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Machine learning-based event generator for electron-proton scattering
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We present a new machine learning-based Monte Carlo event generator using generative adversarial
networks (GANs) that can be trained with calibrated detector simulations to construct a vertex-level event
generator free of theoretical assumptions about femtometer scale physics. Our framework includes a GAN-
based detector folding as a fast-surrogate model that mimics detector simulators. The framework is tested
and validated on simulated inclusive deep-inelastic scattering data along with existing parametrizations for
detector simulation, with uncertainty quantification based on a statistical bootstrapping technique. Our
results provide for the first time a realistic proof of concept to mitigate theory bias in inferring vertex-level
event distributions needed to reconstruct physical observables.

DOI: 10.1103/PhysRevD.106.096002

I. INTRODUCTION

Since the early 1970s, Monte Carlo event generators
(MCEGs) have played a vital role in facilitating studies of
quantum chromodynamics (QCD) in high-energy scatter-
ing processes. From the experimental perspective, MCEGs
are a crucial part of the procedure used for modeling the
detector response folded into measured quantities (“detec-
tor-level”) to extract the true energies and momenta of final
state particles as produced at the interaction point (“vertex-
level”). The development of modern MCEGs, such as
PYTHIA [1], HERWIG [2], and SHERPA [3], has been driven by
a combination of high-precision experimental data and
theoretical inputs. The latter have involved a mix of
perturbative QCD methods, describing the dynamics of
quarks and gluons at short distances, and phenomenologi-
cal models that map the transition from quarks and gluons

to observable hadrons, as well as nonperturbative inputs
such as parton distribution functions for applications
involving hadrons in the initial state [4–9].
While the theoretical assumptions are usually well

justified, an approach that mixes data with a model for
the underlying physical law which we wish to infer can
potentially lead to biased results. Moreover, the need to
correct for detector effects typically becomes increasingly
difficult in higher dimensions and prevents a faithful
reconstruction of vertex-level events in a model indepen-
dent way. In this work we present a novel approach to build
an event-level interpolation tool based on machine learning
(ML) that avoids theoretical assumptions about the fem-
tometer-scale physics, and discuss a strategy to correct for
detector effects at the event level.
An important application where this approach is particu-

larly needed is in the context of spin physics in inclusive,
semi-inclusive and exclusive electron–nucleon scattering.
Here, various spin configurations among the initial state
particles are prepared in order to explore detailed emergent
features of quarks and gluons inside hadrons atmodern acce-
lerator facilities, such as COMPASS at CERN, Jefferson
Lab, and the future Electron-Ion Collider. Unfortunately,
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existing theory-based MCEGs are still in their infancy, and
at present noMCEG is able to reproduce, even qualitatively,
all possible spin asymmetries in these reactions. The reliance
on the theory-based MCEGs to extract physics information
from these types of measurements inherently introduces
biases, which only new developments in the theory behind
the MCEGs can mitigate.
In this paper we present an alternative strategy to unfold

detector effects by constructing an ML-based event gen-
erator (MLEG) using generative adversarial networks
(GANs) [10], which have been increasingly utilized
recently in high-energy physics applications as a tool for
fast Monte Carlo simulations [11–17]. A detailed survey of
MLEGs for physics event generation can be found in
Ref. [18]. A crucial feature of GANs (and generative
models in general) is their ability to generate synthetic
data by learning from real samples without explicitly
knowing the underlying physical laws of the original
system. We present a case study for inclusive electron–
nucleon deep-inelastic scattering (DIS) with realistic pseu-
dodata generated from phenomenological models. We first
train the MLEG that can faithfully reproduce the phase
space of inclusive DIS, along with uncertainty quantifica-
tion stemming from finite statistics and model architec-
tures. Subsequently, we implement detector effects using an
effective parametrization of detectors and train the MLEG
and folding algorithms to simulated detector-level DIS
events. For the first time a closure test for reconstructing
vertex-level DIS events, free of theoretical assumptions, is
also performed.
The results provide a new opportunity for experimental

data analysis to use the GAN approach to build theory-free
event generators which mitigate biases induced in recon-
structing physical observables from experimental data.
Moreover, the technique provides a new form of data
representation that can be easily distributed, in contrast to

the traditional data representation via histograms that are
limited for processes with high-dimensional phase space.
We begin the discussion in Sec. II with a schematic

overview of the MLEG training with our GAN-based
event-level interpolator. This is followed in Sec. III by a
description of the ML detector surrogate that we use in
order to simulate the effects of real particle detectors. The
application to inclusive electron-proton DIS is discussed in
Sec. IV, where we examine GAN training both with and
without detector effects. Finally, in Sec. V we summarize
our findings and discuss future extensions and applications.

II. GAN-BASED EVENT-LEVEL INTERPOLATOR

A schematic view of the training workflow of our MLEG
GAN is illustrated in Fig. 1, where, as usual, the GAN
model is composed of a generator and a discriminator. The
generator converts noise through a deep neural network
into event-level features, which is customized by a given
reaction. The generated event features are then passed into a
detector simulator to convert them as “trial” detector-level
events. The discriminator learns through another deep
neural network to differentiate the true detector-level event
samples from ones produced by the generator and the
detector simulator. The GAN training evolves as the
generator and discriminator compete adversarially, each
updating their parameters during the training process.
Eventually, the generator is able to produce synthetic
samples that the discriminator can no longer distinguish
from the real samples, at which point the training of the
MLEG is complete.
Although GANs have demonstrated impressive results in

various applications, including generating near-realistic
images [19], music [20], and videos [21], training a
successful GANmodel is known to be notoriously difficult.
Many GAN models suffer from major problems, such as
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FIG. 1. Schematic view of theMLEGGAN training framework. TheMLEG (dashed box) uses a generator which transforms noise into
event-level features. The generator is concatenated with a detector simulator to mimic synthetic detector-level event features. The deep
neural network based discriminator compares detector-level event features in order to build gradients to update the generator of theMLEG.
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mode collapse, nonconvergence, model parameter oscilla-
tion, destabilization, vanishing gradient, and overfitting due
to unbalanced training of the generator and discriminator.
Approaches and techniques to address these general prob-
lems have been proposed and discussed recently in the
literature [22–26].
Unlike common GAN applications, such as the gener-

ation of realistic high resolution images, the success of our
GAN application as nuclear and high-energy physics event
generators relies on its ability to faithfully reproduce
correlations among the particles’ momenta, which are
increasingly difficult in higher (greater than one or two)
dimensions. At the same time, the corresponding multidi-
mensional momentum distributions or histograms display
rapid changes in the phase space that span several orders of
magnitude. The challenge is then to design suitable GAN
architectures capable of reproducing all of the correlations
among the particles, along with a faithful reproduction of
the multidimensional histograms across the phase space. In
Sec. IV we will discuss in detail about how to customize
this for the specific application of inclusive DIS.

III. ML DETECTOR SURROGATE

Experimental data, provided in the form of final state
particle momenta, are affected by distortions introduced by
experimental detectors. A correction procedure is usually
necessary to extract the true information from the measured
cross sections and provide the vertex-level distributions
used in physics analysis. Such detector effects have
multiple causes, including limited acceptance, finite reso-
lution, efficiency distortion, and bin migrations due to
radiation and rescattering. Corrections are commonly taken

into account using unfolding procedures that attempt to
correct for the detector effects at the histogram level, which
require ad hoc corrections for each type of observable.
In order to demonstrate that our framework is realizable

in a real experimental analysis, such detector effects must
be incorporated. For this purpose, we use the open source
eic-smear software package [27], which was developed at
Brookhaven National Laboratory as a fast simulation tool
for the future Electron-Ion Collider [28], with smearing
capability for quantities such as momentum, energy, polar
and azimuthal angles, and provides a simplified para-
metrization of the response of the detectors. This was used
to simulate a simplified version of the H1 and ZEUS
detectors with unsegmented 4π acceptance, which made it
suitable for our proof of concept problem.
We develop ML-based detector surrogates using a

secondary conditional GAN, as illustrated in Fig. 2. The
idea is to train a conditional generator simulating the
smearing effect of the detector by converting input ver-
tex-level event features and noise into detector-level event
features, as dictated by eic-smear. To do this we build
training samples using trial vertex-level guess event sam-
ples and the associated eic-smear detector-level samples to
train the conditional GAN. Once the conditional GAN is
trained, the ML detector surrogate (represented by the
dashed box in Fig. 2) can be integrated as the detector
simulator in Fig. 1. It is worth noting that for a more
realistic description of detector effects, the eic-smear
parametrization should be replaced by a full GEANT-based
detector model [29]. However, its integration within our
MLEG models using standard ML libraries is beyond the
scope of the present analysis, and will be the subject of
future work.

eic-smear

Generator

Discriminator
Noise

enerator

Detector Proxy GAN

smear
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back propagation

vertex level 
events

detector level 
events

FIG. 2. Schematic view of the ML detector surrogate, where a generator converts input vertex-level event features and noise to
detector-level event features. The training samples are obtained from guess vertex-level samples and the corresponding detector-level
samples using a detector simulator. The discriminator (right hand side of the figure) is trained simultaneously with vertex-level and
detector-level event features in order to minimize the dependence of the generator on the input vertex-level guess samples.
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IV. APPLICATION TO INCLUSIVE
ELECTRON-PROTON SCATTERING

In this section we describe the application of our MLEG
strategy to the inclusive unpolarized DIS of electrons (with
four-momentum k) from protons (four-momentum P). Our
goal is solely to produce the scattered electron phase space,
labeled by the four-momentum k0. As a surrogate for real
experimental data, we use pseudodata generated from the
Jefferson Lab Angular Momentum (JAM) Collaboration’s
global QCD analysis framework [30] that has been tuned to
describe world data on inclusive DIS and other high-energy
scattering processes.
The inclusive electron DIS samples are generated at a

center of mass energy of 318.2 GeV, compatible with
HERA kinematics, by integrating the 2-dimensional differ-
ential cross section dσ=dx dQ2, computed at next-to-lead-
ing order in perturbative QCD using importance sampling,
and unweighting events over a very dense binning in
ðx;Q2Þ-space. Each event is transformed into an outgoing
electron momentum in the HERA laboratory frame by
generating an azimuthal angle relative to the beam axis
sampled from a uniform distribution. While our ultimate
goal is to apply this approach to real data, this case study
provides unique insights of our MLworkflow and allows us
to identify challenges in formulating a suitable feature
space to be learned by the model.
When training the GAN solely using the electron

momentum in the laboratory frame as event features, the
generator was found to create electron samples that violate
momentum conservation near the edge of the phase space,
and the model was not sensitive enough to prevent the
production of these samples [31]. To alleviate this problem
and aid the training, we use a change of variables that
enhances the discriminator awareness in these difficult
regions. Specifically, we define the scaled variables

ν1 ¼ lnððk00 − k0zÞ=1 GeVÞ; ð1aÞ

ν2 ¼ lnðð2Ee − k00 − k0zÞ=1 GeVÞ; ð1bÞ

where Ee is the incident electron energy, and k00 and k0z are
the scattered electron energy and longitudinal momentum,
respectively. In Eqs. (1) the energies and momenta in the
arguments of the log are explicitly in units of GeV. These
variables can be easily inverted into the original momentum
space. In particular, the variable ν2 changes rapidly as the
energy of the outgoing electron approaches its limit,
allowing the discriminator to be aware of such region.
In the following, we present details of our chosen ML

architecture used for the event-level interpolation and the
ML detector surrogate.

(i) MLEG: The input to the generator in Fig. 1 is a 100-
dimensional white noise array centered at 0 with unit
standard deviation. The generator network consists
of 5 hidden dense layers, with 512 neurons per layer,

activated by a leaky rectified linear unit (ReLU)
function. The number of layers and neurons is
optimized to balance execution time and conver-
gence. The last hidden layer is fully connected to a
2-neuron output corresponding to the variables ν1
and ν2, activated by a linear function representing
the generated features. The corresponding discrimi-
nator also consists of 5 hidden dense layers with 512
neurons per layer, optimized as for the generator,
and activated by a leaky ReLU function. To avoid
overfitting, a 10% dropout rate is applied to each
hidden layer. The last hidden layer is fully connected
to a single-neuron output, where “1” indicates a true
event and “0” a fake event. The discriminator D is
trained to giveDðFÞ ¼ 1 for each training sample F,
and DðF̃Þ ¼ 0 for each sample F̃ produced by the
generator.

(ii) ML detector surrogate: The detector surrogate model
is based on a conditional GAN architecture [32]. As
shown in Fig. 2, we have a generator that receives
vertex-level input in addition to a 100-dimensional
white noise centered at 0 with unit standard
deviation. The generator learns to fold the inputs
and produce detector-level events that mimic the
detector response dictated by eic-smear. By con-
ditioning the model on vertex-level event features we
can enforce learning the correlations between vertex-
and detector-level events as opposed to learning a
deterministic mapping between inputs and outputs.
As for the MLEG, the generator will produce a
2-neuron output corresponding to the detector-level
variables ν1 and ν2, activated by a linear function
representing the generated features, and the dis-
criminator will similarly produce “0” or “1” for
training and generated samples, respectively. In both
the generator and discriminator architectures of the
ML detector surrogate, we use the same number of
hidden layers, neurons, dropout rates, and activation
functions as in our MLEG. A similar idea of using a
GAN for detector effects has been proposed by
Bellagente et al. [33], where, in contrast to our
folding procedure, parton-level data are mapped to
detector-level data using a conditional GAN model.

For both of our GAN architectures we adopt the least
squares GAN (LSGAN) [34], which replaces the cross
entropy loss function in the discriminator of a regular GAN
by a least squares term,

min
D

VðDÞ ¼ 1

2
hðDðxÞ − bÞ2ix∼PT

þ 1

2
hðDðGðx̃ÞÞ − aÞ2ix̃∼PG

; ð2Þ

min
G

VðGÞ ¼ 1

2
hðDðGðxÞÞ − cÞ2ix∼PG

; ð3Þ
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with zero. In this case, the inference of the underlying
vertex-level distribution is ill defined.
We can understand such an effect by considering the

extreme scenario where the detector does not observe a
particle at all, or converts the vertex-level samples into flat
noise. Clearly, in such a situation the vertex-level distri-
bution is not recoverable. In the present situation, some
regions of the phase space are subjected to some degree to
such extreme effects, while other regions are not. Other
than those ill-defined regions, one can see that within the
uncertainties the synthetic reduced cross sections are in
agreement with the true vertex-level cross sections. This
can be seen as confirmation that our MLEG training passes
the closure test in the presence of detector effects.

V. SUMMARY AND OUTLOOK

We have presented a new approach based on generative
adversarial networks to extract physics observables from
pseudodata in a physics agnostic manner. To illustrate the
strategy, we developed a GAN-based MLEG capable of
generating synthetic data that mimic inclusive deep-inelas-
tic ep scattering pseudodata generated in the kinematics of
the ZEUS and H1 experiments at HERA. To demonstrate
the veracity of our approach we performed a closure test,
extracting the original phase space distributions from
synthetic particle four-momenta.
To simulate real experimental scenarios, we introduced

distortions into the analysis that would be induced by a real
detector, implementing a resolution smearing function, and
after repeating the test obtained good agreement between
original and extracted phase space distributions. Pulls
quantified the uncertainty associated with the unfolding
procedure, showing not only that we were able to extract
the desired physics observables, but also obtain an uncer-
tainty quantification for the unfolding procedure. To our
knowledge, this is the first time that detector effects have
been unfolded from pseudodata on an event basis.

While our long term goal remains to construct an MLEG
for real experimental events across multiple channels
involving multiple particles in the final state for QCD
studies, the present analysis is a necessary and important
proof of concept that demonstrates the viability of applying
ML techniques to mitigate theoretical bias in experimental
data analysis. Despite the fact that in our analysis we have
effectively utilized only two-dimensional degrees of free-
dom to be reproduced by the MLEG, our main result is that
it is possible to unfold detector effects at the event level.
From the ML point of view, a larger number of particles in
the final state amounts to a larger feature space. It is
expected, therefore, that an extension of our proposed idea
to include additional particles in the final state is feasible,
provided that the number of final state particles remains
moderate. This is the case, for example, in semi-inclusive
and exclusive electron-nucleon scattering.
As an obvious improvement, and in view of its appli-

cation to data analysis, we envision the implementation of a
more realistic detector simulator based on GEANT to further
study this technology. We expect that the use of our
framework in ep scattering will be a valuable comple-
mentary tool for nuclear and particle physics programs at
current and planned facilities, such as Jefferson Lab [37]
and the Electron-Ion Collider [38].
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