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ABSTRACT

LAMINAR AND TURBULENT NATURAL CONVECTION 
HEAT TRANSFER IN TROMBE WALL CHANNELS

Tony D. T. Chen 
Old Dominion University 

Director: Dr. S. K. Chaturvedi

The natural convective heat transfer and air movement in a Trombe wall solar passive 

system has been studied analytically and numerically. Three Trombe wall channel 

geometries including the parallel channel with axial inlet and exit, parallel channel 

with side vents and Trombe wall channel coupled to the room have been considered. 

Several models representing these Trombe wall geometries have been formulated. For 

the parallel channel with axial inlet and exit geometry, a momentum-integral method has 

been used to solve parabolic governing equations for two-dimensional laminar flow. 

This formulation leads to a second order ordinary differential equation for pressure 

defect in the Trombe wall channel. The solution of this equation leads to prediction 

of velocity, temperature and pressure fields, and Nusselt number correlations that are in 

good agreement with previously reported finite difference solution of natural convection 

boundary layer equations.

For the side-vented channel case, results are obtained for both two-dimensional 

laminar and turbulent natural convective flow regimes. Due to presence of recirculating 

flow patterns in this geometry, full Navier-Stokes equations in two-dimensions are 

employed. The turbulent flow characteristics are modeled by a two-equation (k-e) model. 

The governing equations for steady laminar as well as turbulent flows are solved by a finite
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volume technique that uses the quadratic upwind differencing scheme to discretize non­

linear governing equations to form algebraic equations which govern physical variables 

at the various numerical grid points. The coupled algebraic equations are solved by a 

semi-implicit algorithm known as SIMPLER. Flow patterns, isotherms and heat transfer 

characteristics are obtained for aspect ratios of 10 and 20, and Grashof number ranging 

from 1 .4xl03 to 1 .4x l08. The effect of the free pressure boundary location of flow 

characteristics is also analyzed. Results show that the mass flow rates induced and net 

energy delivered by the system is governed by the channel Grashof number and the 

channel vent size. Numerical results also indicate a transitional regime as indicated with 

number of iterations. Correlations for average Nusselt number as a function of Grashof 

number and vent size are also obtained based on numerical results. The inlet and exit 

pressure losses for the geometry have also calculated. Results show that the total vent 

loss coefficient for the side-vented cavity shows a minimum at Gr = 1.4x 104 for which 

the dimensionless mass flow rate also shows a maximum value.

Results are also obtained for a more comprehensive geometry in which the Trombe 

wall channel is coupled to the room. Both heating and ventilation modes are investigated. 

In the heating mode, the natural convective mass flow rate and energy delivery rate are 

predicted as a function of the channel width and the cooled wall temperature. Several 

truncated Trombe wall passive system geometries are also considered in an attempt to 

reduce the computational time. Results indicate that for these truncated configurations, 

the heat delivery rate and convective mass flow rate are within nine percent of the values 

obtained for the more comprehensive and full size geometry. For the ventilation mode, 

the effect of ventilation port position on mass flow rate and energy delivery rate is 

investigated.
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Chapter 1 

INTRODUCTION

Rapid depletion of fossil-fuel resources on a worldwide basis has necessitated an 

urgent search for alternative energy sources to meet the global energy demand. Several 

energy sources are currently being considered as alternatives to the fossil-fuels such 

as oil, coal and natural gas. These include wind, solar and ocean thermal systems 

amongst others. All these sources are virtually inexhaustible and relatively pollution free. 

Recent concerns about global wanning due to carbon dioxide emissions from fossil-fuel 

energy converters have further enhanced the attractiveness of these systems. Of the three 

alternative energy sources mentioned earlier, wind power and ocean thermal systems are 

more localized and site specific. On the other hand, solar energy conversion systems 

are more appealing from the point of view of more widespread resource availability and 

the versatility of applications. The major disadvantages of these systems are primarily 

attributable to the fluctuating nature of the solar resource and due to their high capital cost. 

The fluctuating nature of the resource requires that the solar energy be stored during sunny 

days so that stored energy can be utilized during periods of extended cloudiness. The 

high capital cost of solar systems have been a major impediment to commercialization 

of solar technologies.

In recent years, there has been a growing realization that solar energy systems may 

not be suitable for all kinds of applications, and as a result there has been a trend towards 

identifying those solar technologies that have the best chance of substituting for the fossil- 

fuels. Solar passive systems have been identified as being attractive for residential and

1
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commercial space heating applications. It is to be noted that solar energy systems are 

classified as active or passive depending on the agency that motivates the absorption 

and transport of energy. In a passive system, solar radiation is admitted directly into the 

building through large transparent openings, and massive building structures are relied on 

for the collection, storage and distribution of energy. In an active system, solar radiation 

is collected by specially designed collectors. Thermal energy is stored in a storage device, 

and transportation of energy via a fluid medium is done by mechanical means such as 

fans, blowers and pumps.

The passive systems are becoming more popular for two reasons. First of all they 

do not have mechanical parts and as a result mechanical failure problems are altogether 

eliminated. Secondly, many of the passive solar energy systems are easily integrated in 

residential and commercial buildings, and this reduces the cost of solar energy collection 

substantially. For example, simple steps such as orienting the building with greater south 

facing exposure or providing more glass windows can substantially result in greater 

solar energy collection during the space heating season. Most of these systems lack an 

identifiable storage system, and consequently they suffer from lack of control of comfort 

conditions due to under or overheating of buildings in winter months. A more advanced 

passive solar system is known as the Trombe wall collector-storage system [1], the subject 

of present study. In this system, a thick south facing wall made of concrete, brick, adobe, 

or stone, located directly behind a single or double glazing is used, with an air gap between 

the glass and the black painted outer face of the wall. Heat is transferred to the wall and 

to the conditioned space by both conduction through the wall and natural convection in 

the air gap, sustained by ventilation openings at the top and bottom of the wall. On a 

sunny day, about half of the solar energy gain by the absorber wall is transferred by the 

airstream for immediate daytime heating of the interior space, while the remainder portion
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of the energy is stored in the wall for supplying the night-time energy requirements. The 

fluid flow in the Trombe wall gap and in the adjoining room is set up by buoyancy forces 

due to temperature gradient in the fluid. In this sense, the flow initiation and sustenance 

processes are similar to those encountered in the fields of thermo-syphon technology, 

electronic equipment and material processing to name the few.

The purpose of the present study is to investigate analytically and numerically various 

aspects concerning the natural convection phenomenon in a Trombe wall channel. In 

a typical Trombe wall system, the convective flow may be either laminar or turbulent, 

depending on the magnitude of the buoyancy force. For natural convection flows, Grashof 

number determines whether the flow patterns are laminar or turbulent. At low Grashof 

number the flow is typically laminar, while at higher values of Grashof number the flow 

is typically laminar, while at higher values of Grashof number, exceeding a critical value 

dependent on the geometrical features of the channel, the flow becomes turbulent due to 

instabilities of the fluid motion.

Although Trombe wall solar passive systems have been investigated by others [2-6]* 

since the pioneering paper of Felix Trombe [1], several aspects of the problem are still 

not covered in the literature. A review of previous studies indicates that most of these 

studies adopt a very simplified geometry for analysis. These studies can be classified 

primarily into two classes where the buoyancy force driven mass flux is determined either 

by parabolic boundary layer equations or the full Navier-Stokes equations. In the first 

approach a parallel wall geometry with differentially heated walls is considered [7]. The 

flow set up by the buoyancy force leads to thermal and velocity boundary layers on the 

channel walls. These boundary layers, developing over the channel walls, are analyzed by

The numbers in brackets indicate references.
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incorporating the simplifications arising from the parabolic nature of governing equations. 

This is done by extending the boundary layer analysis to natural convective flows. The 

classical analysis in Ref. 7 is an example of this approach. More recently, the work of 

Akbari and Borgers [8], and Borgers and Akbari [9] explore the parallel wall geometry 

case further for both laminar and turbulent flows. In the turbulent case, they use the 

mixing length model to characterize turbulence properties of natural convective flow in 

the Trombe wall channel.

The problem of the parallel channel, considered by these previous authors, has two 

drawbacks. First of all, it does not simulate the actual Trombe wall geometry, in which 

the incoming flow makes a 90 degree turn. The parallel channel geometry considered 

by earlier studies has no such turns. Secondly, two boundary conditions for pressure are 

required at the channel inlet. These involve the specification of pressure and pressure 

gradient in the dominant flow direction at the inlet section. Unfortunately, both these 

values are usually unknown in the framework of boundary layer analysis. In many 

previous boundary layer analyses, the entrance and exit pressure losses are neglected, 

and the value of pressure at inlet is determined by applying the Bernoulli equation along 

streamline [8,9]. Also, a value of pressure gradient is assumed at the inlet. For example, 

Akbari and Borgers [8], following Aihara [10], assumed a non-dimensional pressure 

gradient value at the inlet. This problem, requiring above boundary conditions at channel 

inlet, arises as a result of neglect of second order gradients of flow properties in the 

boundary layer analysis.

An approach alleviating this problem considers the full Navier-Stokes equations 

to describe the natural convective phenomenon. Kettleborough [11] and Nakamura 

et al. [12] have considered this approach. They have analyzed the problem of free 

convection between two parallel plates numerically by using the Navier-Stokes equations.
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Nakamura et al. [12] proposed a method that takes the entrance pressure drop into 

consideration, and their results show that the stream function and average Nusselt number 

values are closer to Aihara’s solution but are somewhat different from Kettleborough’s 

result for an identical problem, both Nakamura et al. and Kettleborough combine the 

inlet and exit vent pressure losses and lump them into a single equivalent pressure loss 

at the inlet Due to this apparent simplification, their analysis cannot predict inlet and 

exit vent losses separately. In addition, their results are applicable to a parallel wall 

geometry with axial air entry.

To simulate the Trombe wall channel geometry properly, Chaturvedi et al. [13] 

added the inlet and exit horizontal segments to the vertical channel to analyze the 

fundamental nature of the fluid dynamical and heat transfer mechanisms inside the 

channel for the laminar mixed convective regime. The present study, an extension of 

Chaturvedi et al.’s work, considers convection in the Trombe wall channel attached to 

a room. It also differs from the work in Ref. 13 since the study considered only mixed 

laminar convection whereas the present study considers both laminar and turbulent natural 

convection phenomenon in more complex geometrical configurations.

Since the problems of flow in a parallel channel or in a Trombe wall channel coupled 

to the room are closely related to the widely analyzed closed rectangular cavity problem, 

a brief review of literature in this area is also presented here. Wilkes and Churchill 

[14], in their pioneering work, applied the Alternating Direction Implicit (ADI) finite 

difference scheme to solve the coupled mass, momentum and energy equations for a 

differentially heated closed square cavity. They obtained convective flow patterns for 

steady and transient flows in a square cavity for Grashof number up to l.OxlO5. A 

detailed comparison of various numerical techniques applied to this classical natural 

convection problem is also presented by de Vahl davis [15]. Fraikin et al. [16] also
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applied ADI scheme with finite difference approximations of second order accuracy to 

study this problem in the range of Grashof numbers of l.OxlO7 to l.OxlO8. Markatows 

and Pericleous [17] used a semi-implicit finite volume technique to obtain the laminar 

and turbulent heat transfer characteristics in a square cavity with Raleigh number varying 

from l.OxlO3 to l.OxlO6. Nicolette and Yang [18] have used a fully transient semi- 

implicit upwind differencing scheme with a global pressure correction of air and water 

in a two-dimensional enclosure with Grashof number ranging from l.OxlO5 to l.OxlO7. 

Berkovsky and Polevikov [19] used a higher order scheme to analyze the laminar natural 

convection phenomenon in rectangular cavity for Prandtl number ranging from 1.0 to 

1.0x10s.

From the review of literature, it is evident that little information exists for the realistic 

Trombe wall channel configurations. The coupling of convection and energy transport 

processes between channel and the room has not been investigated. The present study 

analyzes the natural convective motion in the Trombe wall geometry in two dimensions 

by solving the Navier-Stokes, continuity and energy equations. Three different geometries 

have been considered, namely parallel wall channel with axial entry and exit of flow, 

parallel wall channel with side entry and side exit, and a comprehensive model employing 

Trombe wall channel coupled to the room. Both laminar and turbulent regimes are 

investigated in the present study. The laminar convective flow in parallel channel with 

axial entry and exit geometry is analyzed by a momentum-integral approach, using 

the boundary layer approximation. This formulation leads to a second order ordinary 

differential equation for pressure. Mass flux and heat transfer coefficients are predicted 

as a function of channel height and cold wall temperature. The second geometry, with 

side entry and exit is analyzed for both laminar and turbulent flows for an aspect 

ratio of 20. The flow field, mass flow rate, heat transfer and entrance and exit vent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

loss characteristics are predicted as a function of Grashof number and different wall 

temperatures by solving the Navier-Stokes equations numerically. For the third case, 

a realistic geometry simulating coupling of the Trombe wall channel to the room is 

employed. The flow patterns, mass flow rate, heat transfer and entrance and exit pressure 

loss characteristics are predicted as a function of different wall temperatures. Finally, the 

operation of Trombe wall for summer cooling case is also simulated, where ventilation 

of air, caused by the buoyancy action, is analyzed.

In this work, efforts have been directed towards analyzing numerically and analyt­

ically the laminar and turbulent natural convection heat transfer between the vertical 

channel surfaces. To achieve this objective, a numerical code based on the “SIMPLER” 

algorithm of Patankar [20] has been developed for the two-dimensional laminar and turbu­

lent flows. The developed code has been validated by first considering a two-dimensional 

closed cavity with unity aspect ratio, and comparing its results with those available in the 

literature. The “FLUENT” code [21] using “SIMPLE” as well as “SIMPLER” algorithms 

[22] for solution of coupled non-linear equations has also been used in predict flow in 

side vent geometry and the flow in Trombe wall channel coupled to the room. The flow 

and temperature patterns, and turbulence properties for Grashof number ranging from 

1.4xl03 to 1 .4x l08 have been predicted for channel aspect ratios of 10 and 20. The 

nature of the fluid dynamical and heat transfer mechanisms is investigated by predicting 

temperature, velocity, stream function, pressure, local heat transfer coefficient, average 

Nusselt number, the net energy delivery rat and the dimensionless mass flow rate.

The work is organized as follows. The physical configurations, governing equations 

and turbulence models are introduced in Chap. 2. Chapter 3 describes the momentum- 

integral and numerical marching method for boundary layer type equations. The nu­

merical solution procedure for the full Navier-Stokes elliptic equations is also presented.
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Chapters 4, 5 and 6 pertain to discussion of the results obtained for parallel channel with 

parallel entry and exit or air, parallel channel with side entrance and exit of flow, and 

Trombe wall channel coupled to the room, respectively.
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Chapter 2

PHYSICAL MODELS AND GOVERNING EQUATIONS

2.1 Introduction

Analysis of flow and energy transport processes in the Trombe wall channel coupled 

to the room, presents a challenge due to geometrical and physical complexities. Different 

characteristic length scales in the channel and in the room makes the comprehensive 

analysis of the system difficult. The Grashof number based on channel width can 

range from l.Ox 103 to l.Ox 108, depending on the chosen channel width and applied 

temperature difference between the walls. Since transition to turbulence occurs around 

Grashof number of l.Ox 106, flow in the channel needs to be modeled either as laminar 

or turbulent, depending on the channel width and wall temperature conditions. The 

flow in the room is typically turbulent since Grashof number value based on room 

dimensions is typically of the order of l.OxlO8 or greater. In view of geometric 

and flow complexities, many previous researchers have considered simplified geometric 

configurations for studying the Trombe wall channel natural convection phenomenon.

In the present study, three different geometric configurations have been analyzed to 

study the natural convection phenomenon in the Trombe wall channel and the adjoining 

room. These physical configurations are described in the next section.

9
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2.2 Physical Configurations

2.2.1 Trombe Wall Channel Coupled to the Room

The schematic of the Trombe wall channel coupled to the room is depicted in Fig. 2.1. 

The operation is illustrated for the heating mode. The left surface of the room is a clear 

glass surface that allows solar radiation into the air gap, resulting in temperature rise 

of the black painted face of the storage wall. The differential heating of the concrete 

wall face and the glass window causes a buoyance driven flow in the channel. The low 

pressure created inside the channel draws in cooler air from the room. The heated air 

is then discharged to the room to meet the heating load demands. This constitutes the 

operation of the Trombe wall system in the heating mode.

The cooling or ventilation mode operation is shown in Fig. 2.2. The vent or top of 

the channel and the one in the room are both open during the operation. The surface 

of the storage wall, facing the room, is insulated. The heated air in the channel rises 

due to the buoyancy action, and is ejected from the channel vent. The cooler air from 

outside is drawn into the conditioned space from the room vent to provide the cooling 

and ventilation. It should be noted that the Trombe wall system has normally been used 

for meeting the heating load demand only. In this study, the potential of Trombe wall 

for providing ventilation is also investigated. This may be of interest in tropical regions 

where ventilation requirements outweigh heating requirements.

2.2.2 Parallel Wall Channel with Parallel Entry and Exit

This represents the simplest geometry since the channel flow is fully decoupled from 

the natural convection phenomenon in the room. The flow is initiated and maintained by 

buoyancy force in the channel and its interaction with room air convection is neglected.
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The geometry of this configuration is shown in Fig. 2.3. Two parallel vertical plates 

have their bases in contact with air at rest at ambient temperature T0. The temperature 

of the plates are constant and uniform at values Tc and 2/,, different from the ambient 

temperature. This is the classical geometry that has been considered by many previous 

investigators [7, 9]. Most previous studies have used boundary layer approximation to 

determine the mass flow rate induced by differentially heated plates. Kettleborough [11] 

and Nakamura et al. [12] have also studied the same physical geometry but they have 

extended the domain of analysis at the inlet section to include a portion of ambient 

atmosphere. Application of undisturbed pressure boundary conditions on the boundaries 

of the extended inlet domain, as will be explained subsequently, enables one to avoid 

arbitrary specification of boundary conditions for pressure at the channel inlet in Fig. 2.3. 

In the present study, the configuration in Fig. 2.3 is analyzed for laminar flow by applying 

numerical as well as momentum integral techniques.

22.3 Parallel Channel with Side Inlet and Exit

Figure 2.4 shows a side-vented cavity with two same size openings on the heated 

wall, one near the upper wall and the other close to the lower wall. The upper and 

lower walls are insulated, and the vertical walls are maintained at constant temperatures 

Tc and T/,. This is fundamental geometry that models the Trombe wall channel more 

closely compared to the previously discussed geometry in Fig. 2.3. A review of literature 

indicates that natural convection characteristics of this differentially heated and vented 

channel has not been reported in the literature. The present study considers both laminar 

and turbulent natural convection in this basic configuration in some detail.
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2 3  Governing Equations

The problem of determining the Trombe wall natural convection characteristics, 

as posed earlier, can be addressed by three different approaches, namely analytical, 

numerical and experimental. In the present study the first two approaches namely, the 

analytical and numerical are adopted to deal with the present problem. The fluid motion 

and heat transfer characteristics are governed by conservation laws for mass, momentum 

and energy transport, the equation of state, and turbulence models if the flow is turbulent. 

The next section describes these conservation laws.

2.3.1 Conservation Laws

Governing equations for laminar, constant property, steady and low speed flows with 

no heat and mass sources or sinks can be expressed as follows:

Conservation of mass:

V • (pu) = 0 (2.1)

Conservation of momentum:

V • (puu) =  +  p V 2u +  B x (2.2)

di)
V • (put/) =  +  p V 2v + By (2.3)

Conservation of energy:

V • (puh) =  k V 2T  +  Sh (2.4)
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Equation of state:

p =  pRT (2.5)

where, symbol p is the density, u =  ui +  vj; p. is the dynamic viscosity, P  is the

pressure, Bx is the x-direction body force per unit volume, h is the specific enthalpy, k 

is the thermal conductivity, T  is the temperature, and Sk is the volumetric rate of heat 

generation. The term k V 2T  represents the influence of conduction heat transfer within 

the fluid, according to the Fourier law of heat conduction. The internal heat source term 

Sh will be neglected from the energy equation since the present analysis focuses only 

on the influence of solar radiation on natural convection characteristics, through heated 

storage wall surfaces.

23 .2  Governing Equations for Buoyancy Driven Flow

In problems where temperature changes bring about changes in density, it is necessary 

to include buoyancy forces in the equations of motion. They are treated as body forces 

imposed on the liquid or gas, and can be expressed as

Bx =  pgx

Generally speaking, p =  f ( P ,T ) .  If P  and T  do not derivate too much from their 

reference values P0 and T0, one can express density as

B y  =  P 9 y (2.6)

P =  Po + + (2.7)

(2 .8)
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where, 8 =  is the coefficient of thermal expansion at temperature T0, and C0

is the speed of sound in the fluid. The last term in Eq. (2.8) can usually be neglected 

in low speed flows that are dominated by large temperature but small pressure changes. 

This means that the dependence of density on pressure can be ignored, i.e.,

P9 = Po9 ~  p0gP(T -  T0) (2.9)

po9 =  ^ P s t  (2. 10)

P  = P0 + Ps t  (2.11)

where Ps t  is the hydrostatic pressure.

Substituting the above equations into the general equations, one gets:

V - ( p u )  = 0 (2.12)

V • (puu) = +  p V 2u -  po89x(T -  T0) (2.13)

V • (puv) = +  p V 2v -  Po8gy{T -  T0) (2.14)

V • {puh) =  fcV2T (2.15)

<™>
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2.3.3 Governing Equation in Cartesian Coordinates
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Since the geometrical configurations considered in the present study are all rectangular 

in nature, the governing equations for the two-dimensional, laminar, steady, natural 

convection flow, generated by the force of gravity along the negative y direction, can be 

described by the following conservation equations in Cartesian coordinates:

We note that the property variation is neglected except for density which is treated as 

variable in both inertia and buoyancy terms.

2.3.4 Turbulence Models

In turbulent flows, the instantaneous field variables, such as the flow velocity, 

density, pressure and temperature, fluctuate with time in a random manner. In many 

engineering applications, only time averaged values of flow variables are of interest. To 

obtain the spatial distribution of time-averaged flow properties, a procedure known as 

Reynolds averaging is often performed to obtain time averaged conservation equations. 

Conservation equations are integrated over a time period t, which is large enough to 

include all time scales of turbulence. The averaging procedure, however, gives rise to 

additional terms, namely Reynolds stresses and fluxes [22]. As a result, the number of
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governing equations are usually less than the number of variables in the equations. This 

situation is described in turbulence literature as the closure problem.

There are many different ways of addressing the closure problem, and this has given 

rise to a variety of turbulence models ranging from simple mixing length models to more 

sophisticated Reynolds stress transport models [23]. Many of these models combine 

analysis with empiricism to predict the turbulent flow characteristics. The mixing length 

models do not consider transport of turbulence properties and they are simply based on 

a localized balance of generation and dissipation of turbulence kinetic energy. These 

models are generally suited for boundary layer type flows. For flows with recirculation, 

transport of turbulence properties such as turbulence kinetic energy and dissipation must 

be taken into account. The more popular model for these situation is the two-equation 

(k-e) model [24]. For many engineering calculations, this model provides satisfactory 

results. It should be emphasized that computational effort increases significantly as one 

shifts from relatively easy to program mixing length models to more advanced Reynolds 

stress transport models.

In the present study, two turbulence models have been used namely a mixing length 

model [25], and a two-equation (k-e) model [24]. Both these models compute turbulent 

viscosity and turbulent thermal conductivity that occur in time-averaged momentum and 

energy equations.

23.5 Simple Algebraic Turbulence Model

The zero-equation turbulence models, also known as the algebraic turbulence model, 

have been developed mainly for the investigation of flows in which turbulent transport 

is significant only along a direction transverse to the flow direction. They are called 

“zero-equation” because no additional differential equation is needed to close the set
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of equations. It has been proposed that the effective turbulence viscosity and thermal 

conductivity can be written as follows [26]:

M f =  1 +

1/2
•/

2 +
(2.21)

m

K eff _  _L . 1 f  M f  _ ,
fiCp Pr  P r t \  p (2.22)

where, p is the molecular viscosity, kef f  is the effective turbulent conductivity, and P r t 

is the turbulent Prandtl number. The symbol I, the mixing length, is expressed as

V-42 A i

Ck = von K a r ma n  consant (2.23)

where,

Al =  (u2 +  t,2) 1/2

. du du dv d v \ Ĵ 2

2

A3 =

A4 =

dx J

d2u 
d x 2

dx

2sY + (*Y + (g)V£Y
dy d y j

1 / 2

, , ' d 2u \  (  d 2v \ ~  ( d2v
d y 2)  \ d x 2)  + \ d y 2

1 / 2

(2.24)
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2.3.6 The Two-Equation (k-e) Tlirbulence Model

The zero-equation turbulence model described in the previous section greatly simpli­

fies the analysis of turbulent flows. For predictions of the frictional coefficient and the 

Nusselt number for turbulent flows in pipes or over flat walls, this model serves as a use­

ful approximation. If the flow patterns show recirculation, such that turbulent transport 

is important in both the x and y directions, the mixing length model is no longer valid. 

A typical example is turbulent natural convective flow in a two-dimensional enclosure. 

Before the analysis of this flow, information on the mixing length distribution l(x,y)  

is not available. Under such circumstances the zero-equation turbulence model must be 

replaced by other more sophisticated models, such as the two-equation turbulent model 

described below.

The two equation (k-e) turbulence model requires transport equations for k and e 

which can be written in Cartesian coordinates as follows: 

k-equation:

d . . .  d d ( fit d k \  d ( nt d k \

e-equanon:

d_
d x

t \ i & i \ & ( ,  d ( /it d e \  Ge e2 . . .
(/>Ue) +  dy^pVt) ~  dx  (cre d x )  + dy \ T e d j j )  lT “  2F (126)

where,

G  = N
n f d u \  lCtf d v \  f  du d v \
2 V 5xJ + 2 \ d i )  + \ t y  + f c )

(2.27)

The effective turbulent viscosity fj,ef f  and the effective turbulent conductivity K ef f  can 

be written as

k 2
f a f f  — M +  Cp- (2.28)
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cPn Cpm
(2.29)

where,

P r t ~  0.9 Cp =  0.09

Ci = 1.45 C2 =  2.0

ak =  1.0 crc =  1.3 (2.30)

where, k is the time-averaged turbulent kinetic energy, e is the time-averaged rate of 

dissipation of turbulence energy, P r t is the turbulent Prandtl number and /z is the 

molecular viscosity. With the calculated values of k and one can compute the effective 

turbulent viscosity by using Eq. (2.28). Initial values of k and e are needed for starting 

this calculation of effective turbulent viscosity. This iterative procedure is described in 

some detail in Chapter 3.

2.3.7 Governing Equations in Generalized Form

The governing equations stated above can be written in following generalized form:

where, $  is a general variable; is the exchange coefficient for the property is the 

“source” expression for $ , which, in the most general form may consist of a term for the 

rate of generation of $  per unit volume together with other terms that cannot be included 

in the term on the left-hand side of the equation. With $  representing respectively for 

u, v and T,  Eq. (2.31) represents the conservation equations for mass, x-momentum, 

y-momentum and energy in a generalized form. Also, the transport equations for k and c
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can be represented by the same generalized form. For these equations and assume 

the following forms:

where subscripts u, v, T, k and e represent the convection equations for u, v, T, k 

and £.

The expression of all the governing differential equations for heat transfer, fluid 

flow, turbulence, and other related phenomena in generalized form is an important 

computational time-saving step. As a consequence, we need to concern ourselves with 

the numerical solution of the equation in the general conservation form. In the next 

chapter, the generalized equation has been used to develop the computer program for 

solving the proposed problem.

S u = -
dp
dx

n

Sv "  ~ d y  99

St  =  0

S k = G - t (2.32)

and

k
r„ =  r„ =  p.

(2.33)
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Chapter 3

BOUNDARY LAYER AND NAVIER-STOKES SOLUTION PROCEDURES

3.1 Introduction

In the present study, three different geometries, namely, the parallel channel with 

axial openings, the parallel channel with side vents and the Trombe wall channel coupled 

to the room are considered. The governing equations for steady natural convection in 

these geometries are coupled since temperature gradients are responsible for buoyancy 

driven flows. Since Navier-Stokes equations are quite difficult to solve even numerically, 

previous researchers have frequently made the boundary layer approximation to make 

the problem tractable. Using this approximation, a space marching procedure in the 

dominant flow direction can be used. This procedure in the dominant flow direction can 

be used. This procedure, used in Ref. 8, leads to correlations between mass flow rate 

and heat fluxes as a function of channel height and channel wall temperature difference. 

However, boundary layer approximation also requires a priori assumptions regarding the 

values of pressure and axial pressure gradient at inlet section [27]. It is also noted that 

the parallel wall channel geometry lends itself naturally to analysis by boundary layer 

approximation since recirculating regions do not appear under normal conditions, and as a 

result boundary layer analysis is quite appropriate. However, for channels with side entry 

and exit, and for the more comprehensive case of channel flow coupled to the room flow, 

the boundary layer analysis becomes invalid due to appearance of recirculating flows in 

different comers. In view of above discussion, the solution procedure is divided into two 

parts. The first part describes the parallel channel with axial entry. The laminar natural

25
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convective flow is analyzed by the boundary layer approximation. Both momentum 

integral approach, resulting in analytical solution, and numerical technique involving a 

marching procedure are discussed. The full Navier-Stokes procedure is discussed in the 

second part for both side entry/exit and comprehensive geometries. Solutions for these 

cases are obtained numerically.

First, the momentum integral method [28] for the case of flow in a parallel channel 

with axial inlet and exit is presented. The temperature distribution in this case is obtained 

from the Oseen approximation [29]. The details of this method are given in the next 

section.

3.2.1 Boundary Layer Equations in the Non-Dimensional Form

In the case of flow within the vertical parallel plates, fluid properties, except density, 

are assumed to be independent of temperature. The decrease in fluid density due to heating 

is solely responsible for buoyancy forces which induce upward flow in the channel. 

By invoking boundary layer approximation, the governing equations for momentum 

and energy transport are reduced to the standard boundary layer form. In the present 

coordinate system, this amounts to neglecting and in comparison to
c ftq i q 2 #. *\2

gpr and ^ jf. Additionally, the y-momentum equation reduces to the trivial form, 

=  0. The resulting governing equations for mass, x-momentum and energy can be 

expressed as

3.2 Boundary Layer Solution Procedure

(3.1)

(3.2)
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The boundary conditions are:

x  =  0, 0 <  y < b, u = U0, v = 0, T  = T0, p = poo (3.5)

0 <  x <  L, y = 0, u =  0, v = 0, T  =  Tc (3.6)

0 <  i  < L , y  = b, u =  0, v = 0, T  =  Th (3.7)

x  — L , p — pe (3.8)

The pressure within the channel, P,  is less than the hydrostatic pressure, Poo, outside

the channel at the same elevation. The difference, (P — Poo), is the pressure defect. By

using dimensionless parameters as

=  T - T 0
vGr Th - T 0

r _  1 n* =  b2(P ~  Poo)
Grb ’ p M *

v * = Gr = -  To)bZ
1 /  '  I / 2

y* =  I , (3.9)

one can recast the governing equations in the following dimensionless form [8],

du* dv*

sT-  +  W '  =  0 (3' 10)
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It is noted that in non-dimensional form, the governing equations contain only one 

non-dimensional variable namely Pr. The other parameter, Gr, is eliminated from the 

equations due to stretching of dependent and independent variables, as given by Eq. (3.9). 

The boundary conditions in non-dimensional variables are:

z* =  0, 0 < y* < 1; u* =  «?, u* =  0, T  =  0,p* =  pi (3.14)

0 <  x* < L, y* =  0; u* = 0, v* = 0 ,  T* = T* (3.15)

o <  X* <  L, y* =  1; u* =  0, =  0, T* =  (3.16)

and, at

x* = L ; p * = p; (3.17)

where P*, the pressure-defect at the inlet, is a function of u -, the inlet velocity 

profile, which would be determined by the analysis of the “free-boundary” problem. 

Unfortunately P* is an unknown in the boundary layer analysis since iif is unknown. 

The pressure boundary condition at exit also requires further explanation. Let us consider
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Fig. 3.1 for further elaboration. As the fluid accelerates along a stream line AB, there is 

a pressure loss associated with frictional forces acting in the ambient air before the inlet 

section. This is termed as the inlet pressure or vent loss (A P )f. The pressure at inlet in 

dimensional form (P,) can be expressed as

therefore,

or

U2 U2
Poo +  - f  =  P,- +  -^- +  (AP),- (3.18)

Pi - f t o  =  “  (A-P), (3.20)

Similar equation applied at the exit section results in

Therefore,

U2 U2
Pe + Y  = P° ° + 2 +  (A P )e  (12 1 )

Pe -  Poo = - ^  +  (A P )e (3.22)

Since (AP )i and (A P )e occur outside the channel, the boundary layer analysis can not 

account for them. As a result, many studies have either neglected (A P )t- and (A P )e [7] 

or they have assumed their values [11]. It can also be shown that (AP )i and (A P )e can 

be combined into a single (A P )t, and can be lumped, and an equivalent problem with 

an equivalent inlet vent loss of (A P )t , and (A P )e equal to zero can be formulated. This 

can be done by defining a new variable Pnew as

therefore, Pnew =  P  ~  P°° ~  (3,23)

(P n ew )e =  Pe ~~ P<x> ~  (A P )e =  0 (3.24)
Also,

(•P n ew )i =  Pi -  Poo -  (A P )e (3.25)
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Fig. 3.1 Schematic of pressure losses at channel inlet and exit
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Using Eq. (3.19), above equation be rewritten in dimensional form as,

=  Poo -  ^  -  (A P)i -  -  (A P )t

= - ^ - [ ( A P ) j + (AP)J

u ?
=  - ^ - - ( A P ) t (3.26)

In non-dimensional form, this equation can be expressed as

( C - ) i  =  -  (A P"), (3.27)

Since boundary condition on pressure at exit is simplified, many boundary layer analyses 

have considered this equivalent formulation.

3.2.2 Momentum Integral Method

The dimensionless x-momentum equation for boundary layer formulation can be 

written as

d  , * *, 9  . * dp* d 2u*_ („ v )  +  _ (av ) =  - ^  +  ^ r  +  r (3.28)

The momentum integral form of the above equation is obtained by integrating it with 

respect to y* from the left wall (y* =  0) to the right wall (y* =  1). The boundary 

conditions u* = 0, at y* = 0 and u* = 0 at y* =  1 are also applied. After simplification 

the integrated x-momentum equation becomes:

d [/'
dx* Jo

dp* 
dx* +

du* du*

dy* v = i  ~ Qy* y '= o.

Rate o f  change Pressure  
o f  integrated Force 

x — momentum

W all shear 
stress

Buoyancy (3.29) 
Force

To solve the above equation, one needs to have some idea about the temperature and 

velocity profiles. In the present study, two velocity profiles were assumed, namely the
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4th order and the quadratic type. The procedure here will be illustrated by considering 

the 4th order u*-velocity profile. Results for the second order profile are illustrated 

in Appendix A. The momentum integral procedure leads to a second order ordinary 

differential equation for pressure, which can be solved numerically or analytically.

The u*-velocity profile is assumed to be of the following fourth order form.

2 3 4
u* =  u0 + u\y* + u 2y* + u3y * + my*  (3.30)

The equation has five constants, and thus the procedure requires five boundary conditions 

or associated relations to solve for these constants. First two boundary conditions can 

be expressed as follows:

y* — 0; u* =  0 (3.31)

y * =  1; U* =  0 (3.32)

Other two boundary conditions are derived from Eq. (3.28) by evaluating the governing 

equation on the two walls. If one substitutes u* =  0, v* =  0 at y* = 0 and y* =  1, 

one obtains two associated relations

* '  =  0 ;  +  =  0  l 3 - 3 3 )

* dp* d 2u* „

» - li - £ + w + 7 t = 0  ( 3 ' 3 4 )

The final condition comes from the constancy of integrated volumetric flowrate for the 

incompressible flow, namely

Q =  I u*dy* =  constant (3.35)
Jo
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Using these five conditions, the five constants can be determined and expressed as

wo =  0 (3.36)

(3.37)

I f  dp'
U2 = 2 U t - i ?) (3.38)

(3.39)

■ . ■ • f l - j P S - i S  +  s ® - r ‘‘)  <3-40>

It is noted that the velocity profile is a function of pressure gradient and thus 

changing brings about a change of shape of the velocity profile at different section 

of the channel. Substituting the w-velocity profile of Eq. (3.30), along with Eqs. (3.36)-

(3.40) in momentum integral Eq. (3.29) leads to the following equation

d
dx*

+ i u , { d P ’ Q ) + I !
(3.41)

where

F { t ^ ) s S l v " { % ' Q ) i y ' ( 3 - 4 2 )

Equation (3.41) represents a second order differential equation for P* since Eq. (3.41)

can be written as

d F ( & ’ Q )  d 2p ’ d p

dx* dx7 + 2 u i { ^ ’ Q ) + 3 u 3 ( ^ ’ Q

+ 4ut ( ^ , Q ^ + j T ‘ ( x \ , ' , Q ) d y '  (3.43)
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The second order equation for P* requires two boundary conditions. They are

Here, (A P )t =  0 has been assumed.

It is noted that the basic problem is to determine, for a given value of Q, a channel 

length (L ) that will produce P* =  0 at the exit. Thus, one can assume Q to be known 

and attempt to find L. This poses a problem since L  is not known and, as a result two 

fully known boundary conditions are not available for this second order problem.

The momentum integral method discussed earlier is an approximation and the exact 

solution of boundary layer equations can be obtained by a marching technique. Realizing 

this limitation of boundary layer approximation and following other previous authors 

[8,9], we assumed in this procedure a value of =  - 3 Q as the additional boundary 

condition. Use of =  - 3 Q and P* =  —\Q 2 boundary condition, facilitates

numerical procedure since both boundary conditions are then at x* =  0. The assumption 

( jp - j  =  —3Q, represents the basic limitation of this procedure like those of other 

previous authors [8,9]. The effect of initial ^  on natural convection problem has also 

been investigated in this study, and will be reported subsequently.

Since the momentum integral method has been used in the present study, the solution 

of Eq. (3.29) is obtained by assuming a polynomial profile of u* as a function of y*. A  

quadratic and fourth order profiles were employed. They result in a second order and 

first order differential equations for p, respectively. It is noted that the inertia term on 

the left-hand side of Eq. (3.29) leads to non-linear terms for %!L, and also raises the 

order of P* equation to second order. This in turn requires an extra pressure boundary

(3.44)

(3.45)
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condition. It is taken here as =  _ 3q  as suggested in Ref. 8. Dropping the inertia 

term in Eq. (3.29) leads to lowering of the order of the differential equation. Since the 

finite difference marching technique has been used in the present study, we found that 

by neglecting the relatively strong inertia term compare to the stress and buoyancy terms 

at the channel entrance, will solve the difficulty of the convergence of the calculation 

of at the first x-location. However, this inertia term, the effect of convection heat 

transfer, can not be totally neglected.

It is noted that Eq. (3.43) can not be solved unless T* is known. The value of T* 

is obtained by the Oseen approximation described below.

In the momentum integral Eq. (3.43), the integral of buoyancy or temperature term is 

still unknown. In this study, we have used the Oseen approximation [29] to get a closed 

form approximation to the temperature profile. In the Oseen approximation as described 

by Oseen [29], and applied by Tichy [27] to natural convection problem, the governing 

equations are expressed as

du* dv* ...

dT* 1 d 2T*
9 F  =  J - r - W  < 3 ' 4 8 >

We note that in the Oseen approximation, the non-linear terms such as 

are replaced by a linear term aQ  |p -  for modeling. The value of constant a  is between 1

and 2. The parameter Q represents the uniform flow velocity at the inlet. The boundary

conditions for Eq. (3.48) can be expressed as

X *  =  0 , 0  <  y *  <  1 ; r *  =  0  ( 3 . 4 9 )
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0 <x* < L, y* =  0; T* =  T*

y* =  1; r  =  7£ (3.50)

The solution to Eq. (3.48), subject to the boundary conditions expressed by Eqs. (3.49) 

and (3.50), is found by the standard methods of separation of variables and Fourier series 

analysis [27].

T*(x*,y*,Q) =  T* +  (1 -  T*)y* + A ne~ sm(niry*)

where

=  (3-si)

where the empirical constant a  has been found to have an optimal value of 1.3 in the 

present study, to account for variation of convective terms of Eqs. (3.47) and (3.48). 

Some results are presented in Chapter 4 to justify the above value of a .

3.2.3 The Solution Procedure

A computer program (Appendix C) was written to solve for pressure and velocity 

profile by using the momentum-integral method in conjunction with the Oseen model. 

The steps for solving the u, v, P  fields are:

1. Choose the volumetric flowrate Q, and wall temperatures T* and T£.

2. Use an initially guessed value of usually taken from the previous step.

3. Find u and v based on assumed value of

4. Solve for new from Eq. (3.41).

5. Compare calculated ( j f r )  value with the guessed value.
\ /  new
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6. Update guess value of with previous calculated value, until it converges.

7. Use the converged ^  value and calculate the u-velocity field by using Eq. (3.30).

8. Solve v-velocity through the continuity equation.

9. March in x-direction until the boundary condition P* = 0 of Eq. (3.45) is satisfied 

at x* =  L.

10. The length of the channel L  represents the final outcome of the solution procedure 

for a given value of Q. Different values of Q are selected and steps 1 to 10 are 

repeated to obtain a relationship between L  and Q.

3 3  Calculation of Boundary Layer Flow Using Finite Difference Scheme

The dimensionless governing equations, Eqs. (3.10) to (3.13), for boundary layer 

flow have also been solved by a forward-marching line-by-line implicit finite-difference 

technique in the present study [8].

A rectangular grid, across the channel width as shown in Fig. 3.2, is used to establish 

the increments of the finite-difference approximations to the dimensionless Eqs. (3.10) to

(3.13) stated in the previous section. In general, the expressions are of the form

(3.52)

VM+ 1, N t f + l , N + l  ~  UM + 1 , N - 1 ) (3.53)
2(A y*)

d2u* ( UAM+1,N+1
(3.54)

dy (Ay*)2
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Fig. 3.2 Grid for difference representation
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Upon substituting the finite-difference approximations into Eqs. (3.10), (3.11) and

(3.13), and applying the boundary conditions of Eqs. (3.14) to (3.17), a set of (N  -  2) 

linear equations for and 7^ +1N and v*M+ltN ^  obtained. First the energy

equation is solved, providing a temperature T M + 1 , N ’ which is then used in the momentum 

equation. The u* velocity which results is used to calculate a new v* velocity based on 

the continuity equation.

The results pertaining to prediction of channel height, L, for given volumetric flow 

rate, Q, obtained from the momentum integral and finite difference methods are presented 

in Chapter 4.

3.4 Navier-Stokes Solutions for Complex Geometries

Boundary layer approximation, as discussed earlier, breaks down for more complex 

Trombe wall geometries due to recirculating flow regions in the channel as well as in 

the room. Since analytical solutions of full Navier-Stokes are not feasible, one must 

use numerical methods to obtain solution of the governing conservation equations. A 

review of literature reveals that researchers have used primarily three methods namely 

finite difference, control volume and finite element. We have adopted the control volume 

approach in the present study. This approach assures that the conservation laws are 

satisfied even for very coarse grid and control volumes. This approach also lends itself 

to better inteipretation of physical mechanisms.

3.4.1 Control-Volume Approach

The physical domain is discretized by using a numerical grid in the Cartesian 

coordinate. This is illustrated for the square cavity geometry shown in Fig. 3.3. A 

non-uniform grid with more points located near solid walls, for resolving the boundary 

layers on the walls, is considered. The half control volume around point P is considered
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Fig. 3.3 Grid illustration of a square cavity
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for determining the discretized equations. The differential equation, representing a 

conservation law, is integrated over each control-volume by assuming certain profiles 

expressing the variation of the general variable $ , between the grid point, to obtain the 

integrals that need to be evaluated during the integration process. This results in the

discretization equations for various variable at grid points. The next section gives details

of the discretization procedure.

3.4.2 Discretization Equations

The objective is to select a control-volume and integrate the generalized equation 

which represents conservation equations for mass, momentum and energy, as described 

in Chapter 2. For the two-dimensional case, the general governing equation can be 

written as [20]

7 T  +  7 s  =  s  <3'55)ox oy

where, Jx and Jy are called the total (convection plus diffusion) fluxes defined by

Jx =  pu$  -  r —  (3.56)
ox

Jy =  pv$ — r —  (3.57)
dy

where u and v denote the velocity components in the x and y directions. Since details 

of numerical procedure follows Patankar [20], only important features of the numerical 

procedure are described here.

An enlarged view of the control-volume employed for illustration of discretization 

procedure is shown in Fig. 3.4. A staggered grid is employed. All variables except 

velocity are stored at grid points while velocity components are stored at locations 

midway between the grid points.
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Fig. 3.4 Control-volume for the two-dimensional situation
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The integration of Eq. (3.55) over the control-volume shown in Fig. 3.4 gives

(Je -  Fe$ p) -  (Jw -  Fw% )  +  (Jn -  Fn$ v) -  (Js -  Fs$ p) = S A x A y  (3.58)

The quantities Je, Jw, Jn and Js are the integrated total fluxes over the control-volume 

faces. Fe, Fw, Fn and Fs are the mass flow rates through the faces of the control-volume.

In the present study, we have used the hybrid scheme, power-law scheme and the 

quadratic upwind differencing scheme. In hybrid and power-law schemes, the variation 

of function $  between grid points is represented by piece-wise linear functions. At low 

values of a cell Peclet number, - 2  <  Pe  <  2, the hybrid scheme reduces to central 

differencing scheme. At value of \Pe\ greater 2.0, the upwind-differencing scheme is 

used to discretize the non-linear convective terms. The upwind-differencing scheme is 

first order accurate, and consequently it can lead to significant artificial diffusion as 

high Peclet numbers. The power-law scheme, avoids an abrupt change from central to 

upwind differencing at \Pe\ = 2.0. At low values of Pe, it reduces to central differencing 

scheme. For \Pe\ > 10, it becomes identical to the upwind differencing scheme, while 

providing a smooth transition between the two schemes in the Peclet number ranging 

from 2 < \Pe\ <  10. The quadratic upwind differencing scheme represents improvement 

over power-law and hybrid schemes since it uses a quadratic function to interpolate the 

value of function $  between nodal points. This scheme is second order accurate, and it 

minimizes artificial diffusion inherent in power-low and quadratic interpolation schemes. 

The numerical procedure here is illustrated by using the power-law scheme.

It is noted that the departure of the hybrid scheme from the exact solution is rather 

larger at Pe  =  ±2; also, it seems rather premature to set the diffusion effects equal to 

zero as soon as absolute value of Pe exceeds 2. A better approximation to the exact
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solution is given by the power-law scheme [20]. In turns out that for absolute value of

Pe greater than 10, the power-law becomes identical with the hybrid scheme.

By using the power-law scheme, the two-dimensional discretization equation can be 

written as

ap$ p =  cle$ e  +  a w $ w  +  o-N^N +  o-s^S +  ^  (3.59)

where,

ap =  cle +  aw  +  QN +  os — S p A xA y  (3.60)

b# =  ScAxAy (3.61)

The quantities Sc and Sp arise from the source term linearization of the form

S  = Sc + Sp$p (3.62)

3.4.3 Calculation of the Flow Field

The major problem of using the primitive variables namely u, v and p is that the 

pressure field is unknown. If the pressure field was known, the momentum equation can 

be quickly solved to yield u and v values. However, this will leave an unsatisfied mass 

conservation equation. The procedure adopted here is due to Patankar [20], and it uses the 

mass conservation equation to generate an additional equation for unknown pressure field.

A staggered grid, as shown in Fig. 3.5, is used for solution of u, v, p and $  variables.

Harlow and Welch [31] were the first to use staggered grid in which u, v and values

are stored at different points. The approach was also used subsequently by Patankar and 

Spalding [32]. The treatment of the momentum equation is essentially the same as that
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Fig. 3.5 Staggered location for u and v
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for the general variable <f>. The resulting discretization equations for u and v components 

can be written as

In the above equations, the neighbor coefficients account for the combined convection- 

diffusion influence at the control-volume faces. The term 6 is defined in the same manner 

as in the previous section of this chapter, but the pressure gradient is not included in the 

source-term quantities S c and Sp. Symbols A e and A n are the area on which the pressure 

difference acts.

3.4.4 The Pressure Equation

In the present study, we have used the SIMPLER [32] procedure to calculate the flow 

field. This algorithm consists of solving the pressure equation to obtain the pressure field 

and solving the pressure-correction equation to only correct the velocities. An equation 

for obtaining the pressure field can be derived as follows: The momentum equations 

(3.63) and (3.64) is first written as

= X  anbunb + bu + ( P p -  PE )Ae (3.63)

anVn = X  anbVnb + bv + (Pp -  Pjv)An (3.64)

E w  ' A- h A (3.65)

Following Patankar [20], we define a pseudo-velocity

^nb^nb "b bu (3.66)
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Equation (3.65) the becomes

ue =  ue +  —  (PP -  PE ) (3.67)
Ctg

Similarly, one can write

Vn =  Vn +  — {Pp -  Pn  ) (3.68)
On

If one constructs a control-volume in Fig. 3.5 for the continuity equation and integrates 

it over the control volume, the continuity equation becomes

[(P*Oe -  iPu)w\&y +  [(/™)n -  (/>v)a]4Xx =  0 (3.69)

Substitution of all the velocity components, in mass conservation equation results in the 

following equation for pressure

apPp  =  aEPE +  aw Pw  +  onPn  +  asP s  +  b (3.70)

where,

b = [(P^L -  (pu)e]Ay +  [(/w)3 -  ( H j A x  (3.71)

A * aoe = Pe— A y
CLe

Aw
aw  = pw— &y

Q-w
A n .

O N  =  P n  A xOn

as =  ps— A x  (3.72)
Og

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



48

3.4.5 The Velocity-Correction Equation

The pressure field determined from Eq. (3.70) is not the right solution since it is based 

on guessed velocity components u and v. The velocity field obtained from momentum 

equations and the uncorrected pressure field will not satisfy the mass conservation 

equation. As a result, the velocity field needs to be corrected so that the corrected

field is closer to satisfying the mass conservation equation. This is done by deriving a

pressure correction equation by first expressing the velocity field as [20]

«c =  <  + ~ ( P p  ~  Pe ) (3.73)
ae

where, u* is the velocity calculated by using the pressure field P, based on v. 

Similarly, we can express velocity in y-direction as

vn = K  + — (Pp ~  Pn ) (3.74)

Substituting for velocity components in the continuity equation, one gets

apPp =  (ieP'e + awP'w + onP'n +  asP's + b1 (3.75)

where

v  =  -  (^ * ).]A y  +  l ( / « a  -  (3.76)

After, solving the above equation for P', one can use the results to correct the velocity 

field by Eqs. (3.73) and (3.74).
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3.4,6 The Solution Procedure

The difference equations to be solved can be summarized as follows:

The pressure P  equation

apPp  =  ciePe  +  awPw  +  olnPn  +  a-sPs +  & (3.77)

The velocity-field equations

aeue = ^ 2  anb*inb +  bu +  (Pp -  PE)Ae (3.78)

flnUn =  ^ 2  a*l>Vnb + K  + (Pp ~  -Pjv)An (3.79)

The pressure- P' equation

apPp = oeP'e  +  awPw  +  u nP ’n  +  asP's +  ^  (3.80)

The Eq. (3.59) can be reduced to the following tridiagonal matrix form by making sweeps 

in x and y directions:

-f +  d.£ (3.81)

The tridiagonal matrix inversion algorithm (Thomas algorithm) is employed for the 

solution of the algebraic finite-difference equation, with suitable boundary conditions 

for the type of problems considered.

The unknown variables along each grid line are calculated by application of the

tridiagonal matrix, on the assumption that values on neighboring lines are known. This

operation is performed in turn on the sets of lines lying in x and y directions (for 2D flow).

A computer program was developed that incorporated the SIMPLER algorithm [20]. 

The sequence of operations can be stated as follows:
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1. Initiate the procedure with the guessed velocity field (u ,v ).

2. Calculate the coefficients anj for the momentum equations.

3. Calculate u and v.

4. Calculate the coefficients for the pressure Eq. (3.72) and solve Eq. (3.70) to obtain 

the pressure field P,

5. Using the pressure field P , solve the momentum Eqs. (3.63) and (3.64) to obtain u 

and v.

6. Calculate the mass source b of Eq. (3.76) and hence solve for P' from Eq. (3.75).

7. Solve for $  from Eq. (3.59).

8. Return to step 2 and repeat until convergence.
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Chapter 4

RESULTS FOR PARALLEL CHANNEL USING BOUNDARY LAYER MODEL

4.1 Introduction

In this chapter, we present results that have been obtained from the boundary layer 

model for laminar flow in parallel wall channel geometry with axial entry and exit 

(Fig. 2.3). Both plates are maintained at temperature T* and T£ respectively. All 

results, using the momentum-integral method, have been obtained by assuming a fourth- 

order fit to the velocity profile. Results have also been obtained for various values of 

Prandtl number. First, results obtained for air flow through the parallel wall geometry 

are presented, and compared with results of Akbari and Borger [8]. The present work 

then extends the theory to high and low Prandtl number fluids.

4.2 Convective Constant (a)

The role of three factors namely thermal convective constant (a) in Oseen Model, ini­

tial pressure gradient, an the inertia term on the left-hand side of the momentum-

integral equation were analyzed before calculating the flow and temperature fields. The 

optimum value of a  was determined by considering several values of a  and comparing 

the results with those of Akbari and Borger [8]. The a  = 1.3 value yielded the best 

comparison as seen from Fig. 4.1 for a wide range of volumetric flow rate and cooled 

wall temperatures. Consequently, a  = 1.3 was adopted for all subsequent calculations.

51
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Fig. 4.1 Comparison of the prediction of channel height between 
Akbari’s correlations and present study with a  = 1.3
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As noted earlier, the boundary layer approximation requires specification of pressure 

gradient value at the inlet section. Previous researchers have used the boundary 

condition =  —3Q at the inlet section of the channel [8]. In the present study,

the inlet pressure gradient was varied from -3 Q to -30Q to determine the sensitivity of 

results to the inlet pressure gradient. Results of the present study show that the prediction 

of channel height differ by about 2 percent from Akbari and Borger’s results when a value 

of -30Q is used instead of - 3 Q value. This indicated that the results are not very sensitive 

to the inlet value of pressure gradient. In subsequent calculations, we used the pressure 

gradient condition =  - 3 Q at the inlet.

Figure 4.2 shows the comparison of the prediction of channel height for two cases 

namely, with inertia term and without inertia term in the momentum-integral equation. 

As we discussed earlier in Chapter 3, the neglect of inertia term leads to simplification 

of the solution procedure of momentum-integral equation as it reduces from a second 

order equation to a first order equation for pressure. Results show that by dropping the 

inertial term can still predict the channel height with reasonable accuracy, specially in 

the mid-to-high flow rate regimes. However, as seen from Fig. 4.2, the accuracy of this 

inertia less procedure deteriorates significantly for flow rates lower than Q = 0.005.

4.3 Temperature and Velocity Profiles for Air

In this section, the temperature and velocity profiles are calculated and compared with 

existing results for parallel channel geometry. As discussed in Chapter 3, the procedure 

first involves choosing a flow rate Q. Using boundary conditions P* =  —\Q 2, and 

( j f r )  =  —3Q, the governing Eq. (3.29) is integrated along the flow direction. The 

procedure is continued until the location x =  L* is reached, where the pressure value 

becomes zero, thus satisfying the exit pressure boundary condition. After and p*
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values are determined, the u-velocity profiles at different x-locations are determined 

from Eq. (3.40). The v-velocity is determined from the mass conservation equation, and 

temperature profiles are obtained from Eq. (3.51).

Figure 4.3 shows the comparison of u-velocity profiles at two x locations, obtained 

from Akbari and Borger’s calculation and present study. It is noted that they are in good 

agreement with one another. Figures 4.4~4.9 show details of the temperature profiles, T*, 

and the x and y velocity components labeled as u* and v* for two flow rates respectively. 

The first case discusses the high flow rate of Q = 0.02 with symmetric wall temperature 

boundary condition expressed as T* = 1.0 and = 1.0. The second case considers lower 

flow rate of Q = 0.0005 with asymmetric wall temperature boundary condition expressed 

as T* = 0.15 and = 1.0. Each figure shows the temperature and velocity profiles at 

four relative wall elevations, namely, x/L = 0.01, 0.1, 0.5 and 1.0.

At high flow rates, the u-velocity profiles in Fig. 4.5 shows rapid development to 

parabolic shape soon after entry. The v-velocity component as expected shows anti­

symmetry about the mid-plane of the channel. As the flow near the wall in inlet 

section slows due to fluid friction, a rapid movement of flow towards the channel axis 

develops. This is evident by sharp peaks in v-velocity in the entrance region. As the 

axial flow velocity reaches the nearly fully developed shape, the v-velocity peaks decrease 

sharply, and eventually v-velocity becomes very small across the channel section. This 

is consistent with rapid development of velocity profile to its asymptotic parabolic shape. 

For high flow rate case Q = 0.02) and symmetric temperature boundary conditions (T* 

= = 1.0), the fluid temperature (T*) in the core region of the fluid gradually acquires

higher and higher values as the flow proceeds up the channel (Fig. 4.4).

For the lower flow rate (Q = 0.0005) and unsymmetric heating case, frictional forces 

are still largely responsible for the initial acceleration of the fluid. The axial velocity
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in Fig. 4.8 clearly indicates the asymmetry by major and minor peaks in the vicinity of 

the heated and cooled walls respectively. This is due to higher buoyancy force near the 

heated wall. As the development of profile in flow direction proceeds, the velocity of 

the heated layer increases substantially while the velocity in the cooler central region 

decreases. The velocity component, v*, for the lower flow rate at Q = 0.0005 initially 

shows behavior similar to that of high flow rate. However, contrary to the higher flow 

rate, the cooler fluid from the core region moves towards both the walls.

It should be noted that all results including velocity profiles and temperature distri­

butions are in good agreement to Akbari and Borger’s calculations, as indicated in the 

previous section of this chapter.

4.4 Pressure Defect and Heat Removal

The comparison of pressure defect as a function of the channel height between the 

present study and Akbari and Borger’s calculations are shown in Figs. 4.10 and 4.11 for 

high flow rate of Q = 0.02 and low flow rate of Q = 0.0005, respectively. Figure 4.10 

shows that for high flow rate, the pressure defect rapidly becomes negative and shows 

a minimum near the one-tenth portion of the channel, and then reverses and gradually 

reaches zero at the channel exit. The initial decrease is due primarily to the strong 

buoyancy force and tremendous adjustment of the flow profiles as a result of large fluid 

friction near the leading edge of the two walls. At very low flow rate of Q = 0.0005, the 

pressure defect variation quickly becomes nearly linear after showing a small minimum 

near the inlet (Fig. 4.11).

Figures 4.12 and 4.13 illustrate the comparison of present results and Akbari and 

Borger’s results correlated for local heat extracted and the total average Nusselt number.
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These quantities are respectively defined as

l \L =  [ '  r f T ' d y '  (4.1)
Jo

and,

II r Pr
N u t =  (4.2)

where, L  is the total height of the channel and H i  is the total heat extracted from heated 

walls.

The amount of heat extracted from the fluid increases along the channel as indicated in 

Fig. 4.12. The total average Nusselt number as a function of the cooled wall temperature, 

T* is shown in Fig. 4.13. Both of these figures exhibit good agreement between present 

study and Akbari and Borger’s calculations.

4.5 A Closed Form Solution

The solution of problem of flow in a parallel channel can also be determined 

analytically in closed form. This is done by adopting a second order velocity profile 

in the momentum-integral method. The temperature profile is obtained from the Oseen’s 

model. In the present study, the following second order expression for axial velocity 

profile is used

n' = A( i / * - / )  (4.3)

Equation (4.3) satisfies the no slip condition at both walls. The constant A in the above 

equation can be found by satisfying the integral mass conservation constraint, namely 

Eq. (3.60).

Q =  f  u*dy* (3.60)
Jo
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Using the value of A  =  6Q, as obtained from Eq. (3.60), the Eq. (4.3) becomes

u '  = (>Q(y*-y*2)  (4.5)

It is noted that, unlike the fourth order u-profile case, the second order u-velocity 

profile does not depend on the local pressure gradient. In other words, u* as calculated 

from Eq. (4.4) is independent of x-coordinate. This would represent the fully developed 

case since inertia term, represented by the left hand side of Eq. (3.29) vanishes identically. 

This in turn implies a linear profile for pressure defect variation as a function of axial 

coordinate.

One can apply this second-order u-velocity profile to the momentum-integral equation, 

Eq.(3.29), and find a closed form solution by integrating it from 0 to L.  The details of 

the derivation of this closed form solution are given in Appendix A. However, a brief 

discussion is presented here, in order to compare the results with those of boundary layer 

calculation and 4th-order u-velocity profile in the present study and Akbari and Borger’s 

calculations.

If one substitutes Eq. (4.4) into Eq. (3.29) and integrates from 0 to L  and from 0 

to 1, one gets

Since, as noted earlier, Pl = 0 and P„ =  - ^ Q 2 boundary conditions have been used, 

the Eq. (4.5) can be rewritten as

^ Q2 =  -V 1 Q L  +  £  £  T*dy*dx*  (4.7)

d y * r  **/ •— I u ay 
E-= L  J o

— [Pl ~  Po ~  1 2 Q L  +
I fJo Jo

T'dy 'd x*  (4.6)
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Using Eq. (3.40) for T*, one gets

1 q * =  
10v

—12 Q + (4.8)

or,

—O2 -  10V
L =

(ipr) ( —2)( 1 +Tg)PrQ\  

-1 2 Q  + & & 1

^ P r Q  _

(4.9)

Equation (4.8) is an implicit equation for L, and it can be solved by Newton’s method 

to produce a graphical or functional relationship between Q and L. The results of this 

closed form solution designated as “present study withy 2nd-order u-velocity profile” are 

shown in the next section where they are compared with the 4th-order u-velocity profile 

results and the numerical boundary layer calculation of the present study, as well as 

Akbari and Borger’s calculations. Results show that this closed form solution can predict 

the channel height at high flow rates with fairly good accuracy. But the department from 

other more comprehensive models becomes significant at low flow rates specially for Q 

values less than 0.005.

4.6 Comparison of Q vs L Relationship as Predicted by Models

The usefulness of present study for the Trombe wall system is that a simulation 

program can be developed, which requires as input, the wall height, the distance between 

glazing and wall, and the glazing type. Wall and inside glazing (cooled wall) surface 

temperatures can be calculated iteratively by the program at regular time intervals using 

ambient temperature and solar radiation data from a weather tape. The output would 

be in the form of an air volumetric flow rate at an average fluid temperature, or simply 

a heat flux.
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Table 4.1 shows not only the calculation results for air, but also for high Prandtl 

number fluid (water) and a typical low Prandtl number fluid (sodium). The results for air 

are predicted in Figs. 4.14 to 4.16 for different dimensionless cooled wall temperature 

with the flow rate ranging from Q = 0.002 to Q = 0.05. Results show that the calculations 

in the present study, using the momentum-integral method, are in good agreement with 

Akbari and Borger’s correlations as well as the calculations based on the numerical 

solution of boundary layer equation in the present study.

4.7 Effect of Prandtl Number

Different medium such as water and sodium representing high and low Prandtl 

number have also been considered in the present study for natural convective flows 

in a parallel channel with axial inlet and exit sections. Figures 4.17 to 4.19 show the 

comparison of temperature, u-velocity and v-velocity profiles respectively, between water 

and sodium at four axial locations for Q = 0.02, T* = 1.0. These figures illustrate the 

effect of Prandtl number of flow and temperature fields development. In the case of 

water, the temperature profile develops slowly due to its low thermal diffusivity. On the 

contrary, the temperature distribution of sodium develops very fast due to its high value 

of thermal diffusivity. The profile reaches the nearly fully developed stage soon after 

the mid-section of the channel. The flow patterns of these two different medium have 

exactly opposite trends of development, as shown in Figs. 4.18 and 4.19. As expected, 

the sodium velocity profiles develops much more slowly as compared to water velocity 

profile development
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X X X 1 X X

CM 00 CM CM 00
CM cn r*; CM rn
cm’ cm’ cm’

d  m rf m
o  d  o  d

*a .a  _y  +h ✓■"■s
2  •> g
co >  E
* -  m  «  C U ~ <D *p rt"* fe -a o tsA »■5 .gTt —*

©  O  m  cm
in  cm d  Q  o  o  © o

i

w
d

x
00
r -
vo
cm

d  in
o  o  o■̂H *"H *"4
X X X  

in  O  O  co rr co 
—i mi On

d  m *f m
o  o  o  o

—i d  n  if
o  o  o  o

t? o  o  in  <s
Jl m  <s d  O
r  ©  o  o  ©

00 r-
NO
1 ©  ©  m  cm 

® «  8  8I  o  o
0

1

if m io
o d d»—i i—i i—i
X X X
S o  o

NO VO 
in CM- rf

<s <n t m <s ro m d T n t m
o O o © o o o d d o O O o o O oHH *—i fH Ĥ ^H r—1 1—H P"̂ fH HH
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Figure 4.20 show the comparison of pressure defect for different Prandtl numbers, 

namely water, air and sodium as a function of dimensionless x along the channel axis. 

The higher the Prandtl number the later is the recovery of the pressure defect and the 

more negative is its minimum value.
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Chapter 5

RESULTS FOR SIDE VENT GEOMETRY

5.1 Physical Model

Figure 5.1 shows a side-vented cavity configuration with two same size gaps CD  

and A B  on the heated wall. The upper and lower walls are insulated, and the vertical 

sides are maintained at constant temperatures Tc and Th- This is a very basic geometry 

that in many ways models the heat transfer and ventilation characteristics of an actual 

Trombe wall geometry. Natural convection characteristics of this geometry have not 

been reported in the literature.

As noted earlier, the velocity and pressure values at inlet and exit sections are not 

known a priori. For numerical procedure, either velocity or pressure must be known 

at the inlet section AB.  To overcome this dilemma of two unknown quantities, the 

computational domain is extended well beyond the geometric configuration. We take 

advantage of the fact that the differentially heated channel is attached to a constant 

pressure reservoir namely atmosphere. The boundary E J I H G F  in Fig. 5.1 is the 

extended boundary, located far away from heated surfaces, where known atmospheric 

pressure condition can be applied. The computational domain has been extended three 

times of the channel width, L, in x-direction, and five times of the channel width from 

both upper and lower boundaries E D  and F A  of the channel. The first derivative of
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Fig. 5.1 Schematic of the side-vented cavity
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temperature normal to the boundaries is set as zero and the pressure is fixed and assumed 

to be equal to the atmospheric pressure on the boundary E J I H G F .

5.2 Numerical Codes

5.2.1 The Present Computational Code

The numerical code developed here is the modification of the code developed by 

Mohieldin [36] for laminar flows. The present code extends the previous code to include 

the effect of turbulence. It also features variable step size grid. In its present form, it is 

capable of solving two-dimensional turbulent natural convective flows. The power law 

scheme has been used to discretize the governing transport equations, using the finite 

volume approach [20]. The two-equation (k-c) turbulence model has been used to predict 

effects of turbulence [24]. Validation of the code for the square cavity at Grashof number 

1.4x 108 has been conducted, and compared to results from the “FLUENT’ code [21] and 

Markatos’s results [17] shown in Table 5.1. Fairly good agreement has been achieved 

for the averaged Nusselt number.

5.2.2 The “FLUENT” Code

The drawback of the present code is that it uses the power law scheme which 

essentially reduces to the first order accurate upwind differencing scheme at high cell 

Peclet numbers. This invariably leads to high artificial diffusion and errors in solution. 

In order to avoid this problem, one must use a very refined grid. This is not always 

possible in many complex geometries, such as the one considered in the present study. A 

very high number of grid points, required to resolve the flow in the inlet/exit sections and 

flow near the wall, gradually causes the computational effort to escalate. The alternative 

is to use a second order accurate scheme such as QUICK [32] that employs quadratic 

interpolation of functions between grid points. Since this scheme and other features of
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study and Markato’s calculation

Average
Nusselt
Number

Present Study

Present Code 
k-e Model

FLUENT
Code

Markato’s
Calculation

Laminar 
Gr=l. 4x10s

NH 4.516 4.524 4.470

Turbulence
G r=1.4xl08

Nu 35.948 38.784 35.140
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the present code are incorporated in the “FLUENT” code [21], it was decided to use the 

“FLUENT’ code instead of incorporating the “QUICK” scheme in the present code. This 

code has options that enables one to use either power law or the second order “QUICK” 

scheme. It also features two options for turbulence modeling. One can use either 

the two-equation (k-e) turbulence model or the algebraic stress model. The code uses 

both “SIMPLE” and “SIMPLER” algorithms to solve the non-linear algebraic equations 

resulting from the finite volume procedure. The “FLUENT’ program also provides a 

very good graphical capability which proved to be an asset in the present investigation. 

Since simulation of flow phenomenon in the channel requires large number of grid points, 

a second order procedure that minimizes artificial diffusion is more desirable. It is for 

this reason the “FLUENT’ code was used in the present study. The validation of the 

“FLUENT’ code has been reported in the literature [37]. An independent validation of 

the code was done by Mohieldin [38]. The present study also carried out an independent 

validation of “FLUENT’ for natural convective flows. Table 5.1 shows typical results 

from the code and comparison with results from other sources. All subsequent results in 

the present study have been obtained from the “FLUENT’ code.

5.3 Numerical Aspects

5.3.1 Grid Independence of Results

A typical variable grid pattern for the entire calculation domain is shown in Fig. 5.2. 

More grid points have been placed near all physical walls to resolve boundary layers. 

Figure 5.3 shows the comparison of the local Nusselt number on the heated wall for 

turbulent flow for three grids, namely 33x41, 53x61 and 73x81. One observes that 

results are practically grid independent except for a minimum near the entrance region, 

predicted by the finer 73x81 grid. All three grids show a developing entrance region,
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followed by a nearly fully developed thermal region. The 73x81 grid has been used for 

all cases in the present study of Hows in the side-vented cavity configuration.

5.3.2 Location of the Free Boundary

The effect of location of the free boundary was a major concern in early stages of 

the present study. The basic objective in this regard is to establish the free boundary at 

a location far removed from the heated surface of the channel. From the computational 

point of view, farthest location will increase the computational effort. Conversely, nearest 

free boundary location will reduce computational effort, but results may be dependent on 

the location of the boundary. As a result, an optimal location needs to be found from 

numerical experimentation.

Initially, two types of free boundaries shown in Figs 5.4 and 5.5 were tried in the 

present study. The first type of free boundary is also shown in Fig. 5.1. The second 

type of free boundary is constructed by extended the physical boundaries E D  and F A  

in Fig. 5.1 all the way to the free boundary III.  Figures 5.4 and 5.5 show the streamline 

contours of a side-vented cavity, using these two different types of free boundary. 

Although the mass flow rate and the Nusselt number characteristics are almost same 

for these two cases, results from parallel boundary case in Fig. 5.5 shows that there is a 

returning flow from exit to inlet near the outside surface of the heated wall. This appears 

physically unreasonable behavior since it indicates that the flow has been restricted by 

using this type of free boundary. Consequently, the more comprehensive boundary of 

Fig. 5.1 has been used throughout this study since it does not predict the returning flow 

pattern, and it generally yields results that are physically reasonable.
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Fig. 5.4 Streamline contours for Gr = 7.2x 105, Pr  = 0.71, Ar  = 20, Vs*
1.0 turbulent case (The first type of free boundary)
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Fig. 5.5 Streamline contours for 6 'r = 7.2 x 10"5, Pr = 0.71, A r  = 20, 
W  = 1.0 turbulent case (The second type of free boundary)
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The study of the effect of location of the free boundary on the computational results 

has been conducted by choosing four locations of the vertical boundary I H  (in Fig. 5.1) 

in the x-direction, namely at x  =  L, x  = 2L, x  = 3L and x =  4L. Figure 5.6 shows 

the comparison of local Nusselt number on the heated wall of four different locations of 

the free boundary IH .  In the case of free boundary located right at the inlet and exit 

sections of the cavity, the local Nusselt number shows an oscillatory behavior. The cases 

of x  =  3L and x  =  4L, predict nearly identical local Nusselt number values where as 

the location of boundary at x  = 2L shows a marked departure from these two cases near 

the inlet section. In the present study, the free boundary has been located at x = \ L  for 

all subsequent results in this study. This ensures that the results obtained in the present 

study are independent of I H  boundary location.

5.4 Streamline and Temperature Contours

Results were obtained for side-vented cavities of aspect ratios of Ar  = 10 and A t  = 

20. The non-dimensional vent size, Vs*, was varied from 1.0 to 0.25 for Grashof number, 

Gr, ranging from 1.4x 103 in the laminar regime to 1.4 x 108 for the turbulent cases. The 

value of Gr = l.Ox 106 is used for distinguishing laminar regime from turbulent regime. 

We note that if numerical results were obtained for Gr > l.OxlO6, using laminar flow 

assumption, the flow and heat transfer characteristics would show marked oscillations, 

indicating numerically the onset of transition to turbulence. As a result, all cases with 

Gr less than l.OxlO6 or greater were calculated using the turbulent flow assumption. 

The turbulent flow results are shown in Figs. 5.11-5.13. The convergence of solution 

was said to be achieved when the residuals for variables u, v, h and p became less than 

l.OxlO-6, l.OxlO-6, l.OxlO-6 and l.OxlO-3 respectively.
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The streamline contours for vent size Vs*, = 1.0 for all laminar and turbulence flow 

cases are shown in Figs. 5.7-5.13. For the case of Gr = 1.4x 103, the buoyancy effect is 

small, and the flow in the channel is essentially uni-directional. As the Grashof number 

increases from 1.4X103 to 1 .4x l04, a small recirculating region appears at the top left 

comer of the cavity. In addition, a small recirculating flow region appears on the leading 

edge of the heated wall. As Grashof number is increased to 1.4 xlO 6, the convective 

flow pattern changes, indicating larger recirculating flow patterns in the channel. For all 

cases except Gr = l.OxlO6 (laminar calculation), converged solutions were obtained in 

about 2000 iterations. For laminar calculation with Gr = l.Ox 106 (Fig. 5.10), oscillatory 

solutions were observed even after 2000 iterations, and this indicated that steady laminar 

solutions were not feasible for Ar  = 20 and Grashof number equal to and greater than 

l.OxlO6. After incorporating the two-equation (k-e) turbulence model in the calculation 

for the same case of Gr = l.OxlO6, no oscillatory solutions were observed as indicated 

in Fig. 5.11. This indicated that the turbulence assumption should be used for all cases 

of Gr greater than or equal to l.OxlO6.

For the case of dimensionless vent size equals to 0.5, the streamline contours exhibit 

patterns similar to those of Vs*, = 1.0. However, when the vent size is reduced, the 

flow velocities became smaller compared to those for the bigger vent sizes. This causes 

a large secondary flow region near the upper left comer and near the leading edge of 

the warmer wall. Figures 5.14 to 5.19 show the streamline contours for W ,  = 0.5 as 

Grashof number is varied from 1 .4xl03 to 1 .4xl08.

Figures 5.20 to 5.30 show the temperature distributions for the dimensionless vent 

size, Vs*, of 1.0 and 0.5, and for Grashof number ranging from 1.4x 103 in the laminar 

regime to 1 .4x l08 in the turbulent regime. A thermal boundary layer region on the 

heated wall, and a large thermal plume of hot air, exiting from the top vent, are evident

with permission of the copyright owner. Further reproduction prohibited without permission.



] .38E-03 

1.27E-03 

1.16E-03 

1.05E-03 

9.43E-04 

8.33E-04 

7.23E-04 

6.14E-04

5-04E-04 

3.94E-04 

2.84E-04 

1-75E-04 

6.48E-05 

-4.49E-05 

- 1 -55E-04 

-2.G4E-04 

-3.74E-04 

-4-84E-04 

-5.94E-04 

-7.04E-04 

-8.13E-04 

-9.23E-04

Fig. 5.7 Streamline contours for laminar case with Gr = 1 .4xl03, 
P r  = 0.71, Ar = 20 and Vs* = 1.0

with permission of the copyright owner. Further reproduction prohibited without permission



3.55E-03  

3.27E-03  

3.00E-03  

2.73E-03  

2.45E-03 

2.18E-03  

1.90E-03 

1 .G3E-03 

1.35E-03 

1.O0E-O3 

8.05E-04 

5.31E-04  

2.57E-04 

-1.78E-05 

-2-92E-04 

-5.GGE-04 

-8.41E-04 

-1-12E-03 

-1.39E-03  

-1.66E-03 

-1.94E-03 

-2.21E-03

Fig. 5.8 Streamline contours for laminar case with Gr = 1 .4xl04, 
Pr -  0.71, Ar  = 20 and Vs* = 1.0

with permission of the copyright owner. Further reproduction prohibited without permission



7.23E-03  

6.62E-03 

G.02E-03 

5.42E-03 

4.82E-03  

4.22E- 03 

3-G1E-03

3.0  IE-03 

2.41E-03 

1.81E-03 

1-21E-03

6-04E-04 

2.10E-06  

-6.00E-04 

-1.20E-03 

-1.80E-03 

-2.41E-03 

-3.01E-03 

-3.61E-03 

-4.21E-03 
-4.81E-03 

-5.42E-03

Fig. 5.9 Streamline contours for laminar case with Gr = 1.4x10s, 
P r = 0.71, Av = 20 and Vs* = 1.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



97

2.Q1E-02 
1.91E-02 
1.81E-02 
1.71E-02 
1.S1E-02 
1.51E-02 
1.41E-02 
1.31E-02 
1.21E-02 
1.10E-02
1.Q0E-02 
9.03E-03 
8.02E-03 
7.Q2E-03 
6.01E-03 
5.00E-03 
3.99E-Q3 
2.S9E-03 
1.98E-03 
9.73E-04 

-3.41E-05 
-1.04E-03 
-2.Q5E-03 
-3.06E-03 
-4.0GE-03 
-5.07E-Q3 
-G.08E-03 
-7.Q8E-03 
-8.09E-Q3 
-9.10E-03

Fig. 5.10 Streamline contours for laminar case with Gr = l.OxlO6, 
Pr  = 0.71, Ar  = 20 and Ks* = 1.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.20E-02  

2.92E-02

2.G4E-02 

2.3GE-02 

2.09E-Q2 

1.81E-02 

1.53E-02 

1.26E-02 

9.79E-03  

7.02E-03 

4.25E-03  

1.48E-03 

-1.30E-03  

-4.07E-03  

-6.84E-03  

-9.G1E-03 

-1.24E-02  

-1.52E-02  

-1.79E-Q2 

-2.07E-02  

-2.35E-02 

-2.G2E-02

Fig. 5.11 Streamline contours for turbulent case with Gr = l.OxlO6, 
Pr  = 0.71, Ar  = 20 and Fs* = 1.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



99

3-87E-02 

3.34E-02  

2.81E-02  

2.28E-02  

1.75E-02

1-23E-02 

7.00E-03  

1.72E-03 

-3-5GE-03 

-8.83E-03  

-1.41E-02  

-1.94E-02  

-2.47E-02  

-2.99E-02  

-3-52E-02 

-4.05E-02  

-4.58E-02  

-5.10E-02  

-5.G3E-02 

-6.16E-02  

-G.G9E-02 

-7.22E-02

Fig. 5.12 Streamline contours for turbulent case with Gr -  1 .4x l07, 
P r  = 0.71, A r = 20 and Vs* = 1.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



9-95E-02 

7.81E-02 

5.67E-02 

3.53E-02 

1.40E-02 

-7-43E-03 

- 2 -88E-02 

-5.02E-02 

-7-1SE-02 

-9.30E-02 

-M 4E -01  

-I-3GE-01 

-1.57E-01 

-1.79E-01 

-2.00E-01 

-2.21E-01 

-2.43E-01 

-2-64E-01 

-2.85E-01 

-3.07E-01 

-3.28E-01 

-3.50E-01

Fig. 5.13 Streamline contours for turbulent case with Gr = 1 .4x l08, 
Pr  = 0.71, A t = 20 and Vs* = 1.0

with permission of the copyright owner. Further reproduction prohibited without permission



101

1.40E-03

1.30E-03

1-20E-03 

1.09E-03 
9.93E-04 

8.91E-04 

7.88E-04 

6.8SE-04 

5.84E-04 

4.82E-04 

3.80E-04

2 -78E-04 

1.7GE-04 

7.34E-05 

•2-87E-05 

■1.31E-04 

2.33E-04

3-35E-04 

4.37E-04 

5.40E-04 

6.42E-04 

7.44E-04
L i

Fig. 5.14 Streamline contours for laminar case with Gr = 1 .4x l03, 
P r  = 0.71, A t = 20 and Ks* = 0.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.02E-03

3.74E-03

3.46E-03

3.19E-03

2.91E-03

2.63E-03

2.35E-03

2.07E-03

1.79E-03

1.51E-03

1.23E-03

9-49E-04

6.69E-04

3.90E-04

1.10E-04

-1.G9E-04

-4.49E-04

-7.28E-04

-1.01E-03

-1.29E-03

-1.57E-03

-1.85E-03

Fig. 5.15 Streamline contours for laminar case with Gr = 1 .4x l04, 
P r  = 0.71, Ar = 20 and Vs* = 0.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



103

7.43E-03  

6.87E-03  

6.30E-03  

5.73E-03  

5.1GE-03 

4.60E-Q3 

4.03E-03  

3.46E-03  

2.89E-03  

2.33E-03

1-76E-03 

1.19E-03 
6.23E-04  

5.59E-05  

-5-12E-04 

-1.08E-03  

-1.65E-03  

-2-21E-03 

-2-78E-03 

-3.35E-03 

-3.92E-03 

-4.48E-03

Fig. 5.16 Sreamline contours for laminar case with Gr = 1.4X105, 
P r  = 0.71, A t = 20 and Vs* = 0.5

Reproduced with permission of the copyright owner Further reproduction prohibited without permission.



2-13E-02  

1.95E-02 

1.7GE-02 

1.57E-02 

1.38E-02 

1.19E-02 

9.97E-03  

8.08E-03  

6.18E-Q3 

4.28E-03  

2.39E-03  

4.93E-04  

-1.40E-03  

-3.30E-03  

-5.20E-03  

-7.09E-03  

-8.99E-03  

-1 -09E-02 

-1.28E-02  

-1.47E-02  

-l.fifiE-02 

-1.85E-02

Fig. 5.17 Streamline contours for turbulent case with Gr = l.OxlO6, 
Pr  = 0.71, Ar  = 20 and Vs* = 0.5

with permission of the copyright owner. Further reproduction prohibited without permission



4.41E-02 

3.69E-02 

2.98E-02 

2.26E-02 

1.54E-02 

8 -26E-03 

1.09E-03 

-e.oaE-03 

- 1 -32E-02 

-2.04E-02 

-2.76E-02 

-3.48E-02 

-4.19E-02 

-4.91E-02 
-5.G3E-02 

-6.34E-02 

-7.06E-02 

-7-78E-Q2 

-8.49E-G2 

-9.21E-02 

-9.93E-02 

-1 -06E-01

Fig. 5.18 Streamline contours for laminar case with Gr = 1 .4xl07, 
Pr  = 0.71, Ar = 20 and Vs* = 0.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



1.31E-01 

1.13E-01 

9.55E-02 

7.79E-02 

6.04E-02

4-28E-02 

2.52E-02 

7.67E-03  

-9.90E-03  

-2.75E-02 

-4.50E-02 

-6.26E-02  

-8.02E-02  

-9.77E-02  

-1.15E-01 

-1.33E-01 

-1.50E-01 

- 1 -G8E-01 

-1.8GE-01 

-2.03E-01 

-2.21E-01 

-2.38E-01

Fig. 5.19 Streamline contours for turbulent case with Gr = 1 .4x l08, 
P r  = 0.71, A t = 20 and W  = 0.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission



107

3.12E+02 
3-ilE+02 
3-096+02

3.&802
3.ME+02
3-02E+O2
3-01E+O2 
2-996+02
2-97E+92
2.966+02
2.946+02
2.926+02
2-916+02

Fig. 5.20 Temperature distribution for laminar case with Gr -  1 .4xl03, 
Pr  = 0.71, Ar = 20 and Vs* = 1.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

3-126+02
3- 11E+-02 
3.096+02

3.046+02
3.02E+O2
3.01E+O2
2-996+02
2.97E+02
2.966+02
2-94E+02
2.926+02
2-916+02

Fig. 5.21 Temperature distribution for laminar case with Gr = 1.4xl04, 
Pr  = 0.71, Ar = 20 and Vs* = 1.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

3.12B02
3-UE+02
3-09EHJ2

3.M&-02
3.02E402
3.01EHJ2
2-99B02
2.97EHJ2
2.96EHJ2
2-94B02
2-92B02
2-91E+02

Fig. 5.22 Temperature distribution for laminar case with Gr = 1.4x10s, 
Pr = 0.71, Ar = 20 and Vs* = 1.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3m12E+02
3.11E+02
3.09E+O2

3-MEf02
3.02E+42
3.01B-02
2*98EH)2
2-97B-02
2«9firHJ2
2-94£f02
2-92B02
2-91E+02

Fig. 5.23 Temperature distribution for turbulent case with Gr = 
1.4xl07, Pr = 0.71, Ar = 20 and T/s* = 1.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I l l

3.126+02 
3.106+02 
3.096+02

3.M6+02 
3 .02E+02
3-006+02 
2-896+02 
2-37E+02 
2.95E+02 
2.94E+02 
2-826+02
2-906+02

Fig. 5.24 Temperature distribution for turbulent case with Gr = 
1.4x 108, Pr = 0.71, Ar = 20 and Vs* = 1.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112

3-126+02 
3.116+02 
3.096+02

3.046+02 
3.026+02 
3.01E+02 
2-39E+02
2.976+02
2.966+02 
2.946+02 
2.926+02
2-916+02

Fig. 5.25 Temperature distribution for laminar case with Gr = 1 .4xl03, 
Pr  = 0.71, Ar = 20 and Vs* = 0.5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig. 5.26 Temperature distribution for laminar case with Gr = 1.4x 104, 
Pr  = 0.71, Ar = 20 and Vs* = 0.5
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from these figures. The higher the Grushof number, the thinner the thermal boundary 

layer on the heated wall becomes, and the more strongly the thermal plume discharges 

hot air into the atmosphere.

the cavity as a function of Grashof number for the channel aspect ratio of 20. Here, the 

non-dimensional mass flow rate, i'n*, is defined as

show that this quantity is governed by Grashof number as well as dimensionless vent size. 

The mass flow rate, for a given vent size, first increases and then decreases with Grashof 

number in laminar regime, indicating a maximum around Gr = 1 .4xl04. As the vent 

size is reduced for a fixed Grashof number, the mass flow rate is reduced substantially 

due to increased throttling effect of the reduced vent size. For the turbulent flow regime, 

the mass flow rate decreases slightly with increasing Grashof number.

The average horizontal velocity at the channel inlet and outlet is depicted in Fig. 5.32 

for several vent sizes and Grashof numbers. For constant Grashof number, the average 

horizontal velocity at inlet increases as the vent size decreases. However, increase in 

velocity magnitude is not proportional to the decrease in vent size due to higher inlet and 

exit vent losses for smaller size vents. As expected, the velocity values at the channel 

exit are mirror images of incoming velocity values in Fig. 5.32.

5.5 Heat TYansfer and Mass Flow Rate Characteristics

Figure 5.31 shows the variation of non-dimensional mass flow rate induced through

fW, M u  A T I , )17“ (  pLPgfTL* ^ 1/2

Til m

(5.1)

where

m* = (f tg A T L )112 (5.2)
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Figure 5.33 shows the variation of local Nusselt number on the heated wall for a 

typical turbulent case of Gr = l.OxlO6, P r  = 0.71 and Ar  = 20. The recirculating 

region near the leading edge of heated wall causes a small peak in the local Nusselt 

number in that region. Results indicate a thermal entrance region followed by a nearly 

fully developed region where the local heat transfer coefficient is nearly uniform. Near 

the trailing edge of the heated wall, the Nusselt number increases slightly. Figure 5.34 

shows the variation of averaged Nusselt number on heated wall as a function of Grashof 

number and vent size for the aspect ratio of 20. Results indicate that the average Nusselt 

number on heated wall increases significantly as Grashof number increases. The Nusselt 

number also increases as the vent size is increased from Vs* = 0.25 to 1.0. However, we 

note that the effect of vent size on the Nusselt number is not very pronounced as shown 

in Fig. 5.34. In contrast, as noted from Fig. 5.31, the effect of vent size on the mass flow 

rate is very significant while the effect of Grashof number is somewhat weaker.

Figure 5.35 shows the variation of non-dimensional net energy delivery rate of a 

side-vented cavity as the function of Grashof number and dimensionless vent size for 

the channel aspect ratio of 20. The net energy delivery rate increases as vent size and 

Grashof number are increased.

5.6 Vent Losses at Channel Inlet and Exit Sections

Figures 5.36-5.40 show the pressure variation in the system for Grashof number 

ranging from 1.4 x 103 to 1.4x 108 for the dimensionless vent side of unity. These figures 

clearly show two-dimensional pressure field near the inlet and exit sections of the channel, 

and stratified (one-dimensional) pressure distribution in the rest of the channel. For the 

present coordinate system, this means that in the middle region the pressure is a function 

of only x-coordinate where as in the inlet/exit sections it is a function of x and y
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coordinates. The present calculation procedure using elliptic equations can capture both 

trends as shown in Figs. 5.36-5.40. We note here that the boundary layer procedures 

such as the one used by Akbari and Borger |8] can not predict the inlet and exit pressure 

values due to vent losses. The vent loss coefficient (or pressure defect constant), K x, 

is defined as

AA * = T— ~ 2  +  1 (5.3)

where x  indicates location which could be inlet or exit. Figure 5.41 shows the inlet and 

exit vent loss coefficient (A\ and Kr) as a function of Grashof number. From these results, 

it is noted that the outlet vent loss is substantially higher than the inlet vent loss. The 

A,- value decreases slightly while A',, increases slightly as Gr is increased from 1.4xl03 

to 1.4 x 105. It is interesting to note that the total vent loss coefficient AY(= Ki +  K e) 

shows a minimum at Gr = 1.4x 104 for which the mass flow rate also shows a maximum 

value in Fig. 5.31. The minimum value of /vY equal to 2.20 is within 6 percent of its 

maximum value of 2.35. It is to be noted that all previous boundary layer analyses have 

either assumed the values of AY as zero |8 | or have used assumed values of K t  to 

examine its effect on natural convective How in a parametric type analysis [11]. Other 

studies [10-12] for a somewhat different geometry have calculated the value of AY from 

the Navier-Stokes type analysis but these analyses do not calculate Ki and K e separately.

Table 5.2 summarizes the vent loss coefficient at inlet and exit sections of the side- 

vented cavity for all laminar and turbulence cases considered in the present study. Figure 

5.42 shows the variation of total vent loss coefficient I<t  as the function of Gr and 

vent sizes. Unlike the laminar case, the total vent loss coefficient for the turbulent case 

increases with Gr, without showing a maximum point for either Vs* = 0.5 or 1.0.
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5.7 Effect of Cooled Wall Temperature

Two cases, one laminar and one turbulent have been investigated in the present study 

to examine the effect of cooled wall temperature on the local Nusselt number, mass 

flow rate and net energy delivery rate. Three different non-dimensional cooled wall 

temperature, namely T* = -0.72, 0.15 and 0.55 have been studied. Figures 5.43 and 

5.44 show the comparison of local Nusselt number on cooled wall for three different 

temperatures for a laminar case of Gr = 1.4x 10s and a turbulent case of Gr = l.Ox 106 

respectively.

For the case of negative cooled wall temperature, T* = -0.72, the secondary recircu­

lating flow occupies almost three quarters of the channel space. As a result, the amount 

of heat loss to the ambient through cooled wall is substantial. Figures 5.45 and 5.46 

show the flow field and temperature field respectively of a typical negative cooled wall 

temperature case of T* = -0.72. Although the average Nusselt number on cooled wall 

does not clearly illuminate heat transfer phenomenon, the heat flux results indicate this 

effect quite clearly. As shown in Table 5.3, heat flux increase substantially as cooled 

wall temperature increases. Results also show that dimensionless mass flow rate has a 

similar trend as the net energy delivery rate, as the cooled wall temperature increases. 

Figures 5.47 and 5.48 show this effect of cooled wall temperature on dimensionless mass 

flow rate and net energy delivery rate respectively.

5.8 Effect of Aspect Ratio

The total average Nusselt number and non-dimensional net energy rate results as the 

function of Grashof number for a side-vented cavity of aspect ratio of 20 have been shown 

in Figs. 5.34 and 5.35 respectively. Two typical turbulent cases, Gr = 1 .4xl07 and Gr
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Table 5.3 Effect of cooled wall temperature on net energy delivery 
rate of two cases of vented cavity with Vs* = 1.0

Gr

Cold

Area
(m2)

Hot

Average
Nusselt
Number

Niic Nuh Cold

Heat
Flux

(W/m2)
Hot

Mass
Flow
Rate
(kg/s)

Mean
Fluid
Temp.

(K)

Net
Energy

Rate
(W)

Laminar
Gr=1.4x I05
T*=-0.72 0.6434 0.5791 6.707 5.293 -62.83 108.2 1.554x 10'3 285.7 22.229

0.15 0.6434 0.5791 3.830 4.528 6.287 73.76 4.983 x 10’3 291.3 46.75
0.55 0.6434 0.5791 4.554 4.554 34.90 72.91 6.938 x lO'3 291.6 64.66

Turbulence
Gr=1.0xl06
T“=-0.72 1.244 1.1196 16.942 15.835 -113.0 139.8 2.782x10'3 290.2 15.948

0.15 1.244 1.1196 12.472 15.035 6.878 122.2 16.88X 10'3 296.0 144.7
0.55 1.244 1.1196 16.039 16.080 62.70 127.4 20.99X10'3 292.6 219.9
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= 1.4 xlO8 with aspect ratio of 10 have also been investigated in the present study in 

order to compare and determine the effect of aspect ratio on the net energy delivery rate.

Figures 5.49 and 5.50 show the streamline contours for a side-vented cavity with Ar, 

and Vs* = 1.0 and for Gr = 1 .4xl07 and Gr = 1 .4x l08 respectively. These results 

should be compared with Figs. 5.12 and 5.13 for corresponding cases of aspect ratio of 

20. It is noted that in the lower aspect ratio cases, the thermal plume discharged from 

the channel exit is stronger than those in the higher aspect ratio cases, and in the upper 

left comer a secondary flow cell is formed for Ar  = 10 cases.

Temperature distribution of these two cases have been depicted in Figs. 5.51 and 

5.52. These figures along with Table 5.4 showed that for higher aspect ratio, buoyancy 

effect is stronger than that for lower aspect ratio. This trend can be seen not only from the 

mean fluid temperature on Table 5.4, but it can also be seen from the heat flux and the net 

energy delivery rate. Although the heat transfer area for Ar = 20 case is almost two times 

as large as in the case of A r  = 10, the net energy delivery rate is not linearly proportional

to the heat transfer area, and is more than two times. Nusselt number correlations for

vent size, Vs* = 1.0 are as follows:

Laminar: (1.4X103 < Gr < 1 .4xl05)

T^T =  0.174(Gr)1/4(A r)"1/9 (5.4)

Turbulent: (1.0x10s < Gr < 1 .4xl08)

~Nu =  0.126(Gr)1/3(A r)-1/9 (5.5)
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Fig. 5.50 Streamline contours for turbulent case with Gr = 1 .4x l08, 
Pr  = 0.71, Ar  = 10 and Vs* = 1.0
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Table 5.4 Effect of aspect ratio on net energy delivery rate 
for two typical turbulent cases with Vs* = 10

Grashof Aspect Mean Mass Flow Rate Heat Flux Area Net
Number Ratio Fluid (kg/s) x 100 (W/m2) (m2) Energy

Temp.
(K) In Out (W)

Cold Hot Cold Hot

10 290.7 -2.759 2.81 10.87 112.3 1.4933 1.1946 150.39
1.4x 107 20 290.9 -5.635 5.720 10.79 130.8 2.9866 2.6879 383.80

10 290.5 -6.469 6.506 8.778 11.7 3.2172 2.5738 315.73
1.4x l08 20 290.6 -17.06 17.16 14.66 141.2 6.4344 5.7910 912.02
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Overall, for side-vented cavities with vent size equal to the channel width, the average 

Nusselt number for turbulent flow as a function of Gr and A r  in the present study can 

be correlated in the following form for any aspect ratio of turbulence cases,

I h i  =  0.0920(/2a)1/3 (5.6)

The above correlation gives higher values than those obtained by Markatos et al. for 

closed cavity (N u  =  0.060(i?a)1̂ 3) [17].

5.9 Effect of Vent Size

The effect of vent size on total average Nusselt number in the side-vented cavities 

is shown in Figure 5.53. The larger the vent size, the higher the heat transfer rate. The 

total average Nusselt number increases as the dimensionless vent size, Vs*, increases 

from 0.25 to 1.0. This trend can be seen in both laminar and turbulent flow regimes.

To conclude the above discussion of all the efforts on the total average Nusselt 

number, we would like to add the factor of dimensionless vent size to the correlation of 

the overall average Nusselt number as follow (for all cases of A r  = 20):

~Nu =  0.136(Gr)1/3(Vs*)1/4 (5.7)

5.10 Effect of Prandtl Number

Different medium such as water has also been considered in the present study for 

natural convective flows in a side-vented cavities. The Prandtl number of 6.78 has been 

used for these cases. Figure 5.54 shows the streamline contours of water flow in a side- 

vented cavity of A r  = 20, for the turbulent case of Gr = 1 .4 x l0 10. The flow moves

uniformly and slowly upward along the channel due to its high viscosity. The mass flow
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Fig. 5.53 Effect of vent size on total averaged Nusselt number 
for various Gr with Pr  = 0.71, Ar = 20
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rate of 4.32x 10"4 kg/sec for this case of Gr = 1 .4x l010, is relatively small compared 

to the same case of air (1.567x00 kg/sec).

Figure 5.55 shows the comparison of the development of the axial velocity profiles 

with distance for air and water flow in a side-vented cavity. Both cases have the same 

Grashof number of 1 .4xl07 in the turbulent flow regime, and have the same aspect 

ratio of 20, dimensionless vent size of 1.0 and dimesionless cooled wall temperature 

of 0.15. Figure 5.56 shows the development of the temperature profiles for the cases 

described above. These two figures clearly show the influence of Prandtl number for 

these two fluids. For higher Prandtl number fluid such as water, the velocity boundary 

layer develops faster towards its fully developed shape than the thermal boundary layer. 

On the other hand, in the case of air flow, the development of velocity and thermal 

boundary layer are almost at same order of magnitude.

Table 5.5 shows the comparison of net energy delivery rate in a side-vented cavity 

for air and water flow for two turbulent cases, namely Gr -  1.4x 107 and 1.4x 1010. The 

buoyancy effect increases as Grashof number increases, and much more heat is discharged 

to the reservoir via the channel exit. Although, water has higher heat capacity, the mass 

flow rate is so small that it extracts only a small amount of heat from the heated cavity 

when compared to the same Grashof number case of air.

5.11 Comparison of Mass Flow Rate Results 
from Present Study and Other Calculations

To complete the present study of flow in a side-vented cavity, the comparison of 

mass flow rate obtained in the present study and Akbari and Borger’s boundary layer 

calculation [8,9] is presented here. The only difference between these two studies is that 

Akbari and Borger’s physical model has openings at top and bottom end whereas the 

present geometry has side vents. The comparison of result of mass flow rate tabulated in

with permission of the copyright owner. Further reproduction prohibited without permission.
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Table 5.5 Comparison of net energy rate in side-vented cavity between air 
and water in two turbulence cases with Ar = 20, Vs* = 10

Grashof
Number

Prandtl
Number

Mean
Fluid
Temp
(K)

Mass Flow Rate 
(kg/sec)

In Out

Heat Flux 
(W/m2)

Cold Hot

Area
(m2)

Cold Hot

Net
Energy

(W)

0.71 (Air) 290.7 -5.635 xlO '2 5..720x 10'2 10.79 130.8 2.9866 2.6879 383.803
1.4x 107 6.78 (Water) 292.5 -4.757 xlO '7 4.755x lO 7 4079 -3457 0.0031 0.00279 0.348

0.71 (Air) * * * * * * * *

1.4x 1010 6.78(Water) 292.8 -4.319x 10"4 4.323x 10"4 426.2 -345.1 0.031 0.0279 4.880

Ulto



(Air) (Water)

Fig. 5.55 Comparison of the development of axial velocity profiles 
with distance between air and water at Gr = 1 .4xl07, T* 
= 0.15 P r = 6.78, Ar = 20 and Vs* = 1.0
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Fig. 5.56 Comparison of the development of temperature profiles
with distance between air and water at Gr = 1.4xl07, T* 
= 0.15/V = 6.78, Ar  = 20 and Ks* = 1.0
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Table 5.6 shows that Akbari and Borger’s correlations overestimate the values of mass 

flow rate by about 25% in the laminar regime, and underestimates the values of mass 

flow rate by about 30% in the turbulent flow regime. We note here that good match 

between the two results is not to be expected due to two major differences in the two 

models. The Akbari and Borger’s model does not take into account the inlet and exit 

bent losses, and it is based on boundary layer analysis. The present study, on the other 

hand, takes into account the inlet and exit vent losses by using an elliptic procedure.
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Table 5.6 Comparison of mass flow rate between 
present study and Akbari’s calculation

Gr

Channel
Width

(m)

Channel
Height

(m)

Mass Flow Rate 
(Akbari’s Cal.) 

(kg/sec)

Mass FlowRate 
(Present Study) 

(kg/sec)
Laminar
G r=1.4xl03 0.006932 0.13864 6.96x10"* 5.55x10"*

1.4x 103 0.014933 0.29866 2.28 x lO '3 2.00 x 103
1 .4x l05 0.032172 0.64344 6.3 lx  10 3 4.98 x l O 3

Turbulent
l.OxlO6 0.0622 1.244 1.36x 10’2 1.68x 10’2
1.4x 107 0.14933 2.9866 3.83x1 O’2 5.68x1 O’2
1.4x 108 0.32172 6.4344 1.18X101 l J l x l O 1

U lo\



Chapter 6

RESULTS FOR TROMBE WALL CHANNEL COUPLED TO THE ROOM

6.1 Introduction

In this chapter, results are presented for a more realistic Trombe wall geometry, 

simulating a 4 m x 4 m x l m  passive solar house, with a 3.8mx0.5m storage block placed 

at a distance of 0.1m (channel width) to the right of the glazing wall. Both heating and 

cooling (or ventilation) modes are investigated in this study. In the heating mode, the 

system forms a closed thermo-syphon loop, with room air circulating clockwise through 

the Trombe wall channel by the action of buoyancy force inside the channel. In the 

cooling mode, two vents are provided for fresh air circulation. One of them is located 

at the top section of the Trombe wall channel with its size being exactly equal to the 

channel width of 0.1 m. The second vent with 0.5m opening is located on the farthest 

vertical wall of the room. The main objective is to draw fresh air from outside to cool 

the conditioned space. The storage block essentially acts as a heater that creates a strong 

chimney effect by generating a low pressure region inside the Trombe wall channel. This 

allows cooler air to come in from the ambient through the room vent and the heated air 

to be discharged through the channel exit vent.

6.2 Heating Mode

6.2.1 Physical Model

A schematic of the Trombe wall configuration, simulating a passive solar house, is 

shown in Fig. 6.1. The left surface of the room is a clear glass wall which allows solar

157
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Fig. 6.1 Schematic of the Trombe wall channel coupled to the 
room operating in heating mode
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radiation to enter the room and heat up the black painted storage wall. The energy then 

irradiates to the opposite wall and also diffuses to air in the channel formed by two 

differentially heated walls. Collected energy is then carried by the buoyancy driven flow 

to the room.

The characteristics times for heat conduction in the wall are typical 100 to 1000 times 

larger than the characteristics times for natural convection in the channel. Consequently, 

as the wall temperature condition changes due to changing solar radiation and ambient 

conditions, the natural convection in the channel adjusts quickly to these changes and as 

a result in can be analyzed as a quasi-steady process. The wall in the meantime also 

undergoes changes, albeit at a much slower pace. In the present analysis, the emphasis 

is on the energy transfer through the natural convective loop. As a result, the conductive 

heat transfer through the wall is not considered. However, it is important to note that the 

conductive heat transfer analysis provides a thermal boundary conditions at the solid-fluid 

interface. In absence of such analysis here, we have assumed certain plausible boundary 

conditions at the solid-fluid interfaces. The temperature of the walls in the conditioned 

space are maintained at 300 K, and the storage block surface facing the room side is 

set at a constant value of 300 K. The temperature of heated wall has been set at 320 K, 

and the temperature of cooled wall is varied from 270 K to 300 K in the present study, 

to investigate the effect of cooled wall temperature on the net energy rate delivered to 

the room.

6.2.2 Grid Independence of Results

In the present study, a numerical grid with 111x61 grid points has been used for all 

the cases, simulating the Trombe wall coupled to the room. The effect of grid size on the 

local heat transfer coefficient in the channel was also examined by using a finer grid with
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151x91 grid points. The results obtained from this grid are compared with the standard 

111 x61 grid. Figure 6.2 shows the comparison of local heat transfer obtained from two 

calculations using different grid. It is noted that with the exception of slight deviation 

in the entrance region, results from the two cases are almost identical to one another. 

This indicates that the results presented here with the 111x61 grid are essentially grid 

independent

6.2.3 Flow Field

Four different cooled wall temperatures have been investigated in the heating mode 

case, namely 270 K, 280 K, 290 K and 300 K. The heated wall temperature is kept fixed 

at 320 K for these four cases. The principal objective is to investigate the effect of cooled 

wall temperature on the mass flow rate induced through the channel.

Figures 6.3 to 6.6 show the streamline contours of air flow in the Trombe wall channel 

coupled to the room for cooled wall temperature values of 270 K, 280 K, 290 K and 300 

K respectively. In these cases, the heated air emerges from the channel and flows close 

to the walls of the conditioned room and returns back to the channel, thus competing the 

thermo-syphon loop. For the lowest cooled wall temperature case, a minuscule amount 

of heated air is discharged to the room. As a result of weak natural convection in the 

channel, the natural convection in the room also very weak.

Figure 6.7 shows the streamline contours inside the Trombe wall channel for the case 

of 270 K cooled wall temperature. At this low temperature, there is a large recirculating 

flow pattern inside the channel as seen from an enlarged view of the channel presented in 

Fig. 6.7. The heat loss to the cooled side wall of the channel is high and this indicates a 

negative buoyancy force on the cooled wall. This causes the fluid to sink near the cooled 

wall, thus leading to the recirculating flow pattern. As cooled wall temperature
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Fig. 6.2 Comparison of local heat transfer coefficient on heated wall 
between two calculations with different grid points
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Fig. 6.3 Streamline contours for air flow in a Trombe wall 
channel coupled to the room at Tc = 270 K
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Fig. 6.5 Streamline contours for air flow in a Trombe wall 
channel coupled to the room at Tc = 290 K
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Fig. 6.6 Streamline contours for air flow in a Trombe wall 
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Fig. 6.7 Streamline contours inside the Trombe wall channel of 
the 270 K cooled wall temperature case
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increases, the amount of air delivered to the room increases, the amount of air delivered 

to the room increases significantly. This results in shifting of the center of the room 

vortical motion from the room center to a location closer to the right lower comer. At 

higher cooled wall temperature multi-cellular flow patterns appear.

6.2.4 Temperature Distribution

Figures 6.8-6.11 show the temperature distribution in the Trombe wall channel 

coupled to the room in the heating mode for cooled wall temperature ranging from 

270 K to 300 K respectively. The stratification of the temperature field in the room has 

been observed in all cases of cooled wall temperature higher than 280 K. The thermal 

stratification is most pronounced for the 300 K cooled wall temperature case. It is to be 

noted that although thermal stratification occurs naturally, it is undesirable since it causes 

cooler temperatures in the occupied space as compared to relatively warmer temperature 

in regions closer to the ceiling.

6.2.5 Mass Flow and Energy Delivery Rate Results

Table 6.1 shows the comparison of air flow and energy delivery rates to the room 

for different cooled wall temperatures. The mean air temperature in the room, the mass 

flow rate and the net energy rate delivered to the room all increase with the increasing 

cooled wall temperature. For example, the mean air temperature in the room increases 

from 291.5 K to 295.7 K. The net energy delivery rate increases even more dramatically 

from 25.5 W to 518.9 W, when cooled wall temperature is increased from 270 K to 300 

K. It is to be noted that the response time for temperature changes in the room resulting 

from wall temperature changes have been estimated to be less than 30 minutes. As a 

result, the quasi-steady equations have been used to analyze these cases.
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Fig. 6.8 Temperature distribution for air flow in a Trombe 
wall channel coupled to the room at Tc = 270 K
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Fig. 6.9 Temperature distribution for air flow in a Trombe 
wall channel coupled to the room at Tc = 280 K
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Fig. 6.10 Temperature distribution for air flow in a Trombe 
wall channel coupled to the room at Tc = 290 K
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Fig. 6.11 Temperature distribution for air flow in a Trombe 
wall channel coupled to the room at Tc = 300 K
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Table 6.1 Comparison of total energy rate delivered to the room 
(Heating) among different cooled wall temperatures

Cooled
Wall

Temp.

(K)

Area
(m2)

Cold Hot

Mass
Flow
Rate

(kg/sec)

In Out Cold

Heat
Flux

(W/m2)

Hot

Overall
Mean
Fluid
Temp

(K)

Net
Energy

(W)

270 4.0 3.8 -1.685x 10"2 1.703x 10'2 -2103 2176 291.5 25.5

280 4.0 3.8 -5.317x 10‘2 5.227x 10'2 -1467 1657 292.7 143.0

290 4.0 3.8 -7.416x 10'2 7.435 x 102 -906.1 1227 294.2 313.4

300 4.0 3.8 -9.025 x lO '2 9.076x Iff2 -409.2 895.2 295.7 518.9

to
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Figures 6.12 and 6.13 show the comparison of local heat transfer coefficients for 

four different cooled wall temperature cases on heated and cooled walls respectively. 

In Fig. 6.12, the average heat transfer coefficient on heated wall decreases from about 

75 W/m2K to about 35 W/m2K as cooled wall temperature increases from 270 K to 

300 K. Meanwhile, the temperature difference between the heated wall and mean fluid 

(as indicated in Table 6.1) decreases from about 28.5 K to 24.3 K, as the cooled wall 

temperature increases from 270 K to 300 K. This result indicates that the heat transfer 

rate from heated wall to the air flow for the lower cooled wall temperature case is higher 

than for the higher cooled wall temperature case. Similar trend has been observed on the 

cooled wall, when cooled wall temperature increases from 270 K to 290 K. The difference 

between average inlet temperature and average exit temperature increases from -0.34 K 

to 12.34 K, indicating significantly that no heat loss to the ambient.

6.2.6 Calculation of Pressure Losses

The pressure losses at inlet and exit section of the Trombe wall channel coupled to 

the room case occur in a manner similar to side-vented cavity case, except that there 

are additional frictional losses due to the horizontal segments. The friction of the lower 

horizontal segment causes the static pressure at inlet to be higher than that of the dynamic 

pressure at the channel entrance location, thus, negative pressure loss coefficients are 

shown in Table 6.2 at the inlet section for all different cooled wall temperature cases 

due to more frictional loss to the entrance section of the channel. This trend is exactly 

opposite to the side-vented cavity case. However, the pressure losses at exit section are 

all positive, has the same trend as the side-vented cavity case, except the value of K at exit 

is not decreasing regularly as the cooled wall temperature increases. Figures 6.14-6.17 

show the pressure distribution for all four cases. For lower cooled wall temperature cases 

of 270 K and 280 K, the pressure fields on the room side are uniformly distributed
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Fig. 6.12 Comparison of local heat transfer coefficient on 
heated wall for four cooled wall temperatures
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Fig. 6.13 Comparison of local heat transfer coefficient on 
cooled wall for four cooled wall temperatures

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 6.2 Pressure losses at the horizontal inlet and exit of the 
Trombe wall channel operating in heating mode

Cooled Density Averaged Static Dynamic Pressure
Wall (kg/m3) Velocity Pressure Pressure Loss

Temp. (m/sec) x 10 (Pa)x 10 (Pa)x 10 Constant
(K) In Out In Out In Out In Out In Out

270 1.207 1.207 -1.40 1.46 0.258 36.50 0.118 0.128 -3.197 286.29

280 1.212 1.180 -4.38 4.52 -0.838 21.37 1.162 1.204 -0.279 18.744

290 1.210 1.162 -6.12 6.51 -2.101 7.990 2.263 2.464 -0.072 4.242

300 1.210 1.150 -7.45 8.09 -3.318 -4.372 3.389 3.760 -0.012 2.163

o\
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Fig. 6.14 Pressure field for air flow in a Trombe wall channel coupled to 
the room in the heating mode with Tc = 270 K
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Fig. 6.16 Pressure field for air flow in a Trombe wall channel coupled to 
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throughout the room without much distribution from the incoming heated air via the 

channel exit. In the higher cooled wall temperature case of 300 K. The buoyancy effect 

is much stronger in the channel and much more heated air has been discharged to the 

room, which pressed the positive but low value of pressure field down toward the channel 

entrance region. This phenomena can be seen very clear from both Figs. 6.16 and 61.7. 

If we compare the local (P -  P ^ )  values horizontally from inlet to exit of the channel, 

we will find out that these values change from near zero to +0.3 P a  for the 270 K 

cooled wall temperature case, and from -0.7 Pa to +0.7 Pa for the 300 K cooled wall 

temperature case. This simple comparison fully supports the phenomena we discussed 

earlier in this section.

6.2.7 Truncated Trombe Wall Geometries

Three different Trombe wall geometries have been investigated in the present study. 

This first case is the standard case involving the Trombe wall channel coupled to the 

room. This geometry requires substantial computational effort. As a result, we have also 

investigated certain truncated Trombe wall geometries to see if accurate results can be 

obtained with fewer grid points and consequently with lesser computational effort. In 

the second case, a truncated Trombe wall geometry shown in Fig. 6.18 is considered. 

In this case, a full room geometry is replaced with a truncated room geometry. The 

line of truncation is set at X = 1.25 m. This represents a free boundary on which one 

must apply new set of boundary conditions. Since velocity conditions are not known on 

this boundary, a zero pressure boundary condition is applied. From previous discussion 

on the full scale geometry, it is evident that this condition can at best be regarded as 

an approximation. Also, the x-derivative of temperature is assumed to be zero on the 

boundary. In the third case, the free boundary is located at X = 0.6 m where the 

horizontal segments end. The reason for doing this investigation is to not only reduce the
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calculation domain and to save the computational time, but also to establish the influence 

of the location of the free pressure boundary condition on the heat transfer phenomena 

inside the Trombe wall channel as well as the net energy rate discharged to the room 

via the channel exit. Figures 6.18-6.21 show the streamline contours and temperature 

field for the second and third cases respectively. Table 6.3 shows the comparison of 

mass flow rate and net energy delivery rate for these three cases. For the second case, 

i.e, truncated geometry at the halfway position, results for heat transfer coefficient inside 

the channel, as well as the net energy rate discharged to the room closely approximate 

the results for the standard full room size case. By putting pressure boundary condition 

right at inlet and exit section of the channel, one overestimates both the heat transfer 

coefficient inside the channel and the net energy delivered to the room by bout 9%. This 

can be observed from Fig. 6.22 and Table 6.3. Figure 6.22 shows the comparison of 

local heat transfer coefficient on the heated wall for the above three cases. In conclusion, 

it can be stated that if one is willing to tolerate about 9% uncertainty in estimation of 

the energy delivery and mass flow rates, then a truncated geometry of the type discussed 

here can be adopted. The advantage, of course, would be that the computational effort 

will be significantly reduced. For 3-D geometries, not considered here, this may be an 

important factor in numerical simulation.

6.2.8 Channel Gap Effect

The effect of channel width on mass flow rate and energy rate delivered to the room 

has also been investigated in the present study. Five other values of channel width, 

namely L = 0.05 m, 0.2 m, 0.3 m, 0.4 m and 0.5 m have been employed besides the 

previous case of L = 0.1 m width. Figure 6.23 shows the effect of channel gap on both 

mass flow rate and energy delivery rate. It is noted that the mass flow rate in the

with permission of the copyright owner. Further reproduction prohibited without permission.
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Fig. 6.18 Streamline contours for air flow in a Trombe wall channel 
coupled to the room at Tc = 290 K, X = 1.25 m
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Fig. 6.19 Streamline contours for air flow in a Trombe wall channel 
coupled to the room at Tc = 290 K, X = 0.60 m
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Table 6.3 Comparison of mass flow rate and net energy rate
among three different locations of boundary condition

Free
Boundary Area Mass
Location (m2) Flow Heat Mean Net

(m) Rate Flux Fluid Energy
(kg/sec) (W/m2) Temp (W)

Cold Hot In Out Cold Hot (K)
x

4.0 4.0 3.8 -7.416xl0 '2 7.435 xlO '2 -906.1 1227 294.2 313.4

1.25 4.0 3.8 -7.858 x l O 2 7.869x lO 2 -902.1 1231 294.3 339.8

0.6 4.0 3.8 -7.943 xlO ’2 7.989 x l O 2 -890.5 1168 294.3 344.2

►—* oo
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Fig. 6.22 Comparison of local heat transfer coefficient on heated wall 
among different locations of pressure boundary condition
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Trombe wall channel reaches a maximum value when the channel gap is about 0.3 m 

wide. However, the energy delivery rate reaches its maximum value at L = 0.5 m. These 

results show that there is an optimal channel gap for delivering the maximum amount 

of convective heat to the conditioned space. This type of information is considerable 

importance in the design of Trombe wall type solar passive systems.

6.2.9 Effect of the Room-Side Storage Block Surface Temperature

Simulation of Trombe wall channel coupled to the room operating in heating mode, 

has also been conducted by changing the surface temperature of the storage block on the 

room side from 290 K to 305 K. While the cooled wall and heated walls are maintained 

at temperatures of 290 K and 310 K respectively.

Figure 6.24 shows the mass flow rate and energy delivery rate as the function 

of storage block surface temperature facing the room. Since, buoyancy force is the 

major factor in the study of natural convective heat transfer in the Trombe wall channel 

geometries, and is a function of temperature difference between the air in the Trombe 

wall channel and the air in the room. Therefore, the higher the surface temperature of the 

storage block on the room side, the higher the room air temperature, the less the buoyancy 

force in the Trombe channel. Thus, less air mass and its energy delivered to the room

6.3 Ventilation Mode Results

6.3.1 Physical Model

Trombe wall channel can also be used for building ventilation during the summer 

months. The heated wall on south side is used as a heat source to create low pressure 

inside the channel. This in turn causes the fresh outdoor air to be drawn into the room, 

thus creating ventilation as well as cooling effect. Figure 6.25 shows the schematic of a 

Trombe wall system operating in the cooling or ventilation mode. Cool air is pulled
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from the vent at the right-hand upper comer of the room, since the Trombe wall channel 

acts like a chimney due to very strong buoyancy effect created by the hot wall surface. 

The hot air rises due to its buoyancy and is ejected from the open vent located at the top 

of the channel. The main objective here is to explore the ventilation and cooling potential 

of this system. The effect of room vent location and the ventilation characteristics of 

the system are further investigated.

6.3.2 Flow Field

Three cases have been analyzed for the Trombe wall operation in the cooling mode. 

These case arise from three different locations of the room vent, namely near top, mid 

and bottom sections of the right room wall. The storage block wall surface on the room 

side is kept insulated for all three cases. The cooled wall and heated walls are maintained 

at 310 K and 330 K respectively. Other room walls are maintained at temperature of 

310 K for all three cases.

6.3.3 Streamline Contours

Figures 6.26-6.28 show the streamline contours for the three positions of the room 

vent on the right wall, namely top, middle and low level locations. In the top-vent case, 

the cool air flow is drawn in from outside and is squeezed along the right vertical face of 

the Trombe wall by a strong secondary flow due to the buoyancy effect from the hot floor 

and side wall. In the case of bottom vent, as we can see from Fig. 6.27, two recirculating 

flow patterns coexit with the incoming cool air flow. The cool air flows only in a very 

narrow portion of the room near the floor. In the central-vent case, the cool air also flows 

along the right wall and the bottom floor. Despite differences in above three cases, it has 

been demonstrated that Trombe wall channel can act as a chimney, by the pulling in
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Fig. 6.26 Streamline contours for air flow in a Trombe wall channel 
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fresh outside air. The problem in these cases is that the fresh air flows mainly along the 

room walls and floor, and this limits the capability of air to cool the room.

6.3.4 Temperature and Pressure Fields

Figures 6.29-6.31 show the temperature distributions for the three vent location cases. 

The mean air temperature inside the room is about 306.3 K for the top-vent case, which 

is 3.7 lower than the initial room (air) temperature of 310 K. The mean air temperature 

is about 308.5 K and 307.2 K for bottom-vent and central-vent respectively, as shown in 

Table 6.4. The limited simulation indicates that based on high mass flow rate and energy 

delivery rate, the top-vent appears to be the best choice for locating the room vent. Figure 

6.32 shows the pressure distribution for the top-vent case. In the entrance region near the 

top vent, the pressure has negative values, which allows cool air to come inside the room.

6.3.5 Mass Flow and Energy Delivery Rates

Table 6.4 shows the comparison of mass flow rate, mean air temperature inside the 

room and total energy rate extracted from the room for the three cases with different 

vent location and two cases with top vent location and different room wall temperature. 

Results show that the central vent case has the strongest mass flow rate among the three 

cases discussed in the previous section of this chapter. However, it has a lower degree 

of cooling, which makes the total energy rate extracted from the room not as great as 

for the case with top-vent. The bottom-vent case is the worst design if one judges it by 

the total energy expelled from the room.
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Fig. 6.29 Temperature distribution for air flow in a Trombe wall channel 
coupled to the room in the cooling mode with a top vent
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Fig. 6.30 Temperature distribution for air flow in a Trombe wall channel 
coupled to the room in the cooling mode with a bottom vent
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Table 6.4 Comparison of total energy rate extracted from the room (Cooling) among 
different room wall temperatures and locations of vent

Room
Wall

Temp.

(K) In

Vent
Size
(m2)

Out

Vent
Location

Mass
Flow
Rate

(kg/sec)
In Out

Cold

Heat
Flux

(W/m2)

Hot

Mean
Fluid
Temp.

(K)

Net
Energy

(W)

310 0.47 0.10 Top -8.898x 10'2 9.66 xlO"2 -505.1 858.7 306.3 346.7

310 0.47 0.10 Bottom -8.298x 10"2 8.78x 10"2 -532.1 823.3 308.5 128.7

310 0.46 0.10 Center -9.111x 10'2 9.954x 10"2 -515.9 845.3 307.2 277.8

305 0.46 0.10 Center -9.857 xlO"2 1.097x 10'* -442.1 932.7 302.8 230.2

305 0.47 0.10 Top -1.105x10* 1.194x10"' -421.0 973.9 302.6 277.6

300 0.47 0.10 Top -1.233x 10'* 1.315x10* -352.7 1048.0 299.9 226.6

too
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Fig. 6.32 Pressure field for air flow in a Trombe wall channel coupled 
to the room in the cooling mode with a top vent.
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6.3.6 The Effect of Room Wall Temperature

203

In order to explore the passive cooling mode further, three additional cases have been 

investigated by using different temperatures on the room walls, ceiling and floor. The 

first case involves a central-vent, and room wall, ceiling and floor temperatures are all set 

at 305 K, 5 K lower than previous cases. The second case is a top-vent case with same 

thermal boundary conditions as in the first case. The third case involves the top-vent. 

The ceiling temperature is set at 305 K and side-wall and floor temperatures are set at 

300 K. It is noted that the rest of the boundary conditions are the same for all these three 

cases, namely Tc = 310 K and Th = 320 K.

Figures 6.33-6.35 show the streamline contours for these three cases. It is noted 

that room wall temperature has a pronounced effect on the flow pattern in the room. In 

the case of different ceiling and floor temperature as shown in Fig. 6.35, cool air flow 

comes-in via the top-vent, across the room diagonally, ejecting a large amount of energy 

through the Trombe wall channel to the ambient. From the point of view of mass flow 

rate induced and energy expelled point of view, this case yields the best result. In the 

case of central-vent as shown in Fig. 6.33, the cool air flow comes-in via the central-vent 

has been restricted in the lower portion of the room, this caused by a strong recirculating 

flow cell from the top and left-hand side of the room due to large buoyancy force.

Figures 6.36-6.38 show the temperature distribution for these three cases. As seen 

from Table 6.4, results still show that top-vent to be the best design for passive cooling. 

The net energy expelled decreases as the room wall temperature decreases, while, the 

mass flow rate increases as the room wall temperature decreases.
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Fig. 6.33 Streamline contours for air flow in a Trombe wall channel coupled 
to the room in the cooling mode with a central vent, Tr  = 305 K
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Fig. 6.34 Streamline contours for air flow in a Trombe wall channel coupled 
to the room in the cooling mode with a top vent, Tr  = 305 K
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Fig. 6.35 Streamline contours for air flow in a Trombe wall channel coupled to 
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Fig. 6.37 Temperature distribution for air flow in a Trombe wall channel
coupled to the room in the cooling mode with a top vent, Tr = 305 K
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Fig. 6.38 Temperature distribution for air flow in a Trombe wall 
channel coupled to the room in the cooling mode with 
a top vent, Tr = 305 K, T f  = 300 K
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS

A comprehensive energy analysis of the Trombe wall solar passive system using 

analytical and computational techniques has been made.

For laminar natural convective flow in the parallel wall channel, the application of 

momentum-integral method, and Oseen’s linearization model for non-linear convective 

terms, led to a second order ordinaiy differential equations for pressure defect variable. 

For an optimized value of the convective parameter a  = 1.3, the pressure profiles are 

found to be in reasonable agreement with the results of Akbari and Borger [8]. Using 

the value of a  = 1.3, other parameters such as mass flux induced and the overall heat 

transfer coefficient are also found to be in good agreement with previously reported results 

for air. The momentum-integral theory is also extended to predict results for high and 

low Prandtl number fluids such as water and sodium. The momentum-integral method 

presents a relatively simple way of predicting the mass flow and energy delivery rates 

induced by the buoyancy force in the channel. Due to analytical solution procedure, it can 

easily be adopted in a more comprehensive program for energy analysis of these systems.

The results predicted for the case of side-vented cavities demonstrate that the flow 

patterns are strongly influenced by both Grashof number and vent size. Increasing Grashof 

number for a given aspect ratio and vent size enlarges and intensifies the recirculatory 

motion in the vertical channel. The peak velocity is found to shift toward the heated wall 

as Grashof number is increased. Its value also increased with increasing the vent size. The 

energy delivery to the atmosphere is strongly governed by both Grashof number and vent
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size. As Grashof number increases, the energy convected to the atmosphere increased 

substantially. The total vent loss coefficient for the laminar case shows a minimum at 

Gr  = 1.4 x  104 for which the dimensionless mass flow rate also shows a maximum value.

Results for the side-vented channel case also demonstrated the need to consider an 

outer free boundary to set the undisturbed ambient pressure condition.

Interestingly enough the pressures boundary condition applied at the channel vents 

could not predict the flow phenomenon correctly. Extension of the calculation domain 

to a certain distance from the physical boundaries yielded good results. The application 

of pressure boundary condition, at locations away from physical vent locations, yielded 

pressures at inlet and exit sections from which inlet and exit pressure losses can be 

calculated. This procedure is recommended for future natural convective flow studies 

involving inlet and exit vents. Results also showed that the energy delivery rate and 

mass flux increase with increasing Grashof number and the vent size.

For comprehensive geometry, both heating and ventilation modes have been inves­

tigated. In the heating mode, the result of the effect of Trombe wall channel width on 

mass flow and energy delivery rates shows that L = 0.3 m is the best channel width 

for delivering most mass to the conditioned space. Results also show that the truncated 

Trombe wall geometries could not be less than X = 1.25 m since a lower value underes­

timate the actual mass flow rate. In the ventilation mode, several different vent locations 

have been studied, preliminary results point to the fact that the top vent location may 

be the best for cooling effect.
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Appendix A

A CLOSED FORM SOLUTION — THE SECOND ORDER 
VELOCITY PROFILE FOR MOMENTUM-INTEGRAL APPROACH

The solution of problem of flow in a parallel channel can be determined analytically in 

closed form. This is done by adopting a second order velocity profile in the momentum- 

integral method. In the present study, we let

u* =  A ( y * - y * 2) (A.l)

Since, the volumetric flow rate is defined as

Q = [  u*dy* 
Jo

Substituting Eq. (A.l) into Eq. (A.2), we get

(A.2)

u* -  6Q(y* - y * 2) (A.3)

Apply this assumed axial velocity profile to the momentum-integral equation, and inte­

grate from 0 to L and from 0 to 1, we get

dp* j du*f l u*2dy* I -  f 1 u*2dy*
I x* —L  •'O

+  /  /  T*dy*dx* = [Pi — P0] — 12QL +  f  [  T*dy*dx* (A.4)
Jo Jo Jo Jo

du*
Qy*J  ly-=i dy*

36 Q2 £  (y*2 -  2 /  +  -  Q2 = -  0 +  I Q 2 -  12 QL

f  f  T*dy*dx* 
Jo Jo

+
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where

P L =  0 (A.6)

p o = (A.7)

d y )
=  —6Q

y*=l

with the known temperature field,

du*' 
dy  , y*=0

=  6Q

n = l

Equation (A.5) can be rewritten in the following form

10 Q2

For high Q limit,

'-i29 + l±Sl£ + f;^[(_i,._i]
n = l

e Pro -  1

n2ir2L
~PrQ~

Thus, Eq. (A.l 1) can be further manipulated as follows: 

-  ■ •V -10v
1 4- T*

- 1 2  Q + Ar*-
1 + T * ]  -1 2 Q  + — — 1 L -

Jr(i + rc<)P rg(e-^ -i')  

( - 1 2  Q +  U p )

Equation (A. 14) is an implicit equation of L, can be s 

for example, the Newton’s method.

(A.8)

(A.9)

T*(x*,y*,Q)  =  T* +  (1 -  t*)y* +  ^ A ne ^ 9  sin (nzy*) (A.10)
n = l

(A.l 1)

(A. 12)

(A. 13)

(A. 14)
i j
be solved by any numerical method,
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Appendix B 

QUADRATIC SCHEME

B.l Quadratic Upstream Interpolation for Convective Kinematics (QUICK)

The problems associated with both central and upstream differencing techniques 

can be interpreted in terms of the method of estimating wall values of the dependent 

variables in a control-volume formulation. For central differencing the estimation is 

based on linear (or first-order) interpolation, which, although intuitively reasonable and 

involving only second-order truncation error, has the unfortunate geometrical property 

that $ r — is independent of $ c, thus leading to stability problems in the convective 

sensitivity. Upstream differencing is equivalent to zeroth-order interpolation with the 

choice of direction depending of the sign of u. The directional dependence gives very 

stable convective sensitivity; however, this advantage is strongly offset by the first-order 

truncation error.

The formulation of the “QUICK” algorithm is conveniently illustrated using constant 

grid spacing [32]. $ r can be formulated as follows when ur is positive to the right

which may be interpreted as a linear interpolation corrected by a term proportional to 

the upstream-weighted curvature. For modelling the gradient ( | f ) r , it is a geometric 

property of the parabola that the slop half way between two points is equal to that of 

the chord joining the points, i.e.
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which is valid in the variable-grid case as well, as indicated by notation. This, of course, 

is independent to the central difference formula.

Similarly, the construction for and (§§•), when m  is also positive to the right. 

The corresponding formulas arc

=  \ { * L  +  ®c) -  -  2$ l )  (B.3)

and

( d * \  $ c - $ l

\ d x ) t A x, ( }

Because of the consistent quadratic interpolation used in modelling both the con­

vective and diffusive terms, the overall truncation error in a solution obtained by the 

“QUICK” algorithm is third-order in the spatial grid size. Thus, highly accurate solu­

tions can be obtained using practical grid spacing.
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Appendix C

COMPUTER PROGRAM — CALCULATION OF FLOW IN A 
PARALLEL CHANNEL BY USING MOMENTUM-INTEGRAL METHOD

PROGRAM MODEL 13
D I M E N S I O N  X ( 2 0 2 )  , Y ( 1 0 0 2 )  , D P X ( 2 0 2 )  , DPP ( 2 0 2 )  , U S Q ( 2 0 2 )  ,R1 ( 2 0 2 )  ,

TSQ ( 2 0 2 )  ,U1  ( 2 0 2 )  , U2 ( 2 0 2 )  , U3 ( 2 0 2 )  , U4 ( 2 0 2 )  , V ( 2 0 2 , 1 0 0 2 )  ,
*  ATS ( 2 0 2 )  , T  ( 2 0 2 ,  1 0 0 2 )  , U ( 2 0 2 ,  1 0 0 2 )  , P  ( 2 0 2 )  , R ( 2 0 2 )  ,DUY ( 2 0 2 )

PI  = 3 . 11*159
P R = 0 . 7 1  
TH =  1 . 0  
T L =  1 . 0  
Q = 0 . 0 2  
ALPH=1 . 3  
WRI TE ( 6 , 1 )

1 FORMAT ( ' 4 T H  ORDER U - P R O F I L E  ' )
WRI TE ( 6 , 2 )  P R , T H , T L , Q , A L P H

2 FORMAT ( '  P R = ‘ , F 4 . 2 / ,  1 T H= 1 , f k . 2 / ,  ' T L = 1 , F t * . 2 / ,  ' Q= 1 , F6 . V ,
*  ' A L P H = 1 , F4 . 2 / )

A 1= —1 . / 1 2  
B 1 = T L / 1 2 . + 5 * Q
A 2 =  1 , / 2  
B 2 = - T L / 2 .
A 3 = - 5 . / 6  
B 3 = 5 * T L / 6 . - 1 0 * Q  
A A = 5 . / 1 2 
B A = 5 * Q - 5 * T L / 1 2 .
D l = 2 * A 2 + 3 * A 3 + i»*At*
D 2 = 2 * B 2 + 3 * B 3 + U * B i »
G 1 = P I * * 2 /  ( P R * A L P H * Q )
M T = 111 
M=7

888  D X = 0 . 0 0 1 9 9 3 2 / 1 0 0  
X (1)  = 0 . 0  
X (M) = ( M - 1) * D X  
DO 7 7 7  N = 2 , 1 0 0 0  
D Y = 0 . 0 0 1
Y (1)  = 0 . 0
Y ( 1 0 0 1 )  =1 . 0
Y (N) =Y ( N - O + D Y  
T  ( M , 1 ) =TL
T ( M , 1 0 0 1 ) =TH  
G = 2 . *  ( 1 + T L ) / P I  
H=2  . *  (1 - T L )  / P I  
G 16= 16 0 .
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T ( M , N ) = T L + ( 1 - T L )  * Y  (N)
*  - G * E X P ( - G 1* X  ( M ) ) * S I N  ( P I * Y  ( N ) )
*  + H * E X P  ( ~ U * G  1 * X  ( M ) ) * S  IN ( 2 * P  I * Y  ( N ) ) / 2
*  - G * E X P  (" 9 5'cG 1 * X  ( M ) ) * S  I N ( 3 * P  I * Y  ( N ) ) / 3
*  + H * E X P  ( - 1 6 * G  1 * X  ( M ) ) * S  I N ( 4 * P  I * Y  ( N ) ) A
*  - G * E X P  ( - 2 5 * G 1*X ( M ) ) * S I N ( 5 * P I * Y ( N ) ) / 5
*  + H * E X P ( - 3 6 * G 1* X ( M ) ) * S I N ( 6 * P I * Y  ( N ) ) / 6
*  - G * E X P  ( - 4 9 * G  1 * X  ( M ) ) * S  I N ( 7 * P  I * Y  ( N ) ) / 7
*  + H * E X P  ( - 6 4 * G  1 * X  ( M ) ) * S  I N ( 8 * P  I * Y  ( N ) ) / 8
*  - G * E X P  ( - 8 1 *G  1 * X  ( M ) ) itS I N ( 9 * P  I * Y ( N ) ) / 9
*  + H * E X P  (~ 10 0 * G  1 * X  ( M ) ) itS I N ( 1 0 * P  I * Y  ( N ) ) / 1 0  

7 7 7  CONTINUE
DPX (6 ) = - 0 . 2 5 2 7  
DPX ( M ) = D P X  ( M - l )

102 U1 ( M ) = A 1 * D P X  (M)+B1  
U 2 ( M ) = A 2 * D P X ( M ) + B 2  
U 3 ( M ) * A 3 * D P X ( M )  + B 3  
U4 ( M ) = A 4 * D P X ( M )  + B 4  
S 1 =0 - 0 
S = 0 . 0
DO 3 3 3  N = 2 , 1 0 0 0  
U ( M ,  1 ) = 0 . 0
U (M,  N) =U 1 (M) * Y  (N)  + U 2  (M) * Y  (N) * * 2 + U 3  (M) * Y  (N) * * 3 + U 4  (M) * Y  (N) * * 4  
U ( M ,  1 0 0 1 ) = 0 . 0  
S 1 = S 1 + U  ( M , N ) * T  (M,  N)

3 3 3  S = S + U ( M , N ) * * 2
S l =  ( S l + U  (M,  1 0 0 1 )  * T ( M ,  1 0 0 1 ) / 2 . ) * D Y  
S = ( S + U  (M,  1 0 0 1 )  * * 2 / 2 . )  * D Y  
D 1 =  (U ( M , 2 ) - U ( M , 1 ) ) / D Y  
USQ (6 ) = 0 . 4 2 7 5 E - 0 3  
USQ ( M ) = S
DPP (M) = ( (USQ (M) - U S Q  ( M - l ) ) / D X - D 2 -  ( 1 + T L )  / 2

*  + 4 *  ( 1 + T L )  *  (EXP ( - G 1 * X  ( M ) )
*  + E X P ( - 9 * G l * X ( M ) ) / 9
* + E X P ( - 2 5 * G l * X ( M ) ) /2 5
*  + E X P ( - 4 9 * G l * X ( M ) ) / 4 9
*  + E X P ( - 8 l * G l * X ( M ) ) / 8 l
*  + E X P  ( - 1 2 1  * G  1 * X  ( M ) ) / 1 2 1
*  + E X P ( - 16 9 * G 1* X ( M ) + 160) * E X P ( - G 16) / 169

C *  + E X P ( - 2 2 5 * G l * X ( M )  +  l 6 0 ) * E X P ( - G l 6 ) / 2 2 5
C *  + E X P ( - 2 8 9 * G 1* X  ( M ) + 3 2 0 ) * E X P ( - G 16 ) * * 2 / 2 8 9
C *  + E X P ( - 3 6 1 * G 1 * X ( M ) + 3 2 0 )  * E X P ( - G 1 6 ) * * 2 / 3 6 1

*  ) /  (P I * * 2 ) )  /  (D 1 - 1 )
I F ( A B S ( D P P ( M ) - D P X ( M ) ) . G E . 5 . E - 4 ) T H E N
DPX (M) = (DPX (M) + D P P ( M ) ) / 2
GO TO 102
ELSE
END IF
R1 (M)=S1
R (M) =S
DUY ( M ) = D 1
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U(1 , N ) = Q  
U ( M , 1 ) = 0 . 0  
U ( M ,  1 0 0 1 )  = 0 . 0  
V ( 1 , N ) = 0 . 0  
V ( M , 1 ) = 0 . 0  
V ( M ,  1 0 0 1 ) = 0 . 0  
DO 331 N = 2 , 5 0 0
V (M,  N) = V  ( M , N -  1) - D Y *  (U (M,  N) +U ( K ,  N -  1) - U  (M-  1,  N) - U  ( M - 1,  N - 1 ) )  /  ( 2 * D X )

331 CONTINUE
DO 3 3 2  N = 1 0 0 0 , 5 0 2 , - 1
V ( M , N )  =V  ( M , N + I ) + D Y * ( U ( M , N ) + U  ( M . N + l )  - U  (M-  1 , N ) - U  (M-  1, N + l ) ) /  ( 2 * D X )

3 3 2  CONTINUE
V (M,  5 0 1 )  =  (V ( M , 5 0 0 ) + V  ( M , 5 0 2 ) ) / 2 .
M=M+1
I F  ( H . L E . M T  ) GO TO 8 8 8  
P (6 ) = - 0 . 2 3 0 5 E - 0 3  
DO 108 M=7 , MT
P (M) =P ( M -  1) +D PX  (M) *  (X (M) - X  ( M - 1 ) )
WRITE ( 6 ,  1 0 7 ) M , D P X ( M )  , M , P ( M )  , M , R 1  (M) , M , D U Y  (M)

107 FORMAT ( ' D P X C  , I 3 ,  1) = '  , F 8 . b , 3 X , 1P ( 1 , I 3 , 1) = ’ , E 11 . b , 3 X ,
' R C  , 1 3 , ' )  =  ' . E l l . A / . ' H X C  , 1 3 , ' ) = '  . F 1 2 . 6 . 5 X ,

*  1D U Y ( 1 , I 3 . 1) = 1 » F 1 1 . 6 )
108  CONTINUE  

M=2
DO 111 N = l , 1 0 0 1 , 1 0 0
W R 1 T E ( 6 , 1 0 5 ) N , Y ( N )  , M,  N , T  (M,  N) , U ( M , N )  , V ( M,N)

111 CONTINUE
DO 112 1 = 2 ,  ( M T - D / 1 0 + 1
M= ( I - 1 ) *  10+1
DO 110 N = 1 , 1 0 0 1 , 1 0 0
WRI TE ( 6 ,  1 0 5 )  N , Y  (N)  , M , N , T  (M , N )  , U ( M , N )  , V ( M , N )

105 FORMAT ( i Y ( i , | 1 * , , ) = i , F 7 . 3 . 3 X , , T ( i , I 3 , i , ' , | 1 * , , ) =  i , F 1 0 . 5 , 3 X
*  , ' U = 1 . F 7 . 5 . 3 X , ' V = ' , F 9 . 5 )

110  CONTINUE
WRI TE ( 6 ,  1 13)

113 FORMAT ( / )
112 CONTINUE  

STOP 
END

/
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