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Abstract. With the increased occurrence of wildfires around
the world, interest in the chemistry of pyrogenic organic mat-
ter (pyOM) and its fate in the environment has increased.
Upon leaching from soils by rain events, significant amounts
of dissolved pyOM (pyDOM) enter the aquatic environment
and interact with microbial communities that are essential
for cycling organic matter within the different biogeochem-
ical cycles. To evaluate the biodegradability of pyDOM,
aqueous extracts of laboratory-produced biochars were in-
cubated with soil microbes, and the molecular changes to
the composition of pyDOM were probed using ultrahigh-
resolution mass spectrometry (Fourier transform–ion cy-
clotron resonance–mass spectrometry). Given that solar irra-
diation significantly affects the composition of pyDOM dur-
ing terrestrial-to-marine export, the effects of photochemistry
were also evaluated in the context of pyDOM biodegradabil-
ity.

Ultrahigh-resolution mass spectrometry revealed that
many different (both aromatic and aliphatic) compounds
were biodegraded. New labile compounds were produced,
22 %–40 % of which were peptide-like. These results in-
dicated that a portion of pyDOM has been labilized into
microbial biomass during the incubations. Fluorescence
excitation–emission matrix spectra revealed that some frac-
tion of these new bio-produced molecules is associated with
proteinaceous fluorophores. Two-dimensional 1H–1H total
correlation nuclear magnetic resonance (NMR) spectroscopy
identified a peptidoglycan-like backbone within the micro-

bially produced compounds. These results are consistent
with previous observations of peptidoglycans within the soil
and ocean nitrogen cycles where remnants of biodegraded
pyDOM are expected to be observed.

Interestingly, the exact nature of the bio-produced organic
matter was found to vary drastically among samples indi-
cating that the microbial consortium used may produce dif-
ferent exudates based on the composition of the initial py-
DOM. Another potential explanation for the vast diversity
of molecules is that microbes only consume low molecular-
weight compounds, but they also produce reactive oxygen
species (ROS), which initiate oxidative and recombination
reactions that degrade high molecular-weight compounds
and produce new molecules. Some of the bio-produced
molecules (212–308 molecular formulas) were identified in
estuarine and marine (surface and abyssal oceanic), and 81–
192 of these formulas were of molecular composition at-
tributed to carboxyl-rich alicyclic molecules (CRAM). These
results indicate that some of the pyDOM biodegradation
products have an oceanic fate and can be sequestered into
the deep ocean. The observed microbially mediated diversi-
fication of pyDOM suggests that pyDOM contributes to the
observed large complexity of natural organic matter observed
in riverine and oceanic systems. More broadly, our research
shows that pyDOM can be substrate for microbial growth
and be incorporated into environmental food webs within the
global carbon and nitrogen cycles.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Pyrogenic organic matter (pyOM), the carbonaceous solid
residue that is left after biomass burning (e.g., wildfires,
biochar production), has been gaining attention in recent
years as an important active component of the global bio-
geochemical cycles. Compositionally, pyOM is mainly com-
prised of condensed aromatic compounds (ConAC) of vari-
ous degrees of condensation and functionalization (Masiello,
2004; Schneider et al., 2010; Wagner et al., 2018; Wozniak
et al., 2020). ConAC have been found in various environ-
mental matrices such as soils and sediments (Schmidt and
Noack, 2000; Skjemstad et al., 2002; Reisser et al., 2016)
and atmospheric aerosols (Wozniak et al., 2008; Bao et al.,
2017). In the terrestrial environmental matrices, particularly
in soils and sediments, ConAC were originally thought to
be highly stable (“recalcitrant”) due to their condensed char-
acter (Goldberg, 1985; Masiello and Druffel, 1998). How-
ever, more and more studies report the presence of pyro-
genic molecules in different aquatic environments (Hocka-
day et al., 2006; Dittmar and Paeng, 2009; Roebuck et al.,
2017; Wagner et al., 2017; Li et al., 2019). These studies
support the proposition that pyOM can be solubilized upon
rain events and be leached as pyrogenic dissolved organic
matter (pyDOM) resulting in large annual riverine fluxes
of pyDOM from global riverine systems to the open ocean
(Dittmar et al., 2012; Jaffé et al., 2013; Wang et al., 2016;
Marques et al., 2017; Jones et al., 2020). During export, py-
DOM is likely altered by various processes resulting in its
degradation and alteration of its physico-chemical character-
istics (Masiello, 2004; Coppola et al., 2019; Wagner et al.,
2019). Using laboratory-prepared biochars and conservative
assumptions, Bostick et al. (2018) approximated that> 85 %
of the leached pyDOM is degradable (e.g., mineralizable to
CO2), which indicates that pyDOM is a very active compo-
nent within the global carbon cycle, as previously suggested
(Druffel, 2004; Lehmann, 2007; Riedel et al., 2016).

In sunlit aquatic environments, photodegradation is the
most significant sink for the fraction of ConAC of pyDOM
(Stubbins et al., 2012). The photochemistry of ConAC and
pyDOM has been studied utilizing either laboratory-prepared
pyDOM (Ward et al., 2014; Fu et al., 2016; Li et al., 2019;
Bostick et al., 2020; Goranov et al., 2020; Wang et al., 2020)
or natural organic matter rich in ConAC (Stubbins et al.,
2010, 2012; Wagner and Jaffé, 2015). These studies have re-
ported that ConAC are exceptionally photolabile and they de-
grade through a series of oxygenation, ring opening, and de-
carboxylation reactions leading to a pool of smaller aliphatic
by-products. Additionally, pyDOM photochemistry has been
associated with the production of high fluxes of reactive
oxygen species (ROS), important transients involved in the
photo-transformation and photodegradation of pyDOM (Fu
et al., 2016; Li et al., 2019; Goranov et al., 2020; Wang et al.,
2020). These studies have contributed to a better understand-
ing of the biogeochemical cycling of pyDOM in the presence

of sunlight in the environment. Microbial (biotic) pathways
are another degradative pathway with high potential for al-
tering and/or mineralizing pyDOM, but these pathways are
far less understood.

Biotic reworking of organic molecules is a key mecha-
nism for producing the diverse molecular composition of nat-
ural organic matter (Lechtenfeld et al., 2015; Hach et al.,
2020). Due to the highly condensed character of pyOM, it
is often regarded as bio-recalcitrant, though several studies
have shown that a fraction of it (about 0.5 % to 10 %) is in-
deed biodegradable (Kuzyakov et al., 2009, 2014; Zimmer-
man, 2010; Zimmerman et al., 2011). PyOM is mainly com-
prised of ConAC (Bostick et al., 2018; Wozniak et al., 2020),
which contributes to its low biodegradability (Zimmerman,
2010). By contrast, pyDOM is highly heterogeneous (Woz-
niak et al., 2020), and, in addition to ConAC, it contains nu-
merous low molecular-weight (LMW) species (e.g., acetate,
methanol, formate; Bostick et al., 2018; Goranov et al., 2020)
as well as various pyrogenic aliphatic compounds and inor-
ganic nutrients (Hockaday et al., 2007; Mukherjee and Zim-
merman, 2013; Goranov et al., 2020; Wozniak et al., 2020).
The high solubility of pyDOM is imparted by the greater
abundance of polar functional groups, which would also al-
low for greater microbial accessibility. To date, there is no
study that evaluates the molecular-scale biodegradability of
pyDOM. It is unknown whether and how (e.g., mechanis-
tic pathways, kinetic rates) the different compound groups of
pyDOM are biodegraded and/or biotransformed.

In addition to the unexplored biodegradability of pyDOM,
there are concerns that biochar leachates may be toxic due
to the presence of condensed and ligninaceous aromatics. It
has been shown that cellulose- and pinewood-derived biochar
water extracts (i.e., pyDOM) inhibit the growth of cyanobac-
teria, while pyDOM of lignin-derived biochar has no in-
hibitory effects (Smith et al., 2016). The toxicity of pyDOM
has been mainly attributed to polysubstituted phenols present
in the cellulose- and pinewood-derived biochars. In natu-
ral systems, however, it is likely that other pyDOM com-
ponents also play a role in controlling the biodegradability
and toxicity of pyDOM. An important very recent finding is
that pyOM and pyDOM contain organochlorine compounds
(both aliphatic and aromatic; Wozniak et al., 2020), which
may enhance the toxicity of pyDOM. Thus, biotic incuba-
tions of pyDOM are needed to reveal if microbial growth can
be sustained in pyDOM and environments rich in ConAC.

To explore these questions, we incubated aqueous biochar
leachates (i.e., pyDOM) with a soil-derived microbial con-
sortium and evaluated the compositional changes to pyDOM
using numerous analytical techniques. Laboratory-produced
biochars can be considered model pyrogenic substances as
they are similar to what is produced during natural wildfires
(Santín et al., 2017) but have not experienced environmen-
tal aging which would have impacted their physico-chemical
properties (Ascough et al., 2011). We have used oak wood
because most riverine dissolved organic matter (DOM) is
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exported from forested catchments (Hedges et al., 1997).
We used two pyrolysis temperatures (400 and 650 ◦C) rep-
resentative of forest fire temperatures (Santín et al., 2015,
2016). As photochemistry has been shown to increase the
bio-lability of various types of DOM (Kieber et al., 1989;
Lindell et al., 1995; Wetzel et al., 1995; Benner and Bid-
danda, 1998; Moran and Covert, 2003; Qualls and Richard-
son, 2003; Obernosterer and Benner, 2004; Abboudi et al.,
2008; Chen and Jaffé, 2014; Antony et al., 2018), we also
incubated pyDOM that had been photo-irradiated. Previous
studies showed that significant compositional changes occur
to pyDOM during photo-irradiation, which certainly implies
different biodegradability (Bostick et al., 2020; Goranov et
al., 2020).

In a parallel study of the same incubations (Bostick
et al., 2021), we quantified the dissolved organic carbon
(DOC) loss, respired CO2 quantities and the changes to
the bulk structural composition of pyDOM as determined
by one-dimensional 1H nuclear magnetic resonance (NMR)
spectroscopy. Additionally, in that study, benzenepolycar-
boxylic acid (BPCA) molecular markers were used to quan-
tify the changes specific to the fraction of ConAC pyDOM.
It was found that the pyDOM leachates derived from the
biochar of the higher pyrolysis temperature (650 ◦C) were
less biodegradable than the pyDOM leachates from the lower
temperature (400 ◦C) biochar. As expected, photo-irradiation
increased the bio-lability of pyDOM. Over the 96 d incuba-
tion, up to 48 % of the carbon was respired to CO2. The
degradation followed first-order kinetics, with LMW com-
pounds (e.g., acetate, formate, methanol) being preferentially
degraded. To elucidate the molecular-level changes taking
place during the bio-incubation of pyDOM and assess the
various molecules that are being degraded or produced by
soil biota, we employed ultrahigh-resolution mass spectrom-
etry (Fourier transform–ion cyclotron resonance–mass spec-
trometry, FT-ICR-MS), two-dimensional NMR and fluores-
cence spectroscopy. The collective results from these two
studies improve our understanding of the degradative path-
ways of pyDOM and ConAC in the environment and allow
us to better interpret observations pertaining to terrestrial-to-
marine transfers and global cycling of organic matter.

2 Materials and methods

2.1 Preparation of pyDOM samples

Two biochars were prepared by heating laurel oak wood
(Quercus hemisphaerica) under N2 atmosphere at 400 and
650 ◦C for 3 h. After grinding and sieving to particles of
uniform size (0.25–2.00 mm), the biochars were leached in
18.1 m� MilliQ laboratory-grade water (5 g in 500 mL) over
50 h on a shaker table. The obtained pyDOM leachates, here-
after referred to as “Oak 400 Fresh” and “Oak 650 Fresh”,
were filtered using 0.2 µm Millipore GSWP mixed cellulose

ester filters. Physico-chemical characteristics of similarly
produced solid biochars and their leachates were reported
in several previous studies (Zimmerman, 2010; Mukherjee
et al., 2011; Bostick et al., 2018; Wozniak et al., 2020).
A fraction of each leachate was also subjected to photo-
irradiation for 5 d in a custom-made solar simulator equipped
with Q-Lab Corporation UV-A lamps (295–365 nm, λMAX =

340 nm, 40 W) equivalent to natural photo-irradiation of
12 d. Photo-transformation rates, structural changes, photo-
irradiation apparatus design and other relevant information
have been published previously (Bostick et al., 2020; Gora-
nov et al., 2020). Photo-irradiated pyDOM samples will be
hereafter referred to as “Oak 400 Photo” and “Oak 650
Photo”. The four samples (Oak 400 Fresh, Oak 650 Fresh,
Oak 400 Photo, Oak 650 Photo) were diluted to a uniform
DOC concentration of 4.7 mgC L−1 prior to inoculation.

2.2 Microbial incubations of pyDOM

Microbial incubations were performed using a soil-derived
microbial consortium as an inoculum. Soil from the Austin
Cary Memorial Forest (Gainesville, FL) was chosen because
this area is frequently subjected to prescribed burns (Johns,
2016), and its soil microbes likely interact with pyOM and
pyDOM on a regular basis. Taxonomic details of the soil
used have been published previously (Khodadad et al., 2011).
The collected soil was treated to remove roots and detritus,
and its water extract was centrifuged to obtain a pellet. The
pellet was then dissolved in 10 mL MilliQ laboratory-grade
water to obtain an inoculate, 100 µL of which was used to
spike 50 mL of each pyDOM substrate. Additionally, mi-
crobial nutrients (KH2PO4 and (NH4)2SO4) were provided
following Zimmerman (2010) to support a healthy growth
medium. Samples were incubated in gas-sealed amber vials
on a shaker table at 28± 5 ◦C for 10 d in the dark. Using
a double-needle assembly, CO2-free air (Airgas, Zero) was
flushed through the samples on days 0, 2, 5 and 10, which
oxygenated the samples and removed dissolved inorganic
carbon for its measurement (reported by Bostick et al., 2021).
A procedural blank and control samples were prepared in
the exact same way but were poisoned with HgCl2 immedi-
ately following the mixing of the different components (py-
DOM, inoculate, nutrients). Additionally, a solution of su-
crose (0.5 g C12H22O11 in 40 mL MilliQ laboratory-grade
water) was also incubated in the same manner to serve as
a positive control. All incubated samples were poisoned with
HgCl2 to terminate microbial activity before shipment to
Old Dominion University (Norfolk, VA) for analysis. Prior
to spectroscopic analysis (see Sect. 2.3 and 2.5 below) or
spectrometric analysis (see Sect. 2.4 below), samples were
filtered using acid-washed 0.1 µm Teflon (PTFE) syringe fil-
ters. Further details about sample preparation can be found
in the parallel study (Bostick et al., 2021).

https://doi.org/10.5194/bg-19-1491-2022 Biogeosciences, 19, 1491–1514, 2022
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2.3 Analysis of chromophoric and fluorophoric
dissolved organic matter

Chromophoric DOM (CDOM) measurements were per-
formed on a Thermo Scientific Evolution 201 ultraviolet–
visible (UV–Vis) spectrophotometer operated in a double-
beam mode. A matched Starna quartz cuvette with MilliQ
water was used as a reference during all spectral measure-
ments. Spectra were recorded from 230–800 nm using a 1 nm
step, 0.12 s integration time and 500 nm min−1 scan speed. In
addition to the double-beam referencing, the average noise
in the 700–800 nm spectral region was subtracted from the
spectra to correct for any instrument baseline drifts, tem-
perature fluctuations, as well as scattering and refractive ef-
fects (Green and Blough, 1994; Helms et al., 2008). After
consecutive procedural-blank corrections, the spectra (kept
in decadic units) were normalized to the cuvette path length
(1.0 cm) and DOC content (in mgC L−1) to convert them to
specific absorbance spectra (L mgC−1 cm−1; Weishaar et al.,
2003). CDOM was quantified by integrating the spectra from
250–450 nm (Helms et al., 2008), and CDOM quantity is re-
ported in L mgC−1 cm−1 nm units.

Fluorophoric DOM (FDOM) measurements were per-
formed on a Shimadzu RF-6000 spectrofluorometer oper-
ated in 3D acquisition mode. Samples were analyzed without
dilution as no sample yielded absorbance at 230 nm above
0.07 (Miller et al., 2010). Samples were excited from 230–
500 nm (5 nm step) and emission was recorded over 250–
650 nm (5 nm step) to obtain excitation–emission matrices
(EEMs). Additionally, five replicate water Raman scans were
acquired on MilliQ water in 2D emission mode by exciting
the sample at 350 nm, and fluorescence intensity was mon-
itored over 365–450 nm (0.5 nm steps). All measurements
were done with 5 nm slit widths of the monochromators, with
600 nm min−1 scan speed and in high-sensitivity mode.

EEMs were processed in MATLAB using the drEEM
toolbox (version 0.4.0.) using previously published routines
(Murphy et al., 2010, 2013). Briefly, using the FDOMcor-
rrect function, the raw EEMs were adjusted for instrumental
bias, blank-corrected using an EEM of the procedural blank
and scaled to adjust for any inner-filter effects using the raw
UV–Vis spectra (Kothawala et al., 2013). This function also
normalized the EEMs to Raman units (RU) after the area of
the water Raman peak (peak maximum at 397 nm) had been
determined by the ramanintegrationrange function (Murphy,
2011) on the averaged water Raman spectrum. The EEMs
were then processed using the smootheem function to re-
move first- and second-order Rayleigh signals and Raman
scattering. EEMs are visualized and difference plots are gen-
erated using an in-house MATLAB script.

2.4 Fourier transform–ion cyclotron resonance–mass
spectrometry (FT-ICR-MS)

Procedural-blank, control and incubated samples were
loaded onto solid-phase extraction cartridges (Agilent Tech-
nologies Bond Elut Priority Pollutant (PPL), 100 mg styrene
divinyl copolymer) as previously described (Dittmar et al.,
2008). Cartridges were eluted with methanol (Fisher Scien-
tific, Optima LC-MS grade) and infused into an Apollo II
electrospray ionization (ESI) source interfaced with a Bruker
Daltonics Apex Qe FT-ICR-MS operating at 10 T and housed
in the College of Sciences Major Instrumentation Cluster
(COSMIC) facility at Old Dominion University (Norfolk,
VA). The instrument is externally calibrated daily with a
polyethylene glycol standard, and a surrogate laboratory py-
DOM standard was analyzed before and after the analytical
sequence to verify for the lack of instrumental drift. Addi-
tionally, an instrumental blank of methanol was analyzed be-
tween samples to verify for the absence of sample carryover.
Samples were analyzed in negative ionization mode. Source
spray voltages were optimized for each sample to ensure con-
sistent spray currents among all samples. For each sample,
300 transients with a 4MWord time domain were collected
and co-added, and the resultant free induction decay was
zero-filled and sine-bell apodized. After fast Fourier transfor-
mation, internal calibration of the resultant mass spectra was
performed using naturally abundant fatty acids, dicarboxylic
acids and compounds belonging to the CH2-homologous se-
ries as previously described (Sleighter et al., 2008). Then,
using an in-house MATLAB script, salt, blank and isotopo-
logue (13C, 37Cl) peaks were removed. Molecular formu-
las within ±1 ppm error were assigned to FT-ICR-MS spec-
tral peaks (S/N ≥ 3) using the molecular formula calcula-
tor from the National High Magnetic Field Laboratory (Tal-
lahassee, FL). Formula assignments were restricted to ele-
mental composition of 12C5−∞, 1H1−∞, 14N0−5,16O0−30,
32S0−2, 31P0−2, and 35Cl0−4 and were refined using previ-
ously established rules (Stubbins et al., 2010). Any ambigu-
ous peak assignments were refined by inclusion within ho-
mologous series (CH2, H2, COO, CH2O, O2, H2O, NH3,
HCl) following Kujawinski and Behn (2006) and Koch et
al. (2007). For all samples, at least 80 % of the mass spectral
peaks were assigned, and they accounted for at least 93 % of
the mass spectral magnitude.

Molecular composition was evaluated by plotting the
molecular formulas on van Krevelen (vK) diagrams, scat-
terplots of the formulas’ hydrogen-to-carbon (H/C) versus
oxygen-to-carbon (O/C) ratios (Van Krevelen, 1950; Kim et
al., 2003). Formulas were further categorized using the mod-
ified aromaticity index (AIMOD), a proxy for the aromatic
character of molecules (Koch and Dittmar, 2006, 2016), and
calculated as shown in Eq. (1).

AIMOD =
1+C− 1

2 O−S− 1
2 (N+P+H+Cl)

C− 1
2 O−N−S−P

(1)
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Formulas were classified as follows: condensed aro-
matic compounds (ConAC, AIMOD≥ 0.67, number
of C-atoms≥ 15), aromatic (0.67<AIMOD ≤ 0.50),
olefinic / alicyclic (0<AIMOD < 0.50) and aliphatic
(AIMOD = 0). Additionally, N-containing formulas falling
in the ranges of 1.5≤H/C≤ 2 and 0.1≤O/C≤ 0.67 were
classified as peptide-like. Statistical evaluation of means us-
ing one-way analysis of variance (ANOVA) was performed
in MATLAB using the anova1 function. Post hoc Scheffé’s
assessments were performed using the multcompare func-
tion. Pearson correlations were performed using the corrcoef
function in the same software. A confidence level of 95 %
was used for all statistical assessments.

For the Kendrick mass defect (KMD) series analysis,
Kendrick mass (KM) was first calculated using the molec-
ular weight of each compound (i.e., calculated mass from
its molecular formula) following Eq. (2). Then, the Kendrick
nominal mass (KNM) was calculated as the integer (no dec-
imals) of the KM. The KMD is the difference between KM
and KNM, i.e., the decimals (Eq. 3). This analysis was per-
formed for oxygen (O), carbonyl (CO) and carboxyl (COO)
series (S).

KM=molecular weight× S, (2)

where S = 16.0000000
15.9949146 for O series, 28.0000000

27.9949146 for CO series
and 44.0000000

43.9898292 for COO series.

KMD= KM−KNM (3)

2.5 Two-dimensional nuclear magnetic resonance
(NMR) spectroscopy

One-dimensional 1H NMR spectra of the samples were pub-
lished and evaluated in the parallel study (Bostick et al.,
2021). For the study of this paper, a select sample was an-
alyzed using two-dimensional 1H–1H total correlation spec-
troscopy (TOCSY) to further evaluate several functional
groups of interest. Analyses were performed on a 400 MHz
(9.4 Tesla) Bruker BioSpin AVANCE III spectrometer fit-
ted with a double-resonance broadband z-gradient inverse
(BBI) probe in the COSMIC facility. Samples were ana-
lyzed without pre-concentration and volumetrically diluted
with deuterated water (D2O, Acros Organics, 100 % D) to
obtain a 90 : 10 H2O : D2O solution. Further details of sam-
ple preparation and acquisition of 1D 1H spectra are pub-
lished in the companion study (Bostick et al., 2021). To ob-
tain ultraclean NMR spectra, NMR tubes were soaked with
aqua regia, rinsed extensively with ultrapure water and indi-
vidually tested as blanks to verify that no background peaks
are present. While 1H spectra were originally processed us-
ing an exponential multiplication function (line broadening)
of 5 Hz to obtain higher signal-to-noise for a more accurate
and precise integration (Bostick et al., 2021), here they were
re-processed using a multiplication function of 1.5 Hz to bet-
ter observe the splitting (multiplicity) patterns of the peaks

of interest. TOCSY spectra were acquired using the phase-
sensitive gradient-enhanced mlevgpphw5 pulse program. It
utilizes a 17-step Malcolm Levitt (MLEV-17) composite
scheme (Bax and Davis, 1985) for magnetization transfer be-
tween any coupled nuclear spins and a W5-WATERGATE
element for water suppression (Liu et al., 1998). Both short-
range and long-range spin–spin couplings were observed us-
ing 30 and 100 ms mixing times, respectively. The data were
then zero-filled to a 4096×1024 matrix and then fitted with a
π/2-shifted (SSB= 2) sine-squared window function. Linear
prediction to 256 points was used in the F1 dimension. All
spectra were internally calibrated to the sharp distinguish-
able methanol singlet at 3.34 ppm (Gottlieb et al., 1997), and
then spectra were phased and baseline-corrected. T1-noise
removal was performed by calculating the positive projec-
tion of rows with no resonances, and the summed projections
were subtracted from all rows in the spectrum (Klevit, 1985).
The same procedure was performed for all columns (i.e., the
F2 dimension).

3 Results

3.1 Molecular changes to pyDOM after microbial
incubation

Ultrahigh-resolution mass spectrometric analysis of the bio-
incubated and corresponding control pyDOM leachates re-
vealed significant changes in molecular composition after the
10 d incubation (Fig. 1). The identified molecular formulas
were classified into three groups using a presence–absence
approach: bio-labile, bio-produced and bio-resistant (Stub-
bins et al., 2010; Sleighter et al., 2012). This approach iden-
tifies any common formulas among the two samples being
compared (control and bio-incubated), as well as any formu-
las that are unique to each sample. It is important to note that
the electrospray ionization (ESI) source is prone to biases,
and the analytical window of FT-ICR-MS depends most crit-
ically on it. Thus, it may not identify compounds that are
present if they are not ionizable (Stenson et al., 2002; Patri-
arca et al., 2020). Therefore, our observations are influenced
by the limited analytical window, and it is essential that ob-
servations by FT-ICR-MS are always paired with supplemen-
tary quantitative techniques (optical analyses, NMR, etc.) in
order to determine if the identified trends are real or an arti-
fact of ESI charge competition (D’Andrilli et al., 2020).

In all samples, nearly a third of the formulas (23 %–31 %)
present in the control samples were not observed after the
biotic incubations. This is somewhat proportional to the or-
ganic carbon losses observed over the 10 d incubation by Bo-
stick et al. (2021). The organic carbon loss was also found
to be equivalent to mineralized CO2 (± 4 %, Bostick et al.,
2021) indicating that microbial respiration had occurred al-
though CO2 mineralization can happen abiotically as well.
Using the number of formulas lost as a proxy for bio-lability
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Figure 1. Van Krevelen (vK) diagrams of 10 d microbially incubated pyDOM leachates. Formulas are classified as bio-labile (formulas only
found in the control pyDOM leachates) and bio-produced (formulas only found in the bio-incubated samples). Formulas that are present
in both the control and bio-incubated samples are operationally classified as bio-resistant and not shown for clarity. These three classes of
molecules are separately plotted on vK diagrams and shown in Sect. S2 of the Supplement (Figs. S2–S4). The number of formulas in each
of these pools is shown in the legends along with corresponding percentages (relative to total number of formulas in the two samples being
compared). The carbon losses quantified by Bostick et al. (2021) are listed under the legends. The black lines indicate modified aromaticity
index cutoffs (AIMOD; Koch and Dittmar, 2006, 2016), and the red box indicates the peptide region (valid only for N-containing formulas).

here, it appears that Oak 400 Fresh (1646 bio-labile for-
mulas, 16 % carbon loss) is more bio-labile than Oak 650
Fresh (1364 bio-labile formulas, 15 % carbon loss). This
was expected because of the richness of Oak 400 Fresh in
smaller less aromatic compounds (Wozniak et al., 2020).
Upon photo-irradiation, both Oak 400 Fresh and Oak 650
Fresh experience significant changes in their molecular com-
position as previously described in detail by Goranov et
al. (2020). The photo-transformed pyDOM is much more
aliphatic and richer in nitrogen and LMW compounds which
render photo-irradiated pyDOM much more biologically la-
bile (Goranov et al., 2020). Surprisingly, it was found that
Oak 400 Fresh (1646 bio-labile formulas) is more bio-labile
than its photo-irradiated counterpart (Oak 400 Photo, 1242

bio-labile formulas). However, this observation using molec-
ular data does not agree with quantitative carbon loss results
for the 10 d incubation (Oak 400 Fresh: 16 % carbon loss;
Oak 400 Photo: 25 % carbon loss). The observed discrep-
ancy is because LMW compounds contribute to a large frac-
tion of the degraded carbon in the Oak 400 pyDOM systems
and LMW species are not observed following the employed
PPL sample preparation and FT-ICR-MS detection. A simi-
lar discrepancy is observed when comparing Oak 400 Photo
(1242 bio-labile formulas, 25 % carbon loss) and Oak 650
Photo (1410 bio-labile formulas, 23 % carbon loss). In con-
trast, Oak 650 Fresh (1364 bio-labile formulas) was observed
to be less bio-labile than Oak 650 Photo (1410 bio-labile
formulas) via both FT-ICR-MS and the observed quantita-
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tive carbon losses (Oak 650 Fresh: 15 % carbon loss; Oak
650 Photo: 23 % carbon loss). LMW species are less abun-
dant in the Oak 650 pyDOM systems resulting in consistent
trends between the analyses. Biodegradability trends derived
from FT-ICR-MS molecular data match those from the UV–
Vis data from chromophoric pyDOM (Fig. S1 in the Supple-
ment) revealing a similar inability of UV–Vis to detect LMW
compounds which do not absorb UV–Vis light. In summary,
we observe a degradation of a variety of different molecular
classes as well as a production of many molecules that ap-
pear to be of high biological lability. However, we caution
that there are observed discrepancies between carbon loss on
the one hand and molecular and chromophoric data on the
other for the Oak 400 pyDOM systems, an observation that
highlights the need to clearly understand methodological an-
alytical windows when interpreting molecular and spectro-
scopic data.

Interestingly for all leachates, the degraded (bio-labile)
molecules were not from a specific area of the vK diagrams
but rather represent a broad range of H/C and O/C ratios
and compound types (see Fig. S2). This variety of compound
characteristics among bio-labile molecules suggests that the
degradation pathway may not be from microbial consump-
tion alone. It would be unlikely for the soil microorgan-
isms to utilize organic-matter compounds as food indiscrim-
inately. Most interestingly, it is evident that large numbers
of aromatic (AIMOD ≥ 0.50) formulas are lost, in agreement
with observed losses in CDOM (Fig. S1) and losses in aryl
functional groups (measured by 1H NMR) reported in the
parallel study (Bostick et al., 2021). ConAC were found to be
resistant to biodegradation (Bostick et al., 2021) and there-
fore losses of ConAC observed via FT-ICR-MS are consid-
ered an artifact due the low ionizability of ConAC and com-
petition processes in the ESI source (Stenson et al., 2002;
Patriarca et al., 2020). However, the agreement between FT-
ICR-MS and other quantitative data (UV–Vis, NMR, DOC)
confirms the interpretation of bulk pyDOM degradation.

Approximately half of the formulas (37 %–56 %) in the
original pyDOM leachates are classified as bio-resistant us-
ing the presence–absence approach (observed before and af-
ter biotic degradation). These formulas are located in all ar-
eas of the vK diagrams (Fig. S3) showing variable oxygena-
tion and aromaticity. The relative peak magnitudes of these
formulas did not change significantly following the incuba-
tions (R2> 0.95, Fig. S9; Sleighter et al., 2012), also sug-
gesting that a wide variety of pyDOM molecules are resis-
tant to microbial degradation. Using the available molecular
data, it is not possible to attribute the observed recalcitrance
to any molecular property. Therefore, it is likely that some
of these bio-resistant molecules are still bio-labile and would
have degraded in due time if the incubations were sampled
at later time points. Longer time series should be conducted
in future studies to fully differentiate among bio-labile and
bio-resistant pyDOM molecules.

The use of hydrogen-to-carbon ratio (H/C) versus
molecular-weight (MW) plots has also been useful in in-
terpreting ultrahigh-resolution mass spectrometry data (e.g.,
Gonsior et al., 2018; Powers et al., 2019; Valle et al., 2020).
Such graphs are presented using the presence–absence ap-
proach in Figs. S5–S8 in Sect. S3. These graphics help
evaluate how different types of compounds (aliphatic ver-
sus aromatic) change relative to their MW. For both Oak
400 leachates, it is clear that large aromatic molecules
(H/C< 1.5, MW> 550 Da) are removed during the biotic
degradation, and smaller (300<MW< 550) aromatic com-
pounds are produced. The consumption of large molecules
indicates that microbes utilize extracellular enzymes to pro-
duce ROS, which degrade larger molecules into smaller sub-
strates (Billen et al., 1990). The large aromatic molecules that
are being degraded into smaller ones are mainly ligninaceous
and not ConAC, in agreement with the insignificant changes
in BPCA data published by Bostick et al. (2021). With re-
gards to the aliphatic molecules (H/C> 1.5), it is clear that
molecules of a wide range of MW are degraded and pro-
duced during the incubations suggesting that MW is not a
critical factor in their biological fate. This is in apparent dis-
agreement with the general knowledge that microbes pref-
erentially consume LMW substrates (e.g., Søndergaard and
Middelboe, 1995). Bostick et al. (2021) also concluded that
LMW substances are preferentially degraded in the incuba-
tions of pyDOM. The observed production of higher MW
aliphatics suggest that the microbial incubations were still
very active at the point of sampling (10 d). This additionally
suggests that future studies need to evaluate the molecular
composition of biotically incubated pyDOM over a longer
timescale.

3.2 Composition of bio-produced organic matter

The bio-produced organic compounds can be evaluated in
various ways to examine the processes that may have oc-
curred during the incubations. Using a presence–absence ap-
proach (Sleighter et al., 2012), the bio-produced formulas of
each sample are compared with those of the other samples
(Table 1). No significant overlap was found (2–320 formu-
las in common, 0 %–12 %) among the molecules produced
in the incubated pyDOM samples. Furthermore, no signif-
icant match was found between the bio-produced formulas
of incubated pyDOM and those of incubated sucrose sample
(63–94 formulas in common, 3 %, Table 1). These observa-
tions indicate that the products of the incubations were vastly
different for each sample and likely depend on the starting
substrate. An alternative explanation is that bio-produced for-
mulas were further altered post-exudation by ROS to result
in their molecular diversification.

A significant fraction of the bio-produced organic
matter was characterized as peptide-like (N-containing,
1.5≤H/C≤ 2.0, 0.1≤O/C≤ 0.67). This indicates that mi-
crobes convert a part of pyDOM into labile DOM (Moran
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Table 1. Overlap of bio-produced molecular formulas among samples. The number of formulas corresponds to the formulas in common
between the two samples being compared, and the percentage is relative to the total number of formulas in the two formula sets.

Sample Oak 400 Fresh Oak 400 Photo Oak 650 Fresh Oak 650 Photo

Oak 400 Fresh – – – –
Oak 400 Photo 320 (12 %) – – –
Oak 650 Fresh 126 (4 %) 104 (5 %) – –
Oak 650 Photo 165 (5 %) 81 (3 %) 2 (0 %) –
Sucrose 94 (3 %) 63 (3 %) 68 (3 %) 83 (3 %)

et al., 2016; Vorobev et al., 2018), a process hereafter re-
ferred to as “microbial labilization”. Given that the pyDOM
samples used in this study were poor in organic nitrogen,
the microbes must have used the inorganic nitrogen (NH+4 )
that was provided as a nutrient and converted some or all of
it into microbial biomass. Peptide-like formulas comprised
22 %–40 % of the bio-produced formulas (Table S2). The re-
sults of the comparative analyses (Table 1) imply that these
proteinaceous formulas are of highly variable composition.
Their molecular diversity is additionally evaluated using one-
way analysis of variance (ANOVA) reported in Sect. S6. This
statistical analysis revealed high molecular variability sup-
porting the findings by the presence–absence comparisons
presented earlier (Table 1). Collectively, these findings con-
clude that the microbial incubations of pyDOM created pools
of new, very diverse molecules, a process hereafter referred
to as “microbial diversification”. As FT-ICR-MS was per-
formed with soft electrospray ionization with no fragmenta-
tion, the structure of the observed molecules is inferred from
the elemental composition of the assigned molecular formu-
las. Another possibility for these N-containing molecules is
that they were formed by coupling reactions among pyDOM
molecules with the NH+4 nutrient that was added to support
microbial growth (e.g., via Michael addition reactions; Mc-
Kee et al., 2014).

To confirm that the bio-produced formulas were associated
with proteinaceous structures and are not just N-containing
compounds that coincidentally plotted in the peptide re-
gion, spectrofluorometric analysis was performed to obtain
excitation–emission matrices (EEMs) of the pyDOM sam-
ples before and after bio-incubation (Fig. 2). The data for
Oak 650 Photo is not reported as the produced EEM spectra
were of questionable quality, and as there were very limited
amounts of the sample, analytical replication and quality as-
sessment were not possible.

Proteinaceous organic matter has a highly characteristic
fluorophoric signature due to the distinguishable signals of
the aromatic amino acids tyrosine and tryptophan. The short
Stokes’ shifts of these fluorophores allow them to spectro-
scopically separate on the EEM plot allowing for the iden-
tification of related labile substances (Wünsch et al., 2019).
Other amino acids, namely histidine and phenylalanine, are
also fluorophoric but are not easily identified in EEM data

of complex matrices. A practical approach to evaluate the
change after the bio-incubation is to use difference plots
(e.g., Hemmler et al., 2019). For all samples, strong proteina-
ceous signals evolve after biotic incubations indicating that
molecules of autochthonous (microbial) origin are produced
(Coble, 1996; Coble et al., 2014). This indicated that peptide-
like molecules observed using FT-ICR-MS are not artificially
produced by coupling reactions growth (e.g., via Michael ad-
dition reactions; McKee et al., 2014) or evolve due to less
charge competition in the ESI source. Thus, the protein-like
formulas are truly bio-produced, validating the findings of
the presence–absence analysis.

There are subtle differences among the EEMs of all control
and bio-incubated samples indicative of the high variability
in fluorophoric content of these samples. This agrees with the
observed variability in molecular composition described ear-
lier. An interesting observation is that in the two Oak 400 py-
DOM incubations, tyrosine-like fluorescence (peaks B1 and
B2) decreases after biotic incubation, whereas tryptophan-
like fluorescence (peaks T1 and T2) increases. In contrast, the
tryptophan-like fluorophores are degraded and tyrosine-like
ones are produced after biotic incubation of Oak 650 Fresh
pyDOM. Proteinaceous compounds are highly bio-labile and
aromatic compounds are susceptible to oxidation by ROS.
Therefore, it is possible that tyrosine-like fluorophores (in
Oak 400 pyDOM) and tryptophan-like fluorophores (in Oak
650 pyDOM) are still actively participating in biodegradation
processes as the incubations were still active at the time of
sampling (10 d). The loss of tyrosine-like fluorophores in the
Oak 400 samples and loss of tryptophan-like fluorophores in
the Oak 650 Fresh sample are indicative of different micro-
bial physiology and exudates. The complexity of these EEM
spectra and the compound-specific changes observed here
indicate that proteomic and/or metabolomic analyses (e.g.,
Nalven et al., 2020) are necessary in future microbiological
studies in order to fully understand the changes to the molec-
ular composition of pyDOM during biotic incubations.

To determine if the bio-produced formulas are from true
proteins or from compounds with residual proteinaceous
fluorophores, FT-ICR-MS molecular formulas were evalu-
ated in the context of possible combinations of amino acids
that would be singly charged. Given that microbes exude
large proteins (MW> 30 kDa) such as lignin peroxidases,
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Figure 2. Fluorescence excitation–emission matrices (EEMs) of control (left panels) and bio-incubated (middle panels) pyDOM samples.
Difference spectra are shown in the right panels. The black box indicates the region where compounds of proteinaceous origin fluoresce
(Coble, 1996; Coble et al., 2014), with tyrosine-like (B1 and B2) and tryptophan-like (T1 and T2) peaks labeled on the difference plots.

manganese peroxidases and laccases (Higuchi, 2004), the
peptide-like formulas observed by FT-ICR-MS (analytical
window of 200–1000 Da) may have resulted from hydrol-
ysis of the above-mentioned enzymes (or other proteina-
ceous exudates). If that is the case, the hydrolysates would
likely have had a simple oligomeric composition. To test
this, the bio-produced peptide-like formulas in each sam-
ple were compared to a library of 888 009 possible combi-
nations of 20 amino acids (oligomeric sequences of two to
seven residues). Only a small number of oligopeptides were
identified (5–18 oligopeptides of 2–5 amino acids, Tables S2
and S3) which is counter to the proposed idea that hydrol-

ysis of microbial exudates produced these newly observed
peptide-like formulas. Therefore, the observed bio-produced
formulas may represent compounds with residual proteina-
ceous fluorophores and are not true oligopeptides. The lack
of identified oligopeptides also calls into question the idea
that microbial processes were solely responsible for the high
variability of the bio-produced organic matter observed after
the microbial incubation of pyDOM.

To further elucidate the composition of these bio-produced
N-containing substances, we re-evaluated the previously
published 1H NMR data of these samples (Bostick et al.,
2021) in greater detail. Additionally, the connectivity be-
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Figure 3. Two-dimensional 1H–1H total correlation spectroscopy
(TOCSY) NMR spectra of the bio-incubated Oak 650 Fresh sam-
ple. Short- and long-range couplings were allowed to evolve during
mixing times (τ ) of 30 (blue) and 100 ms (red), respectively. The
1D 1H spectrum is shown as a projection on top (black).

tween previously observed functional groups was assessed
using two-dimensional 1H–1H total correlation NMR spec-
troscopy (TOCSY) on a select sample. Figure 3 shows the
TOCSY spectra of the bio-incubated Oak 650 Fresh sample.

There are three groups of resonances representing an ali-
cyclic structure, a β-hydrogen to a heteroatom and a methy-
lene group that were found in all samples, even in the controls
(although with small contributions relative to the total spec-
tral signal). These resonances have not been previously ob-
served in the 1H NMR spectra of these pyDOM samples (Bo-
stick et al., 2018; Goranov et al., 2020) indicating that they
represent by-products of the microbial incubations, likely mi-
crobial biomass. In the control samples, the compounds as-
sociated with these resonances must be from the soil inoc-
ulant that was added. The three resonances are observed to
be in the same coupling network indicating that they are a

part of the same or similar structures. Due to the very low
concentration of these samples (3.5–4 mgC L−1), the NMR
analysis did not allow for a high-resolution structural elu-
cidation, but some distinct signatures were nonetheless ob-
served. The deshielded aliphatic peaks at δ = 2.1− 2.3 ppm
have a complex multiplicity pattern, a characteristic feature
of alicyclic structures. These are likely residual carbohy-
drate moieties which have lost most of their O-containing
groups through various cleavage processes, and their back-
bone Calicyclic-H resonances have been shifted upfield. The
peak at 1.55 ppm is from β-hydrogens to a heteroatom (H-
Cβ -Cα-X, where X=O, N, S), and these are known to be
associated with peptidoglycans (Spence et al., 2011). The
TOCSY analysis was performed with two different mixing
times (τ = 30 and τ = 100 ms) in order to evaluate short-
range (2–3 bond) and long-range (4–6 bond) connectivities.
Based on the couplings the observed resonances are vicinal
to each other (three bonds away). This indicates that these
functional groups are closely bound in the peptidoglycan
substances they likely represent.

All of the assessments described above conclude that the
observed biochemical processes in these pyDOM incuba-
tions are complex and difficult to unambiguously interpret.
Based on our findings, we summarize that the bio-produced
formulas (Fig. 1) can originate from three possible sources:

1. exoenzymes, which microbes use to extracellularly de-
grade larger molecules into smaller ones (Hyde and
Wood, 1997; Higuchi, 2004);

2. peptidoglycans, which likely leached into solution after
bacterial death and cell lysis (Yavitt and Fahey, 1984);
and

3. other metabolites and exudates involved in the physi-
ology of the different microbes in the consortium used
(e.g., signaling compounds).

The significant degradation of pyDOM and production of
these biological compounds indicates that microbes success-
fully converted the presumably carbon-rich recalcitrant py-
rogenic molecules into more labile substances, a process we
define as microbial labilization. However, the fact that the
observed bio-produced labile molecules are not identifiable
as simple oligopeptides and are present in significantly dif-
ferent composition among the four samples suggests that this
molecular diversity may not be caused by predictable biotic
reactions but by random radical-driven processes. Further ev-
idence for the random radical-driven processes comes from
the observed degradation of molecules across the whole vK
space (Figs. 1 and S2), which is unusual because microbes
preferentially consume smaller aliphatic species (Berggren
et al., 2010a, b; Kirchman, 2018).
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3.3 Radical oxygenation as a potential source of
molecular diversity

Microbial physiology has been associated with the produc-
tion of ROS, which have been shown to be important in the
degradation of various types of organic compounds (e.g.,
Scully et al., 2003; McNally et al., 2005; Porcal et al.,
2013; Trusiak et al., 2018; Xiao et al., 2020). Recent stud-
ies showed that radicals can degrade various types of ligni-
naceous molecules (Waggoner et al., 2015, 2017; Waggoner
and Hatcher, 2017) suggesting that microbially induced rad-
ical reactions can target a variety of pyDOM molecules as
well. While there were no ROS measurements made in this
study, we have performed Kendrick mass defect (KMD)
analysis of the FT-ICR-MS data (Kendrick, 1963; Hughey et
al., 2001) to seek evidence for radical processes. The KMD
analysis identifies formulas that differ by any repeating struc-
tural moiety (e.g., -CH2-). To identify potential products of
radical attacks, we have evaluated the FT-ICR-MS data in the
context of oxygenation, i.e., searched the mass lists for for-
mulas differing by one oxygen atom (addition of hydroxyl
group), carbonyl group (addition of aldehydes or ketones)
and carboxyl group (Fig. 4).

The mathematics behind the KMD analysis (see Sect. 2.4)
convert the mass of the molecular formula (also known as
the IUPAC mass) to a “Kendrick” mass placing the for-
mula on a scale that is specific for the selected struc-
tural moiety. In Fig. 4a, an example is shown with the
KMD analysis for molecules differing by one oxygen
(-O-). On the regular (IUPAC) mass scale, such formu-
las would differ by 15.994915 Da, but on the Kendrick
“O” mass scale, they differ by 16 Da. The difference be-
tween the Kendrick mass (e.g., KM= 408.2876 Da) and
the Kendrick nominal mass (e.g., KNM= 408 Da) is the
Kendrick mass defect, KMD (i.e., KMD= 0.2876 Da). For-
mulas with the exact same KMD differ by one or more
oxygens and lie on a KMD series. Visually these formu-
las would plot on horizontal lines on the KMD plot as in-
dicated by the dashed lines in Fig. 4b. Taking the series
of KMD= 0.4174 Da as an example, the KMD evaluation
shows that there are five formulas in this particular KMD
series that differ in the number of oxygens (C24H40O5–10).
This implies that once C25H40O5 is produced, it acts as
a substrate and the other four formulas (C24H40O6–10)
are produced by oxygenation (likely in a sequential man-
ner: C24H40O5→C24H40O6→C24H40O7→C24H40O9→

C24H40O10). Such formulas differing in the number of oxy-
gens can be formed via oxygenation by hydroxyl radical
( qOH) attacks (Waggoner et al., 2015, 2017; Waggoner and
Hatcher, 2017). This ROS can abstract a hydrogen from C-
H bonds and the hydrogen is substituted with an OH group,
resulting in the formation of alcohols (C-OH) as shown in
Fig. 4c. This is the suggested pathway of how the oxygena-
tion products shown in Fig. 4a and b have formed. Evidence
for such reactions will be found on the KMD plots as the

evolution of new molecules within the same KMD series but
with a different number of oxygens. Further radical attacks
would produce polyols (Fig. 4c). In the case of formation of
geminal diols (two alcohol groups on the same carbon atom),
they can rearrange to aldehydes or ketones via keto-enol tau-
tomerism (Fig. 4d). Further radical attacks would produce
carboxyl groups, which can also be radically cleaved, and
pyDOM radicals would be formed. PyDOM radicals (as well
as any other radical intermediate in this pathway) can be then
further paired with hydrogen radicals ( qH) from the solution,
with other qOH radicals or with other radicalized pyDOM or
proteinaceous species.

Using KMD analysis, formulas that could have been pro-
duced by oxygenation were identified and plotted individ-
ually (Fig. 5). It is assumed that the smallest molecule in
each series is the substrate and any molecules with increasing
number of oxygens are oxygenation products.

KMD analysis revealed that about a third (34–748, 3 %–
42 %) of the bio-produced formulas could be classified as
products of oxygenation reactions, likely driven by ROS
species such as the hydroxyl radical ( qOH). This is in agree-
ment with previously observed cross-linking of microbial
compounds through oxidative processes (Sun et al., 2017).
The majority of the bio-produced formulas, however, were
not found to be products of oxidation as they did not lie on
any of the evaluated KMD series (O, CO or COO). There-
fore, the majority of the bio-produced formulas are likely
formulas of exudates which were resistant to radical attacks
or are formulas of compounds which have already been radi-
cally coupled with other compounds to result in unrecogniz-
able molecules by the KMD analysis.

Additional evidence for intense radical processes in
these systems is the evolution of bio-produced unsaturated
aliphatic compounds (1<H/C< 2, O/C< 2) on the vK di-
agrams (Figs. 1 and S4). ROS can attack aliphatic and
aromatic compounds, open aromatic and alicyclic rings,
cleave oxygen- or nitrogen-containing functionalities, and
produce highly aliphatic molecules, as previously observed
after photo-irradiation of pyDOM (Goranov et al., 2020),
ConAC (Zeng et al., 2000a, b), and radical-based degra-
dation of lignin (Waggoner et al., 2015, 2017; Waggoner
and Hatcher, 2017; Khatami et al., 2019a, b). ROS can also
attack any of the proteinaceous exudates and peptidogly-
cans, cleaving them from many of their functional groups
and converting them into the observed unsaturated aliphatic
compounds. These produced aliphatic compounds could also
contribute to the newly produced N-containing peptide-like
compounds observed by FT-ICR-MS if they are oxygenated
by ROS post-formation. However, this seems unlikely as
data from the supplementary fluorescence and NMR analy-
ses support the formation of microbial biomass. The KMD
analysis shown here strongly suggests the presence of in-
tense radical processes as formulas with increasing numbers
of oxygen atoms are known to be formed following radical
oxygenation (Waggoner et al., 2015, 2017; Waggoner and
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Figure 4. Kendrick mass defect (KMD) analysis using oxygen (O) series of the bio-produced formulas of Oak 400 Fresh pyDOM. Panel (a)
shows the whole KMD plot, while (b) shows an expanded region of it. Formulas not part of the O KMD series are colored in gray. Formulas
in dark green are proposed substrates, and their oxygenation products are colored in light green. Only the molecular formulas for one of
the series (KMD= 0.4174 Da) are labeled, while for the rest of the series, only the substrate formula and the number of oxygens in the
oxygenation products are listed for clarity. The red arrows show the formation of the four oxygenation products of the C24H40O5 substrate
after a sequential attack by hydroxyl radicals ( qOH). Panel (c) shows possible chemical reactions that can cause an increase in the number
of oxygens. Panel (d) shows further oxidative processes involving the formation of keto and carboxyl groups, processes which ultimately
produce pyDOM radicals and CO2. The KMD plots for all samples are shown in Figs. S10–S12.

Hatcher, 2017). However, it must be noted that this KMD
analysis does not directly prove the existence of radical pro-
cesses and the suggested radical processes are speculation
based only on indirect observations. Future studies need to
directly test for the presence of radical reactions by perform-
ing biotic incubations of pyDOM with radical quenchers as
well as by quantifying radical fluxes in these microbiological
systems.

While FT-ICR-MS peak magnitudes are a function of
molecular ionizability, making it generally impossible to
quantify the different bio-labile and bio-produced com-
pounds of our study, the ultrasensitivity of this technique en-
sures the detection of all compounds that are within the FT-
ICR-MS analytical window. Here, the number of molecular
formulas can be used as a quantitative measure for molec-

ular diversity (e.g., Gurganus et al., 2015). Previously pub-
lished liquid-state 1H NMR data for the same samples pro-
vide a quantitative measure of functional group content (Bo-
stick et al., 2021). Significant positive and negative correla-
tions were observed between the numbers of bio-labile and
bio-produced formulas and the percent NMR spectral signal
accounted for by olefinic functionalities and methanol (Fig. 6
and Table S4). These correlations suggest that the diversity
of biodegraded (bio-labile) and bio-produced molecules was
related in some way with a process related to the availability
of methanol (CH3OH) and olefinic functionalities (C=C) in
pyDOM.

Olefinic functionalities have been recently identified as
important structural motifs in the composition of pyDOM
and were observed to degrade in photochemical experiments
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Figure 5. Van Krevelen diagrams showing oxygenation products among the bio-produced formulas of the four incubated pyDOM samples.
Formulas not part of any of the oxygenation KMD series (O, CO or COO) are colored in gray. Formulas in dark green are substrates with their
oxygenation products colored in light green. The number of formulas in each of these pools is shown in the legends (along with corresponding
percentages). The black lines indicate modified aromaticity index cutoffs (AIMOD; Koch and Dittmar, 2006, 2016).

likely due to their high reactivity with ROS species (Gora-
nov et al., 2020). Although olefins are in low abundance in
pyDOM (< 10 %), it is likely that they act as important inter-
mediates in the degradative pathways of pyDOM (Goranov et
al., 2020). Olefinic bonds can be homolytically cleaved when
attacked by radicals and effectively act as radical accelera-
tors that further propagate radical-mediated organic-matter
transformations. Thus, the abundance of olefins can further
increase the abundance of radicals and contribute to the ele-
vated molecular diversity resulting in the significant correla-
tion shown in Fig. 6.

The other significant correlation between molecular di-
versity and NMR data is observed to be with methanol
(CH3OH), a very sharp highly distinguishable singlet at δ =
3.34 ppm in 1H NMR spectra (Gottlieb et al., 1997). As it
is a common contaminant in NMR analysis, special precau-

tions were taken to obtain ultraclean spectra (see Sect. 2.5).
Methanol is a species that is naturally present in pyDOM
(Bostick et al., 2018), and while it is generally considered
to be toxic to microbes (Dyrda et al., 2019), there are methy-
lotrophic bacteria and fungi (microbes of the families Methy-
lococcaceae and Methylobacteriaceae) that can utilize it as
a substrate (Chistoserdova et al., 2003; Kolb and Stacheter,
2013; Chistoserdova and Kalyuzhnaya, 2018). These species
have been previously observed in the soil from the area
where the microbial inoculum was extracted (Khodadad et
al., 2011), suggesting that the degradation of methanol may
be biotic. In fact, in these samples, methanol, along with the
other two measured LMW substances, acetate and formate,
was almost completely degraded over the 10 d incubation
(Bostick et al., 2021).
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Figure 6. Pearson correlation analysis between the number of bio-
labile and bio-produced formulas detected by FT-ICR-MS and rela-
tive intensity (in %) of olefinic functionalities (C=C) and methanol
(CH3OH) as measured by liquid-state 1H NMR and reported by
Bostick et al. (2021). No significant correlations were found be-
tween other functional groups and the number of bio-produced or
bio-labile formulas (data shown in Table S4).

The inverse relationship between the content of methanol
and molecular diversity (Fig. 6) can be interpreted in several
ways. Firstly, methanol could be exhibiting toxicity to the
microbes that assimilate pyDOM, as has been observed pre-
viously (Dyrda et al., 2019). This, however, is unlikely for
the pyDOM systems studied here because the sample with
the highest amount of methanol (Oak 400 Photo, ∼ 3.7 %
CH3OH) was the second-most bio-reactive (Bostick et al.,
2021). Instead, the observed significant negative correlation
may be explained by the fact that methanol is a known
radical scavenger (Múčka et al., 2013). If, as we propose,
the molecular diversity results from the activity of radical
processes, an increasing concentration of methanol would
quench ROS, thereby decreasing the radical activity and lim-
iting the molecular diversity in these systems.

4 Discussion

4.1 Multiple pathways for the alteration of pyDOM by
microbes

Using a variety of analytical platforms in this and the parallel
study (Bostick et al., 2021), significant quantitative and qual-
itative losses were observed when pyDOM was subjected to
incubation with a microbial consortium collected from a site
impacted by wildfires. Additionally, labile and diverse com-
pounds were produced during these incubations. Due to the
high complexity of pyDOM, the changes are not straightfor-
ward, and there are at least two degradation pathways at play:
(1) degradation through microbial assimilation (consumption
of pyDOM) and (2) degradation and/or transformation via
radical-mediated reactions (e.g., oxygenation) by ROS pro-
duced from microbial exoenzymes. These two pathways are
discussed in the context of degradation of pyDOM and the
formation of new labile and diverse molecules.

4.1.1 Molecular degradation of pyDOM

A surprising observation in this study is that there was a
uniform loss of pyDOM molecules from all regions of the
vK diagrams. Microbes, it is generally presumed, prefer-
entially assimilate small non-aromatic substances such as
carbohydrates, proteins and LMW acids (Berggren et al.,
2010a, b; Kirchman, 2018). Thus, the aromatic fraction of
pyDOM, mainly the ConAC, are generally considered to be
bio-resistant (Goldberg, 1985; Masiello, 2004). In addition to
the condensed character of many of the molecules, there are
significant numbers of potentially toxic organochlorine com-
pounds, of both aliphatic and aromatic character, in pyDOM
(Wozniak et al., 2020). Thus, the finding of major biological
activity in these pyDOM systems and the significant amount
of carbon, including aromatic carbon, that was mineralized
is a very significant finding for the wildfire biogeochemistry
community (Bostick et al., 2021).

Although pyDOM is highly heterogeneous (Wozniak et
al., 2020), the observation of diverse molecular biodegra-
dation is not unique to it. In a recent microbial degrada-
tion study of snow DOM, Antony et al. (2017) observed that
both aromatic and aliphatic formulas were biodegraded. This
is likely due to microbes evolving chemical mechanisms to
thrive under extreme glacial conditions (Antony et al., 2016).
Analogously, as there have been previous prescribed fires in
the area from which the microbes for this study were ex-
tracted (Johns, 2016), it is also possible that our microbes
had adapted to the presence of pyOM/pyDOM by develop-
ing mechanisms for assimilating the carbon in large, complex
molecules, including ConAC (Judd et al., 2007).

While direct microbial assimilation of pyDOM com-
pounds is certainly likely to have occurred, our molecu-
lar and spectroscopic findings suggest a second degradative
pathway contributing to the extensive molecular alteration
and to the significant loss of carbon that was quantified in
the parallel study (Bostick et al., 2021). While some mi-
crobial exoenzymes operate via hydrolytic pathways (amy-
lases, lipases, proteases, cellulases, β-galactosidases, etc.),
many other enzymes operate through oxidative (electron-
withdrawing) pathways. Examples of such enzymes are the
various lignin-modifying enzymes in the peroxidase (lignin
peroxidases, manganese peroxidases, etc.) and phenol oxi-
dase (e.g., laccases) families (Higuchi, 2004). Thus, ROS are
usually produced and involved in the microbial degradation
of organic matter in the environment.

The bio-labile molecules in the studied pyDOM samples
are of highly variable degrees of oxygenation, aromaticity
and size. There were large MW compounds (MW> 550 Da)
that were degraded indicating that microbial exoenzymes
producing ROS would have been needed to reduce the size
of these large substrates into smaller units that could pass
through microbial cell membranes and be consumed by the
biota (Sinsabaugh et al., 1997; Fuchs et al., 2011; Burns et
al., 2013). The presence of enzymatic compounds is con-
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firmed by observation of peptide-like compounds (FT-ICR-
MS analysis) and proteinaceous fluorophores (spectrofluoro-
metric analysis). An important finding is that a preferential
degradation of ConAC of smaller MW was observed (Bo-
stick et al., 2021). As small ConAC (i.e., oxygenated poly-
condensed aromatic hydrocarbons) are known to be toxic
(e.g., Idowu et al., 2019), it is unlikely that they were directly
consumed by the microbes. Oxygenated polycondensed aro-
matic hydrocarbons are highly susceptible to attacks by ROS,
which is likely how they were degraded in these samples.
Thus, we speculate that microbes are most likely not directly
consuming the smaller ConAC, but, rather, smaller ConAC
are degraded indirectly via ROS oxidation. Furthermore,
ROS can oxygenate pyDOM with various functional groups
(e.g., hydroxy, aldehyde/keto, carboxyl), and can also cleave
functional groups (e.g., methoxy functionalities), open aro-
matic rings and completely mineralize compounds to inor-
ganic carbon (CO, CO2, HCO−3 and CO2−

3 ) as shown in
Fig. 4. ROS have been previously shown to be very impor-
tant in pyDOM photochemistry (Ward et al., 2014; Fu et al.,
2016; Wang et al., 2020), and we speculate that they play
an important role in the microbial degradation of pyDOM as
well.

More indirect evidence for radical species involvement is
provided by the peptidoglycan molecules produced during
the pyDOM incubations. Peptidoglycan molecules are gen-
erally large (Vollmer et al., 2008) and would not be detected
as singly charged ions using FT-ICR-MS (analytical win-
dow covering only m/z 200–1000). The hydrolytic products
of peptidoglycans (small oligopeptides) would be observed.
Very few peptide sequences (5–18 oligopeptides of 2–5
residues) were identified among the bio-produced formulas,
indicating that such hydrolysates did not exist in the samples
at the time of measurement. However, if there were abundant
radical reactions occurring in the system, as we suggest, it is
very possible that these hydrolysates were altered into unrec-
ognizable organic structures that would still be classified as
peptide-like but would have different molecular composition
than the predicted linear peptide sequences. It is also possible
that instead of peptidoglycan hydrolysis followed by consec-
utive oxygenation, ROS directly cleaved the peptidoglycans
into smaller non-linear substances of peptide-like molecular
composition.

It must be noted that the results of our study were acquired
using negative-mode ESI which is only effective for elec-
tronegative (carboxyl-rich, hydroxyl-rich) compounds (Sten-
son et al., 2002; Patriarca et al., 2020). Thus, the trends of
degradation and labilization are skewed to fit this criterion
and do not provide a complete overview of all molecules that
are bio-labile or bio-produced. Future studies should employ
positive-mode ESI (Ohno et al., 2016) and/or different ion-
ization sources (such as atmospheric pressure photoioniza-
tion, Hockaday et al., 2009) to better elucidate the molecular
degradability of pyDOM.

4.1.2 Labilization and diversification of pyDOM

The production of labile unrecognizable biological sub-
stances during these incubations correlates well with pre-
vious findings showing the formation of thousands of new
biological compounds during biotic incubations unrelated
to microbial metabolic pathways (Lechtenfeld et al., 2015;
Wienhausen et al., 2017; Patriarca et al., 2021). There was
no significant overlap among the bio-produced formulas of
the four pyDOM samples (2–320 formulas in common, 0 %–
12 % overlap). Insignificant numbers of bio-produced formu-
las from pyDOM were also found in the bio-produced formu-
las of an incubation of sucrose with the same soil microbes
(63–94 formulas, 3 % overlap). This indicates that microbes
diversified the composition of the incubated pyDOM.

The observed diversity of bio-produced formulas can
be explained by a scenario wherein the microbes secreted
molecules whose identities differed depending on the growth
medium and/or food source, yielding high variability among
bio-produced formulas after the incubation of pyDOM. Ad-
ditionally, it is possible that different microbial species (dif-
ferent bacteria, fungi, archaea, etc.) have proliferated in re-
sponse to the sample-specific pyDOM composition, yield-
ing different microbial populations growing during each
different incubation, sequentially producing different bio-
produced compounds (Fitch et al., 2018). Another possible
explanation for the observed diversification is the presence
of ROS-driven oxygenation processes. ROS are known to
be key species in the consumption of organic matter by mi-
crobes. Microbes can only consume small molecules that
could pass through their cell membranes (Sinsabaugh et al.,
1997; Fuchs et al., 2011; Burns et al., 2013). Thus, to uti-
lize large molecules as food, microbes produce exoenzymes
which generate ROS extracellularly (Hyde and Wood, 1997;
Higuchi, 2004). These ROS then degrade the large molecules
into smaller ones that are utilized as food. Though not di-
rectly proven to exist in this study, many of the observed
trends in FT-ICR-MS, NMR and fluorescence data suggest
the presence of radicals which diversify the composition of
the bio-produced formulas.

Our finding of extreme molecular diversity contrasts with
previous observations in a study by Lechtenfeld et al. (2015)
evaluating the molecular composition of microbially pro-
duced DOM. In their study, marine microbes were supplied
with two different substrates (glucose and glutamic acid;
and a mixture of oligosaccharides and oligopeptides), and
a significant overlap (67 %–69 %) in the bio-produced or-
ganic matter was observed. The difference in observations
between the work presented in this paper and by Lechten-
feld et al. (2015) is likely caused by a large difference in
the composition of the pyDOM substrates relative to those
in the Lechtenfeld et al. (2015) study. While the four py-
DOM samples used here are highly different to one another
(Goranov et al., 2020; Wozniak et al., 2020), the substrates
by Lechtenfeld et al. (2015) were of much higher similar-
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ity (glucose, glutamic acid, oligosaccharides and oligopep-
tides). Another possible reason is that due to different phys-
iology the soil microbes used here may be producing more
diverse biomass than the marine microbes used by Lecht-
enfeld et al. (2015). It is likely that aquatic microbes have
a very different degradation strategy than soil microbes. As
soils are far less rich in labile molecules, it is possible that
soil microbes have evolved to produce much higher fluxes
of ROS to degrade the more recalcitrant soil organic matter
into consumable substrates, which can also explain the larger
dissimilarity in bio-produced organic molecules after the in-
cubations of pyDOM.

An important observation using the H/C versus MW plots
(Fig. S5) was that the bio-produced compounds after incuba-
tion of pyDOM were of various MW. Thus, it is likely that
the microbial biomass produced during the incubation is rad-
ically coupled with ambient pyDOM molecules or their bio-
chemical remnants. Radical coupling has recently been pro-
posed as an important process in marine DOM cycling (Hach
et al., 2020). In that study, when isotopically 13C-labeled
organisms were incubated with oceanic surface waters, mi-
crobially produced compounds were quickly coupled to the
ambient marine DOM molecules. This “recombination” pro-
cess occurred within hours of the production of microbial
exudates, followed by the observation of a highly diversified
DOM pool. This process is likely driven by radical coupling
reactions, and such pathways have also been observed in in-
cubations in the presence of sunlight (Sun et al., 2017). An-
other possible explanation is that chemically reactive species,
such as quinones, reacted with microbially produced com-
pounds or the NH+4 nutrient via nucleophile-driven reactions
(such as the Michael addition; McKee et al., 2014) to produce
highly diverse pools of molecules after each incubation.

Our results are also compared to previous work by Wag-
goner et al. (2017), where a ligninaceous sample was treated
with three different ROS: hydroxyl radical ( qOH), singlet
oxygen (1O2) and superoxide (O−

q
2 ). Each different radical

degraded a specific pool of ligninaceous compounds, which
showed that different ROS can degrade a variety of types of
organic matter. However, there was a significant overlap ob-
served between the three pools of molecules that were de-
graded (Waggoner et al., 2017) indicating that degradation
pathways solely based on ROS attacks are still ordered. Thus,
because ROS on their own do not produce completely diver-
sified molecular pools, the combination of the two possible
pathways (consumption and ROS degradation) must have oc-
curred to produce the great variability in the bio-produced
microbial biomass observed in our study.

Collectively, our results indicate that pyDOM can be both
directly consumed by biota and secondarily degraded by
ROS-driven processes. These pathways could not be ex-
plored at a mechanistic level in the current study, and we sug-
gest that future studies focus on employing more specialized
analytical techniques (e.g., genetic sequencing, ROS quan-

tification) for deconvoluting the complexity of the biodegra-
dation of pyDOM.

4.2 Implications for the cycling of pyDOM in the
environment

The present study provides a detailed evaluation of the com-
pounds that microbes degrade and produce in samples mim-
icking pyDOM in hydrologically dynamic systems such as
riverine and groundwater systems. This work brings new
knowledge regarding the properties and degradability of py-
DOM and challenges the conventional idea that pyDOM is
stable towards biotic degradation. Several studies have al-
ready shown that pyrogenic substances have soluble DOM
components (Hockaday et al., 2007; Mukherjee and Zimmer-
man, 2013; Wagner et al., 2017; Bostick et al., 2018) and that
more soluble components are produced with environmental
aging (Abiven et al., 2011; Ascough et al., 2011; Roebuck et
al., 2017; Quan et al., 2020). The experiments presented here,
in parallel with Bostick et al. (2021), show that a large por-
tion of pyDOM can be remineralized (biodegraded to CO2)

without priming (Guenet et al., 2010; Bianchi, 2011), which
indicates that pyrogenic molecules may be far less resistant
to biodegradation than previously presumed.

The involvement of pyDOM within the global carbon cy-
cle is complex and, for many biogeochemical processes,
poorly understood. There is a growing body of literature
showing that significant amounts of ConAC are solubilized
and exported to the global ocean (Dittmar et al., 2012; Jaffé
et al., 2013; Wang et al., 2016; Marques et al., 2017; Jones et
al., 2020) suggesting constant global leaching of pyDOM in
riverine systems from pyOM in soils. The global riverine flux
of pyDOM is estimated using the recently reported global
flux of ConAC (18 Tg C yr−1) and scaled using a factor of
7.5 as proposed by Bostick et al. (2018) to be 135 Tg C yr−1,
a value that is much lower than the estimated annual pyDOM
production and seepage flux of 1440 TgC yr−1 (Bostick et al.,
2018). In addition to the implied 91 % loss of carbon during
riverine export, a recent study also reported that the stable
carbon isotopic signature (δ13C) of oceanic ConAC is not
terrestrial but rather marine-like (Wagner et al., 2019). This
suggests that either all riverine-exported ConAC are being
mineralized before they reach the global ocean or ConAC are
chemically altered significantly to change their δ13C isotopic
signature (Jones et al., 2020). Microbial and photochemical
processes have been found to transform DOM with charac-
teristic terrestrial DOM composition (compounds with lower
H/C and higher O/C ratios) into compounds having char-
acteristics of marine-derived DOM (compounds with higher
H/C, lower O/C ratios; Rossel et al., 2013). Thus, pyDOM
may simply be losing its diagnostic molecular and isotopic
terrestrial-like fingerprints during riverine export due to a va-
riety of degradative post-production processes, and the ob-
served molecular transformations in our study are likely one
of them.

Biogeosciences, 19, 1491–1514, 2022 https://doi.org/10.5194/bg-19-1491-2022



A. I. Goranov et al.: Microbial labilization and diversification of pyrogenic dissolved organic matter 1507

The cycling of organic matter in the environment has al-
ways been an enigma, and there has been a long-standing
effort to explain the fate of terrestrial DOM (including py-
DOM) in the global ocean (Hedges et al., 1997). In a pre-
vious paper evaluating the photochemical transformation
of pyDOM (Goranov et al., 2020), we suggested that bi-
otic consumption of photodegradation products of pyDOM
(“small aliphatic compounds”) could result in the formation
of marine-like DOM. This hypothesis was tested by com-
paring our incubation products (the bio-produced formulas)
to FT-ICR-MS formulas of an estuarine transect of the Eliz-
abeth River, VA (Sleighter and Hatcher, 2008) and another
10 oceanic DOM samples (reported in Sect. S5). A signif-
icant number of common formulas was observed in these
comparisons (193–308 common formulas, 8 %–18 % over-
lap) confirming the hypothesis that bio-incubation of py-
DOM can produce marine-like DOM. The observed common
formulas were not condensed and 81–192 of them (42 %–
70 % overlap) were of molecular composition attributed to
carboxyl-rich alicyclic molecules (CRAM) per the definition
of Hertkorn et al. (2006). These results indicate that biotic
incubations of pyDOM (regardless of photo-irradiation) can
contribute to some of the molecules observed in oceanic en-
vironments. The fact that some of these molecules were ob-
served in both surface and abyssal oceanic DOM indicate that
some pyDOM biodegradation products may be sequestered
into the deep ocean as refractory DOM.

The observed bio-produced labile formulas in our study
do not appear to be commonly observed in other environ-
mental samples. This is likely because these labile molecules
are part of the fast-cycling, labile DOM pool per Hansell’s
model (Hansell and Carlson, 2015) and are quickly depleted
in the natural environment. This parallels the findings of a
recently published study (Hach et al., 2020) observing that
microbially produced molecules are extremely labile and
are, within hours, broken down and recombined with ambi-
ent DOM molecules. The closed laboratory systems in our
study may have enabled the observation of these highly labile
molecules, whereas in the natural environment they would
have been quickly transformed, diluted, or mineralized to in-
organic carbon resulting in their removal from analytical de-
tection. The richness in nitrogen and peptide-like character
of the bio-produced molecules we observe suggest greater
potential lability, and it is likely that the by-products of bi-
otic degradation of pyDOM are readily incorporated into mi-
crobial food webs. This is consistent with the idea that ter-
restrial DOM is either mineralized to CO2 or incorporated
into food webs (Berggren et al., 2010a; Ward et al., 2013;
Fasching et al., 2014). It is also consistent with the sugges-
tion that the majority of organic nitrogen in the oceans is de-
rived from microbial peptidoglycans (McCarthy et al., 1997,
1998; Simpson et al., 2011) and with observations of nitrogen
from peptidoglycans in soil and sedimentary porewater sys-
tems (Schulten and Schnitzer, 1998; Hu et al., 2018, 2020).

The production of highly variable and diverse bio-
produced molecules is likely a contributing factor to the large
complexity of organic matter in the environment (Hertkorn et
al., 2007; Hawkes et al., 2018). Our observed bio-produced
molecules likely contribute to the highly variable microbial
exometabolomes observed previously (Antón et al., 2013;
Watrous et al., 2013; Romano et al., 2014) and stimulate fur-
ther questions about pyDOM’s function and fate within the
global carbon and nitrogen cycles. In this study, we have used
soil microbes, as the corresponding degradation by-products
can be observed in both soil and groundwater and partially in
the upstream sections of rivers. Therefore, it would be crit-
ical to perform further studies with different microbial con-
sortia (riverine, estuarine, marine, etc.) to fully understand
the biological degradation of pyDOM in different environ-
ments. Additionally, the observed evidence for two possi-
ble degradative pathways (consumption and ROS degrada-
tion) indicates that these pyDOM incubations are extremely
complex systems. Future microbiological studies must aim
to investigate these pathways further by designing radical
quenching experiments (to test for the presence/absence of
radical oxygenation pathways) as well as to employ bio-
analytical techniques (e.g., genetic sequencing; Nalven et al.,
2020) for assessing what microbes are responsible for the la-
bilization and diversification of pyDOM.

5 Conclusions

This study probing the molecular changes occurring after
biotic degradation of pyDOM revealed that soil microbes
can effectively recycle and transform a significant portion
of pyDOM molecules into labile microbial biomass. After
the 10 d incubations, it appears that a wide range of py-
DOM molecules, both aromatic and aliphatic, were degraded
and/or transformed, forming a highly diverse pool of com-
pounds, including N-containing compounds with proteina-
ceous signatures and a peptidoglycan-like backbone. These
observations are consistent with the previous identification
of nitrogen from peptidoglycans in soils and oceans. These
bio-produced compounds were highly specific for each py-
DOM sample which was concluded by observing very few
common bio-produced molecular formulas among incubated
samples. The observed molecular labilization and diversifica-
tion have implications for the biogeochemistry of pyDOM as
we show that microbial reworking of pyDOM can contribute
to the large complexity and variability of natural organic mat-
ter. This study reveals that (1) pyDOM can be a medium for
microbial growth and (2) previously considered recalcitrant
pyrogenic molecules can be broken down and the carbon
and nitrogen therein can be incorporated into microbial food
webs. This study suggests that pyDOM is a much more active
component in the global carbon and nitrogen cycles and that
some non-condensed pyDOM degradation products have an
oceanic fate. Therefore, future studies need to further evalu-
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ate the biodegradability of pyDOM with microbial consortia
of different environments as well as in the context of wetted
soils, groundwater processes, cycling within the riverine and
marine water columns, and other aspects of the global carbon
and nitrogen cycles.
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