacitances (i.e., C0, C1, and C2) proportionally. 

It is found that as the value of CZCB increases the reverse current contribution of CZCB in responding 

to the HIF increases accordingly within the breaker. Fig. 4.3 represents the relationship between 

the fault resistance (Rf) and the required Z-source capacitance (CZCB-Mul) to turn the SCR off under 

HIF conditions. As the value of CZCB increases, the minimum detectable fault conductance of the 

breaker becomes even smaller. Thus, the breaker is able to cut-off a relatively smaller fault current 

with an increase in the value of CZCB. Table 11 is used as the base values for the multiplication 

factor of CZCB in Fig. 4.3 to specify and control HIF detection/interruption modes. 

The maximum fault resistance that a breaker can trip under HIFs, as seen in Fig. 4.3, is 

derived as (22). The equivalent circuit of ICC-BZCB right after a fault is represented in Fig. 4.4, 

which indicates the currents contributed to the SCR’s turnoff supplied by the Z-source capacitors. 

The ZCB, with the proper adjustments of Z-source capacitors, is now enabled to handle a fault 

current from a HIF with an even smaller conductance value. 

 
RF−Max =

RFault−Base

50
. (7ln(CZCB−Mul) + 30) 

(22) 

where: RF-Max is the maximum fault resistance that a ZCB can trip independently (in Ω); RFault-Base 

is the base fault resistance (in Ω) that equals 80 Ω; CZCB-Mul is the multiplication factor, by which 

the Z-source capacitors should be amplified on the preliminary design values listed in Table 11. 

From theoretical analysis, the current through the Z-source capacitor (C2) in terms of fault 

current (iF) given in [57] can also be restructured for the proposed HIF detection/interruption 

control, as: 
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iC2 = CZCB−Mul (

CZCB

CZCB. CZCB−Mul + 1.5CL
) iF 

(23) 

Combining (23) with the equations of (24) and (25) (i.e. the equation (1) & (5) in [57]), a 

modified equation for the minimum detectable fault conductance is derived as (26): 

 
ILoad =

Vs − vf,SCR − vf,Diode

RLoad + Ron,SCR + Ron,Diode + Rinductors
 

(24) 

where, Vs is source voltage; Vf, SCR & Vf, Diode are forward voltage of the SCR and the diode 

respectively; RLoad = Load resistance, Ron, SCR = on-state SCR resistance, Ron,Diode = on-state diode 

resistance, Rinductors = inductor resistance.  

 ifault = G. VS (25) 

 
Gmin =

CZCB−Mul. CZCB + 1.5CL

CZCB−Mul. CZCB
.

1

RL
 

(26) 

Using equations (22) and (26), the same curve in Fig. 4.3 can be obtained. However, for 

practical applications, equation (22) is much more convenient than (26). Thus, (22) is used for any 

further analysis of HIF detection using an ICC-BZCB. The post-fault behaviour of ICC-BZCB is 

studied to define the HD-Mode and HI-Mode, respectively. During initial moments of a fault, the 

total transient current of C0 and C1 are in the reverse direction of SCR’s pre-fault current [57], as 

shown in Fig. 4.4. Thus, if the magnitude of the sum of these reversely flowing currents (iC0 & iC1) 

is less than the holding current (iH) of the SCR, i.e. (iC0 + iC1 ) < iH, the SCR would not turn off and 

operates in HIF detection mode. In this state, a HIF is detected by the breaker but not successfully 

interrupted. 
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Figure 4.4 Equivalent ZCB circuit for analyzing the current during the initial instance of fault 

 

Likewise, if the magnitude of the sum of the reversely flowing currents (iC0 & iC1) is greater 

than the holding current (iH) of the SCR, i.e. (iC0 + iC1 ) > iH for an adequate period of time, the 

SCR turns off and operates in HIF interruption mode. The holding current of SCR is the minimum 

anode current required to turn it off. The discharging status of ZCB capacitance is monitored to 

detect the HIF. In other words, the SCR does not turn off if a HIF cannot induce sufficient 

discharging from Z-source capacitors. Thus, the HIF might remain unnoticed and cause significant 

damages to electric devices in the system. In addition, the discharging amount is also proportional 

to the capacitance values of the Z-source capacitors. Therefore, by adjusting the Z-source 

capacitances, the ICC-BZCB can be controlled and specified in either HD-Mode or HI-Mode, for 

HIF detection/interruptions. 
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Table 16. Adjusted CZCB for various CZCB-Mul 

Base CZCB 

 (µF) 

    CZCB-New = CZCB-Mul * Base CZCB (µF) 

CZCB-MUL 1.0 2.0 3.0 

2.2 CZCB-New 2.2 4.4 6.6 

 

A simulation study is performed using the MATLAB/Simulink software on the low-power 

DC system with the adjusted Z-source capacitance values obtained from Table 16 to demonstrate 

the effect of equation (22) for HIF detection/interruption. In the simulation tests, the Z-source 

capacitances are adjusted along with a rise in fault resistance. All the breaker parameters applied 

are initially acquired from Table 11. CCZB value is magnified by 1.0, 2.0, and 3.0 times, 

respectively. The updated values of CZCB for different multiplication factors are listed in Table 16. 

The fault resistance is set to RF = 40 Ω, 50 Ω, and 60 Ω, respectively, and the performance of the 

breaker with the various CZCB values is analyzed. 

 

 

Figure 4.5 Three simulation tests to verify (22): a) CZCB-Mul = 1.0; b) CZCB-Mul = 2.0; c) CZCB-Mul = 

3.0 times 
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The SCR currents for various RF values along with adjusted CZCB is seen in Fig. 4.5. The 

maximum RF that the breaker can trip for case (a) with CZCB-Mul = 1.0 times is 40 Ω. Thus, only 

the case with RF = 40 Ω is tripped, whereas the other two cases of fault current remain uncleared. 

Likewise, the value of RF-Max calculated using (22) for CZCB-MUL = 2.0 is 𝑅𝐹−𝑀𝑎𝑥 ≈ 56 Ω, and RF-

Max for CZCB-MUL = 3.0 is 𝑅𝐹−𝑀𝑎𝑥 ≈ 61 Ω. Thus, from Fig. 4.5 (b), it can be observed that for CZCB-

MUL = 2.0, the breaker successfully turns off for RF = 40 Ω & 50 Ω but is irresponsive to 60 Ω as 

this resistance value exceeds the maximum RF of 56 Ω for this case. However, for CZCB-MUL = 3.0, 

the maximum RF is 61 Ω, leading to three successful interruptions without failing since it is higher 

than all the three RF values, as seen in Fig 4.5 (c). Thus, these tests verify the effectiveness of the 

proposed method by specifying ZCB’s HD-Mode/HI-Mode via (22). To prove the general usage 

of the proposed method in DC power networks, it is further verified via experiment tests on a low-

power testbed in the lab and simulation tests on a high-power testbed. 

  

4.4 Results 

In this section, the effectiveness of the derived curve for HIF detection in Fig. 4.3 is 

validated with the simulation, and experimental results. To verify the simulation study in Section 

4.3 and accuracy of Fig. 4.5, a low-power experimental test is performed on a hardware testbed. 

Next, a high-power simulation test of 5-kV, 5-MW, which represents a high resistive load is 

performed in MATLAB/Simulink environment, to prove the general usage of (22) in different 

systems. 

4.4.1 Experimental Verification with 180-W, 120-V Testbed 

An ICC-BZCB experimental prototype, as seen in Fig. 3.5 is designed to verify the 

proposed HIF control of ZCB. The testbed was established according to the parameters listed in 
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Table 11. When the power supply is 240 V and the ZCB is specified to the “HI-Mode”, the fault 

current can be successfully cut off, as shown in Fig. 4.6. However, as the fault impedance 

increases, the ability of the ICC-BZCB to interrupt the fault current gradually decreases, which 

causes the fault in the system to remain uncleared. Since the lab experiments were performed in 

both HI-Mode and HD-Mode, due to the limitations of the current rating of 8 A in the “Main DC 

Power Supply,” some cases of “HD-Mode” were intentionally performed with a lower input 

voltage of 120 V. This resulted in the pre-fault SCR current of 1.5 A and maintained the 

uncontrolled fault currents under 4.5 A to protect the laboratory equipment, as the actual expected 

fault current is 9 A under 240 V power supply. 

 

 

Figure 4.6 Indication of HI-Mode with a fault current of 3 A cutoff under 240 V power supply 

(SCR current, in blue solid line; fault turnoff signal, in red dashed line) 
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Three sets of experimental tests are performed on the testbed to verify the proposed 

method’s effectiveness by adjusting the values of Z-source capacitances according to Fig. 4.3 and 

(22). The CZCB is adjusted to 1.0, 2.0, and 4.0 times to their initial specified value in Table 11. 

During the experiments, a fault is emulated by an additional resistive branch connected in series 

to a controlled IGBT forming the “Fault Emulation Board,” as shown in Fig. 3.5. 

Test #1 – “CZCB amplified by 1.0 times, i.e., CAdj = 1.0 * CZCB”: 

In this test, the fault resistance (RF) is gradually increased, and the ZCB’s behavior in 

response to the fault current is analyzed. The four cases of fault resistance considered for this study 

are: RF = 35 Ω, 40 Ω, 50 Ω, and 62.5 Ω, respectively. The multiplication factor of CZCB for this 

test is set to 1.0, i.e., the same Z-source capacitance values are used as calculated in Table 11, 

which is 2.2 μF. All the other parameters remain unchanged except CZCB.  

 

 

Figure 4.7 The ZCB’s cut-off behavior for CZCB-Mul = 1.0. 
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As seen in Fig. 4.7, when the ZCB operates in the HI-Mode, the breaker cuts the circuit off 

in the HIF cases of lower fault resistances i.e., in the cases of (0.438 * RFault_Base = 35 Ω) and 

(0.5 * RFault_Base = 40 Ω). However, for higher fault resistances (in the cases of 

0.625 * RFault_Base = 50 Ω and 0.78 * RFault_Base = 62.5 Ω), the ZCB does not cut off the fault and 

stays in HD-Mode. A HIF can be detected by monitoring the status of CZCB and reported to the 

power system operator. The experimental results match the simulation analysis of Fig. 4.5 (a). 

Test #2 – “CZCB amplified by 2.0 times, i.e., CAdj = 2.0 * CZCB”: 

 

 

Figure 4.8 The ZCB’s cut-off behavior for CZCB-Mul = 2.0. 

 

In this test, the multiplication factor of CZCB is increased by 2.0 times. Thus, the boundary 

resistance of HI-Mode and HD-Mode increases to 56 Ω. This increase in the boundary leads to the 

breaker’s turnoff when the fault resistance is RF = 0.625 * RFault_Base = 50 Ω, thereby, turning the 
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breaker off for three cases of fault current with RF = 35 Ω, 40 Ω, and 50 Ω, respectively, as shown 

in Fig. 4.8. It matches the result of Fig. 4.5 (b). 

Test #3 – “CZCB amplified by 4.0 times, i.e., CAdj = 4.0 * CZCB”: 

In this test, the multiplication factor of CZCB is further increased to 4.0 times which 

increases the boundary of the HI-Mode and HD-Mode to 63.5 Ω calculated using (22). The 

increase in boundary of RF beyond Test #2 leads to the breaker’s turnoff when the fault resistance 

is at the highest selected value of RF = 0.78 * RFault_Base = 62.5 Ω, as shown in Fig. 4.9. Thus, the 

breaker is able to cut-off all the specified fault cases with CZCB = 4.0 times. The waveform for 

voltage across the Z-source capacitors (C0, C1, and C2) for the case with CZCB = 4.0 times and RF 

= 62.5 Ω is shown in Fig. 4.10. 

 

 

Figure 4.9 The ZCB’s cut-off behavior for CZCB-Mul = 4.0. 
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Table 17 summarizes the status of ZCB for different cases of HIFs with adjusted CZCB 

values. These results prove the effectiveness of (22) and demonstrate the controllability of ZCB 

towards HIFs, which is enabled by adjusting CZCB values properly. 

 

Figure 4.10 Voltage across Z-source capacitors for CZCB = 4.0 times and RF = 62.5 Ω 

 

 

 
Table 17. Summary of ZCB’s status in three experiments 

RF 

(in Ω) 

ZCB Status 

CZCB = 1.0 CZCB = 2.0 CZCB = 4.0 

35 Ω & 40 Ω ON OFF OFF 

50 Ω ON OFF OFF 

62.5 Ω ON ON OFF 
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4.4.2 Simulation Tests of a 5-MW, 5-kV Case 

A 5-MW, 5-kV case representing a high-resistive load is studied in the MATLAB/Simulink 

environment to prove the general usage of (22). Table 18 lists the parameters used for designing 

the simulation system. The fault resistance is gradually increased, and the response of the ZCB to 

this varying fault current is observed. 

Table 18. Specified parameters for simulation system 

Parameter Remark Value 

C1 = C2 = C0 = CZCB Z-source capacitors 36.92 µF 

L1 = L2 = LZCB Z-source inductors 76.9 µH 

CLoad Load capacitor 20.25 µF 

VSource Source voltage 5000 V 

RLoad Load resistance 5 Ω 

RFault_base Fault resistance base 5 Ω 

PLoad Max. Load Power 5 MW 

tq SCR tripping time 10 µs 

 

Analysis of the peak currents through the Z-source capacitors is used for numerically 

validating the effectiveness of the proposed method. As stated earlier, “During initial moments of 

a fault, the total transient current of C0 and C1 are in the reverse direction of SCR’s pre-fault 

current.” Thus, the magnitude of the sum of iC0 & iC1 should be higher than the magnitude of the 

rated current of SCR at pre-fault in order to ensure the SCR to commutate off naturally. For this 

test, the holding current of SCR (iH) is 1 kA. Fig. 4.11 and 4.12 shows the transient currents of the 

Z-source capacitors (C0, C1, and C2) and the load capacitor (CL). These currents are measured 

under different HIF resistances that are used for the performance analysis of ZCB towards HIFs. 
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Figure 4.11. Transient currents through C0 & C1 for different HIF resistances with CZCB-Mul = 1.0 

 

 

 

Figure 4.12 Transient currents through C2 & CL for different HIF resistances with CZCB-Mul = 1.0 
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Table 19. Transient current and fault resistance analysis 

RF (Ω) CZCB-MUL iC0 (A) iC1 (A) iC0 + iC1 (A) 

3 1.0 418 417 835 

3.5 362 361 723 

4 318 318 636 

4.5 283 284 567 

3 3.0 755 755 1510 

3.5 704 704 1408 

4 474 472 946 

4.5 419 417 836 

3 7.0 851 851 1702 

3.5 790 790 1580 

4 743 743 1486 

4.5 492 482 974 

3 9.0 875 876 1751 

3.5 813 812 1625 

4 762 763 1525 

4.5 723 722 1445 

 

The fault resistance is gradually increased from 3 Ω to 4.5 Ω and the peaks of transient 

currents in CZCB are measured in these tests, as listed in Table 19. It is observed that the smaller 

the fault resistance, the higher is the peak of transient current. The sum of transient Z-source 

currents is less than the rated SCR current of 1 kA for all the cases with CZCB-Mul = 1.0, as 

highlighted with red in Table 19. Thus, the SCR does not commutate off for any of the cases. With 

the adjustment in CZCB (i.e., 3.0, 7.0, and 9.0 times), the sum of transient Z-source currents 

increases proportionally to CZCB-MUL, which causes the breaker to turnoff if the current is higher 

than the 1 kA threshold value. The SCR commutates off naturally for RF = 3 Ω & 3.5 Ω when 
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CZCB-Mul = 3.0. Likewise, it turns off for RF = 3 Ω, 3.5 Ω, & 4.0 Ω when CZCB-Mul = 7.0, and finally 

turns off for all the cases of RF with CZCB-Mul = 9.0, as highlighted in green in Table 19. Fig. 4.13 

shows the waveform of voltages and currents for different ZCB components when the CZCB-MUL 

equals 1.0 and 9.0 times, respectively. 

The result from Table 19 proves the effectiveness of using (22) to specify HD-Mode/HI-

Mode of ZCB for the high-power case. Fig. 4.3 shows that the curve gradually goes into saturation 

as the value of RF increases. Thus, for this method of HIF detection specifying the Z-source 

capacitance of a ZCB circuit, the effective region is (0, 10) in the multiplication factor of CZCB. 

Fortunately, for many power engineering standards and applications, the system operates in an 

overload condition and does not need a circuit cut-off when the RF is higher than 1.0 per unit. 

Therefore, the proposed method can be applied to general HIF conditions. 

 

 

(a) current and voltage of SCR 

 

(b) current and voltage of the load 
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(c) transient currents (iC0+iC1) and (iC2+iCL) 

 

(d) current and voltage of diode D2 

 

(e) current of inductor L1 and L2 

 

(f) voltage across inductor L1 and L2 

Figure 4.13 Simulation waveforms of featured components in the ZCB circuit 
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Figure 4.14 A zoomed-in effective region of Fig. 4.3 with specified HIF conditions 

(See Appendix A5 for copyright information) 

 

A zoomed-in figure as seen in Fig. 4.14 is generated using the data obtained from the 

laboratory experiments to show the effectiveness of identifying HIF conditions using the 

specifications of ICC-BZCB. The mark “X” in the Fig. 4.14 refers to the ZCB operating in HD-

Mode, whereas the mark “O” refers to the operation of ZCB in HI-Mode. The “X” marks are 

separated from the “O” marks by the figure’s derived curve. Hence, Fig. 4.14, along with the tests 

in sections 4.4.1 and 4.4.2, supports the proposed method’s effectiveness and accuracy and proves 

the general usage of (22) in engineering practice. 

 

4.5 Summary 

The operation of a ZCB is specified in either the HI-Mode for HIF interruption or the HD-

Mode for HIF detection using the new method. The parameter identification method proposed in 
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Chapter 3 is used to determine the ZCB parameters for both simulation and experimental 

validation. The Z-source capacitors are adjusted properly to enable the specification of ZCB. A 

mathematical relationship between the required Z-source capacitance and the maximum HIF 

resistance is derived. The effectiveness and general usage of the proposed method are validated in 

two different DC systems: a low-power experimental testbed and a high-power resistive simulation 

system. The fault current level detected/interrupted using the new method is as small as 2 times its 

nominal rated current. The method is easy to be implemented in modern power systems to enhance 

their controllability and reliability in protection. Thus, the presented method can increase the 

effectiveness of ZCB for any short-circuit fault detection/interruption, which further enhances the 

application of a ZCB for protecting the DC power network.  
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CHAPTER 5 

CABLE LENGTH LIMIT ASSESSMENT FOR THE PROTECTION OF DC POWER 

NETWORKS USING Z-SOURCE CIRCUIT BREAKERS  

 

5.1 Introduction 

DC transmission lines are widely used in the modern power systems due to the advantages 

of long distance transmission, high transmission capacity, lower losses, and flexible power control 

[88-90]. The complexity in the working environment of a transmission line causes a high fault 

probability. Thus, locating a fault on the HVDC lines that interconnect two AC systems for a large 

power transfer is a challenging task which needs careful attention. The fault occurring on the 

HVDC transmission lines may cause instability of the entire power system which eventually results 

in a large economic loss. It also results in a large fault inrush current that influences the operation 

of the whole grid causing damage to the electric apparatus and even posing a significant threat to 

the human life. Thus, an accurate fault location method is beneficial to reduce the fault impact and 

ensure the safety of the power system in an event of a DC line fault [91, 92].  

The application of an ICC-BZCB for detecting the effective cable length when applied on the 

DC distribution/transmission line is examined. This study introduces an approach of assessing the 

cable length limit (CLL) to ensure the effective protection of Z-source Circuit Breakers (ZCBs) in 

DC power networks. The line parameters of power cables have a significant impact on the cutoff 

performance of ZCBs. The simulation testing system of a 5-MW distribution line feeder is used 

for specifying the ZCB parameters. The effectiveness of ZCB protection is tested in groups of 

simulation tests with various cable lengths, fault current levels, and power delivery levels. The 

effective cable lengths have been assessed and analyzed for the ZCB to detect and successfully 
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interrupt a faulty branch in the DC network. From the testing results, relationship between CLL, 

fault current level, and power delivery level has been derived i.e., the CLL decreases along with 

the decreasing fault current level, as well as the increasing power delivery level. A CLL curve is 

then developed for a certain load condition with this derived relationship which can be used by the 

power engineers to design and specify the effective protection ranges for ZCBs. An equation to 

calculate the effective length of ZCB for DC lines is derived with the help of the data obtained 

from the simulation analysis that can be used as a framework to generate new CLL curves for 

various load-power requirements. This study increases the reliability of ZCB’s response to a fault 

in DC transmission and distribution lines. It can also help the power system designer/operator to 

maintain reliable protection with ZCBs in DC power system networks. 

The existing methods for detecting the location of a fault in DC lines can be categorized 

into two groups: online fault location method and offline fault location method. The location of a 

fault in the online method is estimated using the voltage and current information after the fault 

occurrence and before tripping of the breaker [93]. In contrast, an auxiliary device is added after 

tripping the breaker to calculate fault in the offline method [94]. Some of the other existing 

techniques for locating faults in the DC lines are current measurement and machine learning 

method [95], transient measurement approach [96], a combination of least square method & 

boundary induction-based method [93], and distributed current sensing approach [97]. A travelling 

wave fault location method based on the wave front information is introduced in [98] that uses the 

step wave to extract all the frequency components when a DC line fault occurs in the network. The 

fault distance is located with the help of the known signal that is injected into the DC line in [99, 

100]. However, prior information of the signal injection source is required to detect the fault 

location. Likewise, the study in [90] uses an algorithm based on travelling-wave natural frequency 
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to predict the location of DC line faults in an HVDC system. The fault distance can also be 

calculated using the surge travelling time and the wave speed [101, 102]. A fault location method 

suitable for low-voltage DC lines is presented in [103] where the residual current of DC line is 

used for locating the fault after tripping. The study in [104], uses the voltage across the DC fault 

current-limiting reactor to detect the short-circuit fault in the HVDC grids. In summary, most of 

the existing online and offline fault location methods adopt the RLC model that still requires a 

further improvement in terms of the error and time required for the fault location. Thus, in this 

research, a novel method using the topology of an ICC-BZCB is introduced to detect the fault 

location in the DC power lines using the current information after the occurrence of a fault in a 

system to attain maximum accuracy.  

 

5.2 ZCB Application With and Without Line Parameter Considerations 

A ZCB is a solid-state resonant style DCCB that is placed close to the device to-be-

protected in the power network. It has an automatic fault decision-making capability and can 

quickly pull the main circuit current to zero when a short-circuit fault occurs in a DC microgrid 

[105].  It protects the electric component at its downstream. In an event of a fault occurrence, when 

the ZCB is far from the fault location, the additional impedance of DC cable might drag the ZCB’s 

operation out of its detectable range. This causes failure in the fault protection which can damage 

the electric devices within the power system and even disintegrate the entire power network. 

Therefore, proper assessment of the Cable Length Limit (CLL) is essential to guarantee the ZCB’s 

response to a fault in the desired ranges and provide an effective protection solution to assist the 

power engineers for designing the DC power networks. Fig. 5.1 shows the circuit representation 

of an ICC-BZCB when connected in series to the transmission line.  
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Figure 5.1 Topology of ICC-BZCB with transmission line parameters 

 

Initially, the ZCB parameters are calculated according to the boundary conditions of the 

tripping time and other restrictions for a 5-MW system using equations (13-16). The testing system 

is configured with a supply voltage of (Vs = 5 kV) and a DC load which is represented by a parallel 

combination of CL and RL as seen in Fig. 5.1. The fault branch is represented by a switch in series 

with the fault resistance. The line parameters are obtained from [106, 107] which is based on the 

calculated realistic value for the MVDC/HVDC lines. Table 20 lists the specified line parameters 

and the ZCB parameters when the tripping time of ZCB is set to 10 μs with the base fault resistance 

(Rf-Base = 5 Ω) which is same as the rated load resistance. The effect of cable line parameters to the 

cut-off performance of the ZCB in response to the faults is studied by designing and analysing the 

testing system in the MATLAB/Simulink environment.  
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Table 20. Specifications of ZCB and line parameters 

Category Parameters Value Remarks 

Z-source breaker 

components 

C0 = C1 = C2 = CZCB 369 µF Z-source Capacitors 

L1 = L2 = LZCB 76.9 µH Z-source Inductors 

Source and load  

parameters 

VS 5 kV Source voltage 

PL 5 MW Load power 

RL 5 Ω Load resistance 

CL 20.25 µF Load capacitance 

Cable line parameters r 3e-2 Ω km-1 Line series 

resistance 

l 1.05e-3 H 

km-1 

Line series 

inductance 

c 11e-9 F km-1 Line shunt 

capacitance 

Fault branch Rf_Base 5 Ω Base fault resistance 

 

 

5.3 Proposed Method for Determining the Cable Length Limit  

The cable line consists of three elements (RLine, LLine, & CLine) which has an influence in 

the ZCB’s operation. As the “” model of the power cable is considered, the LLine can be directly 

combined with the L2 for analyzing the ZCB’s operation. However, since the value of L2 calculated 

using [43, 57] is much larger than the value of LLine, the effect of LLine on accessing the CLL can 

be neglected in this study. Next, the effect of CLine in the CLL assessment is investigated. The CLine 

in parallel with the CL value at the load side increases the overall the capacitance which effects the 

CLL of the line significantly, and thus, needs to be considered. The third element i.e., RLine, is 

connected in series with the fault circuit which attenuates the resonance of the LC circuit and 

contributes to the turning off of the SCR by supplying the reverse current. Thus, the effect of RLine 
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must be included in the assessment of CLL. The method specified in [43] uses a third-order 

equation to evaluate the boundary values of Z-source parameters (C0, C1, & C2). Now, considering 

the parameters of the power cable, the order of the equation increases to fourth order making it 

difficult to perform the CLL assessment mathematically by solving the higher order equations. 

Therefore, in general, the following steps can be followed to evaluate the CLL of a power cable: 

Step 1: Calculate the parameters of ZCB using prior methods without considering the power 

cable’s influence 

Step 2: Build and simulate the physical model of the ZCB using a simulation tool 

(MATLAB/Simulink) and check the impact of cable length, fault resistance, and power 

delivery levels on the ZCB’s turn off behavior 

Step 3: Use the simulation results to find the CLL of the power cable. 

  

5.4 ZCB Performance for Various Cable Lengths  

A simulation testing system for the circuit connection of Fig. 5.1 is designed in the 

MATLAB/Simulink environment. The parameters of the ICC-BZCB and the line in the testing 

system are configured using the specifications acquired from Table 20. The simulated testing 

system is a “” model power cable that is applied to the cable line as seen in Fig. 5.1. The ZCB’s 

behaviors “With” two different cable lengths (i.e., 65 m and 75 m) are compared to demonstrate 

the effect of cable line parameters on ZCB’s cutoff performance. The ZCB is tested under three 

fault current levels for each cable length. The value of load current at prefault for the testing design 

is initially set to (IL = 1.0 kA). The operation of ZCB for three cases of fault current level is studied 

as seen in Fig. 5.2 & Fig 5.3, respectively. The fault resistance in Case I is (Rf = 0.1 p.u.). Thus, 

the short-circuit fault which equals to the sum of fault from load (RL) and fault resistance (Rf) in 

this case is equal to 11 p.u. i.e., 10.0 p.u. from Rf and 1.0 p.u. from RL. Likewise, Case II with a 
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fault resistance of (Rf = 0.5 p.u.), creates a fault current of 3.0 p.u. Finally, Case III shows a fault 

condition with (Rf = 1.0 p.u.) that causes a fault current of 2.0 p.u. (Fig. 5.3).  

 

 

Figure 5.2 ZCB’s performance under different fault current levels (Rf = 0.1 p.u. & Rf = 0.5 p.u.) 

and cable length limits (LLength = 65 m & LLength = 75 m) 

 

 

 

The testing results shows that the ZCB independently responds to a high-level fault current 

in Case I & II and neglects the variance in cable length (no matter it is either 65 m or 75 m), as 

shown in Fig. 5.2. However, for Case III with Rf = 1.0 p.u., the ZCB only turns off for LLength = 65 

m whereas fails to cutoff fault current when the cable length is extended to 75 m as seen in Fig. 

5.3. The key conclusions that can be drawn for this test results are: 
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(a) The performance of a ZCB is significantly impacted by the fault current level i.e., for the same 

cable length consideration of (LLength = 75m), the ZCB successfully turns off for Rf = 0.1 p.u. 

and 0.5 p.u. However, the fault current remains uncleared for Rf = 1.0 p.u. 

(b)  Likewise, the effectiveness of the ZCB in the DC transmission/distribution line is influenced 

by the length of the cable as observed in Fig. 5.3. 

Therefore, to ensure the effective protection of ZCB in DC system protection, the cable length 

limit must be carefully studied. Sections 5.5 & 5.6 evaluates the cable length limit depending on 

fault levels and power delivery levels, respectively.  

 

 

Figure 5.3 ZCB’s performance for fault current level at Rf = 1.0 p.u. and cable length limits of 

LLength = 65m & LLength 75m, respectively 
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5.5 Cable Length Assessment Depending on Fault Levels 

In this section, the Cable Length Limit is assessed under different fault levels. The cutoff 

behavior of the ZCB is studied with multiple sets of simulation tests for different cable length to 

detect the CLL under a certain fault level. The performance of ZCB for a fault level from 2.0 p.u. 

to 11.0 p.u. is analyzed. In this study, the realistic value of DC cable parameters given in Table 20 

are used for the simulation analysis. The actual cable values are calculated using (27) as listed in 

Table 22. Some of the DC cables that are used in practice can be observed in Table 21 [46]. 

  

Table 21. Models and ratings of some DC cables 

Model Rated Power Rated Voltage Rated Current 

Prysmian Group DC Power 

Cables (XLPE, P-Laser, MI-

paper, and MI-PPL paper) 

2,400 MW - 

4,000 MW 

525 kV- 800 kV 4.57 kA - 

5.6 kA 

Phoenix Contact DC Cables 2 kW - 200 kW 600 V - 1.0 kV 2 A - 200 A 

Amphenol SINE Systems DC 

Power Cords 

7.8 kW - 18 kW 600 V 13 A - 30 A 

Molex Power Cables 3 kW - 40 kW 600 V - 1.0 kV 5 A - 40 A 

 

 

The testing parameters of the simulation system and the estimated CLL for each fault level 

are listed in Table 22. The actual values of fault resistance, line resistance, and line inductance are 

calculated using (27) and (28), respectively, where Rf_base, r, l, & c are obtained from Table 20. For 

the CLL measurement, the performance of the ZCB is analyzed in simulation by gradually 

increasing the cable length from 0 until the length of ZCB that fails to cut-off the fault. During 

these tests, the ZCB parameters are kept unchanged. Fig. 5.4 demonstrates the effective and non-
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effective zone for the ZCB under various fault levels. The results show that as the fault resistance 

increases, the effectiveness of the ZCB in terms of the cable length decreases gradually.  

Rf_Actual = Rf_Base × Rf(p.u.) (27) 

{

RLine = r × LL

CLine = c × LL

LLine = l × LL

  (28) 

 

Table 22. Summary of identified CLLs versus fault levels 

Rf 

(in p.u.) 

Rf_Actual 

(in Ω) 

Cable Length 

Limit  

(LL, in m) 

Actual Line Parameters 

RLine 

(in Ω) 

CLine 

(in F) 

LLine 

(in H) 

0.1 0.5 485 14.55e-3 5.335e-9 5.1e-4 

0.2 1 375 11.25e-3 4.125e-9 3.94e-4 

0.5 2.5 200 6e-3 2.2e-9 2.1e-4 

0.8 4 115 3.45e-3 1.265e-9 1.21e-4 

1 5 70 2.1e-3 0.77e-9 0.735e-4 

 

 

Therefore, in case of a high-level fault current (i.e., a low fault resistance), the breaker can 

provide protection for a long distance whereas the protective distance reduces significantly for a 

low-level fault current (i.e., a high fault resistance). Thus, the power system designer and operator 

must plan the cable length limit accordingly if he/she plans to protect the entire line for their 

expected fault levels. The relationship between CLL and Rfault is inversely proportional, i.e., as the 

value of fault resistance increases, the effective CLL of the power cable reduces accordingly and 

vice versa as seen in Fig. 5.4. Hence, every high fault current in the cable can be protected if the 
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specified minimum fault current is secured within that certain cable due to their relatively-higher 

CLLs. 

 

 

Figure 5.4 Summary of cable length limit related to various fault current levels 

 

5.6 Cable Length Limit Assessment Depending on Power Delivery Levels 

The variation in power delivery level in DC cables is used to further study the CLL in this 

section. The voltage in a DC network is constant which supplies multiple DC feeders with different 

power delivery level requirements depending on their load connections. The change in the CLL of 

a power cable with a changing power delivery level is still an open question. This study intends to 

determine the relationship between the CLL and the power delivery level by showing how the CLL 

is influenced by its power delivery level and finally, formulating a mathematical relationship 

between them. 
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5.6.1 Effective Protection for Various Power Delivery Conditions 

In this section, the CLL is assessed by changing the power delivery level at the prefault 

condition. Two cases of variations in the load-power requirements and its effect on the CLL at 

prefault are studied. The locations of fault for successful tripping of ICC-BZCB are recorded in 

the DC lines. For both the cases, the voltage of the DC supply is fixed at Vs = 5.0 kV in the 

simulation system. Case I: the load-power is set at PL = 75 kW, 100 kW, 500 kW, and 5.0 MW, 

respectively. Case II: the load power is varied in the range of 4.50 MW – 5.50 MW with an 

increment of 0.25 MW for each power delivery level.  

A fault is emulated in the system using the fault branch consisting of a switch and a fault 

resistance (Rf), as seen in Fig. 5.1. The ZCB parameters calculated for both the cases using the 

parameter identification method given in Chapter 3 are listed in Table 23 & 24. The values of base 

fault resistances used for this study are also listed in Table 23. The actual value of fault resistance 

(Rf_Actual) is calculated using (27) which is expressed in per unit as Rf (in p.u.) in Fig. 5.5 & 5.6. 

The ZCB’s behaviors are recorded and analyzed under different fault levels for each load-power 

prefault condition. 

 

Table 23. Specification of ZCB parameters for Case I 

Power Delivery 

Level (PL) 

Load Current 

(IL) 

C0 = C1 = C2 = 

CZCB 

L1 = L2 = LZCB RF_base 

75 kW 15 A 5.54 μF 5.126 mH 333.33 Ω 

100 kW 20 A 7.38 μF 3.85 mH 250.00 Ω 

500 kW 100 A 36.9 μF 0.77 mH 50.00 Ω 

5.0 MW 1000 A 369 μF 76.9 µH 5.00 Ω 
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Table 24. Specification of ZCB parameters for Case II 

Load Power 

 (PL) 

C0 = C1 = C2 = CZCB L1 = L2 = LZCB CL 

4.5 MW 332.2 μF 85.44 μH 18.22 μF 

4.75 MW 350.7 μF 80.95 μH 19.23 μF 

5 MW 369.1 μF 76.89 μH 20.25 μF 

5.25 MW 387.6 μF 73.23 μH 21.26 μF 

5.5 MW 406.1 μF 69.91 μH 22.27 μF 

 

 

The CLL curves are developed for both the cases of power delivery levels using the 

simulation results as shown in Fig. 5.5 and 5.6, respectively. Both the figures demonstrates a 

similar pattern in the cable length limit assessment. As the power delivery level increases the 

effective length of the ZCB reduces gradually. Each CLL curve represents the CLL points under 

various fault levels at that certain power delivery level. Table 25 and Table 26 lists the data of 

identified CLL points and related power delivery levels. The following conclusions can be drawn 

by observing the CLL curves and analyzing the data: 

a) For a constant load, the effective protection of the breaker reduces as the value of Rf 

increases and vice versa. This is the same conclusion as in Section 5.5 which remains 

unchanged with the power delivery level. 

b) For a constant Rf, the breaker is able to respond to the fault for a long distance in case of a 

lower load-power requirement and vice versa. In other words, lower the power delivery 

level higher is the CLL. Therefore, to maintain an effective protection of ZCB in DC 

networks for the long-distance, high-power condition, multi-line power delivery can be a 

solution to increase the CLL.  
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Figure 5.5 CLL curves for various load-power requirements (Case I) 

 

 

Figure 5.6 CLL curves for various load-power requirements (Case II) 
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Table 25. Identified CLLs versus power delivery levels (Case I) 

RF 

(p.u) 

RF_Actual 

(Ω) 

Cable Length Limit  

(LL in km) 

75 kW 100 kW 500 kW 5 MW 75 kW 100 kW 500 kW 5 MW 

0.05 16.67 12.50 2.50 0.25 35.67 26.75 5.35 0.535 

0.25 83.33 62.50 12.50 1.25 23.80 17.85 3.57 0.357 

0.5 166.67 125.00 25.00 2.5 14.54 10.90 2.18 0.218 

0.75 250.00 187.50 37.50 3.75 8.67 6.50 1.30 0.130 

0.875 291.67 218.75 43.75 4.37 6.53 4.90 0.98 0.098 

1.0 333.33 250.00 50.00 5.00 4.67 3.50 0.70 0.070 

 

 

Table 26. Identified CLLs versus power delivery levels (Case II) 

RF 

(p.u) 

RF_Actual 

(Ω) 

Cable Length Limit  

(LL in m) 

4.50 

MW 

4.75 

MW 

5 

MW 

5.25 

MW 

5.50 

MW 

4.50 

MW 

4.75 

MW 

5 

MW 

5.25 

MW 

5.5 

MW 

0.05 0.28 0.26 0.25 0.24 0.23 595 564 535 510 486 

0.25 1.39 1.32 1.25 1.19 1.14 397 376 357 340 325 

0.50 2.78 2.63 2.5 2.38 2.27 243 230 218 208 198 

0.75 4.16 3.95 3.75 3.57 3.40 145 136 130 124 118 

0.87 4.86 4.61 4.37 4.17 3.98 109 103 98 94 89 

1.00 5.55 5.26 5.00 4.76 4.55 78 74 70 67 64 
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5.6.2 CLL Curve Verification with a Case Study 

The CLL curve of power delivery level can be derived mathematically by applying the 

curve-fitting technique to the CLL points in Fig. 5.5 & 5.6. Six simulation tests are performed by 

adding a short DC line (with a length of 10 km) between the ICC-BZCB model and the load of 

75 kW in MATLAB/Simulink to verify the usefulness of CLL curves. The threshold value of a 

10 km cable line is obtained using the CLL curve of 75 kW as 0.67* Rf in p.u. The responsiveness 

of ICC-BZCB to the six different Rf values are simulated.  

 

 

Figure 5.7 Simulation study of ICC-BZCB’s effectiveness under various Rf values (10-km line) 

 

The ZCB responds to all faults with fault resistance equal or less than the threshold of 0.67 

p.u., i.e., the breaker turns off for RF = 0.05 * Rf (p.u.), 0.25 * Rf (p.u.), and 0.5 * Rf (p.u.), whereas 

the breaker losing its responsiveness when the magnitude of Rf increases beyond that threshold, as 
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seen in Fig. 5.7. Therefore, the derived CLL curves are valid to specify the cable line limits under 

a certain load condition and a specified minimum fault current to be cut-off. The evaluated and 

tested CLL curve can act as a base for other conditions and using the relation in (29) the CLL 

curves for the new conditions can be easily derived.  

LL_New =
Pbase

PNew
× LL_base (29) 

In (29), LL_base and Pbase are the existing CLL point, and its related power delivery level, 

respectively; and LL_new and Pnew are the new CLL point and its related power delivery level, 

respectively. When the effective length of ZCB is measured and calculated for the base condition, 

all the other effective length curves can be generated conveniently using (29). 

 

5.7 Summary 

In this study, the cable length limit is assessed and determined to guarantee reliable DC-

line protection from ZCB. The relationships of CLL to fault level and power delivery level have 

been derived. The two key conclusions drawn from this study are: a) the cable length limit 

decreases along with the decreasing fault current level; and b) the cable length limit decreases 

along with the increasing power delivery level. Therefore, the cable length must be limited within 

a certain range to ensure ZCB’s turnoff behavior to a target fault level. Also, for long-distance 

protection of cable lines, the effective protection range of ZCBs can be extended by applying the 

multi-line power delivery approach. An equation of calculating the effective length of ZCB for DC 

lines is derived based on the relationship of CLL curves which can be used to generate new CLL 

curves for various load-power requirements. Power system designer/operator can use the derived 

CLL curves to maintain reliable protection with ZCBs in DC power system networks. 
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CHAPTER 6 

CONCLUSION 

 

Initially, the power loss analyses of three bi-directional Z-source circuit breakers are 

performed. Based on the calculations, it is found that the topology of ICC-BZCB has the least power 

loss during normal steady-state operation when there is a requirement of energizing the same load. 

A relationship between steady-state power loss and required tripping time for ZCB is studied based 

on the topology of ICC-BZCB. From the analysis, it is found that the voltages of the capacitors and 

inductors in ZCB increase along with source voltage, while the voltages of SCR and power diode 

remaining constant. The tripping time of SCR is a major parameter for evaluating overall power 

loss in the ZCB during normal steady-state operation when there is a requirement of energizing the 

same load. In general, for selection of an inductor, it can be concluded that as the permeability of 

the inductor increases, losses associated with it decreases. For a constant permeability, the required 

number of inductor windings increases with an increase in tripping time of SCR, which in turn 

increases overall power loss in the DC network. 

A novel method of configuring Z-source capacitors is developed to ensure the turnoff of 

SCR in ICC-BZCB. The correction equation of Z-source capacitance is developed to accumulate 

enough negative SCR current for the depletion region buildup accurately and thus guarantee the 

success rate of ZCB in DC circuit protection. At the same time, the new method can preserve the 

required tripping time to improve the controllability of ZCB. The effectiveness of the method has 

been verified by the experiments on a hardware testbed. In addition, it has been found that the 

correction and adjustment of the Z-source capacitor has a negligible effect on ZCB’s power delivery 

efficiency. 
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A new method is introduced to specify ZCBs to operate in either the HI-Mode for HIF 

interruption or the HD-Mode for HIF detection and reporting. The specification of ZCB is enabled 

by adjusting the Z-source capacitors properly. A mathematical relationship between the maximum 

HIF resistance and required Z-source capacitance has been derived and its effectiveness & general 

usage has been validated in two different DC systems: a low-power experimental testbed and a 

high-power resistive simulation system. The new method can detect/interrupt a HIF that is as small 

as 2 times its nominal rated current. This method is easy to be implemented in the modern power 

systems to enhance their controllability and reliability in protection. 

Finally, an application of ICC-BZCB when implemented in the DC 

transmission/distribution line is studied. The cable length limit is assessed and determined to 

guarantee reliable DC-line protection from ZCB. The relationships of CLL to fault level and power 

delivery level has been derived. The research shows that as the cable length limit decreases, the 

fault current level decreases accordingly. Also, the cable length limit decreases along with the 

increasing power delivery level for long-distance protection of cable lines. The effective protection 

range of ZCBs can be extended by applying the multi-line power delivery approach. Various CLL 

curves are derived, which can be used by power system designer/operator to maintain reliable 

protection with ZCBs in DC power system networks. 
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Future Work 

This research can be further extended for the system-level study of a Z-source circuit 

breaker by studying the coordination between the two ZCBs in a cable line. The study on the 

effectiveness of the ZCB can be extended for an even longer distance when implemented in the 

DC transmission/distribution lines. As we know, the power loss which is a key consideration for 

a ZCB design is mostly due to the presence of switching devices. Thus, further research on a more 

efficient ZCB topology with reduced number of components that can lower the breaker losses can 

be investigated. Also, the application of ZCB in hybrid AC-DC power systems can be examined.  
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APPENDIX A 

 

Permission for Figure 1.1 taken from https://events.solar/midwest/smart-energy-microgrid-

marketplace/ granted by author via email. 
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Permission for Figure 1.4 taken from https://creativecommons.org/licenses/by/3.0/ (Accessed on: 
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Figure A3: IEEE permission to use figures from, “Relationship of Steady-State Power Loss and 

Configurable Tripping Time in Z-Source Circuit Breakers” 
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Figure A4: IEEE permission to use figures from, “A New Design of Z-source Capacitors to 

Ensure SCR’s Turnoff for the Practical Applications of ZCBs in Realistic DC Network 

Protection”  
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Figure A5: IEEE permission to use figures from, “Detecting High-Impedance Fault with Z-

Source Circuit Breakers” 
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Figure A6: IEEE permission to use figures from, “Comparative Analysis of Power Loss 

Associated with Topology of Bi-directional Z-Source Circuit Breakers” 
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