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ABSTRACT

WIENER-FLIESS COMPOSITION OF FORMAL POWER SERIES:
ADDITIVE STATIC FEEDBACK AND SHUFFLE RATIONAL SERIES

Subbarao Venkatesh Guggilam
Old Dominion University, 2021
Director: Dr. W. Steven Gray

The problem statement for this dissertation is two-fold. The first problem considered is

when does a Chen-Fliess series in an additive static feedback connection with a formal static

map yield a closed-loop system with a Chen-Fliess series expansion? This work proves

that such a closed-loop system always has a Chen-Fliess series representation. Furthermore,

an algorithm based on the Hopf algebras for the shuffle group and the dynamic output

feedback group is designed to compute the generating series of the closed-loop system. It is

proved that the additive static feedback connection preserves local convergence and relative

degree, but a counterexample shows that the additive static feedback does not preserve global

convergence in general. This dissertation then pivots to the second problem considered, the

shuffle rationality problem. The notion of shuffle rationality and shuffle recognizability are

first defined, akin to the traditional notion of rational series in bilinear systems theory. It is

proved that shuffle rationality and shuffle recognizability coincide, similar to Schützenberger’s

theorem. An equivalent characterization of shuffle rational series is provided in terms of

a canonical state space realization. Specifically, it is shown that a shuffle rational series

corresponds to a realization of a nilpotent bilinear system cascaded with a static rational

map.
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CHAPTER 1

INTRODUCTION

The goal of this chapter is to describe the problems addressed in this dissertation and

provide an outline of the document. The problem statement for the dissertation is two-fold;

hence, the motivation behind each problem is explained.

1.1 MOTIVATION

1.1.1 Additive Static Feedback Problem

The interconnection of systems has been studied since the inception of the mathematical

system theory [Belevitch (1968),Fliess & Bourlès (1994)]. The static feedback connection is

of prime importance in the analysis of nonlinear input-affine systems [Isidori (1995)]. The

concept of feedback equivalence between two state space models, arising from the existence

of a static feedback law relating them, is used in the motion planning problem in robotics

[Murray & Sastry (1993)]. The discretization of a continuous-time nonlinear system, which

is feedback equivalent to a nilpotent system, is widely utilized in nonlinear digital control

problems such as output tracking [Di Gamberardina, et al. (1996),Monaco & Normand-Cyrot

(2001)].

This dissertation addresses the class of analytic nonlinear input-output operators called

Fliess operators. The interconnection of interest is the additive static output feedback con-

nection. A Chen-Fliess series is a functional series of iterated integrals of the input used

to describe an input-output system [Fliess (1981)]. The iterated integrals are indexed by

words X∗ over a noncommutative alphabet X . The generating series of a Chen-Fliess series

Fc is a noncommutative formal power series c whose coefficients provide the weights for the

iterated integrals. A Chen-Fliess series is convergent if the series describes the input-output

behavior on some non zero interval of time and for all integrable inputs that are sufficiently
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FcFcF fd

Fig. 1: Wiener-Fliess connection

small. A convergent Chen-Fliess series is called a Fliess operator. If Fc and Fd are two input-

output systems represented by Chen-Fliess functional series, then it was shown in [Ferfera

(1979), Gray & Li (2005)] that the feedback interconnection of two such systems always

renders a closed-loop system in the same class. Its corresponding generating series, written

as the feedback product c@d, can be efficiently computed in terms of a combinatorial Hopf

algebra which is commutative, graded and connected [Duffaut Espinosa, et al. (2016),Foissy

(2015),Gray, et al. (2014a)]. Convergence of the closed-loop system was characterized in

detail by [Thitsa & Gray (2012)]. Variations of the feedback product were used to solve sys-

tem inversion problems [Gray, et al. (2014b)] and trajectory generation problems [Duffaut

Espinosa & Gray (2017)]. The single-input, single-output (SISO) multiplicative dynamic

output feedback connection was treated in [Gray & Ebrahimi-Fard (2017)]. However, the

existing framework cannot accommodate the scenario where the dynamical system Fd in the

feedback path is replaced with a memoryless (static) function fd, namely, the static feedback

connection. The main problem is that the closed-loop involves the cascade connection of a

Fliess operator Fc with the static map fd, namely the Wiener-Fliess connection as shown in

Figure 1. The presence of a static map in the configuration renders the object incompatible

with the algebra used in the analysis of the dynamic feedback case.

The Wiener-Fliess composition of a Fliess operator Fc with a memoryless map fd was

defined, albeit with restrictions, in [Gray & Thitsa (2012)]. The Chen-Fliess series for a state

space model is a special case of the Wiener-Fliess connection [Fliess (1981)]. The restriction

in [Gray & Thitsa (2012)] was that the generating series c of the Fliess operator Fc in the
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forward path has to be proper. However, the definition is expanded in the present work for

the case when c is non-proper but with the new restriction that the static map fd should

be a polynomial. An analysis of the contractive nature of the Wiener-Fliess composition

product is also presented, which is essential to prove that the closed-loop system has a

Chen-Fliess series representation, say Fc@̂d. The effect on relative degree of the nonlinear

plant Fc in closed-loop is also characterized. Next, the focus turns to actually computing

the generating series c@̂d. What is needed in this regard are two Hopf algebras, the output

feedback Hopf algebra corresponding to the dynamic feedback case [Gray, et al. (2014b)],

and the Hopf algebra corresponding to the shuffle group [Gray, et al. (2014b), Venkatesh

& Gray (2020)]. The shuffle product appears naturally in nonlinear control theory when

systems are interconnected in parallel (taking the product of the outputs) [Ree (1958),Fliess

(1981)] and in series [Ferfera (1979), Ferfera (1980), Gray, et al. (2014a)]. To facilitate

these calculations, the underlying Hopf algebra (e.g., see [Abe (2004), Sweedler (1969)]) for

the group of non-proper formal power series under the shuffle product is introduced. The

interplay of these two combinatorial Hopf algebra structures is used to compute what will

be called the Wiener-Fliess feedback product, c@̂d. It will be shown that this product has

a natural interpretation as a transformation group acting on the plant, which preserves the

relative degree of the plant.

The proof that the additive static feedback configuration has a Chen-Fliess series rep-

resentation solves the computational aspect of the problem but opens up issues regarding

convergence. In particular, does the additive static feedback configuration of a Fliess opera-

tor Fc with an analytic function fd have a Fliess operator Fc@̂d representing the closed-loop

system? An equivalent question is to find conditions under which the Chen-Fliess series

Fc@̂d is convergent (locally or globally). Further questions can be asked such as does the

additive static feedback preserve local convergence, or global convergence or both. These

questions are answered in this dissertation. This will require an analysis of the local and

global convergence of the shuffle product, mixed composition product, and the Wiener-Fliess
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composition product as the Wiener-Fliess feedback product involves all three of these prod-

ucts on formal power series. The characterization of global convergence uses the Fréchet

topology on the space Sm
∞ of all formal series corresponding to globally convergent Fliess

operators. The Fréchet topology stems from the filtration of Banach spaces Sm
∞(R), R > 0,

which is addressed in Chapter 2. With the topological structure in hand, the questions get

further multiplied as one could ask whether the shuffle product and mixed composition prod-

uct defined on Rm〈〈X〉〉 are continuous in its arguments when restricted to the Fréchet space

Sm
∞. It is important to note that the question of local convergence of the shuffle product

was first addressed in [Thitsa & Gray (2012)], where it was proved that the shuffle product

preserves local convergence. However, the present work dissects the question completely to

answer all possible cases: the shuffle product of two locally convergent series, the shuffle

product on the space Sm
∞, the shuffle product between a locally convergent series and a series

in Sm
∞. The work of [Thitsa & Gray (2012)] also addressed the global convergence of the

shuffle product but only under restricted conditions. The global convergence of the shuffle

product was expanded in [Winter-Arboleda (2019)]. However, the proof was based on the

property that shuffle product is closed in each of the Banach spaces Sm
∞(R). This is proved

false in this dissertation with a counterexample, and the global convergence of the shuffle

product is completely reworked.

In summary, this part of the dissertation was primarily focused on computing the Chen-

Fliess series representation of the additive static feedback connection and providing sufficient

conditions for the convergence of the series representation of the closed-loop system.

1.1.2 Shuffle Rational Series

Let X be a finite set of noncommuting symbols. Let R〈X〉 and R〈〈X〉〉 denote, respec-

tively, the set of polynomials and formal power series over X with real coefficients. Each

set forms an R-vector space and an associative R-algebra under the catenation (Cauchy)

product. The smallest subset of R〈〈X〉〉 containing R〈X〉 which is closed under addition,
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scalar multiplication, the Cauchy product, and inversion (in the Cauchy product sense), that

is, the rational closure of R〈X〉, constitutes the set of rational series [Berstel & Reutenauer

(1988)]. Let Fc denote the Chen-Fliess series having c ∈ R〈〈X〉〉 as its generating series.

The following statements are known to be equivalent:

1. Series c is rational.

2. Series c is recognizable (Schützenberger’s theorem [Schützenberger (1961)]).

3. Series c has a Hankel matrix with finite rank [Fliess (1974)].

4. Operator y = Fc[u] has a bilinear state space realization [Fliess (1983)].

5. Operator y = Fc[u] satisfies a linear ordinary differential equation in y of order equal

to its Hankel rank and having coefficients which are rational functions of {u, u̇, ü, . . .}

[Fliess & Reutenauer (1982), Fliess & Reutenauer (1983)](see also [Wang & Sontag

(1992),Wang & Sontag (1995)]).

Bilinear systems play a special role in the theory of nonlinear control systems [Isidori

(1995),Elliot (2009),Nijmeijer & Van der Schaft (1990)]. The definition of rationality given

above, however, is simply one instance of a more general concept. Namely, given any asso-

ciative algebra on R〈〈X〉〉 and an arbitrary subalgebra F , the corresponding set of rational

series is defined as those series in the rational closure of F . Therefore, it is natural to ask

whether any other notion of rationality has utility in the context of nonlinear control theory.

If so, are there equivalences analogous to those given above in this alternative setting? The

objective of this part of the dissertation is to partially answer this question in the affirmative

by providing one specific example, namely, by replacing the Cauchy product on R〈〈X〉〉 with

the shuffle product. The latter forms a commutative algebra and is in some sense the adjoint

of the Cauchy product [Reutenauer (1993)]. This alternative product leads directly to the

notion of shuffle-rationality. The next objective is to provide two equivalent characteriza-

tions of shuffle-rationality, namely, the analogues of statements 2 and 4 above. The concept
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Fig. 2: Wiener-Fliess system comprised of a nilpotent bilinear system and a static rational
function

of shuffle-recognizability will be introduced and then a shuffle version of Schützenberger’s

theorem is proved. Next, it is shown that there is a correspondence between shuffle-rational

series and a class of state space realizations which are bilinear in the state and nilpotent

but have rational output functions as shown in Figure 2. A common theme in all of the

analysis is the evaluation of rational functions on formal power series. The computations are

facilitated by the Hopf algebra corresponding to the shuffle group. Finally, as an application,

it is shown how to model bilinear systems with output saturation in this context. It should

be stated that the question of whether there exist analogous versions of statements 3 and 5

in this setting is an open question at present.

1.1.3 The Intersection Point: Wiener-Fliess Composition

The research problems outlined in Sections 1.1.1 and 1.1.2 might appear to be disjointed.

However, their point of tangency is the Wiener-Fliess composition as in Figure 1. The

additive static feedback problem requires the definition and contractive properties of the

Wiener-Fliess composition product in the ultrametric topology to prove the existence of a

generating series for the closed-loop system. Furthermore, the computational algorithm to

compute the Wiener-Fliess composition, designed based on the Hopf algebra corresponding

to the shuffle group, is utilized for computing the generating series for the additive static

feedback connection. The convergence problem pertaining to the additive static feedback

product could be attempted only after identifying the convergence conditions for the Wiener-

Fliess composition product. On the other hand, it is proved in the dissertation that a Fliess

operator with a shuffle rational series as the generating series has a nilpotent bilinear state
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space realization with a Wiener-Fliess composition of static rational function as in Figure 2.

Hence, the branching point of the dissertation is the Wiener-Fliess composition.

1.2 PROBLEM STATEMENT

The primary objectives of the dissertation are to:

1. Characterize the Wiener-Fliess composition product in the ultrametric topology and

to develop an algorithm to compute it based on the Hopf algebra corresponding to the

shuffle group.

2. Prove that a Chen-Fliess series Fc in an additive static output feedback connection with

a formal function fd has a Chen-Fliess series representation and provide an algorithm

to compute the additive static feedback product.

3. Prove that the shuffle product and the mixed composition product preserve both local

and global convergence.

4. Characterize the convergence of the Wiener-Fliess composition product.

5. Prove that the additive static output feedback configuration preserves local convergence

but not necessarily global convergence.

6. Define the shuffle rationality and shuffle rational series.

7. Introduce the notion of shuffle recognizability and prove that a series is shuffle rational

if and only if it is shuffle recognizable.

8. Describe and prove a canonical structure for a state space realization corresponding to

a Fliess operator generated by a shuffle rational series.
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1.3 THESIS OUTLINE

The remainder of this dissertation is organized as follows. Chapter 2 is a self-contained

introduction to the concepts of Fliess operators, Hopf algebras and the Fréchet topology on

formal power series. Following this, Chapter 3 introduces the definition of the Wiener-Fliess

composition product, develops its properties and renders a closed expression for computing

the generating series of the additive static feedback product. The chapter also includes

an algorithm designed using the Hopf algebras corresponding to the shuffle group and the

dynamic output feedback group for the computation of the additive static feedback product.

Chapter 4 is devoted to answering the convergence properties of the additive static feedback

product. The chapter begins by addressing local convergence for the mixed composition

and the Wiener-Fliess composition products. The chapter then proceeds to treat the global

convergence of the shuffle, mixed composition and Wiener-Fliess composition products. The

chapter concludes by applying this analysis to the local and global convergence problems

for the additive static feedback product. The dissertation then pivots in Chapter 5 to

address shuffle rationality and its equivalent characterizations. Chapter 6 summarizes the

main contributions of this dissertation, and introduces some potential new problems and

conjectures for future work, albeit with some partially worked out results and insights.
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CHAPTER 2

PRELIMINARIES

The goal of this chapter is to provide the mathematical definitions and results that are

essential for presenting the main contributions of this work. This chapter aims to provide

a brief introduction to the noncommutative formal power series and, hence, to Chen-Fliess

series and their interconnections. Prior to that, there is a section on preliminaries about

Hopf algebras and Fréchet topology. The chapter presumes the reader has been exposed

to the basics of point-set topology, functional analysis (to the definition of normed spaces

and seminormed spaces) and abstract algebra (to the level of modules and algebras over

commutative rings) [Dugundji (1966),Conway (1985),Dummit & Foote (2004)].

2.1 ALGEBRAIC PRELIMINARIES

The goal of this section is to provide the definitions of necessary algebraic objects with

respect to the dissertation. The treatment only considers unital associative algebras; hence,

the properties are implicitly imbibed into the definition. The sections describe the algebraic

structures of an algebra, coalgebra, bialgebra and Hopf algebra. [Abe (2004),Sweedler (1969)].

2.1.1 Algebra

The definition of an algebra can be facilitated through the category of modules. This

notion allows one to define the concept of a coalgebra (the dual notion) with ease. Let K

be a commutative ring with identity.

Definition 2.1.1. An algebra over K is a K-module A along with the morphisms of K-

modules φ : A ⊗ A −→ A, called the multiplication or product map, and η : K −→ A,



10

called the unit map, such that the following arrow diagrams are commutative.

A ⊗ A ⊗ A
φ⊗idA //

idA⊗φ

��

A ⊗ A

φ

��
A ⊗ A

φ // A

K ⊗ A
η⊗idA //

∼=

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

A ⊗ A

φ

��
A

A ⊗K

∼=

99rrrrrrrrrrrrrrrrrrr
idA⊗η // A ⊗ A

φ

OO
(2.1.1)

The tuple (A , φ, η) is called a K-algebra.

The commutative diagram (2.1.1) means that a K-algebra A must satisfy the following

properties:

1. The product map φ must be associative.

2. The scalar multiplication through the η map must have a unit.

Example 2.1.1. The following are examples of algebras.

1. The set of smooth functions over the reals denoted by C∞ (R) forms an R-algebra.

The product map is the pointwise product of the functions, and the unit map is the

ring isomorphism from R to the constant functions.

2. A commutative unital ring R forms an R-algebra. The product map is just the product

defined on the ring structure of R, and the unit map is the identity map.

The concept of a K-algebra morphism is defined next.

Definition 2.1.2. Let (A , φ, η), (A ′, φ′, η′) be K-algebras. A map f : A −→ A ′ is called
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a K-algebra morphism provided the following diagrams commute.

A ⊗ A
φ //

f⊗f

��

A

f

��
A ′ ⊗ A ′ φ′

// A ′

K
η //

η′

""❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋❋
❋❋

❋ A

f

||①①
①①
①①
①①
①①
①①
①①
①①

A ′

Definition 2.1.3. Let P and Q be modules over K. The twisting morphism τ of K-modules

is τ : P ⊗Q −→ Q⊗ P with

τ(p⊗ q) = q ⊗ p ∀ q ∈ Q, p ∈ P.

A K-algebra A is commutative if and only if the following diagram commutes.

A ⊗ A

τ

��

φ

$$■
■■

■■
■■

■■
■■

■■
■■

■■
■

A ⊗ A
φ // A

As an example, the R-algebra C∞ (R) is a commutative algebra. The K-algebra A is a

graded algebra if the underlying K-module structure is graded viz. A =
⊕

n∈N0
An where

An is a K-module for all n ∈ N0 such that φ (Am ⊗ An) ⊆ Am+n ∀m,n ∈ N0. The graded

K-algebra is connected if η : K −→ A0 is a K-algebra isomorphism.

2.1.2 Coalgebra

The notion of a K-coalgebra is a categorical structure dual to that of a K-algebra.

Definition 2.1.4. A K-coalgebra C is a K-module with the K-module morphisms ∇ :

C −→ C ⊗ C , called the comultiplication or coproduct map, and ǫ : C −→ K, called the
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counit map, such that the following diagrams commute.

C
∇ //

∇

��

C ⊗ C

∇⊗idC

��
C ⊗ C

idC⊗∇ // C ⊗ C ⊗ C

C ⊗ C
ǫ⊗idC // K ⊗ C

∼=

��
C

∇

ee❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑

∇

yyss
ss
ss
ss
ss
ss
ss
ss
ss
s

C ⊗ C
idC⊗ǫ // C ⊗K

∼=

OO
(2.1.2)

The tuple (C ,∇, ǫ) is called a K-coalgebra.

The commutative diagram (2.1.1) means that a K-algebra A must satisfy the following

properties:

1. The coproduct map ∇ must be coassociative.

2. The counit map is the categorical dual to the unit map for a K-algebra.

The coalgebra C is called cocommutative if the following diagram commutes,

C

∇

��

∇

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑

C ⊗ C
τ // C ⊗ C

where τ is the twisting morphism of K-modules as in Definition 2.1.3. The Sweedler

notation is very useful in representing the coproduct map and is used in the dissertation in

Chapters 3 and 5.

Definition 2.1.5. [Sweedler (1969)]. Given the K-coalgebra tuple (C ,∇, ǫ) and c ∈ C ,

then the Sweedler notation to denote the coproduct of c is

∇(c) =
∑

(c)

c(1) ⊗ c(2),
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where c(1), c(2) ∈ C are the components of the tensors resulting from the coproduct of c.

Next, the definition of a K-coalgebra morphism is given.

Definition 2.1.6. Let (C ,∇, ǫ), (C ′,∇′, ǫ′) be K-coalgebras. A map f : C −→ C ′ is called

a K-coalgebra morphism provided the following diagrams commute.

C
∇ //

f

��

C ⊗ C

f⊗f

��
C ′

∇′

// C ′ ⊗ C ′

C
ǫ //

f

""❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊ K

C ′

ǫ′

<<②②②②②②②②②②②②②②②②

Example 2.1.2. Let (P,≤) be a locally finite poset. For x, y ∈ P denote the interval as

[x, y] = {z ∈ P : x ≤ z ≤ y}. Let P be the free R-module formed by the collection of finite

posets formed from P or finite intervals from P . P can be endowed with an R-coalgebra

structure. Define the coproduct map ∇ and the counit map ǫ as

∇ ([x, y]) =
∑

x≤z≤y

[x, z]⊗ [z, y] ∀x ≤ y ∈ P

ǫ ([x, y]) =















1 if x = y

0 otherwise.

The tuple (P,∇, ǫ) is known as the incidence coalgebra with respect to the poset P .

2.1.3 Bialgebra

The bialgebra structure over a commutative ring is fundamental for defining a Hopf alge-

bra. A bialgebra is an amalgamation of the algebra and coalgebra structures such that both

are compatible with each other.

Definition 2.1.7. A bialgebra H over K is a tuple (H, φ, η,∇, ǫ) such that
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1. H is a K-module.

2. (H, φ, η) is a K-algebra, where φ and η are the product and unit maps respectively.

3. (H,∇, ǫ) is a K-coalgebra, where ∇ and ǫ are the coproduct and counit maps respec-

tively.

such that the following arrow diagrams commute.

H ⊗H
φ //

∇⊗∇

��

H
∇ //H ⊗H

H ⊗H ⊗H ⊗H
idH⊗τ⊗idH // H ⊗H ⊗H ⊗H

φ⊗φ

OO (2.1.3)

H ⊗H
φ //

ǫ⊗ǫ

&&◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

H

ǫ

��
K ∼= K ⊗K

η⊗η

xxqqq
qq
qq
qq
qq
qq
qq
qq
qq
qq

η

��
H ⊗H H∇oo

(2.1.4)

H

ǫ

""❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊❊
❊❊

❊

K

η

<<②②②②②②②②②②②②②②②② idK // K

(2.1.5)

The diagrams (2.1.3) and (2.1.4) describe that the product map φ and the unit map η

are K-coalgebra morphisms, while the coproduct map ∇ and the counit map ǫ are K-algebra

morphisms. The diagram (2.1.5) describes that the unit map η is a section of the counit

map ǫ in the category of K-modules.
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Example 2.1.3. Let G be a finite group. Denote R[G] as the free R-module generated over

the group G viz. an element c ∈ R[G] is given as

c =
∑

x∈G

αxx.

The product map on R[G] can be defined using the group product on G as

(

∑

x∈G

αxx

)(

∑

yinG

αyy

)

=
∑

z∈G

(

∑

xy=z

αxαy

)

z.

The unit element is just the identity element of the group G. Hence, R[G] is an R-algebra

called the group algebra. The group algebra can be extended to a bialgebra structure by

defining the coproduct map ∇ and the counit map ǫ as:

∇ (g) = g ⊗ g

ǫ(g) = 1

∀g ∈ G and then extending linearly over R[G]. It can be verified that R[G] is an R-bialgebra

under this coproduct and counit map definition [Sweedler (1969)].

2.1.4 Hopf Algebra

Hopf algebras are an important class of bialgebras. A Hopf algebra is a bialgebra equipped

with a K-linear map called an antipode.

Definition 2.1.8. A Hopf algebra H over K is a tuple (H, φ, η,∇, ǫ, S) such that the fol-

lowing conditions are satisfied:

1. (H, φ, η,∇, ǫ) is a K-bialgebra.
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2. S : H −→ H is a K-linear map such that the following diagram commutes.

H ⊗H
idH⊗S // H ⊗H

φ

$$■
■■

■■
■■

■■
■■

■■
■■

■■
■

H
ǫ //

∇

::✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉

∇

$$■
■■

■■
■■

■■
■■

■■
■■

■■
K

η // H

H ⊗H
S⊗idH // H ⊗H

φ

::✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉✉

(2.1.6)

Using Sweedler notation, the arrow diagram (2.1.6) implies that ∀c ∈ H ,

∑

(c)

S
(

c(1)
)

c(2) =
∑

(c)

c(1)S
(

c(2)
)

= ǫ (c) 1H ,

where 1H is the multiplicative unit of the Hopf algebra H . The computation of the antipode

of an element c becomes slightly easier when the algebra structure of H is graded and

connected and is discussed in Section 3.2.

Example 2.1.4. Consider the R-bialgebra R[G] described in Example 2.1.3. The bialgebra

can be extended to a Hopf algebra structure where the antipode map S is given by the group

inverse operation. Hence, S(g) = g−1 for all g ∈ G and then extending linearly over R[G].

2.2 INVERSE SYSTEM OF LOCALLY CONVEX SPACES AND FRÉCHET

SPACE

The goal of this section is to furnish the reader with the definition of the inverse limit in

the category of locally convex spaces. Prior to that, the definitions of a topological vector

space and a locally convex space are provided. For the rest of this section, the field R is

equipped with the standard topology.
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Definition 2.2.1. [Schaefer & Wolff (1999)] Let E be an R-vector space together with a

Hausdorff topology τ on E such that the vector addition map + : E × E −→ E and the

scalar multiplication map · : R×E −→ E are continuous. Then, the topological space (E, τ)

(or just E) is called a topological vector space.

Example 2.2.1. The following are examples of a topological vector space.

1. Every normed space (E, ‖ · ‖) on R is a topological vector space on R.

2. The space of real valued sequences Rω is a topological vector space on R, where the

topology endowed is the product topology. Thus, Rω is isomorphic to the product of

countable copies of R.

The definition of a locally convex space is given next.

Definition 2.2.2. [Schaefer & Wolff (1999)] A topological vector space (E, τ) (on R) is

called a locally convex space if there is a family of continuous seminorms {pi : E −→

[0,∞[}i∈I over some index set I such that

1. τ is the initial topology with respect to the family of canonical projections {qi : E −→

E/ker (pi)}i∈I .

2.
⋂

i∈I ker (pi) = {0}.

The family of seminorms {pi}i∈I is called a generating family of seminorms.

Example 2.2.2. The following are examples of a locally convex space.

1. Every normed space (E, ‖ · ‖) on R is a locally convex space where the generating

family of seminorms is a singleton consisting of the norm ‖ · ‖.
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2. The space of real-valued smooth functions on the closed unit interval denoted by

C∞ ([0, 1],R) is a locally convex space where the generating family of seminorms is

the countable family {‖ · ‖n}n∈N and ∀n ∈ N,

‖f‖n = sup
x∈[0,1]

|f (n)(x)|,

where f ∈ C∞ ([0, 1],R) and f (n) is the nth-derivative of f .

Theorem 2.2.1. [Schaefer & Wolff (1999)] Let X and Y be locally convex spaces and let

P be the generating family of seminorms for the topology on X. A linear map L : X −→ Y

is continuous if and only if for each continuous seminorm q on Y , there exists a finite subset

{pi : i = 1, 2, . . . , n} of P and a constant c > 0 such that q ◦ L ≤ c supi=1,...,n pi.

Definition 2.2.3. [Schaefer & Wolff (1999)] Let (I,≤) be a directed set. The inverse system

of locally convex spaces is a collection of locally convex spaces (Xi)i∈I such that there exists

continuous linear maps µij : Xi −→ Xj ∀ i ≤ j satisfying the following conditions:

1. µij ◦ µjk = µik ∀ i ≤ j ≤ k.

2. µii : Xi −→ Xi is the identity morphism.

Then the tuple

(

(Xi)i∈I , (µij)i,j∈I
i≤j

)

forms an inverse system or projective system of the

collection of locally convex spaces.

The following is an example of the inverse system of a collection of locally convex spaces.

Example 2.2.3. Consider the set directed set N with the usual ordering ≤. Let space Rn be

equipped with the norm topology under the canonical norm ‖ · ‖2 on Rn. It is easy to verify

that the canonical projection map πmn : Rn −→ Rm is a continuous linear map whenever

m < n. Hence, the tuple

(

(Rn)n∈N , (πmn)m,n∈N
m≤n

)

forms an inverse system of this collection

of locally convex spaces.
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Definition 2.2.4. [Schaefer & Wolff (1999)] Let

(

(Xi)i∈I , (µij)i,j∈I
i≤j

)

be an inverse system

of a collection of locally convex spaces. The inverse or projective limit of the system is defined

to be the tuple
(

X, (µi)i∈I
)

, where X is a locally convex space equipped with a family of

continuous linear maps µi : X −→ Xi such that ∀i, j ∈ I the following diagram commutes.

X

µj

||②②
②②
②②
②②
②②
②②
②②
②②
②

µi

��
Xj

µij // Xi

The topology endowed on the limit space X is the initial topology with respect to the family

of maps (µi)i∈I . The inverse limit is denoted as X = lim
←−
i∈I

Xi.

The inverse limit of locally convex spaces exists and is unique up to a linear homeo-

morphism as a consequence of the universal property of the inverse limit in the category of

locally convex spaces.

Example 2.2.4. Consider Example 2.2.3. The projective limit of the inverse system
(

(Rn)n∈N , (πmn)m,n∈N
m≤n

)

is the locally convex space Rω which is the space of all real val-

ued sequences along with the family of continuous projection maps πn : Rω −→ Rn ∀n ∈ N.

The limit topological space R
ω is then isomorphic to R

ω (as in maps from N to R) endowed

with the topology of pointwise convergence.

The concept of a Fréchet space is introduced next. It is central to the understanding of

the dissertation and is used to define the convergence of Chen-Fliess series as described in

Section 2.4.

Definition 2.2.5. [Schaefer & Wolff (1999)] A Fréchet space X is defined to be a locally

convex metrizable complete topological vector space.

A more practical definition of a Fréchet space is as follows.
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Definition 2.2.6. [Schaefer & Wolff (1999)] A complete topological space X is a Fréchet

space if its topology is homeomorphic to the topology induced by a countable separated

family of seminorms.

The following theorem provides a more lucid way of picturing the Fréchet space as a

projective limit.

Theorem 2.2.2. [Schaefer & Wolff (1999)] A topological space X is a Fréchet space if and

only if it is a projective limit of a sequence of Banach spaces.

More properties of Fréchet space are presented in Section 2.4. The following section

introduces the notions of formal power series and Chen-Fliess series.

2.3 FORMAL POWER SERIES

A finite nonempty set of noncommuting symbolsX = {x0, x1, . . . , xm} is called an alphabet.

Each element of X is called a letter, and any finite sequence of letters from X , η = xi1 · · ·xik ,

is called a word over X . Its length is |η| = k. In particular, |η|xi
is the number of times the

letter xi ∈ X appears in η. The set of all words including the empty word, ∅, is denoted by

X∗, and X+ := X∗\∅. The set X∗ forms a monoid under catenation. The set of all words

with prefix η is written as ηX∗. Any mapping c : X∗ → Rℓ is called a formal power series.

The value of c at η ∈ X∗ is denoted by (c, η) and called the coefficient of η in c. A series c

is proper when (c, ∅) = 0. The support of c, supp(c), is the set of all words having nonzero

coefficients. The order of c, ord(c), is the length of the minimal length word in its support.

Normally, c is written as a formal sum c =
∑

η∈X∗(c, η)η. The collection of all formal power

series over X is denoted by Rℓ〈〈X〉〉. The set R〈〈X〉〉 is equipped with the partial ordering

≤ defined as : c ≤ d if and only |(c, η)| ≤ |(d, η)| ∀η ∈ X∗. A formal power series c is a

polynomial when the inverse image of Rℓ \ {0} is a finite set. The set of all noncommutative
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polynomials with coefficients in R
ℓ is denoted by R

ℓ〈X〉. Alternatively,

Rℓ〈X〉 =
⊕

η∈X∗
R

ℓ

Rℓ〈〈X〉〉 =
∏

η∈X∗
R

ℓ.

The set Rℓ〈〈X〉〉 is an ultrametric space with the ultrametric

κ(c, d) = σord(c−d),

where c, d ∈ Rℓ〈〈X〉〉 and σ ∈ ]0, 1[. For brevity, κ(c, 0) is written as κ(c), and κ(c, d) =

κ(c − d). The ultrametric space (Rℓ〈〈X〉〉, κ) is known to be Cauchy complete [Berstel &

Reutenauer (1988)]. The following notions of strong and weak contraction maps will be used.

Definition 2.3.1. Given metric spaces (E, d) and (E ′, d′), a map f : E −→ E ′ is said to be a

strong contraction map if ∀s, t ∈ E, it satisfies the condition d′(f(s), f(t)) ≤ αd(s, t), where

α ∈ [0, 1[. If α = 1, then the map f is said to be a weak contraction map or a non-expansive

map.

In the event that the letters of X commute, the set of all corresponding formal power

series is denoted by Rℓ [[X ]]. For any series c ∈ Rℓ [[X ]], the natural number ω(c) corresponds

to the order of its proper part, namely c− (c, ∅).

2.3.1 Fliess Operators

Let p ≥ 1 and t0 < t1 be given. For a Lebesgue measurable function u : [t0, t1] → Rm,

define ‖u‖p = max{‖ui‖p : 1 ≤ i ≤ m}, where ‖ui‖p is the usual Lp-norm for a measurable

real-valued function, ui, defined on [t0, t1]. Let Lm
p [t0, t1] denote the set of all measurable

functions defined on [t0, t1] having a finite ‖ · ‖p norm and Bm
p (R)[t0, t1] := {u ∈ Lm

p [t0, t1] :

‖u‖p ≤ R}. Assume C[t0, t1] is the subset of continuous functions in Lm
1 [t0, t1]. Given any
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series c ∈ R
ℓ〈〈X〉〉, the corresponding Chen-Fliess series is

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0), (2.3.1)

where E∅[u] = 1 and

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ

with xi ∈ X , η̄ ∈ X∗, and u0 = 1 [Fliess (1981)]. If there exist constants K,M > 0 such

that

|(ci, η)| ≤ KM |η||η|!, ∀η ∈ X∗, ∀i = 1, . . . , ℓ (2.3.2)

then Fc constitutes a well-defined mapping from Bm
p (R)[t0, t0 + T ] into Bℓ

q(S)[t0, t0 + T ]

for sufficiently small R, T > 0, where the numbers p, q ∈ [1,∞] are conjugate exponents,

i.e., 1/p + 1/q = 1 [Gray & Wang (2002)]. This map is referred to as a Fliess operator.

A series c ∈ Rℓ〈〈X〉〉 obeying the growth condition in (2.3.2) is called a locally convergent

generating series. The set of all locally convergent generating series is denoted by Rℓ
LC〈〈X〉〉.

The supremum of the set of all max{R, T} for which a Fliess operator Fc is a well-defined

mapping from Bm
p (R)[t0, t0 + T ] into Bℓ

a(S)[t0, t0 + T ] is called the radius of convergence

of the Fliess operator Fc and is denoted by ρ (Fc). A Fliess operator Fc is called locally

convergent if ρ (Fc) > 0. If there exist constants K,M > 0 and γ ∈ [0, 1[ such that

|(ci, η)| ≤ KM |η| (|η|!)γ , ∀η ∈ X∗, ∀i = 1, . . . , ℓ (2.3.3)

then Fc constitutes a well defined mapping from Bm
p (R)[t0, t0+T ] into B

ℓ
q(S)[t0, t0+T ] for all

R, T > 0, where the numbers p, q ∈ [1,∞] are conjugate exponents [Winter-Arboleda (2019)].

The infimum of all the γ ∈ [0, 1[ such that (2.3.3) is satisfied for a series c ∈ Rℓ〈〈X〉〉 is called

the Gevrey order of the series c. A series c ∈ Rℓ〈〈X〉〉 obeying the growth condition in (2.3.3)

is called a globally convergent series. The set of all globally convergent series in R
ℓ〈〈X〉〉 is
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denoted as Rℓ
GC〈〈X〉〉. A Fliess operator Fc is globally convergent if and only if there exists no

real numberM > 0 such that ρ (Fc) < M . Observe that a noncommutative polynomial R〈X〉

is a globally convergent series with Gevrey degree 0. A series c ∈ Rℓ
GC〈〈X〉〉 is only a sufficient

condition for the corresponding Fliess operator Fc to be globally convergent [Winter-Arboleda

(2019),Winter-Arboleda (2015)]. Necessary conditions are presented in Subsection 2.4. In

the absence of any convergence criterion, (2.3.1) only defines an operator in a formal sense.

2.3.2 Interconnections of Fliess Operators

Given Fliess operators Fc and Fd, where c, d ∈ R
ℓ
LC〈〈X〉〉, the parallel and product con-

nections satisfy Fc + Fd = Fc+d and FcFd = Fc ⊔⊔ d, respectively [Fliess (1981)]. When Fliess

operators Fc and Fd with c ∈ Rℓ
LC〈〈X

′〉〉 and d ∈ Rm
LC〈〈X〉〉 are interconnected in a cas-

cade fashion, where |X ′| = m + 1, the composite system Fc ◦ Fd has the Fliess operator

representation Fc◦d, where the composition product [Ferfera (1980)] of c and d is given by

c ◦ d =
∑

η∈X′∗

(c, η)ψd(η)(1). (2.3.4)

Here 1 denotes the monomial 1∅, and ψd is the continuous (in the ultrametric sense) al-

gebra homomorphism from R〈〈X ′〉〉 to the algebra of R-linear endomorphisms on R〈〈X〉〉,

End (R〈〈X〉〉), uniquely specified by ψd(x
′
iη) = ψd(x

′
i) ◦ ψd(η) with ψd(x

′
i)(e) = x0(di ⊔⊔ e),

i = 0, 1, . . . , m for any e ∈ R〈〈X〉〉, and where di is the i-th component series of d (d0 := 1).

By definition, ψd(∅) is the identity map on R〈〈X〉〉. The composition product is linear in its

left argument.

Theorem 2.3.1. If c, c′ ∈ Rℓ〈〈X ′〉〉 and d ∈ Rm〈〈X〉〉, then (c + c′) ◦ d = c ◦ d+ c′ ◦ d.

When two Fliess operators Fc and Fd are interconnected to form a feedback system with

Fc in the forward path and Fd in the feedback path, the generating series of the closed-loop

system is denoted by the feedback product c@d. It can be computed explicitly using the Hopf

algebra of coordinate functions associated with the underlying output feedback group [Gray,
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et al. (2014a)]. For example, in the SISO case where X = {x0, x1}, define the set of unital

Fliess operators Fδ = {I + Fc : c ∈ Rℓ
LC〈〈X〉〉}, where I denotes the identity map. It

is convenient to introduce the symbol δ as the (fictitious) generating series for the identity

map. That is, Fδ := I such that I + Fc := Fδ+c = Fcδ with cδ := δ + c. The set of all such

generating series for Fδ will be denoted by δ+R
ℓ
LC〈〈X〉〉. The central idea is that (Fδ, ◦, I)

forms a group of operators under the composition product.

Fcδ ◦ Fdδ = (I + Fc) ◦ (I + Fd) = Fcδ◦dδ ,

where cδ ◦ dδ := δ + c ⊚ d, c ⊚ d := d + c ◦̃ dδ, and ◦̃ denotes the mixed composition

product [Gray & Li (2005)]. The mixed composition product definition is induced by the

identity Fc ◦̃ dδ = Fc ◦ Fdδ so that

c ◦̃ dδ =
∑

η∈X∗

(c, η)φd(η)(1),

where c ∈ Rℓ〈〈X ′〉〉, dδ ∈ Rm〈〈Xδ〉〉 with |X ′| = m + 1 and φd is analogous to ψd in (2.3.4)

except here φd(xi)(e) = xie+ x0(di ⊔⊔ e) with d0 := 0. Equivalently, (Rm〈〈Xδ〉〉, ◦, δ) forms a

group. The mixed composition product is also linear in its left argument.

Theorem 2.3.2. If c, c′ ∈ Rℓ〈〈X ′〉〉 and d ∈ Rm〈〈X〉〉, then (c + c′) ◦̃ dδ = c ◦̃ dδ + c′ ◦̃ dδ.

The following theorem states that the mixed composition can be viewed as a right group

action of (Rm〈〈Xδ〉〉, ◦, δ) on Rℓ〈〈X ′〉〉.

Theorem 2.3.3. [Gray & Duffaut Espinosa (2013)] If c ∈ Rℓ〈〈X ′〉〉 and d, e ∈ Rm〈〈X〉〉,

then (c ◦̃ dδ) ◦̃ eδ = c ◦̃ (dδ ◦ eδ).

The next lemma states that the mixed composition product distributes on the left over

the shuffle product.

Lemma 2.3.1. [Gray & Li (2005)] If c, d ∈ Rℓ〈〈X〉〉 with e ∈ Rm〈〈X ′〉〉 such that |X| =
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m+ 1, then

(c ⊔⊔ d) ◦̃ eδ = (c ◦̃ eδ) ⊔⊔ (d ◦̃ eδ).

For the group of unital Fliess operators, the coordinate maps for the corresponding Hopf

algebra H have the form

aη : R〈〈X〉〉 → R
ℓ : c 7→ (c, η),

where c ∈ Rℓ〈〈X〉〉, η ∈ X∗. The commutative product is taken to be the Hadamard product

in R
ℓ,

m : aη ⊗ aξ 7→ aηaξ,

where the unit 1 is defined to map every c to ll = [11 · · ·1] ∈ Rℓ. If the degree of aη is

defined as deg(aη) = 2|η|x0 + |η|x1 + 1, then H is a graded and connected R-algebra with

H =
⊕

k≥0Hk, where Hk is the set of all elements of degree k and H0 = R1 [Foissy (2015)].

The coproduct ∆ is defined so that the formal power series product c⊚ d for the group Fδ

satisfies

∆aη(c, d) = aη(c⊚ d) = (c⊚ d, η).

Of primary importance is the following lemma which describes how the group inverse c◦−1δ :=

δ + c◦−1 is computed.

Lemma 2.3.2. [Gray, et al. (2014a)] The Hopf algebra (H,m,∆) has an antipode S

satisfying aη(c
◦−1) = (Saη)(c) for all η ∈ X∗ and c ∈ R〈〈X〉〉.

With this concept, the generating series for the feedback connection, c@d, can be com-

puted explicitly.

Theorem 2.3.4. [Gray, et al. (2014a)] For any c ∈ R
ℓ〈〈X〉〉 and d ∈ R

m〈〈X ′〉〉, where

|X| = m+ 1 and |X ′| = ℓ+ 1, it follows that c@d = c ◦̃ (−d ◦ c)◦−1δ .
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TABLE 1: Relative degrees for interconnections of SISO nonlinear systems

rc+d min(rc, rd) if rc 6= rd

rc ⊔⊔ d
r = min(rc, rd) if rc 6= rd and

the series with relative degree not equal to r is non-proper

rc◦d rc + rd

rc ◦̃ dδ rc

rc⊚d min(rc, rd) if rc 6= rd

rc◦−1 rc

rc@d rc

2.3.3 Relative Degree of Chen-Fliess Series

Let X = {x0, x1} and Fc be a Chen-Fliess series such that c ∈ R〈〈X〉〉. The concept of

relative degree for Fc is defined via the notion of relative degree of its generating series c.

Definition 2.3.2. [Gray & Venkatesh (2019)] A generating series c ∈ R〈〈X〉〉 has relative

degree r if and only if there exists some e ∈ R〈〈X〉〉 with x1 6∈ supp(e) such that c =

cN +Kxr−10 x1+x
r−1
0 e, where cN :=

∑

k≥0(c, x
k
0)x

k
0 is called the natural part of the series and

K 6= 0. The relative degree of the series c is denoted as rc.

If c ∈ R〈〈X〉〉, the forced part of the series is denoted as cF and is given by cF = c− cN .

Table 1 consolidates the effect of various operations on the relative degree of formal series

arising from the interconnection of Chen-Fliess series. For more detail, the reader is referred

to [Gray & Venkatesh (2019)].

The following lemma is used in determining the relative degree of the Wiener-Fliess

composition product as defined in Chapter 3.

Lemma 2.3.3. [Gray & Venkatesh (2019)] If c ∈ R〈〈X〉〉 has relative degree rc, then

supp((c ⊔⊔ k)F ) ⊆ xrc−10 X+ for all k ∈ N. If, in addition, c is also proper, then xrc−10 x1 6∈

supp((c ⊔⊔ k)F ) for all k > 1.
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2.4 FRÉCHET TOPOLOGY FOR GLOBAL CONVERGENCE

The ultrametric topology on R
ℓ〈〈X〉〉 provides a framework to prove the existence of a

well-defined feedback product via fixed point theorems as described in Section 3.3. However,

a convergent sequence of series in the ultrametric space Rℓ〈〈X〉〉, each of which has a well-

defined Fliess operator, need not have a well-defined Fliess operator corresponding to the

limit. This is demonstrated by the following example.

Example 2.4.1. Let (ci)i∈N0
be a sequence of series in R〈〈X〉〉. Let

ci =

i
∑

k=0

(k!)1+ǫ xk1,

where ǫ > 0. Observe that each ci is a polynomial; hence, ci ∈ RGC〈〈X〉〉. It is evident that

the sequence (ci)i∈N0
is Cauchy in the ultrametric topology. The sequence ci −→ c, where c

is defined as

c =

∞
∑

k=0

(k!)1+ǫ xk1.

Since ǫ > 0, there exist no constants K,M > 0 such that |(c, xn1 )| ≤ KMnn! ∀n ∈ N0.

Therefore, c 6∈RLC〈〈X〉〉.

This subsection describes the construction of a topology called the Fréchet or seminorm

topology under which global convergence of Fliess operators is preserved in the limit.

Definition 2.4.1. Let c ∈ R〈〈X〉〉. Then, for any positive real number R > 0, define the

map ||.||∞,R : R〈〈X〉〉 7→ R+ as

||c||∞,R = sup
η∈X∗

{

|(c, η)|
R|η|

|η|!

}

,

where R+ is the closure of the non-negative real line with +∞. For all positive real R > 0,
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define the normed space

Sm
∞(R) =

{

c ∈ Rm〈〈X〉〉 : ||ci||∞,R <∞ ∀i = 1, . . . , m
}

.

When the series c is one-dimensional, the superscript m = 1 is omitted. Note that S∞(R)

is isometrically isomorphic to the Banach space ℓ∞ (X∗), the space of all bounded functions

from X∗ to R. Hence, the tuple
(

S∞(R),+, ·, ||.||∞,R

)

forms an infinite dimensional Banach

space, where + and · represent series addition and scalar multiplication, respectively. The

following theorem states that a formal series c is locally convergent as in (2.3.2) if and only

if c belongs to S∞(R) for some R > 0.

Theorem 2.4.1. [Winter-Arboleda (2019)] RLC〈〈X〉〉 =
⋃

R>0 S∞(R).

The locally convex space S∞(R
′) is an infinite dimensional Banach space, the standard

Bolzano-Wierstrass theorem fails to hold. Hence, not every bounded sequence in S∞(R
′) has

a convergent subsequence in S∞(R
′) as shown in the following example.

Example 2.4.2. Consider the sequence of the series (ci)i∈N0
∈ S∞(R) such that

cn =
∑

η∈Xn

(

1

R

)n

n! η.

It is evident that the sequence (ci)i∈N0
is bounded as ||cn||∞,R = 1 ∀n ∈ N0. However, note

that ∀ m,n ∈ N0 where m 6= n,

||cm − cn||∞,R = 1.

Hence, the bounded sequence (ci)i∈N0
has no convergent subsequence.

Moreover, the space S∞(R
′) is not a separable space viz. the Banach space does not have

a countable dense topological subspace [Dahmen, et al. (2020)]. The space Sm
∞(R

′), which
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is a direct product of m Banach spaces, is provided a Banach space structure by the norm

||d||∞,R = max
i=1,2,...,m

||di||∞,R.

Let R′, R ∈ R such that 0 < R < R′. Observe that S∞(R
′) ⊂ S∞(R) as vector spaces.

In addition, the topology on S∞(R
′) induced by norm ||.||∞,R′ is finer than the subspace

topology induced from S∞(R). Hence, this inclusion of vector spaces is not a topological

embedding. In fact, the inclusion map i : S∞(R
′) −→ S∞(R) is a compact operator, viz.

every bounded sequence in S∞(R
′) has a convergent subsequence in S∞(R) [Dahmen, et al.

(2020)].

Consider the directed set (R>0,≤) with the usual ordering. Then S∗ = {(S∞(R))R∈R>0
}

forms a projective system of locally convex topological vector spaces with the family of

inclusion maps iR′R : S∞(R
′) −→ S∞(R) ∀0 < R < R′. The projective limit of the system

(

S∗, (iR′R)0<R<R′

)

is a locally convex topological vector space S∞ defined as

S∞ =
⋂

R∈R>0

S∞(R).

The limit space S∞ is equipped with the initial topology determined by the family of canon-

ical injections iR : S∞ −→ S∞(R) ∀R > 0. Thus,

c ∈ S∞ ⇔ ||c||∞,R <∞ ∀R > 0.

Since the set N ⊂ R>0 is cofinal, it is sufficient to consider the space S∞ as the projective

limit of the spaces S∞(N) where N ∈ N. Hence, the space S∞ is the sequential projective

limit of the Banach spaces (S∞(N))N∈N and can be endowed with the Fréchet topology by

Theorem 2.2.2. The ordered set of countable seminorms

||.||∞,1 ≤ ||.||∞,2 ≤ · · · ≤ ||.||∞,k ≤ · · ·
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is called a fundamental system of seminorms for the Fréchet space. The Fréchet spaces are

completely metrizable locally convex topological vector spaces. Hence,

(ci)i∈N0
→ c ∈ S∞ ⇔ lim

i→∞
||ci − c||∞,R = 0 ∀R > 0.

Since the inclusion maps iMN where 0 < N < M with M,N ∈ N are compact operators,

the projective limit S∞ becomes a Fréchet-Schwartz space [Carreras & Bonet (1987), Ko-

matsu (1967)]. Thus, the space S∞ is separable. A countable dense topological subspace

is constructed in [Winter-Arboleda (2019)]. Hence, the limit space S∞ is better behaved

than the spaces S∞(R) from which it is constructed. In particular, the space S∞ satisfies a

Bolzano-Wierstrass like theorem. The space Sm
∞ ⊂ Rm〈〈X〉〉 is defined as

c ∈ Sm
∞ ⇔ ci ∈ S∞ ∀i = 1, . . . , m

and is endowed with the product topology whenever m > 1. The construction of the space

Sm
∞ is pivotal in regards to the radius of convergence of Fliess operators.

Theorem 2.4.2. [Winter-Arboleda (2019)] A series c ∈ Sm
∞(R) for some R > 0 if and only

if the corresponding Fliess operator Fc is locally convergent.

Observe that if c ∈ RGC〈〈X〉〉, then ||c||∞,R < ∞ ∀R > 0. Hence, Rm
GC〈〈X〉〉 ⊂

Sm
∞(R) ∀R > 0 implying that Rm

GC〈〈X〉〉 ⊂ Sm
∞.

Theorem 2.4.3. [Winter-Arboleda (2019)] Sm
∞ = Rm

GC〈〈X〉〉, where the closure is taken in

the Fréchet topology.

Theorem 2.4.4. [Winter-Arboleda (2019)] A series c ∈ Sm
∞ if and only if the corresponding

Fliess operator Fc is globally convergent.

Theorem 2.4.4 asserts that it is necessary and sufficient for a series c ∈ Sm
∞ in order

for the corresponding Fliess operator Fc to describe a well-defined mapping from Bm
p (R)[t0,
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Fig. 3: The hierarchy of topological vector spaces for convergence.

t0 + T ] into Bℓ
q(S)[t0, t0 + T ] for all R, T > 0. Observe that in Example 2.4.1 the sequence

of polynomials is not even Cauchy in S∞(R) space ∀R > 0. Hence, the sequence does not

converge in the Sm
∞ space. Define ∂Rm

GC〈〈X〉〉 = Sm
∞ \ R

m
GC〈〈X〉〉 in the Fréchet topology.

The following example shows that the boundary ∂RGC〈〈X〉〉 is not empty.

Example 2.4.3. [Winter-Arboleda (2019)] Let X = {x0, x1}. The Ferfera series c ∈

Rm
GC〈〈X〉〉 is given by c = x∗1 =

∑∞
n=0 x

n
1 . It is evident that c ∈ RGC〈〈X〉〉 with Gevrey

degree 0. Consider the series d = c ◦ c which describes the cascade connection of two Ferfera

systems. It is known that d has Gevrey degree 1, but the corresponding Fliess operator Fd has

a well-defined mapping from Bm
p (R)[t0, t0+T ] into B

ℓ
q(S)[t0, t0+T ] for all R, T > 0. Hence,

there exists a series c ∈ ∂Rm
GC〈〈X〉〉 with the Gevrey degree 1 such that the corresponding

Fliess operator has a well-defined mapping globally.

Define Rm〈〈X〉〉1 as the set of series with Gevrey degree 1. The hierarchy of the spaces

Rm
LC〈〈X〉〉, Sm

∞,R
m
GC〈〈X〉〉 and Rm〈〈X〉〉1 are depicted in Figure 3. Such a partition of the

space of formal series Rm〈〈X〉〉 leads to important questions about closure and continuity of

addition, various composition products and the shuffle product in each of the Sm
∞(R) spaces

and in R
m
LC〈〈X〉〉,Rm

GC〈〈X〉〉 and Sm
∞. The space R

m
LC〈〈X〉〉 can be viewed as the inductive
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limit of the topological spaces Sm
∞(R) where R > 0 and, hence, can be endowed with the Silva

topology [Dahmen, et al. (2020)]. This work does not address the continuity of the mixed

composition product and shuffle product in the Rm
LC〈〈X〉〉 space and is treated in [Gray, et

al. (2021)]. However, the continuity of the mixed composition product and shuffle product

in the Sm
∞ space will be treated in Section 4.2. The following theorem describes the closure

of local and global convergence of series under addition.

Theorem 2.4.5. [Winter-Arboleda (2019)] The following statements are true:

1. If c, d ∈ Rm
LC〈〈X〉〉, then c+ d ∈ Rm

LC〈〈X〉〉.

2. If c, d ∈ R
m
GC〈〈X〉〉, then c+ d ∈ R

m
GC〈〈X〉〉.

3. If c, d ∈ Sm
∞, then c + d ∈ Sm

∞.

Theorem 2.4.5 is a direct consequence of the triangle inequality for the norm ||.||∞,R in

each of the Sm
∞(R) spaces. The definition for the continuity of a multilinear operator on a

Fréchet space is described next. Let E be a real Fréchet space with a fundamental system

of seminorms {||.||k}k∈N such that ||.||k ≤ ||.||k+1.

Theorem 2.4.6. [Meise & Vogt (1997)] Consider an R-multilinear operator of rank n on

the Fréchet space E such that

T : E × E × · · · × E −→ E

(c1, c2, . . . , cn) 7−→ T (c1, c2, . . . , cn) .

The operator T is continuous if there exists constant C > 0 and a family of maps αi : N −→ N

for i = 1, 2, . . . , n such that ∀k ∈ N,

||T (c1, c2, . . . , cn)||k ≤ C||c1||α1(k) · · · ||cn||αn(k).
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Theorem 2.4.6 is used in Sections 4.2.1 and 4.2.2 where the continuity of shuffle and

mixed composition product in the space Sm
∞ is addressed.

2.5 FORMAL STATIC MAPS AND CONVERGENCE

Static feedback has both Chen-Fliess series and formal static maps playing key roles in

its computation and convergence. This subsection provides a brief discussion on the formal

static maps. Let X̃ = {x̃1, . . . , x̃m} and d ∈ Rk [[X̃ ]]. A formal static function fd : R
m −→ Rk

around the point z = 0 is defined as

fd (z) =
∑

η∈X̃∗

(d, η) zη,

where z ∈ R
m, and zx̃iη = ziz

η ∀x̃i ∈ X̃, η ∈ X̃∗. The base case is taken to be z∅ = 1. The

series d ∈ Rk [[X̃ ]] is called the generating series of the static map fd. A series d ∈ R [[X̃ ]]

is said to be locally convergent if there exist constants Kd,Md > 0 such that |(d, η)| ≤

KdM
|η|
d , ∀η ∈ X̃∗. A series d ∈ Rk [[X̃ ]] is said to be locally convergent if and only if each

component di is locally convergent for i = 1, . . . , m. The subset of all locally convergent

series in Rk [[X̃ ]] is denoted as Rk
LC [[X̃ ]]. The following theorem explains the significance of

the definition of local convergence in the present context.

Theorem 2.5.1. If d ∈ RLC [[X̃ ]] with growth constants Kd,Md > 0, then the formal static

function fd : R
m −→ R has a finite radius of convergence 1/Md.

Proof: Let z ∈ Rm. From the triangle inequality on R,

|fd (z)| ≤
∑

η∈X̃∗

|(d, η)||zη|

≤
∑

η∈X̃∗

KdM
|η|
d |zη|

= Kd

(

∞
∑

n=0

(

Md|z
x̃1 |
)n

)

· · ·

(

∞
∑

n=0

(

Md|z
x̃m |
)n

)
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= Kd

m
∏

i=1

(

∞
∑

n=0

(Md|zi|)
n

)

.

Observe that

∞
∑

n=0

(Md|zi|)
n =

(

1

1−Md|zi|

)

for |zi| ≤ 1/Md. Hence,

|fd (z)| ≤ Kd

m
∏

i=1

(

1

1−Md|zi|

)

for max
i=1,...,m

|zi| ≤ 1/Md.

Therefore, d ∈ RLC [[X̃ ]] implies that the corresponding static function fd is bounded

pointwise in absolute value by a real analytic map with a finite radius of convergence. As

a consequence of Cauchy’s integral formula on polydiscs in Cm [Hormander (1973)], d ∈

RLC [[X̃ ]] is a necessary and sufficient condition for the corresponding static map fd to be

locally analytic around z = 0. The following lemma is essential in the proof of global

convergence of static maps and composition products of Chen-Fliess series.

Lemma 2.5.1. Given x ∈ [0,∞[ and r ∈]0, 1], the following inequality holds:

KrM
x
r (Γ(x+ 1))r ≤ Γ(rx+ 1) ≤ K̃r2

x(Γ(x+ 1))r,

where

Kr =

(

(

2π

exp(2)

)1−r

r

) 1
2

, K̃r = 2

(

(

2π

exp(2)

)1−r

4

) 1
2

andMr = rr.

Proof: The Stirling series for Γ(z) where z ∈ C is given by [Abramowitz & Stegun (1988)]

ln Γ(z) =
1

2
ln 2π +

(

z −
1

2

)

ln z − z +O

(

1

z

)

, ℜ(z) > 0,
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where ℜ (z) is the real part of z. Substituting rz + 1 for z gives

ln Γ(rz + 1) =
1

2
ln 2π +

(

rz +
1

2

)

ln (rz + 1)− (rz + 1) +O

(

1

rz + 1

)

, ℜ(z) > 0.

Therefore, for x ∈ R+,

Γ(rx+ 1) =

(

(2π)
1
2

exp(1)

)

(rx+ 1)(rx+
1
2) exp (−rx)

(

1 +O

(

1

rx+ 1

))

. (2.5.1)

Since r ∈]0, 1],

Γ(rx+ 1) =

(

(2π)
1
2

exp(1)

)

(

r

(

x+
1

r

))rx(

r

(

x+
1

r

)) 1
2

exp (−rx)

(

1 +O

(

1

rx+ 1

))

=

(

(2π)
1
2

exp(1)

)

(rr)x r
1
2

(

x+
1

r

)rx(

x+
1

r

)
1
2

exp (−rx)

(

1 +O

(

1

rx+ 1

))

.

(2.5.2)

In addition, for x ∈ R+,

r ln Γ(x+ 1) =
r

2
ln 2π + r

(

x+
1

2

)

ln (x+ 1)− r (x+ 1) + rO

(

1

x+ 1

)

.

Therefore,

(Γ (x+ 1))r =

(

(2π)
1
2

exp(1)

)r

(x+ 1)r(x+
1
2) exp (−rx)

(

1 + rO

(

1

x+ 1

))

. (2.5.3)

Hence,

(

(

2π

exp(2)

)1−r

r

) 1
2

(rr)x (Γ (x+ 1))r =

(

(2π)
1
2

exp(1)

)

(rr)x r
1
2 (x+ 1)rx (x+ 1)

r
2

exp (−rx)

(

1 + rO

(

1

x+ 1

))

.
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Observe that r ∈]0, 1] implies that 1/r ≥ 1 and r/2 ≤ 1/2. Thus,

(

(

2π

exp(2)

)1−r

r

)
1
2

(rr)x (Γ (x+ 1))r ≤

(

(2π)
1
2

exp(1)

)

(rr)x r
1
2

(

x+
1

r

)rx(

x+
1

r

)
1
2

exp (−rx)

(

1 +O

(

1

rx+ 1

))

.

Applying (2.5.2),

(

(

2π

exp(2)

)1−r

r

) 1
2

(rr)x (Γ (x+ 1))r ≤ Γ(rx+ 1).

Therefore,

KrM
x
r (Γ(x+ 1))r ≤ Γ(rx+ 1),

where Kr and Mr are defined as above. This establishes the inequality on the left-hand side.

For the inequality on the right-hand side, observe from (2.5.3) that

(Γ (x+ 1))r =

(

(2π)
1
2

exp(1)

)r

(x+ 1)r(x+
1
2) exp(−rx)

(

1 + rO

(

1

x+ 1

))

.

Since
(

1 + rO
(

1
x+1

))

≥ 1,

(x+ 1)r(x+
1
2) ≤

(Γ (x+ 1))r exp (rx)
(

(

2π
exp(2)

)
1
2

)r . (2.5.4)

From (2.5.1) it follows that

Γ(rx+ 1) =

(

(2π)
1
2

exp(1)

)

(rx+ 1)(rx+
1
2) exp (−rx)

(

1 +O

(

1

rx+ 1

))

=

(

(2π)
1
2

exp(1)

)

(rx+ 1)r(x+
1
2) (rx+ 1)(

1−r
2 ) exp (−rx)

(

1 +O

(

1

rx+ 1

))

.
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Applying (2.5.4),

Γ(rx+ 1) ≤

(

(

2π

exp(2)

)
1
2

)

(Γ (x+ 1))r exp (rx)
(

(

2π
exp(2)

) 1
2

)r (rx+ 1)(
1−r
2 ) exp (−rx)

(

1 +O

(

1

rx+ 1

))

.

Since r ∈]0, 1] implies that
(

1−r
2

)

< 1/2, it follows that,

Γ(rx+ 1) ≤

(

(

2π

exp(2)

) 1
2

)

(Γ (x+ 1))r (rx+ 1)
1
2

(

1 +O

(

1

rx+ 1

))

.

Observe (rx+ 1)
1
2 ≤ 2x and

(

1 +O
(

1
rx+1

))

≤ 2. Hence,

Γ(rx+ 1) ≤

(

(

2π

exp(2)

)1−r

4

)
1
2

2x (Γ (x+ 1))r .

Therefore,

Γ(rx+ 1) ≤ K̃r2
x(Γ(x+ 1))r,

where K̃r is defined as above.

Lemma 2.5.1 states that the ratio of a fractional power of the factorial of a non-negative

real number (in the sense of analytic continuation) and the factorial of a fraction of a real

number has an exponential growth analytically. Therefore, ∀r ∈]0, 1] and x ∈ R>0

Γ(x+ 1)r ≈ Γ(rx+ 1)Θ (cx) ,

where Θ (.) is the standard Bachman-Landau notation, and c is some constant.
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The Gevrey order of a series d ∈ R [[X̃ ]] is defined as

s = inf{t ≥ 0 : |(d, η)| ≤ KdM
|η|
d (|η|!)t , ∀η ∈ X̃∗},

where Kd,Md > 0 are constants and are not fixed apriori. A series d ∈ R [[X̃ ]] is said to be

globally convergent if there exist constants Kd,Md > 0 and s ∈ [0, 1[ such that

|(d, η)| ≤ KdM
|η|
d (|η|!)−1+s , ∀η ∈ X̃∗.

Hence, a series d ∈ RGC [[X̃ ]] has a Gevrey order (−1 + s) with s ∈ [0, 1[ while a series

d ∈ RLC [[X̃ ]] has a Gevrey order of 0. A series d ∈ R
k [[X̃ ]] is said to be globally convergent

if and only if each component di is globally convergent for i = 1, . . . , m. The subset of

all globally convergent series in Rk [[X̃ ]] is denoted as Rk
GC [[X̃ ]]. The following theorem

explains the significance of the definition of global convergence of a series with respect to its

corresponding static function.

Theorem 2.5.2. If d ∈ RGC [[X̃ ]] with growth constants Kd,Md > 0 and Gevrey order

(−1 + s) with s ∈ [0, 1[, then the formal static function fd : Rm −→ R converges over the

entire domain Rm.

Proof: Let z ∈ Rm. From the triangle inequality on R,

|fd (z)| ≤
∑

η∈X̃∗

|(d, η)||zη|

≤
∑

η∈X̃∗

KdM
|η|
d (|η|!)−1+s |zη|

≤ Kd

(

∞
∑

n=0

(

Md|z
x̃1 |
)n

n!(1−s)

)

· · ·

(

∞
∑

n=0

(

Md|z
x̃m |
)n

n!(1−s)

)

= Kd

m
∏

i=1

(

∞
∑

n=0

(Md|zi|)
n

n!(1−s)

)

.
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Since n! = Γ (n+ 1), then by Lemma 2.5.1,

(

∞
∑

n=0

(Md|zi|)
n

n!(1−s)

)

≤ K̃r

(

∞
∑

n=0

(2Md|zi|)
n

Γ ((1− s)n + 1)

)

= E(1−s),1 (2Md|zi|) ,

where E(1−s),1 (.) is the Mittag-Leffler function. Hence,

|fd (z)| ≤ Kd

m
∏

i=1

E(1−s),1 (2Md|zi|) .

Observe that s ∈ [0, 1[ if and only if (1− s) ∈]0, 1]. Hence, E(1−s),1 (·) is an entire function

on C. Therefore, d ∈ RGC [[X̃ ]] implies that the corresponding static map fd is bounded

pointwise in absolute value by a real analytic map which is convergent everywhere on Rm.

Observe that a commutative polynomial d ∈ R [X̃ ] is globally convergent with Gevrey order

−1. Like in the case of Chen-Fliess series, a commutative series d ∈ Rm
GC [[X̃ ]] is only a

sufficient condition for the corresponding formal static map to be convergent everywhere on

Rm. The derivation of a necessary condition for a real analytic function that is convergent

everywhere on Rm requires more careful attention. An analytic function that is analytic

everywhere on Rm need not extend into an entire function upon complexification of the

domain.

Example 2.5.1. Consider f : R −→ R defined as f(x) = 1/ (x2 + 1). The function f is

analytic everywhere on R. The complexification of f : C −→ C given by f(z) = 1/ (z2 + 1)

is not an entire function on C as the complex map f has poles at z = ±i.

A locally real analytic function always extends to a locally analytic complex function, but

a function that is analytic over the entire real line does not necessarily extend to an entire

function. Hence, the complexification approach does not yield to find the necessary growth
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condition for a real analytic function that is analytic everywhere on R
m. The derivation of

the necessary condition is deferred for future work.

2.6 SHUFFLE GROUP

This subsection presents the shuffle group. The computations and algorithms described

in Section 3.2 are based on the Hopf algebra of the coordinate maps defined on the shuffle

group. The following theorem describes the shuffle group.

Theorem 2.6.1. [Gray, et al. (2014b)] The set of non-proper series in R〈〈X〉〉 is a group

under the shuffle product. In particular, the shuffle inverse of any such series c is

c ⊔⊔ −1 = ((c, ∅)(1− c′)) ⊔⊔ −1 = (c, ∅)−1(c′) ⊔⊔ ∗,

where c′ := 1− c/(c, ∅) is proper and (c′) ⊔⊔ ∗ :=
∑

k≥0(c
′) ⊔⊔ k and the identity element is the

constant 1.

More generally, if c ∈ Rℓ〈〈X〉〉, then the shuffle inverse is defined componentwise viz.

(c ⊔⊔ −1)i = c ⊔⊔ −1
i , where i = 1, 2, . . . ℓ. Hence, in general, (Rℓ〈〈X〉〉, ⊔⊔ ) possesses a group

structure with the identity element ll , [1 1 · · · 1]T ∈ Rℓ.

Example 2.6.1. Let c = 1 − x1 ∈ R〈〈X〉〉. Observe that, c′ = x1, and hence, c ⊔⊔ −1 =

x ⊔⊔ ∗
1 =

∑

k≥0 k! x
k
1.
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CHAPTER 3

ADDITIVE STATIC FEEDBACK PRODUCT: DEFINITION

AND COMPUTATION

Consider the additive static feedback connection of a Chen-Fliess series Fc with a static

map fd in the feedback. The objective of the chapter is to prove the existence and uniqueness

of a Chen-Fliess series for the closed-loop system and to compute the generating series for the

closed-loop system. The chapter also develops the Hopf algebra corresponding to the shuffle

group, which aids in building the algorithmic tools for computing the feedback product.

Before attempting the feedback problem, the cascade connection of Chen-Fliess Fc with the

static map fd must be treated in detail.

3.1 WIENER-FLIESS CONNECTIONS

This section describes the cascade connection shown in Figure 4 of a Chen-Fliess series

Fc generated by a series c ∈ Rℓ〈〈X〉〉 and a formal static map fd : Rℓ −→ Rk defined

without loss of generality at z = 0. Such configurations are calledWiener-Fliess connections.

The connection is known to generate another well defined formal Fliess operator, and its

generating series is computed through the Wiener-Fliess composition product. The product

is well defined formally due to the local finiteness property in the following cases:

1. The Fliess operator Fc is defined by a proper series c ∈ Rℓ〈〈X〉〉.

2. The formal static function fd : R
ℓ −→ R

k is a vector of k polynomials.

The definition addressing the first case appears in [Gray & Thitsa (2012)]. However, the

definition of the Wiener-Fliess product remains the same for both cases and is given in the

following theorem.
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y u 
v 

FcFcF fd

Fig. 4: Wiener-Fliess connection

Theorem 3.1.1. Let X = {x0, x1, . . . , xm} and X̃ = {x̃1, x̃2, . . . , x̃ℓ}. Given a formal Fliess

operator Fc with c ∈ Rℓ〈〈X〉〉 and formal function fd : Rℓ −→ Rk with a generating series

d ∈ R
k [[X̃ ]] at z = 0, viz.

fd(z) =
∑

η̃∈X̃∗

(d, η̃)zη̃,

the composition fd ◦ Fc has a generating series in Rk〈〈X〉〉 provided either of the following

holds:

1. c ∈ Rℓ〈〈X〉〉 is proper.

2. d ∈ Rk [X̃ ].

The generating series of fd ◦ Fc is then given by the Wiener-Fliess composition product

d ◦̂ c =
∑

η̃∈X̃∗

(d, η̃)c ⊔⊔ η̃, (3.1.1)

where c ⊔⊔ x̃iη̃ := ci ⊔⊔ c ⊔⊔ η̃ ∀x̃i ∈ X̃, ∀η̃ ∈ X̃∗, and c ⊔⊔ φ = 1.

The following theorem shows that the Wiener-Fliess composition product is left R-linear.

Theorem 3.1.2. If either of the following conditions hold,

1. c ∈ Rℓ
p 〈〈X〉〉.

2. d, e ∈ Rk [X̃ ].
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then (αd+ e) ◦̂ c = α(d ◦̂ c) + (e ◦̂ c), where α ∈ R.

Proof: Observe

(αd+ e) ◦̂ c =
∑

η̃∈X̃∗

((αd) + e, η̃)c ⊔⊔ η̃

=
∑

η̃∈X̃∗

(αd, η̃)c ⊔⊔ η̃ +
∑

η̃∈X̃∗

(e, η̃)c ⊔⊔ η̃

= α
∑

η̃∈X̃∗

(d, η̃)c ⊔⊔ η̃ +
∑

η̃∈X̃∗

(e, η̃)c ⊔⊔ η̃

= α(d ◦̂ c) + (e ◦̂ c).

The next lemma will be used to show that the Wiener-Fliess composition product has

certain contractive properties in the ultrametric space.

Lemma 3.1.1. Let X = {x0, x1, . . . , xm} and X̃ = {x̃1, x̃2, . . . , x̃ℓ}. Assume η ∈ X̃+.

1. If c, c̃ ∈ Rℓ
p 〈〈X〉〉, then κ(η ◦̂ c, η ◦̂ c̃) ≤ max{κ(c), κ(c̃)}(|η|−1)κ(c, c̃).

2. If c, c̃ ∈ Rℓ〈〈X〉〉 \ Rℓ
p 〈〈X〉〉, then κ(η ◦̂ c, η ◦̂ c̃) ≤ κ(c, c̃).

Proof: The proof is by induction on the length of η. If η = x̃i for i = 1, 2, . . . ℓ, then

κ(x̃i ◦̂ c, x̃i ◦̂ c̃) = κ(c ⊔⊔ x̃i, c̃ ⊔⊔ x̃i)

= κ(ci, c̃i)

≤ κ(c, c̃).

Hence, the base case is proved. Now assume the hypothesis is true for |η| = k ≥ 1. Let

η̂ = x̃jη, where x̃j ∈ X̃ and η ∈ X̃k. Then

κ(η̂ ◦̂ c, η̂ ◦̂ c̃) = κ(c ⊔⊔ x̃jη, c̃ ⊔⊔ x̃jη)
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= κ(cj ⊔⊔ c ⊔⊔ η, c̃j ⊔⊔ c̃ ⊔⊔ η)

= κ(cj ⊔⊔ c ⊔⊔ η − c̃j ⊔⊔ c̃ ⊔⊔ η)

= κ((cj ⊔⊔ c ⊔⊔ η − cj ⊔⊔ c̃ ⊔⊔ η) + (cj ⊔⊔ c̃ ⊔⊔ η − c̃j ⊔⊔ c̃ ⊔⊔ η))

≤ max{κ(cj ⊔⊔ c ⊔⊔ η − cj ⊔⊔ c̃ ⊔⊔ η), κ(cj ⊔⊔ c̃ ⊔⊔ η − c̃j ⊔⊔ c̃ ⊔⊔ η)}

= max{κ(cj ⊔⊔ (c ⊔⊔ η − c̃ ⊔⊔ η)), κ((cj − c̃j) ⊔⊔ c̃ ⊔⊔ η)}.

By the triangle inequality on the ultrametric and the induction hypothesis,

κ(η̂ ◦̂ c, η̂ ◦̂ c̃) ≤ max

{

κ(c) max{κ(c), κ(c̃)}(|η|−1)κ(c, c̃), κ(c̃)|η| κ(c, c̃)

}

= max{κ(c), κ(c̃)}|η| κ(c, c̃),

which proves the claim when c is proper. If c is not proper, then κ(c) = κ(c̃) = 1. Therefore,

κ(η̂ ◦̂ c, η̂ ◦̂ c̃) ≤ κ(c, c̃)

as desired.

For a fixed d ∈ Rk [[X̃ ]] define the map d ◦̂ : Rℓ
p 〈〈X〉〉 −→ Rk〈〈X〉〉 : c 7→ d ◦̂ c, and for

a fixed d̃ ∈ Rk [X̃ ] define the map d̃ ◦̂ : Rℓ〈〈X〉〉 −→ Rk〈〈X〉〉 : c̄ 7→ d ◦̂ c̄. The following

theorems describe the contractive properties of d ◦̂ and d̃ ◦̂ .

Theorem 3.1.3. The map d ◦̂ is a weak contraction map when ω (d) = 1 and a strong

contraction map when ω (d) > 1.

Proof: Let c, c′ ∈ Rℓ
p 〈〈X〉〉. Observe,

κ(d ◦̂ (c), d ◦̂ (c
′)) = κ(d ◦̂ c, d ◦̂ c′)

= κ





∑

η∈X̃∗

(d, η)(c ⊔⊔ η − c′ ⊔⊔ η)




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≤ sup
η∈X̃+

κ
(

(d, η)(c ⊔⊔ η − c′ ⊔⊔ η)
)

= sup
k≥ ω(d)

sup
η∈X̃k

κ(c ⊔⊔ η, c′ ⊔⊔ η).

Applying Lemma 3.1.1 gives

κ(d ◦̂ (c), d ◦̂ (c
′)) ≤ sup

k≥ ω(d)

max{κ(c), κ(c′)}k−1κ(c, c′)

≤ max{κ(c), κ(c′)}ω(d)−1κ(c, c′).

Theorem 3.1.4. The map d̃ ◦̂ is a weak contraction map.

Proof: Let c, c′ ∈ Rℓ〈〈X〉〉. Observe,

κ(d̃ ◦̂ (c), d̃ ◦̂ (c
′)) = κ(d̃ ◦̂ c, d̃ ◦̂ c′)

= κ







∑

η∈supp(d̃)

(d̃, η)(c ⊔⊔ η − c′ ⊔⊔ η)







≤ sup
η∈supp(d̃)

κ
(

(d̃, η)(c ⊔⊔ η − c′ ⊔⊔ η)
)

.

By the definition of ultrametric κ,

κ(d̃ ◦̂ (c), d̃ ◦̂ (c
′)) ≤ sup

η∈supp(d̃)
κ (c ⊔⊔ η − c′ ⊔⊔ η)

= sup
η∈supp(d̃)

κ (c ⊔⊔ η, c′ ⊔⊔ η) .

Applying Lemma 3.1.1 gives

κ(d̃ ◦̂ (c), d̃ ◦̂ (c
′)) ≤ sup

η∈supp(d̃)
κ (c, c′)
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= κ (c, c′) .

The following theorem states the mixed associativity property involving the mixed com-

position product and the Wiener-Fliess composition product. This identity plays a key role

in determining the generating series of the static feedback connection in Section 3.3.

Theorem 3.1.5. If either of the following conditions hold,

1. c ∈ Rℓ
p 〈〈X〉〉

2. d ∈ R
k [X̃ ],

with e ∈ Rm〈〈X ′〉〉 such that |X̃| = ℓ and |X| = m+ 1, then d ◦̂ (c ◦̃ eδ) = (d ◦̂ c) ◦̃ eδ.

Proof: The proof is obtained directly from the definition of the Wiener-Fliess composition

product in Theorem 3.1.1 by linearly extending the identity given in Lemma 2.3.1.

The final theorem of the section states necessary and sufficient conditions for which

relative degree is preserved under the Wiener-Fliess composition product.

Theorem 3.1.6. Let X = {x0, x1} and c ∈ Rp 〈〈X〉〉 with relative degree rc. Assume

d ∈ R [[x̃1]]. The relative degree of d◦̂ c is well-defined and equal to rc if and only if (d, x̃1) 6= 0.

Proof: The proof follows from the formula in Theorem 3.1.1 and Lemma 2.3.3

For the case when c is non-proper and d ∈ R [x̃1], the relative degree of d ◦̂ c requires

caution and is hard to characterize in general. The following example demonstrates a case

when the Chen-Fliess series c is non-proper but d ◦̂ c has relative degree.

Example 3.1.1. Let X = {x0, x1} and c ∈ R〈〈X〉〉 such that c = 1 + x1. Observe that c

has relative degree 1. Given d ∈ R [x̃1] such that d = x̃21, then

d ◦̂ c = x̃21 ◦̂ (1 + x1)
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= (1 + x1)
⊔⊔ 2

= 1 + 2x1 + 2x21.

Hence, the relative degree of d ◦̂ c exists and is 1.

The following is an example when Chen-Fliess series c is non-proper but d ◦̂ c does not

have relative degree.

Example 3.1.2. Let X = {x0, x1} and c ∈ R〈〈X〉〉 such that c = 1 + x1. Observe that c

has relative degree 1. Given d ∈ R [x̃1] such that d = x̃21 − 2x̃1, then

d ◦̂ c = x̃21 − 2x̃1 ◦̂ (1 + x1)

= (1 + x1)
⊔⊔ 2 − 2 (1 + x1)

= −1 + 2x21.

Hence, the relative degree of d ◦̂ c is not well-defined.

3.2 HOPF ALGEBRA OF THE SHUFFLE GROUP

The goal of this section is to describe the Hopf algebra of the shuffle group as defined in

Theorem 2.6.1. It is utilized subsequently to develop an algorithm to compute the Wiener-

Fliess composition product. Define the set of formal power series

M = { ll + d : d ∈ Rn
p 〈〈X〉〉},

where ll = [1 · · ·1 1]T ∈ Rn. In light of Theorem 2.6.1, (M, ⊔⊔ ) forms an Abelian group,

where the shuffle inverse of c ∈ M is defined componentwise viz. (c ⊔⊔ −1)i = (ci)
⊔⊔ −1. The

identity element of the group M is ll. Let the set of all maps from M to R
n be denoted as
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Homset(M,Rn). The subset H ⊂ Homset(M,Rn) of coordinate maps defined on group M is

H = {aη : aη(c) = (c, η) : η ∈ X∗}.

H has an R-algebra structure with addition, scalar multiplication and product defined,

respectively, as

(aη + aζ)(c) = aη(c) + aζ(c)

(kaη)(c) = k(aη(c))

m(aη, aζ)(c) = aη(c)⊙ aζ(c),

where η, ζ ∈ X∗, k ∈ R, and ⊙ denotes the Hadamard product on R
n. The unit for the

product is given by a∅ with a∅(c) = ll, ∀c ∈ M . Define the coproduct ∆ : H −→ H
⊗

H as

∆aη(c, d) = aη(c ⊔⊔ d), where c, d ∈M and η ∈ X∗. The counit map ǫ is defined as

ǫ(aη) =















1 : η = ∅

0 : otherwise.

It is simple to check that (H,m, a∅,∆, ǫ) forms a commutative and cocommutative bialgebra.

The bialgebra is graded based on word length viz. H =
⊕

k∈N0
Hk with aη ∈ Hk if and only

if |η| = k. Since R ∼= H0 in the category of algebras with ǫ acting as the isomorphism,

H is a connected and graded bialgebra. The reduced coproduct ∆′ is defined as ∆′(aη) =

∆(aη) − aη ⊗ 1 − 1 ⊗ aη if η 6= ∅. Here, 1 stands for the constant map which maps c to ll

for all c ∈ M . For the case of the empty word, ∆′(a∅) = 0. If c, d ∈ Rn
p 〈〈X〉〉, then their

corresponding elements in the shuffle group M are ll + c and ll + d, respectively. The shuffle

product of two proper series is computed by the reduced coproduct of the corresponding

elements in the shuffle group M . For all proper series c, d ∈ Rn
p 〈〈X〉〉 and η ∈ X∗, it

follows that (c ⊔⊔ d, η) = ∆′(aη)( ll + c, ll + d). The antipode map S : H −→ H is given by
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S(aη)(c) = aη(c
⊔⊔ −1). Since the Hopf algebra is graded and connected the antipode can be

computed for any a ∈ H+ (where H+ :=
⊕

k≥1Hk ) as [Figueroa & Gracia-Bond́ıa (2005)]

S(a) = −a−
∑

a′(1) ⊙ S(a′(2)),

where the summation is taken over all components of the reduced coproduct ∆′(a) written in

the Sweedler notation [Sweedler (1969),Abe (2004)]. Therefore, the tuple (H,m, a∅,∆, ǫ, S)

forms a commutative, cocommutative, connected and graded unital Hopf algebra.

Example 3.2.1. Reconsider Example 2.6.1, where c = 1 − x1 ∈ R〈〈X〉〉 so that c ⊔⊔ −1 =
∑

k≥0 k! x
k
1. The goal is to determine (c ⊔⊔ −1, x21) directly without computing the entire shuffle

inverse. Observe

ax2
1
(c ⊔⊔ −1) = S(ax2

1
)(c),

and the reduced coproduct of ax2
1
is

∆′(ax2
1
) = 2(ax1 ⊗ ax1).

Since ∆′(ax1) = 0, it follows that

S(ax1) = −ax1 .

Hence,

S(ax2
1
)(c) = −ax2

1
(c)− 2

(

ax1(c)(−ax1(c))
)

= 0− 2(1(−1)) = 2.

Therefore, (c ⊔⊔ −1, x21) = 2, as expected.
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An inductive algorithm is presented next to compute the coproduct ∆ on H . A key

feature of the algorithm is a recursively defined partition map µ : X∗ −→ X∗ ⊗X∗, where

xjη 7→ (xj ⊗∅ + ∅⊗xj)µ(η) with η ∈ X∗, xj ∈ X , and µ(∅) := (∅⊗∅). The definition of the

map µ is exactly dual to the definition of the deshuffle coproduct ∆ ⊔⊔ described in [Foissy

(2015)]. The deshuffle coproduct is described on the coordinate maps aη for all η ∈ X∗ and

involves the splitting of the coordinate maps. However, from an algorithmic perspective, it

is more natural to split the underlying words as described in the following algorithm.

Algorithm 3.2.1. For all η ∈ X∗ and c, d ∈ M , the coproduct ∆aη(c, d) can be computed

as:

1. µ(η) =
∑

η(1) ⊗ η(2).

2. ∆aη(c, d) =
∑

aη(1)(c)⊙ aη(2)(d).

This algorithm can be trivially extended to compute the reduced coproduct.

Algorithm 3.2.2. For all η ∈ X∗ and c, d ∈ M , the reduced coproduct ∆′aη(c, d) can be

computed as:

1. If η = ∅, then ∆′aη(c, d) = 0.

2. Else, ∆′aη(c, d) = ∆aη(c, d)− aη(c)⊙ ll− ll⊙ aη(d).

Let Φc be an R-linear homomorphism of algebras defined as Φc : H −→ Rn : aη 7→ aη(c),

where Rn is an R-algebra under the Hadamard product. The maps Φc are usually called the

characters of the Hopf algebra H and form a group under the Hopf convolution product ⋆

defined as

(Φc ⋆ Φd)(aη) = m ◦ (Φc ⊗ Φd) ◦∆(aη)

=
∑

Φc(aη(1))⊙ Φd(aη(2))

=
∑

aη(1)(c)⊗ aη(2)(d)
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= ∆aη(c, d) = (c ⊔⊔ d, η).

Hence, alternatively, the coproduct can be realized as the Hopf convolution product of

the characters of the Hopf algebra H . The group inverse for any character Φc is defined as

Φ⋆−1
c = Φ

c ⊔⊔ −1 = Φc ◦ S. It is not hard to see that the group of characters of the Hopf

algebra H and the shuffle group M are isomorphic.

Example 3.2.2. Suppose X = {x1, x2}. Let c = 1 − x1 and d = 1 + x1x2 ∈ R〈〈X〉〉. The

shuffle product c ⊔⊔ d is computed directly as c ⊔⊔ d = 1+x1x2−2x21x2−x1x2x1. The objective

is to find only (c ⊔⊔ d, x1x2x1) = ∆ax1x2x1(c, d) using Algorithm 3.2.1.

(1) Recursively apply the map µ to compute the partition of the word x1x2x1:

µ(x1x2x1) = (x1 ⊗ ∅+ ∅ ⊗ x1)µ(x2x1)

= (x1 ⊗ ∅+ ∅ ⊗ x1)(x2 ⊗ ∅+ ∅ ⊗ x2)µ(x1)

= (x1 ⊗ ∅+ ∅ ⊗ x1)(x2 ⊗ ∅+ ∅ ⊗ x2)(x1 ⊗ ∅+ ∅ ⊗ x1)

= (x1 ⊗ ∅+ ∅ ⊗ x1)(x2x1 ⊗ ∅+ x2 ⊗ x1 + x1 ⊗ x2 + ∅ ⊗ x2x1)

= x1x2x1 ⊗ ∅+ x1x2 ⊗ x1 + x21 ⊗ x2 + x1 ⊗ x2x1 + x2x1 ⊗ x1 + x2 ⊗ x21+

x1 ⊗ x1x2 + ∅ ⊗ x1x2x1.

(2) Compute the coproduct:

∆ax1x2x1(c, d) = (c, x1x2x1)(d, ∅) + (c, x1x2)(d, x1) + (c, x21)(d, x2) + (c, x1)(d, x2x1)+

(c, x2x1)(d, x1) + (c, x2)(d, x
2
1) + (c, x1)(d, x1x2) + (c, ∅)(d, x1x2x1)

= (0)(1) + (0)(0) + (0)(0) + (−1)(0) + (0)(0) + (0)(0) + (−1)(1) + (1)(0)

= −1.

Therefore, (c ⊔⊔ d, x1x2x1) = −1 as computed from the direct shuffle product calculation.
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A key observation is that Algorithm 3.2.2 can be utilized to compute the Wiener-Fliess

composition product (3.1.1). Specifically, if c̄ ∈ Rℓ
p 〈〈X〉〉, define the corresponding group

element in M as c , ll + c̄. If η̃ = x̃i1 x̃i2 · · · x̃is ∈ X̃∗ and ζ ∈ X∗, then

(c̄ ⊔⊔ η̃, ζ) = (∆′◦(s−1)aζ)(ci1 , ci2, . . . , cis),

where (∆′◦(s−1)aζ) denotes the composition of the reduced coproduct map with itself s − 1

times and then applied to the coordinate map aζ . Computationally, this boils down to

splitting the word ζ into all possible s subwords, say ζ = α1α2 · · ·αs, where αi ∈ X+, and

then finding the Hadamard product of the coefficients corresponding to each subword with

respect to the proper part of the series in the argument. That is,

(c̄ ⊔⊔ η̃, ζ) =
∑

α1,...,αs∈X+

ζ∈α1 ⊔⊔ ··· ⊔⊔ αs

(c̄i1, α1)⊙ (c̄i2 , α2)⊙ · · · ⊙ (c̄ik , αs).

The extension of this framework to the computation of Wiener-Fliess composition prod-

uct is described next. Let X̃ = {x̃1, . . . , x̃ℓ} be the commuting alphabet and X̃∗ the set of

commuting words with X̃+ = X̃∗ \ {∅}. Hence, ∀η̃ = x̃i1 x̃i2 · · · x̃is ∈ X̃∗ define the compu-

tational operators on the Hopf algebra H as χη̃ : H −→ H such that aη 7→ χη̃ (aη) (where

η ∈ X∗) and

χη̃aη(c) = ∆′◦(s−1)aη (ci1 , ci2, . . . , cik) =
(

c ⊔⊔ η̃, η
)

= (η̃ ◦̂ c̄, η) ,

where c ∈M, c̄ ∈ Rℓ
p 〈〈X〉〉 and c = ll+ c̄. If d ∈ Rk [[X̃ ]], then the Wiener-Fliess composition

d ◦̂ c̄ can be computed as

(d ◦̂ c̄, η) =







(d, ∅) ǫ+
∑

η̃∈X̃+

(d, η̃)χη̃



 aη



 ( ll + c̄).

The framework for computing the Wiener-Fliess composition product for the non-proper
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case when c̄ ∈ R
ℓ〈〈X〉〉 \Rℓ

p 〈〈X〉〉 and d ∈ R
k [X̃ ] requires more careful attention. Consider

the case where c̄ is non-proper such that (c̄i, ∅) = ri 6= 0 ∀i = 1, . . . , ℓ. The corresponding

group element of c̄ in M is c where ci =
(

1
ri

)

c̄i ∀i = 1, . . . , ℓ. If η̃ = x̃i1 x̃i2 · · · x̃is ∈ X̃∗ and

ζ ∈ X∗, then

(c̄ ⊔⊔ η̃, ζ) =

(

s
∏

j=1

rij

)

(

∆◦(s−1)aζ
)

(ci1 , ci2 , . . . , cis) ,

where (∆◦(s−1)aζ) denotes the composition of the coproduct map with itself s − 1 times

and then applied to the coordinate map aζ . Hence, ∀η̃ = x̃i1 x̃i2 · · · x̃is ∈ X̃∗, define the

computational operator χ̂η̃ on the Hopf algebra H viz. χ̂η̃ : H −→ H such that aη 7→ χ̂η̃ (aη)

(where η ∈ X∗) and

χ̂η̃aη(c) =

(

s
∏

j=1

(

c̄ij , ∅
)

)

(

∆◦(s−1)aζ
)

(ci1 , ci2, . . . , cis) =
(

c ⊔⊔ η̃, η
)

= (η̃ ◦̂ c̄, η) ,

where c̄ ∈ R〈〈X〉〉 \ R
ℓ
p 〈〈X〉〉 such that (c̄i, ∅) 6= 0 ∀i = 1, · · · , ℓ, and c ∈ M is the corre-

sponding group element of c̄. Therefore, let c̄ ∈ Rℓ〈〈X〉〉 \ Rℓ
p 〈〈X〉〉 and d ∈ Rk [X̃ ]. The

Wiener-Fliess composition d ◦̂ c̄ can be computed as

(d ◦̂ c̄, η) =







(d, ∅) ǫ+
∑

η̃∈supp(d)

(d, η̃) χ̂η̃



 aη



 (c).

Note that this framework based on Hopf algebra H has limitations when d ∈ Rk [X̃ ] and

c̄ ∈ Rℓ〈〈X〉〉\Rℓ
p 〈〈X〉〉 is a non-proper series such that ∃j ∈ {1, . . . , ℓ} : (cj, ∅) = 0. Observe

that this is only a possibility if ℓ > 1.

3.3 FLIESS OPERATORS UNDER STATIC OUTPUT FEEDBACK

Assume |X| = m+ 1 and |X̃| = ℓ. Let Fc be a Chen-Fliess series with a generating series

c ∈ Rℓ〈〈X〉〉. Assume it is interconnected with a static formal map fd with generating series



54

u 
v 

y 

fdfdff

Fc+ 

Fig. 5: Fliess operator Fc with static output feedback fd.

d ∈ Rm [[X̃ ]] in the additive output feedback configuration shown in Figure 5 satisfying either

of the following conditions:

1. The series c is proper.

2. d is only a polynomial.

The first objective of this section is to show that the closed-loop system always has a

Chen-Fliess series representation, say y = Fe[u], where e ∈ Rℓ〈〈X〉〉.

If this is the case, then necessarily

Fe[u] = y

= Fc[u+ fd(y)]

= Fc[u+ fd ◦ Fe[u]]

= Fc ◦̃ (d ◦̂ e)δ [u]

for any admissible u. From the uniqueness of generating series, the series e has to satisfy

the fixed point equation

e = c ◦̃ (d ◦̂ e)δ. (3.3.1)
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Observe that e must be a proper series whenever c is proper. It follows directly from the

definition of the mixed composition product that for all w ∈ Rk〈〈X ′〉〉, the series c ◦̃wδ ∈

Rℓ〈〈X ′〉〉 is proper if and only if c ∈ Rℓ
p 〈〈X〉〉, where k = |X|−1. The following lemmas will

be used to show that (3.3.1) always has a unique fixed point in both cases.

Lemma 3.3.1. If c ∈ Rℓ
p 〈〈X〉〉 and d ∈ Rm [[X̃ ]], then the map Qc,d : Rℓ

p 〈〈X〉〉 −→

Rℓ
p 〈〈X〉〉 : e 7→ c ◦̃ (d ◦̂ e)δ is a strong contraction map in the ultrametric topology on the

space Rℓ
p 〈〈X〉〉.

Proof: First observe that κ(hδ) = κ(h), ∀h ∈ Rℓ〈〈X〉〉. Now define two maps, d ◦̂ ,δ : e 7→

(d ◦̂ e)δ and c ◦̃ : f 7→ c ◦̃ fδ, where f ∈ Rm〈〈X〉〉. Note that Qc,d(e) = (c ◦̃ ◦ d ◦̂ ,δ)(e). It is

known that c ◦̃ is a strong contraction map in the ultrametric topology [Gray & Li (2005)],

so it only needs to be shown that d ◦̂ ,δ is at least a non-expansive map.

Consider first the case where ω(d) = 1. By Theorem 3.1.3, κ(d ◦̂ ,δ(e)) ≤ κ(e). Therefore,

d ◦̂ ,δ is a weak contraction map.

Consider next the case where ω(d) > 1. Since e ∈ Rℓ
p 〈〈X〉〉 then ord(e) ≥ 1. Therefore,

κ(e) ≤ σ with σ ∈]0, 1[. By Theorem 3.1.3, κ(d ◦̂ ,δ(e)) ≤ σκ(e). Hence, d ◦̂ ,δ is a strong

contraction map.

The counterpart of Lemma 3.3.1 for the case when d is a polynomial but c is allowed to

be an arbitrary formal series not necessarily proper is proven next.

Lemma 3.3.2. If c ∈ Rℓ〈〈X〉〉 and d ∈ Rm [X̃ ], then the map Q̃c,d : R
ℓ〈〈X〉〉 −→ Rℓ〈〈X〉〉 :

e 7→ c ◦̃ (d ◦̂ e)δ is a strong contraction map in the ultrametric topology on the space Rℓ〈〈X〉〉.

Proof: Define the maps, d̃ ◦̂ ,δ : e 7→ (d ◦̂ e)δ and c ◦̃ : f 7→ c ◦̃ fδ, where f ∈ Rm〈〈X〉〉. Note

that Q̃c,d(e) = (c ◦̃ ◦ d ◦̂ ,δ)(e). Since κ(hδ) = κ(h), ∀h ∈ Rℓ〈〈X〉〉, from Theorem 3.1.4, d ◦̂ ,δ

is a weak contraction map in ultrametric topology. As seen in Lemma 3.3.1, the map c ◦̃ is a

strong contraction map in ultrametric space. Therefore, Q̃c,d(e) = (c ◦̃ ◦ d ◦̂ ,δ)(e) is a strong

contraction map in the ultrametric topology on the space Rℓ〈〈X〉〉.

The following fixed point theorem establishes the first main result of the section, which
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follows subsequently.

Theorem 3.3.1. Let X be a noncommutative alphabet and X̃ a commutative alphabet such

that |X| = m+ 1 and |X̃| = ℓ. The following statements are true:

1. Given a proper series c ∈ Rℓ
p 〈〈X〉〉 and d ∈ Rm [[X̃ ]], the series c◦̃ (−d◦̂ c)−1δ ∈ Rℓ

p 〈〈X〉〉

is a unique fixed point of the map Qc,d defined in the Lemma 3.3.1.

2. Given a non-proper series c ∈ Rℓ〈〈X〉〉 \ Rℓ
p 〈〈X〉〉 and d ∈ Rm [X̃ ], the series

c ◦̃ (−d ◦̂ c)−1δ ∈ R〈〈X〉〉 \ Rℓ
p 〈〈X〉〉 is a unique fixed point of the map Q̃c,d defined

in the Lemma 3.3.2.

Proof: Let c ∈ R
ℓ
p 〈〈X〉〉 and d ∈ R

m [[X̃ ]]. If e := c ◦̃ (−d ◦̂ c)−1δ , then

Qc,d(e) = c ◦̃ (d ◦̂ e)δ

= c ◦̃ (d ◦̂ (c ◦̃ (−d ◦̂ c)−1δ ))δ.

Applying Theorem 3.1.5 yields

Qc,d(e) = c ◦̃ ((d ◦̂ c) ◦̃ (−d ◦̂ c)−1δ )δ

= c ◦̃ (−d ◦̂ c)−1δ = e.

Therefore, c ◦̃ (−d ◦̂ c)−1δ is the unique fixed point of Qc,d. Note that the uniqueness is

guaranteed as the ultrametric spaces are Hausdorff spaces. The proof for the case when

c ∈ Rℓ〈〈X〉〉 \ Rℓ
p 〈〈X〉〉 and d ∈ Rm [X̃ ] is similar.

Theorem 3.3.2. Let |X| = m+ 1 and |X̃| = ℓ. Let either of the following be given:

1. A proper series c ∈ Rℓ
p 〈〈X〉〉 and d ∈ Rm [[X̃ ]].

2. A non-proper series c ∈ R
ℓ〈〈X〉〉 \ Rℓ

p 〈〈X〉〉 and d ∈ R
m [X̃ ].
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Then the generating series for the closed-loop system in Figure 5 is the Wiener-Fliess feed-

back product c@̂d := c ◦̃ (−d ◦̂ c)−1δ .

The computation of (−d ◦̂ c) can be performed via the coproduct of the Hopf algebra

of the shuffle group as described in Section 3.2. The group inverse (−d ◦̂ c)−1δ can be

computed via the antipode of the Faá di Bruno type Hopf algebra corresponding to the

group (Rℓ〈〈Xδ〉〉, ◦, δ). (A particularly efficient algorithm appears in [Ebrahimi-Fard & Gray

(2017)].) Hence, the calculation of the generating series for the static feedback case is an

interplay between these two very distinct Hopf algebras.

The notion that feedback can be described mathematically as a transformation group

acting on the plant is well established in control theory [Brockett (1978)]. The following

theorem describes the situation in the present context.

Theorem 3.3.3. The Wiener-Fliess feedback product is a

1. right group action by the additive group
(

Rm [[X̃ ]],+, 0
)

on the set Rℓ
p 〈〈X〉〉 when the

Chen-Fliess series is proper;

2. right group action by the additive group
(

Rm [X̃ ],+, 0
)

on the set Rℓ〈〈X〉〉 \ Rℓ
p 〈〈X〉〉

when the Chen-Fliess series is non-proper,

where |X| = m+ 1 and |X̃| = ℓ.

Proof: Let d1, d2 ∈ Rm [[X̃ ]] and c ∈ Rℓ
p 〈〈X〉〉. It needs to be proved that

(c@̂d1)@̂d2 = c@̂(d1 + d2).

From Theorem 3.3.2 observe that

(c@̂d1)@̂d2 = (c@̂d1) ◦̃ (−d2 ◦̂ (c@̂d1))
−1
δ

= (c ◦̃ (−d1 ◦̂ c)
−1
δ ) ◦̃ (−d2 ◦̂ (c@̂d1))

−1
δ .
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Applying Theorem 2.3.3 and then Theorem 3.3.2 gives

(c@̂d1)@̂d2 = c ◦̃
[

(−d1 ◦̂ c)
−1
δ ◦ (−d2 ◦̂ (c@̂d1))

−1
δ

]

= c ◦̃
[

(−d2 ◦̂ (c@̂d1))δ ◦ (−d1 ◦̂ c)δ
]−1

= c ◦̃
[

(−d2 ◦̂ (c ◦̃ (−d1 ◦̂ c)
−1
δ ))δ ◦ (−d1 ◦̂ c)δ

]−1
.

In light of Theorem 3.1.5,

(c@̂d1)@̂d2 = c ◦̃

[

(

(−d2 ◦̂ c) ◦̃ (−d1 ◦̂ c)
−1
δ

)

δ
◦
(

− d1 ◦̂ c
)

δ

]−1

.

Expanding the group product of (Rm〈〈Xδ〉〉, ◦), it follows that

(c@̂d1)@̂d2 = c ◦̃

[((

(

(−d2 ◦̂ c) ◦̃ (−d1 ◦̂ c)
−1
δ

)

◦̃
(

− d1 ◦̂ c
)

δ

)

+
(

− d1 ◦̂ c
)

)

δ

]−1

.

Finally, from Theorem 2.3.3,

(c@̂d1)@̂d2 = c ◦̃ [−d1 ◦̂ c+ (−d2 ◦̂ c)]
−1
δ ,

so that via the left linearity of Wiener-Fliess composition,

(c@̂d1)@̂d2 = c ◦̃ [−(d1 + d2) ◦̂ c]
−1
δ = c@̂(d1 + d2).

The proof is analogous for the case when c is non-proper and d1, d2 ∈ Rm [X̃ ].

It is worth noting that for dynamic output feedback the transformation group is

(Rm〈〈X〉〉,+), while here it is (Rm [[X̃ ]],+) (or (Rm [X̃ ],+)) that plays this role. The fi-

nal theorem states that a SISO nonlinear input-output system with relative degree has its

relative degree left invariant under static output feedback.

Theorem 3.3.4. Let X = {x0, x1} and c ∈ R〈〈X〉〉 have relative degree. If either of the
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following conditions hold:

1. c is proper and d ∈ R [[x̃1]];

2. c is non-proper and d ∈ R [x̃1],

then c@̂d has relative degree equal to that of c.

Proof: The proof follows from the formula in Theorem 3.3.2 and the relative degree properties

summarized in Table 1.

Observe that in the SISO case, the Wiener-Fliess composition product of a non-proper

Chen-Fliess series c with relative rc and a commutative polynomial d ∈ R [X̃ ] can fail to

have a well-defined relative degree as demonstrated in Example 3.1.2. However, the static

feedback configuration of the non-proper series c with the commutative polynomial d always

has well defined relative degree and is rc as proven in Theorem 3.3.4.

Example 3.3.1. Consider a normalized forced pendulum equation

θ̈ + sin θ = u (3.3.2)

with input u, angular displacement θ, and output y = θ. Under the feedback law u = v+sin θ,

the system is transformed into a double integrator θ̈ = v. For example, with θ(0) = 0 and

θ̇(0) = 1, the closed-loop system is described by

y(t) = t+

∫ t

0

∫ τ2

0

v(τ1) dτ1 dτ2,

or equivalently, y = Fc@̂d[v] with c@̂d = x0 + x0x1. Clearly, the series has relative degree

two. The same result can be established via Theorem 3.3.2. The following computations

were all done via Mathematica. It is easily checked that the open-loop system y = Fc[u] has

the generating series

c = x0 + x0x1 − x30 − x30x1 + 2x50 + 4x50x1 + 2x40x1x0 + x30x1x
2
0 + · · ·
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and has relative degree 2 as expected. The sinusoidal static output feedback map has gen-

erating series d ∈ R [[x̃1]] given by

d = x̃1 −
1

3!
x̃31 +

1

5!
x̃51 −

1

7!
x̃71 + · · ·

Using the computational methods described above and computing the composition antipode

for words up to length four, it is found that

c@̂d ≈ x0 + x0x1 +O(x60).

The terms O(x60) are the error terms due to the need to truncate all the underlying series

at each step of the calculation in the Wiener-Fliess feedback product formula. The order of

these error terms can be increased but at a significant computational cost.
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CHAPTER 4

CONVERGENCE OF ADDITIVE STATIC FEEDBACK

PRODUCT

The goal of this chapter is to answer the following questions. Does the additive static

feedback connection preserve local convergence? That is, does the additive feedback connec-

tion of a locally convergent Fliess operator with a locally convergent analytic function have

a locally convergent Fliess operator representing the closed-loop system? Taking a step fur-

ther, does the additive static feedback connection preserve global convergence? The strategy

is to characterize the convergence under individual products appearing in the Wiener-Fliess

feedback product derived in Chapter 3.

4.1 LOCAL CONVERGENCE OF THE MIXED COMPOSITION AND

WIENER-FLIESS COMPOSITION

The goal of this section is to prove the closure of Rm
LC〈〈X〉〉 under the mixed composition

product and Wiener-Fliess composition product. These results are vital in proving that

the Wiener-Fliess feedback product preserves local convergence. The following lemma is

essential.

Lemma 4.1.1. Let e ∈ RLC〈〈X〉〉 be a proper series such that |(e, ζ)| ≤ KeM
|ζ|−j
e |ζ |! ∀ζ ∈

X+ where j ≥ 0. Then e ⊔⊔ n is a proper and locally convergent series ∀n ≥ 1 such that

|(e ⊔⊔ n, ζ)| ≤ Kn
eM

|ζ|−nj
e |ζ |!

(

|ζ|−1
n−1

)

∀ζ ∈ X+.

Proof: Observe ∀n ≥ 1 and ∀ζ ∈ X+ that

|(e ⊔⊔ n, ζ)| ≤
∑

i1,...,in>0
ii+···+in=|ζ|

(KeM
i1−j
e i1!) · · · (KeM

in−j
e in!)
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= Kn
eM

|ζ|−nj
e |ζ |!

∑

i1,...,in>0
ii+···+in=|ζ|

1

= Kn
eM

|ζ|−nj
e |ζ |!

(

|ζ | − 1

n− 1

)

.

4.1.1 Local Convergence of Mixed Composition Product

This subsection addresses the question of whether the mixed composition product of two

locally convergent Chen-Fliess series has a well defined Fliess operator representation. The

following lemma is used in the proof of the main result.

Lemma 4.1.2. Let d ∈ Rm
LC〈〈X〉〉 such that |(di, ζ)| ≤ KdiM

|ζ|
di
|ζ |!, where ζ ∈ X∗, and di

is the ith component of the series d, then the proper series e =
∑m

j=0 x̃j + x̃0
∑m

i=1 di is also

locally convergent. Specifically,

|(e, ζ)| ≤ (1 +mKd)M
|ζ|−1
d |ζ |!, ∀ ζ ∈ X∗,

where Kd = max
i=1,...,m

Kdi and Md = max
i=1,...,m

Mdi .

Proof: Let ζ ∈ X̃∗. By triangle inequality,

∣

∣

∣

∣

∣

(

m
∑

i=1

di, ζ

)∣

∣

∣

∣

∣

≤
m
∑

i=1

|(di, ζ)|

≤
m
∑

i=1

KdiM
|ζ|
di
|ζ |!

≤ m max
i=1,...,m

KdiM
|ζ|
di
|ζ |!.

Define Kd = max
i=1,...,m

Kdi and Md = max
i=1,...,m

Mdi . Then,

∣

∣

∣

∣

∣

(

m
∑

i=1

di, ζ

)∣

∣

∣

∣

∣

≤ mKdM
|ζ|
d |ζ |!.
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Hence,

(

m
∑

j=0

x̃j + x̃0

m
∑

j=1

dj, ζ

)

=

m
∑

j=0

(x̃j , ζ) +

m
∑

j=1

(

dj , x̃
−1
0 (ζ)

)

≤















































1 : ζ ∈ X̃ \ {x̃0}

1 +mKd : ζ = x̃0

mKdM
|ζ|−1
d (|ζ | − 1)! : ζ = x̃0X̃

+

0 : otherwise.

Note that (1 +mKd)M
|ζ|−1
d |ζ |! bounds the right-hand side on all cases. Therefore,

|(e, ζ)| ≤ (1 +mKd)M
|ζ|−1
d |ζ |! ∀ ζ ∈ X̃∗.

The following theorem is the core result of this subsection. It proves that the mixed

composition product preserves local convergence.

Theorem 4.1.1. Let c ∈ RLC〈〈X〉〉 such that |(c, η)| ≤ KcM
|η|
c |η|! ∀η ∈ X∗. Assume

d ∈ Rm
LC〈〈X̃〉〉 such that |(di, ζ)| ≤ KdiM

|ζ|
di
|ζ |!, where ζ ∈ X̃∗, and di is the ith component

of the series d. Then c ◦̃ dδ ∈ RLC〈〈X̃〉〉 such that

|(c ◦̃ dδ, η)| ≤















(

KcMc(1 +mKd)

(1 +mKd)Mc +Md

)

[(1 +mKd)Mc +Md]
|η| |η|! if η 6= ∅

Kc if η = ∅,

where Kd = max
i=1,...,m

Kdi and Md = max
i=1,...,m

Mdi .

Proof: Observe

c ◦̃ dδ =
∑

η∈X∗

(c, η)η ◦̃ dδ
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≤
∑

η∈X∗

KcM
|η|
c |η|! η ◦̃ dδ

=
∞
∑

n=0

KcM
n
c n!

∑

η∈Xn

η ◦̃ dδ

=
∞
∑

n=0

KcM
n
c n!

∑

r0,...,rm≥0
r0+···+rm=n

(xr00 ⊔⊔ · · · ⊔⊔ xrmm ) ◦̃ dδ

=

∞
∑

n=0

KcM
n
c n!

∑

r0,...,rm≥0
r0+···+rm=n

(

x ⊔⊔ r0
0

r0!
⊔⊔ · · · ⊔⊔

x ⊔⊔ rm
m

rm!

)

◦̃ dδ

=

∞
∑

n=0

KcM
n
c

∑

r0,...,rm≥0
r0+···+rm=n

(

n

r0 · · · rm

)

(x0 ◦̃ dδ)
⊔⊔ r0

⊔⊔ · · · ⊔⊔ (xm ◦̃ dδ)
⊔⊔ rm

= Kc

∞
∑

n=0

[

Mc

(

m
∑

j=0

xj ◦̃ dδ

)]

⊔⊔ n

= Kc

∞
∑

n=0

[

Mc

(

m
∑

j=0

x̃j + x̃0

m
∑

i=1

di

)]

⊔⊔ n

.

Observe that Mc

(

∑m

j=0 x̃j + x̃0
∑m

i=1 di

)

is a proper series. Hence, |(c ◦̃ dδ, ∅)| ≤ Kc.

Now let η ∈ X̃α where α ∈ N. Then,

(c ◦̃ dδ, η) ≤ Kc

(

α
∑

n=1

[

Mc

(

m
∑

j=0

x̃j + x̃0

m
∑

i=1

di

)]

⊔⊔ n

, η

)

= Kc

α
∑

n=1

Mn
c

((

m
∑

j=0

x̃j + x̃0

m
∑

i=1

di

)

⊔⊔ n

, η

)

.

Using Lemma 4.1.1, Lemma 4.1.2 and the triangle inequality,

|(c ◦̃ dδ, η)| ≤ Kc

α
∑

n=1

Mn
c (1 +mKd)

nMα−n
d α!

(

α− 1

n− 1

)

= KcMc(1 +mKd)

{

α−1
∑

n=0

(

α− 1

n

)

[Mc(1 +mKd)]
nM

(α−1)−n
d ]

}

α!

= KcMc(1 +mKd) [(1 +mKd)Mc +Md]
α−1 α!

=

(

KcMc(1 +mKd)

(1 +mKd)Mc +Md

)

[(1 +mKd)Mc +Md]
α α!
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=

(

KcMc(1 +mKd)

(1 +mKd)Mc +Md

)

[(1 +mKd)Mc +Md]
|η| |η|!.

Therefore, c ◦̃ dδ ∈ RLC〈〈X̃〉〉.

Theorem 4.1.1 has proved that the mixed composition product is closed under local

convergence. The following theorem reinterprets the result in terms of the S∞(R) spaces.

Theorem 4.1.2. If c ∈ S∞(R) and d ∈ Sm
∞(R), then

||c ◦̃ dδ||∞,R̄ ≤ ||c||∞,R ,

where R̄ =

(

R

2 +m||d||∞,R

)

and ||d||∞,R = max
i=1,...,m

||di||∞,R. Hence, c ◦̃ dδ ∈ S∞(R̄).

Proof: Recall that c ∈ S∞(R) if and only if ||c||∞,R <∞. Thus,

|(c, η)| ≤ ||c||∞,R

(

1

R

)|η|

|η|!, ∀η ∈ X∗.

Similarly, for i = 1, . . . , m,

|(di, η)| ≤ ||d||∞,R

(

1

R

)|η|

|η|!, ∀η ∈ X∗,

where ||d||∞,R = max
i=1,...,m

||di||∞,R. Hence, using Theorem 4.1.1,

|(c ◦̃ dδ, η)| ≤



























||c||∞,R

(

1 +m||d||∞,R

)

2 +m||d||∞,R





[

2 +m||d||∞,R

R

]|η|

|η|! if η 6= ∅

||c||∞,R if η = ∅.

Observe that

||c||∞,R

(

1 +m||d||∞,R

)

2 +m||d||∞,R

≤ ||c||∞,R.
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If R̄ =

(

R

2 +m||d||∞,R

)

, then

||c ◦̃ dδ||∞,R̄ ≤ ||c||∞,R.

Theorem 4.1.2 has provided a description of the convergence of the mixed composition

product when both arguments are locally convergent. The following theorem characterizes

the convergence when the right argument is in the Fréchet space Sm
∞.

Theorem 4.1.3. If c ∈ S∞(R) and d ∈ Sm
∞, then c ◦̃ dδ ∈ S∞(R̄), where R̄ =

(

R

2 +m||d||∞,R

)

.

Proof: Recall that d ∈ Sm
∞ if and only if d ∈ Sm

∞(R
′) ∀R′ > 0. Therefore, c ∈ S∞(R) and

d ∈ Sm
∞(R). Applying Theorem 4.1.2,

||c ◦̃ dδ||∞,R̄ ≤ ||c||∞,R <∞,

where R̄ =

(

R

2 +m||d||∞,R

)

.

The following theorem states that the mixed composition product is a continuous linear

operator on a Banach space with respect to its left argument.

Theorem 4.1.4. Given d ∈ Sm
∞, define a map φd,R between Banach spaces

φd : S∞(R) −→ S∞(R̄)

c 7−→ c ◦̃ dδ,

where R̄ =

(

R

2 +m||d||∞,R

)

. Then, φd,R is a bounded linear operator with ||φd,R|| ≤ 1 under

the operator norm. Hence, the linear map φd,R is Lipschitz with Lipschitz constant less than

or equal to 1.
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Proof: The map φd,R is linear by Theorem 2.3.2. If c ∈ S∞(R), then φd,R (c) ∈ S∞(R̄) by

Theorem 4.1.3, where R̄ =

(

R

2 +m||d||∞,R

)

. Observe that

d ∈ Sm
∞ ⇔ d ∈ Sm

∞(R) ∀R > 0.

Hence, by Theorem 4.1.2

||φd,R (c)||∞,R̄
= ||c ◦̃ dδ||∞,R̄ ≤ ||c||∞,R.

Therefore, ||φd,R|| ≤ 1.

4.1.2 Local Convergence of Wiener-Fliess Composition Product

This subsection addresses the preservation of local convergence under the Wiener-Fliess

composition product. The case where c is a noncommutative formal proper series, as defined

in Theorem 3.1.1, is only considered here. The case where d is a commutative polynomial is

in Section 4.2.3. The following theorem in spirit has appeared in [Gray & Thitsa (2012)], and

it was using exponential generating functions. In this work, an alternate proof is provided

using only elementary combinatorics.

Theorem 4.1.5. Let d ∈ RLC [[X̃ ]] with |X̃| = k and |(d, η)| ≤ KdM
|η|
d ∀η ∈ X̃∗. If

c ∈ R
k
p,LC〈〈X〉〉 such that |(ci, ζ)| ≤ KciM

|ζ|
ci |ζ |! ∀ζ ∈ X∗, then d ◦̂ c ∈ RLC〈〈X〉〉 with

|(d ◦̂ c, η)| ≤















(

kKdKcMd

1+kKcMd

)

[Mc (1 + kKcMd)]
|η| |η|! if η 6= ∅

Kd if η = ∅,

where Kc = max
i=1,...,k

Kci and Mc = max
i=1,...,k

Mci.
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Proof: Observe

d ◦̂ c =
∑

η∈X̃∗

(d, η)c ⊔⊔ η

≤
∑

η∈X̃∗

KdM
|η|
d c ⊔⊔ η

=

∞
∑

n=0

KdM
n
d

∑

η∈X̃n

c ⊔⊔ η

=

∞
∑

n=0

KdM
n
d

∑

i1,...,ik≥0
i1+···+ik=n

x̃i11 · · · x̃ikk ◦̂ c

=
∞
∑

n=0

KdM
n
d

∑

i1,...,ik≥0
i1+···+ik=n

c ⊔⊔ i1
1 ⊔⊔ c ⊔⊔ i2

2 ⊔⊔ · · · ⊔⊔ c ⊔⊔ ik
k .

Since
(

n

i1···ik

)

≥ 1,

d ◦̂ c ≤
∞
∑

n=0

KdM
n
d

∑

i1,...,ik≥0
i1+···+ik=n

(

n

i1 · · · ik

)

c ⊔⊔ i1
1 ⊔⊔ c ⊔⊔ i2

2 ⊔⊔ · · · ⊔⊔ c ⊔⊔ ik
k

=
∞
∑

n=0

KdM
n
d

(

k
∑

j=1

cj

)

⊔⊔ n

= Kd

∞
∑

n=0

(

Md

k
∑

j=1

cj

)

⊔⊔ n

.

Note that Md

∑k

j=1 cj is a proper series. Hence, |(d ◦̂ c, ∅)| ≤ Kd.

Now let η ∈ Xα where α ∈ N. Then,

(d ◦̂ c, η) ≤ Kd

([

α
∑

n=1

(

Md

k
∑

j=1

cj

)]

⊔⊔ n

, η

)

= Kd

α
∑

n=1

Mn
d

((

k
∑

j=1

cj

)

⊔⊔ n

, η

)

.

Observe that
(

∑k

j=1 cj , ζ
)

≤ kKcM
|ζ|
c |ζ |!, where Kc = max

i=1,...,k
Kci and Mc = max

i=1,...,k
Mci .
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Using Lemma 4.1.1 and the triangle inequality,

|(d ◦̂ c, η)| ≤ Kd

[

α
∑

n=1

knKn
cM

n
dM

α
c α!

(

α− 1

n− 1

)

]

= KdM
α
c α!

[

α
∑

n=1

knKn
cM

n
d

(

α− 1

n− 1

)

]

= Kd (kKcMd)M
α
c

[

α−1
∑

n=0

(kKcMd)
n

(

α− 1

n

)

]

α!

= Kd (kKcMd)M
α
c (1 + kKcMd)

α−1 α!

=

(

kKdKcMd

1 + kKcMd

)

[Mc (1 + kKcMd)]
α α!

=

(

kKdKcMd

1 + kKcMd

)

[Mc (1 + kKcMd)]
|η| |η|!.

Therefore, d ◦̂ c ∈ RLC〈〈X〉〉.

4.2 GLOBAL CONVERGENCE OF SHUFFLE, MIXED COMPOSITION

AND WIENER-FLIESS COMPOSITION PRODUCTS

This section addresses the preservation of global convergence under the shuffle product,

mixed composition and the Wiener-Fliess composition product. The proofs of these con-

vergence theorems need a few preliminary results. In particular, the proofs of global con-

vergence involve the use of fractional powers of multinomial coefficients. Recall that the

gamma function, the Γ (·) restricted to R+ is the analytic continuation of the factorial map

on the non-negative integers. Hence, the analytic continuation of the multinomial coefficient

is defined in the following way.

Definition 4.2.1. If α ∈ R≥0 and ii, i2, . . . , is ∈ R≥0 such that
∑s

j=1 ij = α, then

(

α

i1 i2 · · · is

)

=
Γ (α+ 1)

Γ (i1 + 1) Γ (i2 + 1) · · ·Γ (is + 1)
.

The following lemma is central to proving that Sm
∞ is closed under the shuffle product.
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Lemma 4.2.1. Let α ∈ R≥0 and i1, i2, . . . , iv ∈ R≥0 such that
∑v

j=1 ij = α. If r ∈ ]0, 1],

then

(

α

i1 i2 · · · iv

)r

≤

(

Kv
r

K̃r

)(

Mr

2

)α(
rα

ri1 ri2 · · · riv

)

,

where Kr =

(

(

2π
exp(2)

)1−r

r

) 1
2

, K̃r = 2

(

(

2π
exp(2)

)1−r

4

) 1
2

, and Mr = rr.

Proof: Observe

(

α

i1 i2 · · · iv

)r

=
(Γ (α + 1))r

(Γ (i1 + 1))r (Γ (i2 + 1))r · · · (Γ (is + 1))r
.

Using the Lemma 2.5.1,

(

α

i1 i2 · · · iv

)r

≤
2−rK̃−1r Γ (rα+ 1)

K−1r M−i1r Γ (ri1 + 1)K−1r M−i2r Γ (ri2 + 1) · · ·K−1r M−ivr Γ (riv + 1)

=

(

Kv
r

K̃r

)(

Mr

2

)α(
rα

ri1 ri2 · · · riv

)

.

The following theorem is known as the Neoclassical Inequality and is an extension of the

multinomial theorem extended to arbitrary positive fractional powers of non-negative reals.

Theorem 4.2.1. [Lyons & Qian (2002)] Let r ∈ ]0, 1] and m ∈ N. If n ∈ N0 and

x1, x2, . . . , xm ≥ 0, then

∑

i1,...,im∈N0
i1+i···+im=n

(

rn

ri1 · · · rim

)

xri11 · · ·xrimm ≤

(

1

r

)2(m−1)

(x1 + · · ·+ xm)
n .

If r = 1 above, then the inequality becomes an equality and reduces to the well known

multinomial theorem albeit restricted to positive reals.
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4.2.1 Global Convergence of Shuffle Product

The goal of this subsection is to prove that the Sm
∞ is closed under the shuffle product.

This problem was first addressed in Theorem 4.1.4 of [Winter-Arboleda (2019)]. However,

the proof was built on the assertion that the norm ||.||∞,R is submultiplicative under shuffle

product on the Sm
∞(R) space, which is untrue. In this subsection, it is proved that Sm

∞(R) is

not closed under the shuffle product. Hence, the global convergence claim is proved on the

basis of new results proved in this subsection.The following theorem is a slightly restrictive

case that the shuffle product is closed in the space Rm
GC〈〈X〉〉. This result also has appeared

in Lemma 4.1.4 of [Winter-Arboleda (2019)], but the growth constants of the shuffle product

were incorrectly bounded. The corrected result appears here.

Theorem 4.2.2. Let c1, c2, . . . , ck be a finite nonempty collection of formal power series such

that ci ∈ RGC〈〈X〉〉 ∀i = 1, 2, . . . , k. Let {Ki}
k
i=1, {Mi}

k
i=1, and {γi}

k
i=1 be a collection of con-

stants such that Ki,Mi > 0 and γi ∈ [0, 1[ ∀i = 1, 2, . . . , k with |(ci, η)| ≤ KiM
|η|
i (|η|!)γi ∀η ∈

X∗. Then, c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck ∈ RGC〈〈X〉〉 such that |(c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck, η)| ≤ K̄M̄ |η| (|η|!)γ̄,

where

K̄ =





(

∏k
i=1Ki

)

(1− γ̄)2

K̃1−γ̄





(

K1−γ̄

(1− γ̄)2

)k

M̄ =

[

M1−γ̄

(

M1−γ̄
1 + · · ·+M1−γ̄

k

)

2

]

γ̄ = max
i=1,...,k

γi,

and the constants K1−γ̄, K̃1−γ̄, and M1−γ̄ are defined as

K1−γ̄ =

((

2π

exp(2)

)γ̄

(1− γ̄)

)

1
2

, K̃1−γ̄ = 2

((

2π

exp(2)

)γ̄

4

)

1
2

M1−γ̄ = (1− γ̄)(1−γ̄) .
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Proof: Observe that ∀η ∈ Xn where n ∈ N0,

(c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck, η) =
∑

i1,...,ik≥0
i1+···+ik=n

k
∑

j=1

ηj∈X
ij

(c1, η1)(c2, η2) · · · (ck, ηk)

(η1 ⊔⊔ η2 ⊔⊔ · · · ⊔⊔ ηk, η).

Using triangle inequality on R,

|(c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck, η)| ≤
∑

i1,...,ik≥0
i1+···+ik=n

k
∑

j=1

ηj∈X
ij

|(c1, η1)||(c2, η2)| · · · |(ck, ηk)|

(η1 ⊔⊔ η2 ⊔⊔ · · · ⊔⊔ ηk, η)

≤
∑

i1,...,ik≥0
i1+···+ik=n

k
∑

j=1

ηj∈X
ij

K1M
i1
1 (i1!)

γ1 · · ·KkM
ik
k (ik)

γk

(η1 ⊔⊔ η2 ⊔⊔ · · · ⊔⊔ ηk, η).

Observe,

k
∑

j=1

ηj∈X
ij

(η1 ⊔⊔ η2 ⊔⊔ · · · ⊔⊔ ηk, η) =

(

n

i1 · · · ik

)

∀η ∈ Xn.

Therefore,

|(c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck, η)| ≤ K1 · · ·Kk

∑

i1,...,ik≥0
i1+···+ik=n

(

n

i1 · · · ik

)

M i1
1 · · ·M ik

k

(i1)
γ1 · · · (ik)

γk .



73

If γ̄ , max
i=1,...,k

γi, then

|(c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck, η)| ≤

(

k
∏

i=1

Ki

)

∑

i1,...,ik≥0
i1+···+ik=n

(

n

i1 · · · ik

)

M i1
1 · · ·M ik

k

(i1)
γ̄ · · · (ik)

γ̄

=

(

k
∏

i=1

Ki

)







∑

i1,...,ik≥0
i1+···+ik=n

(

n

i1 · · · ik

)1−γ̄

M i1
1 · · ·M ik

k






n!γ̄

=

(

k
∏

i=1

Ki

)







∑

i1,...,ik≥0
i1+···+ik=n

(

n

i1 · · · ik

)1−γ̄ (

M
1

1−γ̄

1

)(1−γ̄)i1

· · ·

(

M
1

1−γ̄

k

)(1−γ̄)ik
]

n!γ̄.

Observe γ̄ ∈ [0, 1[ if and only if (1− γ̄) ∈ ]0, 1]. Hence, using Lemma 4.2.1,

|(c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck, η)| ≤

(

k
∏

i=1

Ki

)(

Kk
1−γ̄

K̃1−γ̄

)

(

M1−γ̄

2

)n
[

∑

i1,...,ik≥0
i1+···+ik=n

(

(1− γ̄)n

(1− γ̄) i1 · · · (1− γ̄) ik

)(

M
1

1−γ̄

1

)(1−γ̄)i1

· · ·

(

M
1

1−γ̄

k

)(1−γ̄)ik
]

n!γ̄ .

Finally, applying the neoclassical inequality from Theorem 4.2.1 gives

|(c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck, η)| ≤

(

∏k

i=1Ki

K̃1−γ̄

)

(K1−γ̄)
k

(

1

1− γ̄

)2(k−1)

[

M1−γ̄

(

M1−γ̄
1 + · · ·+M1−γ̄

k

)

2

]n

(n!)γ̄

=





(

∏k
i=1Ki

)

(1− γ̄)2

K̃1−γ̄





(

K1−γ̄

(1− γ̄)2

)k
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[

M1−γ̄

(

M1−γ̄
1 + · · ·+M1−γ̄

k

)

2

]n

(n!)γ̄ .

The following corollary is an immediate result of Theorem 4.2.2.

Corollary 4.2.1. If c ∈ RGC〈〈X〉〉, then c ⊔⊔ n ∈ RGC〈〈X〉〉 ∀n ∈ N0.

The following example demonstrates that the Banach space Sm
∞(R) is not closed under

the shuffle product, where R > 0, thus disproving the assertion made in Theorem 4.1.4

of [Winter-Arboleda (2019)].

Example 4.2.1. Let c ∈ R〈〈X〉〉 be defined as

c =
∑

η∈X∗
K

(

1

R

)|η|

|η|! η.

Observe that ||c||∞,R = K <∞. Therefore, c ∈ S∞(R). Then, ∀η ∈ Xn

(

c ⊔⊔ 2, η
)

=

n
∑

i=0

∑

η1∈Xi

η2∈Xn−i

(c, η1) (c, η2) (η1 ⊔⊔ η2, η)

=
n
∑

i=0

(

K

(

1

R

)i

i!

)(

K

(

1

R

)n−i

(n− i)!

)

∑

η1∈Xi

η2∈Xn−i

(η1 ⊔⊔ η2, η)

= K2

(

1

R

)n n
∑

i=0

i! (n− i)!
∑

η1∈Xi

η2∈Xn−i

(η1 ⊔⊔ η2, η) .

Observe for 0 ≤ i ≤ n,
∑

η1∈Xi

η2∈Xn−i

(η1 ⊔⊔ η2, η) =

(

n

i

)

.
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Hence, ∀η ∈ Xn

(

c ⊔⊔ 2, η
)

= K2

(

1

R

)n n
∑

i=0

i! (n− i)!

(

n

i

)

= K2

(

1

R

)n

n!
n
∑

i=0

1

= K2

(

1

R

)n

n! (n + 1)

= K2

(

1

R

)n

(n + 1)!.

Therefore, c ⊔⊔ 2 =
∑

η∈X∗ K
2
(

1
R

)|η|
(|η|+ 1)!η. Clearly,

∣

∣

∣

∣c ⊔⊔ 2
∣

∣

∣

∣

∞,R
= sup

η∈X∗

{K2 (|η|+ 1)} → ∞.

Hence, c ∈ S∞(R) but c ⊔⊔ 2 = c ⊔⊔ c 6∈S∞(R). The conclusion is that the Banach space

Sm
∞(R) is not closed under the shuffle product.

The following theorem characterizes a kind of almost submultiplicative property of ||·||∞,R

with respect to the shuffle product of formal power series.

Theorem 4.2.3. Let c1, c2, . . . , ck be a finite nonempty collection of formal power series

such that ci ∈ S∞(R) ∀i = 1, 2, . . . , k. Then, c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck ∈ S∞(R
′) ∀R′ = ǫR, where

ǫ ∈]0, 1[ and

||c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck||∞,R′ ≤
1

(1− ǫ)k
||c1||∞,R||c2||∞,R · · · ||ck||∞,R.

Proof: Observe ∀η ∈ Xn, where n ∈ N,

(c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck, η) =
∑

i1...ik≥0
i1+···+ik=n

k
∑

j=1

ηj∈X
ij

(c1, η1)(c2, η2) · · · (ck, ηk)

(η1 ⊔⊔ η2 ⊔⊔ · · · ⊔⊔ ηk, η).
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Using triangle inequality on R,

|(c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck, η)| ≤
∑

i1...ik≥0
i1+···+ik=n

k
∑

j=1

ηj∈X
ij

|(c1, η1)||(c2, η2)| · · · |(ck, ηk)|

(η1 ⊔⊔ η2 ⊔⊔ · · · ⊔⊔ ηk, η)

Hence,

|(c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck, η)| ≤
∑

i1...ik≥0
i1+···+ik=n

(

max
ζ∈Xi1

|(c1, ζ)|

)

· · ·

(

max
ζ∈Xik

|(ck, ζ)|

)

k
∑

j=1

ηj∈X
ij

(η1 ⊔⊔ η2 ⊔⊔ · · · ⊔⊔ ηk, η).

Applying the identity

k
∑

j=1

ηj∈X
ij

(η1 ⊔⊔ η2 ⊔⊔ · · · ⊔⊔ ηk, η) =

(

n

i1 · · · ik

)

∀η ∈ Xn

gives

|(c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck, η)| ≤
∑

i1...ik≥0
i1+···+ik=n

(

n

i1 · · · ik

)(

max
ζ∈Xi1

|(c1, ζ)|

)

· · ·

(

max
ζ∈Xik

|(ck, ζ)|

)

.

Since ci ∈ S∞(R) ∀i = 1 · · ·k,

max
ζ∈Xj

|(ci, ζ)| ≤
||ci||∞,R(j)!

Rj
∀j ∈ N.
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Therefore,

|(c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck, η)| ≤
∑

i1...ik≥0
i1+···+ik=n

(

n

i1 · · · ik

)(

||c1||∞,R

i1!

Ri1

)

· · ·

(

||ck||∞,R

ik!

Rik

)

=

(

||c1||∞,R · · · ||ck||∞,R

)

n!

Rn

∑

i1...ik≥0
i1+···+ik=n

1

=

(

||c1||∞,R · · · ||ck||∞,R

)

n!

Rn

(

n + k − 1

k − 1

)

, ∀η ∈ Xn.

Hence,

||c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck||∞,R′ = sup
η∈X∗

{

|(c1 ⊔⊔ · · · ⊔⊔ ck.η)|
R′|η|

|η|!

}

≤ sup
n∈N0

{

(

||c1||∞,R · · · ||ck||∞,R

)

(

n+ k − 1

k − 1

)(

R′

R

)n}

=
(

||c1||∞,R · · · ||ck||∞,R

)

sup
n∈N0

{

ǫn
(

n+ k − 1

k − 1

)}

≤
(

||c1||∞,R · · · ||ck||∞,R

)

∞
∑

n=0

{

ǫn
(

n+ k − 1

k − 1

)}

.

Noting that ǫ ∈]0, 1[,

∞
∑

n=0

{

ǫn
(

n + k − 1

k − 1

)}

=

(

∞
∑

n=0

ǫn

)k

=
1

(1− ǫ)k
.

Therefore,

||c1 ⊔⊔ c2 ⊔⊔ · · · ⊔⊔ ck||∞,R′ ≤
1

(1− ǫ)k
||c1||∞,R||c2||∞,R · · · ||ck||∞,R <∞.

The shuffle product is a bilinear map and is bounded in norm according to Theorem 4.2.3.

Hence, its continuity is a consequence of this property which is given in the following corollary.
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TABLE 2: Summary of convergence results for the shuffle product.

c d c ⊔⊔ d Theorem
Rm

GC〈〈X〉〉 Rm
GC〈〈X〉〉 Rm

GC〈〈X〉〉 Theorem 4.2.2
Sm
∞(R) Sm

∞(R) Sm
∞(R

′) where R′ = ǫR ∀ǫ ∈]0, 1[. Theorem 4.2.3
Sm
∞(R) Sm

∞ Sm
∞(R

′) where R′ = ǫR ∀ǫ ∈]0, 1[. Theorem 4.2.4
Sm
∞ Sm

∞ Sm
∞ Theorem 4.2.5

Corollary 4.2.2. Define a bilinear map,

⊔̂⊔ : Sm
∞(R)× Sm

∞(R) −→ Sm
∞(R

′)

c× d 7−→ c ⊔⊔ d ,

where R′ = ǫR for a fixed ǫ ∈]0, 1[. Then the operator ⊔̂⊔ is bounded with || ⊔̂⊔ || ≤

(

1

1− ǫ

)2

under the operator norm. Hence, the operator ⊔̂⊔ is continuous.

The following theorem characterizes convergence of the shuffle product when one of its

arguments is in the Fréchet space Sm
∞. Note that the shuffle product is symmetric; hence,

it is of no consequence considering either the first argument or the second argument in Sm
∞.

The convergence results for the shuffle product are summarized and tabulated in Table 2.

Theorem 4.2.4. Let c ∈ Sm
∞(R) and d ∈ Sm

∞. Then, c ⊔⊔ d ∈ Sm
∞(R

′) ∀R′ = ǫR, where

ǫ ∈]0, 1[.

Proof: Recall that

d ∈ Sm
∞ ⇔ d ∈ Sm

∞(R̂) ∀R̂ > 0.

Therefore, c ∈ Sm
∞(R) and d ∈ Sm

∞(R). Applying Theorem 4.2.3,

||c ◦̃ dδ||∞,R′ ≤

(

1

1− ǫ

)2

||c||∞,R||d||∞,R <∞,
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∀R′ = ǫR, where ǫ ∈]0, 1[ .

The following theorem is the main result of this subsection. It states that the Fréchet

space Sm
∞ is closed under the shuffle product.

Theorem 4.2.5. If c, d ∈ Sm
∞, then c ⊔⊔ d ∈ Sm

∞.

Proof: Observe

c, d ∈ Sm
∞ ⇔ ci, di ∈ S∞(R) ∀R > 0, ∀i = 1, . . . , m.

Fix ǫ ∈]0, 1[ and ∀R′ > 0 define R =
(

1
ǫ

)

R′. Using Theorem 4.2.3,

||(c ⊔⊔ d)i||∞,R′ = ||ci ⊔⊔ di||∞,R′ ≤
||ci||∞,R||di||∞,R

(1− ǫ)2
∀i = 1, . . . , m

<∞.

Therefore,

(c ⊔⊔ d)i ∈ S∞(R
′) ∀R′ > 0, ∀i = 1, . . . , m⇐⇒ (c ⊔⊔ d) ∈ Sm

∞(R
′) ∀R′ > 0.

Hence, c ⊔⊔ d ∈ Sm
∞.

The following corollary is a consequence of Theorem 4.2.3 and is used in this work re-

peatedly in Subsections 4.2.2 and 4.2.3.

Corollary 4.2.3. If c ∈ S∞(R), then ∀R′ = ǫR, where ǫ ∈]0, 1[, it follows that

∣

∣

∣

∣c ⊔⊔ k
∣

∣

∣

∣

∞,R′
≤

||c||k∞,R

(1− ǫ)k
.

Theorem 4.2.5 has shown that Sm
∞ is closed under shuffle product. The following theorem

states that the bilinear shuffle product is a continuous bilinear map on Sm
∞.
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Theorem 4.2.6. Define the bilinear map on the Fréchet space Sm
∞

⊔̄⊔ : Sm
∞ × Sm

∞ −→ Sm
∞

c× d 7−→ c ⊔⊔ d.

Then the operator ⊔̄⊔ is a continuous bilinear map.

Proof: Observe that the set of norms {||.||∞,k}k∈N are linearly ordered as

||.||∞,1 ≤ ||.||∞,2 ≤ · · · ≤ ||.||∞,n ≤ ||.||∞,n+1 ≤ · · · ,

and thus form a fundamental system of seminorms for the Fréchet space Sm
∞. Fix an ǫ ∈]0, 1[

and define the map αǫ such that

αǫ : N −→ N

k 7−→ ⌈ǫk⌉ ,

where ⌈.⌉ is the ceiling function. Observe that, c ∈ Sm
∞ if and only if c ∈ Sm

∞(R) ∀R > 0.

Applying Theorem 4.2.3,

|| ⊔̄⊔ (c, d)||∞,k ≤

(

1

1− ǫ

)2

||c||∞,αǫ(k)
||d||∞,αǫ(k)

∀k ∈ N and ∀c, d ∈ Sm
∞. Hence, the bilinear map ⊔̄⊔ is continuous by Theorem 2.4.6.

Using Theorem 2.4.2, Theorem 2.4.4 and Table 2, the following propositions must hold.

The parallel product configuration of two locally convergent Fliess operators Fc, Fd is repre-

sented by a locally convergent Fliess operator Fc ⊔⊔ d. The parallel product configuration of

two globally convergent Fliess operators Fc, Fd is represented by a globally convergent Fliess

operator Fc ⊔⊔ d.
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4.2.2 Global Convergence of Mixed Composition Product

The goal of this subsection is to prove the Fréchet space Sm
∞ is closed under the mixed

composition product. The mixed composition product is a noncommutative product; hence,

there are four possible cases based on where the argument series of the composition product

can lie in the hierarchy of spaces as shown in Figure 3. The continuity of the mixed compo-

sition product with respect to its left argument in S∞ space is also proven in this subsection.

The following theorem describes a particular condition under which the mixed composition

product c ◦̃ dδ belongs to RGC〈〈X〉〉.

Theorem 4.2.7. If c ∈ R〈X〉 and d ∈ Rm
GC〈〈X̄〉〉, then c ◦̃ dδ ∈ RGC〈〈X̄〉〉.

Proof: Without loss of generality assume c is a polynomial of degree N ∈ N0. Since c ∈ R〈X〉

implies ∃ constants Kc,Mc > 0 such that |(c, η)| ≤ KcM
|η|
c , ∀η ∈ ∪N

i=0X
i, then

c ◦̃ dδ =
∑

η∈supp(c)

(c, η)η ◦̃ dδ

≤
∑

η∈supp(c)

KcM
|η|
c η ◦̃ dδ

≤
N
∑

n=0

KcM
n
c

∑

η∈Xn

η ◦̃ dδ

=
N
∑

n=0

KcM
n
c

∑

r0...rm≥0
r0+···+rm=n

(xr00 ⊔⊔ · · · ⊔⊔xrmm ) ◦̃ dδ

=

N
∑

n=0

KcM
n
c

∑

r0...rm≥0
r0+···+rm=n

(

x ⊔⊔ r0
0

r0!
⊔⊔ · · · ⊔⊔

x ⊔⊔ rm
m

rm!

)

◦̃ dδ

=
N
∑

n=0

KcM
n
c

n!

∑

r0...rm≥0
r0+···+rm=n

(

n

r0 · · · rm

)

(x0 ◦̃ dδ)
⊔⊔ r0

⊔⊔ · · · ⊔⊔ (xm ◦̃ dδ)
⊔⊔ rm

= Kc

N
∑

n=0

[

Mc

(

∑m
j=0 xj ◦̃ dδ

)]

⊔⊔ n

n!

= Kc

N
∑

n=0

[

Mc

(

∑m

j=0 x̄j + x̄0
∑m

i=1 di

)]

⊔⊔ n

n!
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≤ Kc

N
∑

n=0

[

Mc

(

m
∑

j=0

x̄j + x̄0

m
∑

i=1

di

)]

⊔⊔ n

.

Observe that
∑m

j=0 x̄j ∈ R〈X〉 ⊂ RGC〈〈X̄〉〉. Since d ∈ Rm
GC〈〈X̄〉〉 implies di ∈

RGC〈〈X̄〉〉 ∀i = 1, . . . , m, then x̄0
∑m

i=1 di ∈ RGC〈〈X̄〉〉. Therefore, by Theroem 2.4.5,

m
∑

j=0

x̄j + x̄0

m
∑

i=1

di ∈ RGC〈〈X̄〉〉.

Applying Corollary 4.2.1,
[

Mc

(

∑m
j=0 x̄j + x̄0

∑m
i=1 di

)]

⊔⊔ n

∈ RGC〈〈X̄〉〉 ∀n ≤ N . Hence,

by virtue of Theorem 2.4.5,

N
∑

n=0

[

Mc

(

m
∑

j=0

x̄j + x̄0

m
∑

i=1

di

)]

⊔⊔ n

∈ RGC〈〈X̄〉〉.

Therefore,

c ◦̃ dδ ≤ Kc

N
∑

n=0

[

Mc

(

m
∑

j=0

x̄j + x̄0

m
∑

i=1

di

)]

⊔⊔ n

∈ RGC〈〈X̄〉〉.

The main assertion that the Fréchet space Sm
∞ is closed under mixed composition product

requires some preliminary results. As an initial step, the following theorem characterizes the

convergence of mixed composition product c ◦̃ dδ when c ∈ RGC〈〈X〉〉 and d ∈ Sm
∞(R).

Theorem 4.2.8. Let c ∈ RGC〈〈X〉〉 such that |(c, η)| ≤ KcM
|η|
c |η|!γ ∀η ∈ X∗, and γ ∈ [0, 1[.

If d ∈ Sm
∞(R), then c ◦̃ dδ ∈ S∞(R

′), ∀R′ = ǫR, where ǫ ∈]0, 1[.

Proof: Observe

c ◦̃ dδ =
∑

η∈X∗

(c, η)η ◦̃ dδ

≤
∑

η∈X∗

KcM
|η|
c |η|!γ η ◦̃ dδ
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=
∞
∑

n=0

KcM
n
c n!

γ
∑

η∈Xn

η ◦̃ dδ

=
∞
∑

n=0

KcM
n
c n!

γ
∑

r0,...,rm≥0
r0+···+rm=n

(xr00 ⊔⊔ · · · ⊔⊔ xrmm ) ◦̃ dδ

=
∞
∑

n=0

KcM
n
c n!

γ
∑

r0,...,rm≥0
r0+···+rm=n

(

x ⊔⊔ r0
0

r0!
⊔⊔ · · · ⊔⊔

x ⊔⊔ rm
m

rm!

)

◦̃ dδ

=

∞
∑

n=0

KcM
n
c n!

(γ−1)
∑

r0,...,rm≥0
r0+···+rm=n

(

n

r0 · · · rm

)

(x0 ◦̃ dδ)
⊔⊔ r0

⊔⊔ · · · ⊔⊔ (xm ◦̃ dδ)
⊔⊔ rm

= Kc

∞
∑

n=0

[

Mc

(

∑m

j=0 xj ◦̃ dδ
)]

⊔⊔ n

n!(1−γ)

= Kc

∞
∑

n=0

[

Mc

(

∑m
j=0 x̃j + x̃0

∑m
i=1 di

)]

⊔⊔ n

n!(1−γ)
.

From Lemma 2.5.1, (Γ(n+ 1))(1−γ) = n!(1−γ) ≥
1

K̃1−γ

2−nΓ((1 − γ)n + 1), where K̃1−γ =

2

((

2π

exp(2)

)γ

4

)

1

2
. Hence,

c ◦̃ dδ ≤ KcK̃1−γ

∞
∑

n=0

[

2Mc

(

∑m
j=0 x̃j + x̃0

∑m
i=1 di

)]

⊔⊔ n

Γ ((1− γ)n+ 1)
.

Define K̃c , KcK̃1−γ and M̃c , 2Mc. Then,

c ◦̃ dδ ≤ K̃c

∞
∑

n=0

[

M̃c

(

∑m

j=0 x̃j + x̃0
∑m

i=1 di

)]

⊔⊔ n

Γ ((1− γ)n + 1)
.

Therefore,

||c ◦̃ dδ||∞,R′ ≤ K̃c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0

[

M̃c

(

∑m
j=0 x̃j + x̃0

∑m
i=1 di

)]

⊔⊔ n

Γ ((1− γ)n + 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R′

.
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Observe that S∞(R
′) is a Banach space with topology defined by ||.||∞,R′. Hence, by the

triangle inequality

||c ◦̃ dδ||∞,R′ ≤ K̃c

∞
∑

n=0

M̃c

n
∣

∣

∣

∣

∣

∣

(

∑m
j=0 x̃j + x̃0

∑m
i=1 di

)

⊔⊔ n∣
∣

∣

∣

∣

∣

∞,R′

Γ ((1− γ)n+ 1)
.

Next, observe that
∣

∣

∣

∣

∣

∣

∑m
j=0 xj

∣

∣

∣

∣

∣

∣

∞,R
= R and ||x̃0

∑m
i=1 di||∞,R

≤ mR||d||∞,R, where ||d||∞,R =

maxi=1···m

{

||di||∞,R

}

. Hence, again by the triangle inequality,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

m
∑

j=0

x̃j + x̃0

m
∑

i=1

di

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R

≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=0

x̃j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̃0

m
∑

i=1

di

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R

≤ R +mR||d||∞,R <∞.

Therefore,
(

∑m

j=0 x̃j + x̃0
∑m

i=1 di

)

∈ S∞(R). Hence, ∀ R
′ = ǫR where ǫ ∈]0, 1[, by virtue of

Corollary 4.2.3, it follows that

||c ◦̃ dδ||∞,R′ ≤ K̃c

∞
∑

n=0

(

M̃c

1−ǫ

)n ∣
∣

∣

∣

∣

∣

(

∑m

j=0 x̃j + x̃0
∑m

i=1 di

)∣

∣

∣

∣

∣

∣

n

∞,R

Γ ((1− γ)n + 1)

≤ K̃c

∞
∑

n=0

(

M̃c

1−ǫ

)n (

R +mR||d||∞,R

)n

Γ ((1− γ)n + 1)

= K̃c

∞
∑

n=0

[

M̃cR
1−ǫ

(

1 +m||d||∞,R

)]n

Γ ((1− γ)n + 1)

= K̃cE(1−γ),1





M̃cR
(

1 +m||d||∞,R

)

1− ǫ



 .

Since γ ∈ [0, 1[⇔ (1− γ) ∈]0, 1], the Mittag-Leffler function E(1−γ),1 (·) is an entire

function. Note that d ∈ Sm
∞(R) and ǫ ∈]0, 1[ imply that





M̃cR
(

1 +m||d||∞,R

)

1− ǫ



 <∞.
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Therefore,

||c ◦̃ dδ||∞,R′ ≤ K̃cE(1−γ),1





M̃cR
(

1 +m||d||∞,R

)

1− ǫ



 <∞.

Therefore, c ∈ RGC〈〈X〉〉 and d ∈ Sm
∞(R) implies that c ◦̃ dδ ∈ S∞(R

′) ∀R′ = ǫR, where

ǫ ∈]0, 1[.

Theorem 4.2.8 describes the convergence of c ◦̃ dδ when its left argument c ∈ RGC〈〈X〉〉

but the right argument d lies in Sm
∞(R) for some R > 0. The mixed composition product

does not belong to S∞(R) space but arbitrarily close to it. The subsequent step is to let the

right argument d be in the limit space Sm
∞ and characterize the convergence of c ◦̃ dδ.

Theorem 4.2.9. If c ∈ RGC〈〈X〉〉 and d ∈ Sm
∞ , then c ◦̃ dδ ∈ S∞.

Proof: Recall that

d ∈ Sm
∞ ⇐⇒ d ∈ Sm

∞(R) ∀R > 0.

Fix ǫ ∈]0, 1[ and ∀R′ > 0 define R =

(

1

ǫ

)

R′. Since c ∈ RGC〈〈X〉〉, applying Theorem 4.2.8

gives c ◦̃ dδ ∈ Sm
∞(R

′). Therefore,

c ◦̃ dδ ∈ S∞(R
′) ∀R′ > 0 ⇐⇒ c ◦̃ dδ ∈ S∞.

Theorems 4.2.8 and 4.2.9 state that when the left argument c in the mixed composition

product c ◦̃ dδ is in RGC〈〈X〉〉, the convergence of c ◦̃ dδ is limited by the convergence of the

series d. The next step is to check when the left-hand argument c is in the closure of the

RGC〈〈X〉〉, the S∞ space. Prior to that, the following lemma is needed to proceed.

Lemma 4.2.2. Let c ∈ RLC〈〈X〉〉 such that |(c, η)| ≤ KcM
|η|
c |η|! ∀η ∈ X∗. If d ∈ Sm

∞(R),



86

then ∀ R′ = ǫR, where ǫ ∈]0, 1[, it follows that

||c ◦̃ dδ||∞,R′ ≤ Kc

∞
∑

n=0





McR
(

1 +m||d||∞,R

)

1− ǫ





n

,

where ||d||∞,R = maxi=1,···m ||di||∞,R.

Proof: Observe

c ◦̃ dδ =
∑

η∈X∗
(c, η)η ◦̃ dδ

≤
∑

η∈X∗
KcM

|η|
c |η|! η ◦̃ dδ

=
∞
∑

n=0

KcM
n
c n!

∑

η∈Xn

η ◦̃ dδ

=
∞
∑

n=0

KcM
n
c n!

∑

r0,...,rm≥0
r0+···+rm=n

(xr00 ⊔⊔ · · · ⊔⊔ xrmm ) ◦̃ dδ

=

∞
∑

n=0

KcM
n
c n!

∑

r0,...,rm≥0
r0+···+rm=n

(

x ⊔⊔ r0
0

r0!
⊔⊔ · · · ⊔⊔

x ⊔⊔ rm
m

rm!

)

◦̃ dδ

=
∞
∑

n=0

KcM
n
c

∑

r0,...,rm≥0
r0+···+rm=n

(

n

r0 · · · rm

)

(x0 ◦̃ dδ)
⊔⊔ r0

⊔⊔ · · · ⊔⊔ (xm ◦̃ dδ)
⊔⊔ rm

= Kc

∞
∑

n=0

[

Mc

(

m
∑

j=0

xj ◦̃ dδ

)]

⊔⊔ n

= Kc

∞
∑

n=0

[

Mc

(

m
∑

j=0

x̃j + x̃0

m
∑

i=1

di

)]

⊔⊔ n

.

Therefore,

||c ◦̃ dδ||∞,R′ ≤ Kc

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0

[

Mc

(

m
∑

j=0

x̃j + x̃0

m
∑

i=1

di

)]

⊔⊔ n∣
∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R′

≤ Kc

∞
∑

n=0

Mc
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

m
∑

j=0

x̃j + x̃0

m
∑

i=1

di

)

⊔⊔ n∣
∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R′

.
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Observe that
∣

∣

∣

∣

∣

∣

∑m

j=0 xj

∣

∣

∣

∣

∣

∣

∞,R
= R and ||x̃0

∑m

i=1 di||∞,R
≤ mR||d||∞,R, where ||d||∞,R =

maxi=1···m

{

||di||∞,R

}

. Hence,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

m
∑

j=0

x̃j + x̃0

m
∑

i=1

di

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R

≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

m
∑

j=0

x̃j

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̃0

m
∑

i=1

di

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R

≤ R +mR||d||∞,R <∞.

Therefore,
(

∑m
j=0 x̃j + x̃0

∑m
i=1 di

)

∈ S∞(R). Hence, ∀ R′ = ǫR, where ǫ ∈]0, 1[, by virtue

of Corollary 4.2.3,

||c ◦̃ dδ||∞,R′ ≤ Kc

∞
∑

n=0

(

Mc

1− ǫ

)n
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

m
∑

j=0

x̃j + x̃0

m
∑

i=1

di

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n

∞,R

≤ Kc

∞
∑

n=0

(

Mc

1− ǫ

)n
(

R +mR||d||∞,R

)n

= Kc

∞
∑

n=0





McR
(

1 +m||d||∞,R

)

1− ǫ





n

.

The following theorem describes the convergence of the mixed composition product c ◦̃ dδ

when the left argument c is in Fréchet space S∞ but the right argument is locally convergent

viz. d ∈ Sm
∞(R) for some R > 0.

Theorem 4.2.10. If c ∈ S∞ and d ∈ Sm
∞(R), then c◦̃ dδ ∈ S∞(R

′) ∀R′ = ǫR, where ǫ ∈]0, 1[.

Proof: Observe that c ∈ S∞ implies there exists a Cauchy sequence {ci}i∈N such that ci → c

in the Fréchet topology, where ci ∈ RGC〈〈X〉〉 ∀i ∈ N viz.

ci → c ∈ S∞ ⇔ ||c− ci||∞,R̄ → 0 ∀R̄ > 0.
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Choose R̄ =
2R
(

1 +m||d||∞,R

)

1− ǫ
<∞ for a fixed ǫ ∈]0, 1[. Then,

||c− ci||∞,R̄ → 0 ⇔ ∃N : ∀n > N ; ||c− cn||∞,R̄ <
ǫ′

2
. (4.2.1)

By virtue of (4.2.1),

||c− cn||∞,R̄ <
ǫ′

2
⇔ |(c− cn, η)| ≤

ǫ′|η|!

2R̄|η|
∀η ∈ X∗.

Using the triangle inequality on R,

|(c, η)| − |(cn, η)| ≤ |(c− cn, η)| ≤
ǫ′|η|!

2R̄|η|
∀η ∈ X∗.

Therefore, ∀η ∈ X∗ :

|(c, η)| ≤ |(cn, η)|+
ǫ′|η|!

2R̄|η|
.

Since c ∈ RGC〈〈X〉〉, there exist constants K,M > 0 and γ ∈ [0, 1[ such that |(cn, η)| ≤

KM |η| (|η|!)γ. Hence,

|(c, η)| ≤ KM |η| (|η|!)γ +
ǫ′|η|!

2R̄|η|
∀η ∈ X∗.

Therefore,

c ◦̃ dδ =
∑

η∈X∗
(c, η) η ◦̃ dδ

≤
∑

η∈X∗

{

KM |η| (|η|!)γ +
ǫ′|η|!

2R̄|η|

}

η ◦̃ dδ

=

∞
∑

n=0

{

KM |η| (|η|!)γ
∑

η∈Xn

η ◦̃ dδ

}

+
ǫ′

2

∞
∑

n=0

{

n!

R̄n

∑

η∈Xn

η ◦̃ dδ

}

.
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Hence,

||c ◦̃ dδ||∞,R′ ≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0

{

KM |η| (|η|!)γ
∑

η∈Xn

η ◦̃ dδ

}

+
ǫ′

2

∞
∑

n=0

{

n!

R̄n

∑

η∈Xn

η ◦̃ dδ

}∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R′

.

Using the triangle inequality on S∞(R
′),

||c ◦̃ dδ||∞,R′ ≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0

{

KM |η| (|η|!)γ
∑

η∈Xn

η ◦̃ dδ

}∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R′

+
ǫ′

2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0

{

n!

R̄n

∑

η∈Xn

η ◦̃ dδ

}∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R′

.

By Theorem 4.2.8,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0

{

KM |η| (|η|!)γ
∑

η∈Xn

η ◦̃ dδ

}∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R′

≤ K̃E(1−γ),1

(

M̃

(1− ǫ)
R
(

1 +m||d||∞,R

)

)

<∞,

where K̃ = KK̃1−γ with K̃1−γ =

((

2π

exp(2)

)γ

4

)

1

2
, M̃ = 2M , and E(1−γ),1 (·) is the Mittag-

Leffler function, which is an entire function as (1− γ) ∈]0, 1]. By Lemma 4.2.2,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0

{

n!

R̄n

∑

η∈Xn

η ◦̃ dδ

}∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R′

≤
∞
∑

n=0





R
(

1 +m||d||∞,R

)

R̄ (1− ǫ)





n

.

Therefore,

||c ◦̃ dδ||∞,R′ ≤ K̃E(1−γ),1

(

M̃

(1− ǫ)
R
(

1 +m||d||∞,R

)

)

+
ǫ′

2

∞
∑

n=0





R
(

1 +m||d||∞,R

)

R̄ (1− ǫ)





n

≤ K̃E(1−γ),1

(

M̃

(1− ǫ)
R
(

1 +m||d||∞,R

)

)

+
ǫ′

2

∞
∑

n=0

(

1

2

)n

≤ K̃E(1−γ),1

(

M̃

(1− ǫ)
R
(

1 +m||d||∞,R

)

)

+ ǫ′ <∞.

Theorem 4.2.10 has asserted that the convergence of the mixed composition product
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c ◦̃ dδ is limited by the convergence of the right argument d when the left argument c is in the

Fréchet space S∞. The following theorem states that the Fréchet space S∞ is closed under

the mixed composition product, which is the ultimate goal of this subsection.

Theorem 4.2.11. If c ∈ S∞ and d ∈ Sm
∞, then c ◦̃ dδ ∈ S∞.

Proof: Recall

d ∈ Sm
∞ ⇐⇒ d ∈ Sm

∞(R) ∀R > 0.

Fix ǫ ∈]0, 1[ and ∀R′ > 0 define R =

(

1

ǫ

)

R′. Since c ∈ S∞, using Theorem 4.2.10 gives

c ◦̃ dδ ∈ S∞(R
′). Therefore, the theorem is proved as

c ◦̃ dδ ∈ S∞(R
′) ∀R′ > 0 ⇐⇒ c ◦̃ dδ ∈ S∞.

The following theorem goes a step further than Theorem 4.2.11 stating that the mixed

composition product is not just closed in S∞ space but is indeed continuous on S∞ in its left

argument.

Theorem 4.2.12. Given d ∈ Sm
∞, define the linear operator λd on the Fréchet space S∞

such that,

λd : S∞ −→ S∞

c 7−→ c ◦̃ dδ.

Then, λd is continuous.

Proof: Define a map α : N −→ N such that k 7−→
⌈(

2 +m||d||∞,k

)

k
⌉

. By Theorem 4.1.2,
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TABLE 3: Summary of convergence results for the mixed composition product.

c d c ◦̃ dδ Theorem
R〈X〉 Rm

GC〈〈X〉〉 RGC〈〈X〉〉 Theorem 4.2.7

S∞(R) Sm
∞(R) S∞(R̄) where R̄ =

(

R
2+m||d||

∞,R

)

. Theorem 4.1.2

S∞(R) Sm
∞ S∞(R̄) where R̄ =

(

R
2+m||d||

∞,R

)

. Theorem 4.1.3

S∞ Sm
∞(R) Sm

∞(R
′) where R′ = ǫR ∀ǫ ∈]0, 1[. Theorem 4.2.10

S∞ Sm
∞ S∞ Theorem 4.2.11

∀k ∈ N

||c ◦̃ dδ||∞,k ≤ ||c||∞,(2+m||d||
∞,k)k

≤ ||c||∞,α(k).

Therefore, applying Theorem 2.4.6, the linear operator λd is continuous on S∞.

The results regarding the convergence of the mixed composition product are summarized

in Table 3. Observe that from Theorem 2.4.2, Theorem 2.4.4 and Table 3, the following

statements can be inferred. The mixed cascade configuration of two locally convergent Fliess

operators Fc, Fd is represented by a locally convergent Fliess operator Fc ◦̃ dδ . The mixed

cascade configuration of two globally convergent Fliess operators Fc, Fd is represented by a

globally convergent Fliess operator Fc ◦̃ dδ .

4.2.3 Global Convergence of Wiener-Fliess Product

The goal of this section is to show that the Wiener-Fliess composition product preserves

global convergence. That is, the Wiener-Fliess composition of a globally convergent com-

mutative series d and a noncommutative series c in the Fréchet space S∞, d ◦̂ c, lies in the

Fréchet space. Recall from Theorem 3.1.1, the definition is two-fold. This section considers

both these cases in detail. The following theorem is a particular case where the Wiener-Fliess

composition yields a series in RGC〈〈X〉〉.
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Theorem 4.2.13. If d ∈ R [X̃ ] with |X̃| = m and c ∈ R
m
GC〈〈X〉〉, then d ◦̂ c ∈ RGC〈〈X〉〉.

Proof: Assume d is a polynomial of degree N ∈ N0. Since d ∈ R [X̃ ], there exist constants

Kd,Md > 0 such that |(d, η)| ≤
KdM

|η|
d

|η|!
∀η ∈ ∪N

i=0X̃
i. Observe

d ◦̂ c =
∑

η∈supp(d)

(d, η)c ⊔⊔ η

≤
∑

η∈supp(d)

KdM
|η|
d

|η|!
c ⊔⊔ η

=

N
∑

n=0

KdM
n
d

n!

∑

η∈X̃n

c ⊔⊔ η

=

N
∑

n=0

KdM
n
d

n!

∑

i1,...,ik≥0
i1+···+ik=n

x̃i11 · · · x̃ikk ◦̂ c

=
N
∑

n=0

KdM
n
d

n!

∑

i1,...,ik≥0
i1+···+ik=n

c ⊔⊔ i1
1 ⊔⊔ c ⊔⊔ i2

2 ⊔⊔ · · · ⊔⊔ c ⊔⊔ ik
k .

Since
(

n

i1···ik

)

≥ 1,

d ◦̂ c ≤
N
∑

n=0

KdM
n
d

n!

∑

i1,...,ik≥0
i1+···+ik=n

(

n

i1 · · · ik

)

c ⊔⊔ i1
1 ⊔⊔ c ⊔⊔ i2

2 ⊔⊔ · · · ⊔⊔ c ⊔⊔ ik
k

=
N
∑

n=0

KdM
n
d

(

∑m

j=1 cj

)

⊔⊔ n

n!

= Kd

N
∑

n=0

[

Md

(

∑m

j=1 cj

)]

⊔⊔ n

n!

≤ Kd

N
∑

n=0

[

Md

(

m
∑

j=1

cj

)]

⊔⊔ n

.

Since c ∈ R
m
GC〈〈X〉〉, then cj ∈ RGC〈〈X〉〉 ∀j = 1, . . . , m. Hence,

∑m

j=1 ci ∈ RGC〈〈X〉〉 by

Theorem 2.4.5. Using Corollary 4.2.1,
[

Md

(

∑m

j=1 cj

)]

⊔⊔ n

∈ RGC〈〈X〉〉 ∀n ≤ N . Hence, by
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virtue of Theorem 2.4.5,

N
∑

n=0

[

Md

(

m
∑

j=1

cj

)]

⊔⊔ n

∈ RGC〈〈X〉〉.

Therefore,

d ◦̂ c ≤ Kd

N
∑

n=0

[

Md

(

m
∑

j=1

cj

)]

⊔⊔ n

∈ RGC〈〈X〉〉.

The following theorem addresses the convergence for the Wiener-Fliess composition of

a locally convergent noncommutative proper series with a globally convergent commutative

series d .

Theorem 4.2.14. Let d ∈ RGC [[X̃ ]] with |X̃| = m, growth constants Kd,Md > 0, and

Gevrey order (−1 + s̄) with s̄ ∈ [0, 1[ such that |(d, η̃)| ≤ KdM
|η̃|
d (|η̃|!)−1+s̄ ∀η̃ ∈ X̃∗. If c

is a proper series such that c ∈ Sm
∞(R) ∩ Rm

p 〈〈X〉〉, then d ◦̂ c ∈ S∞(R
′) ∀R′ = ǫR, where

ǫ ∈]0, 1[.

Proof: Observe

d ◦̂ c =
∑

η∈X̃∗

(d, η)c ⊔⊔ η

≤
∑

η∈X̃∗

KdM
|η|
d (|η|!)−1+s̄ c ⊔⊔ η

=

∞
∑

n=0

KdM
n
d (n!)−1+s̄

∑

η∈X̃n

c ⊔⊔ η

=

∞
∑

n=0

KdM
n
d

(n!)1−s̄

∑

i1···ik≥0
i1+···+ik=n

x̃i11 · · · x̃ikk ◦̂ c

=

∞
∑

n=0

KdM
n
d

(n!)1−s̄

∑

i1···ik≥0
i1+···+ik=n

c ⊔⊔ i1
1 ⊔⊔ c ⊔⊔ i2

2 ⊔⊔ · · · ⊔⊔ c ⊔⊔ ik
k .
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Since
(

n

i1···ik

)

≥ 1,

d ◦̂ c ≤
∞
∑

n=0

KdM
n
d

(n!)1−s̄

∑

i1···ik≥0
i1+···+ik=n

(

n

i1 · · · ik

)

c ⊔⊔ i1
1 ⊔⊔ c ⊔⊔ i2

2 ⊔⊔ · · · ⊔⊔ c ⊔⊔ ik
k

=

∞
∑

n=0

KdM
n
d

(

∑m
j=1 cj

)

⊔⊔ n

(n!)1−s̄

= Kd

∞
∑

n=0

[

Md

(

∑m
j=1 cj

)]

⊔⊔ n

(n!)1−s̄
.

Lemma 2.5.1 implies that

(Γ(n+ 1))(1−s̄) = n!(1−s̄) ≥
1

K̃1−s̄

2−nΓ((1− s̄)n + 1),

where K̃1−s̄ = 2

(

(

2π
exp(2)

)s̄

4

)
1
2

. Hence,

d ◦̂ c ≤ KdK̃1−s̄

∞
∑

n=0

[

2Md

(

∑m

j=1 cj

)]

⊔⊔ n

Γ ((1− s̄)n+ 1)
.

Define K̃d , KdK̃1−s̄ and M̃d , 2Md. Therefore,

d ◦̂ c ≤ K̃d

∞
∑

n=0

[

M̃d

(

∑m
j=1 cj

)]

⊔⊔ n

Γ ((1− s̄)n + 1)
,

and consequently,

||d ◦̂ c||∞,R′ ≤ K̃d

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=0

[

M̃d

(

∑m

j=1 cj

)]

⊔⊔ n

Γ ((1− s̄)n + 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R′

.

Applying the triangle inequality,
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||d ◦̂ c||∞,R′ ≤ K̃d

∞
∑

n=0

M̃d

n
∣

∣

∣

∣

∣

∣

(

∑m

j=1 cj

)

⊔⊔ n∣
∣

∣

∣

∣

∣

∞,R′

Γ ((1− s̄)n+ 1)
.

In addition,
∣

∣

∣

∣

∣

∣

(

∑m

j=1 cj

)∣

∣

∣

∣

∣

∣

∞,R
≤
∑m

j=1 ||cj||∞,R
≤ m||c||∞,R < ∞. Therefore,

∑m

j=1 cj ∈

S∞(R). Hence, ∀ R
′ = ǫR, where ǫ ∈]0, 1[, by virtue of Corollary 4.2.3,

||d ◦̂ c||∞,R′ ≤ K̃d

∞
∑

n=0

(

M̃d

1−ǫ

)n ∣
∣

∣

∣

∣

∣

(

∑k

j=1 cj

)∣

∣

∣

∣

∣

∣

n

∞,R

Γ ((1− s̄)n + 1)

≤ K̃d

∞
∑

n=0

(

M̃d

1−ǫ

)n (

m||c||∞,R

)n

Γ ((1− s̄)n+ 1)

= K̃d

∞
∑

n=0

[

M̃d

1−ǫ

(

m||c||∞,R

)]n

Γ ((1− s̄)n + 1)

= K̃d E(1−s̄),1

(

M̃dm||c||∞,R

1− ǫ

)

.

Since s̄ ∈ [0, 1[, the Mittag-Leffler function E(1−s̄),1 (·) is an entire function. Note that

c ∈ Sm
∞(R) and ǫ ∈]0, 1[ imply

(

M̃cm||c||∞,R

1− ǫ

)

<∞. Therefore,

||d ◦̂ c||∞,R′ ≤ K̃d E(1−s̄),1

(

M̃dm||c||∞,R

1− ǫ

)

<∞.

Hence, d ∈ RGC [[X̃ ]] and c ∈ Sm
∞(R)∩Rm

p 〈〈X〉〉 imply that d ◦̂ c ∈ S∞(R
′) ∀R′ = ǫR, where

ǫ ∈]0, 1[.

Theorem 4.2.14 establishes that the convergence of the Wiener-Fliess composition prod-

uct d ◦̂ c is limited by the convergence of the proper noncommutative series c, when the

commutative series d is globally convergent. The following addresses the convergence of the

Wiener-Fliess composition product when the series c lies in the Fréchet space.

Theorem 4.2.15. If d ∈ RGC [[X̃ ]] with |X̃| = m and c ∈ Sm
∞ ∩ Rm

p 〈〈X〉〉, then d ◦̂ c ∈ S∞.
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Proof: Recall

c ∈ Sm
∞ ∩ Rm

p 〈〈X〉〉 ⇐⇒ c ∈ Sm
∞(R) ∩ Rm

p 〈〈X〉〉 ∀R > 0.

Fix ǫ ∈]0, 1[ and ∀R′ > 0 define R =

(

1

ǫ

)

R′. Since d ∈ RGC [[X̃ ]], using Theorem 4.2.14

gives d ◦̂ c ∈ S∞(R
′). Therefore,

d ◦̂ c ∈ S∞(R
′) ∀R′ > 0 ⇐⇒ d ◦̂ c ∈ S∞.

Theorem 4.2.15 proved that Wiener-Fliess composition preserves global convergence when

the noncommutative series in the composition is proper. The next step is to revisit the ques-

tion for the case of the Wiener-Fliess composition when the commutative series is restricted

to being a polynomial.

Theorem 4.2.16. If d ∈ R [X̃ ] and c ∈ Sm
∞(R), then d ◦̂ c ∈ S∞(R

′) ∀R′ = ǫR, where

ǫ ∈]0, 1[.

Proof: Assume d is a polynomial of degree N ∈ N0. Since d ∈ R [X̃ ], there exist constants

Kd,Md > 0 such that |(d, η)| ≤
KdM

|η|
d

|η|!
, ∀η ∈ ∪N

i=0X̃
i. Observe

d ◦̂ c =
∑

η∈supp(d)

(d, η)c ⊔⊔ η

≤
∑

η∈supp(d)

KdM
|η|
d

|η|!
c ⊔⊔ η

=
N
∑

n=0

KdM
n
d

n!

∑

η∈X̃n

c ⊔⊔ η

=
N
∑

n=0

KdM
n
d

n!

∑

i1,...,ik≥0
i1+···+ik=n

x̃i11 · · · x̃ikk ◦̂ c
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=

N
∑

n=0

KdM
n
d

n!

∑

i1,...,ik≥0
i1+···+ik=n

c ⊔⊔ i1
1 ⊔⊔ c ⊔⊔ i2

2 ⊔⊔ · · · ⊔⊔ c ⊔⊔ ik
k .

Since
(

n

i1···ik

)

≥ 1,

d ◦̂ c ≤
N
∑

n=0

KdM
n
d

n!

∑

i1,...,ik≥0
i1+···+ik=n

(

n

i1 · · · ik

)

c ⊔⊔ i1
1 ⊔⊔ c ⊔⊔ i2

2 ⊔⊔ · · · ⊔⊔ c ⊔⊔ ik
k

=
N
∑

n=0

KdM
n
d

(

∑m

j=1 cj

)

⊔⊔ n

n!

= Kd

N
∑

n=0

[

Md

(

∑m

j=1 cj

)]

⊔⊔ n

n!
.

Therefore,

||d ◦̂ c||∞,R′ ≤ Kd

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

N
∑

n=0

[

Md

(

∑m

j=1 cj

)]

⊔⊔ n

n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∞,R′

≤ Kd

N
∑

n=0

Md
n
∣

∣

∣

∣

∣

∣

(

∑m
j=1 cj

)

⊔⊔ n∣
∣

∣

∣

∣

∣

∞,R′

n!
.

In addition,
∣

∣

∣

∣

∣

∣

(

∑m
j=1 cj

)∣

∣

∣

∣

∣

∣

∞,R
≤
∑m

j=1 ||cj||∞,R
≤ m||c||∞,R < ∞. Therefore,

∑m
j=1 cj ∈

S∞(R). Hence, ∀ R
′ = ǫR, where ǫ ∈]0, 1[, by virtue of Corollary 4.2.3,

||d ◦̂ c||∞,R′ ≤ Kd

N
∑

n=0

(

Md

1−ǫ

)n
∣

∣

∣

∣

∣

∣

(

∑k
j=1 cj

)∣

∣

∣

∣

∣

∣

n

∞,R

n!

≤ Kd

N
∑

n=0

(

Md

1−ǫ

)n
(

m||c||∞,R

)n

n!

= Kd

N
∑

n=0

[

Md

1−ǫ

(

m||c||∞,R

)]n

n!

≤ Kd

∞
∑

n=0

(

Md

1−ǫ

)n
∣

∣

∣

∣

∣

∣

(

∑k
j=1 cj

)∣

∣

∣

∣

∣

∣

n

∞,R

n!
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= Kd exp

(

Mdm||c||∞,R

1− ǫ

)

.

Observe that c ∈ Sm
∞(R) and ǫ ∈]0, 1[ imply that

(

M̃cm||c||∞,R

1− ǫ

)

<∞. Therefore,

||d ◦̂ c||∞,R′ ≤ Kd exp

(

Mdm||c||∞,R

1− ǫ

)

<∞.

Hence, d ∈ R [X̃ ] and c ∈ Sm
∞(R) imply that d ◦̂ c ∈ S∞(R

′) ∀R′ = ǫR, where ǫ ∈]0, 1[.

Theorem 4.2.16 proves that the convergence of the Wiener-Fliess composition product

d ◦̂ c is limited by the convergence of the noncommutative series c, when d is restricted to

being a polynomial. The result is analogous to the case of Wiener-Fliess composition when

c is restricted to being proper as stated in Theorem 4.2.14. The following theorem asserts

that Wiener-Fliess composition preserves global convergence when the commutative series d

is restricted to being a polynomial.

Theorem 4.2.17. Let d ∈ R [X̃ ] with |X̃| = m and c ∈ Sm
∞, then d ◦̂ c ∈ S∞.

Proof: Recall

c ∈ Sm
∞ ⇐⇒ c ∈ Sm

∞(R) ∀R > 0.

Fix ǫ ∈]0, 1[ and ∀R′ > 0 define R =
(

1
ǫ

)

R′. Since d ∈ R [X̃ ], applying Theorem 4.2.16 gives

d ◦̂ c ∈ S∞(R
′). Therefore,

d ◦̂ c ∈ S∞(R
′) ∀R′ > 0 ⇐⇒ d ◦̂ c ∈ S∞.

Using Theorem 2.4.2, Theorem 2.4.4 and Table 4, the following statements can be as-

serted. Under the assumptions stated in Theorem 3.1.1, the cascade connection of a locally
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TABLE 4: Summary of convergence results for the Wiener-Fliess composition product.

d c d ◦̂ c Theorem

RLC [[X̃ ]] Rm
LC〈〈X〉〉 RLC〈〈X〉〉 Theorem 4.1.5

RGC [[X̃ ]] Sm
∞(R) ∩ Rm

p 〈〈X〉〉 S∞(R
′) where R′ = ǫR ∀ǫ ∈]0, 1[. Theorem 4.2.14

RGC [[X̃ ]] Sm
∞ ∩ R

m
p 〈〈X〉〉 S∞ Theorem 4.2.15

R [X̃ ] Rm
GC〈〈X〉〉 RGC〈〈X〉〉 Theorem 4.2.13

R [X̃ ] Sm
∞(R) S∞(R

′) where R′ = ǫR ∀ǫ ∈]0, 1[. Theorem 4.2.16

R [X̃ ] Sm
∞ S∞ Theorem 4.2.17

convergent Fliess operator Fc with a locally convergent real analytic function fd is repre-

sented by a locally convergent Fliess operator Fd ◦̂ c. Similarly, the cascade connection of a

globally convergent Fliess operator Fc with a globally convergent real analytic function fd

(as characterized in Theorem 2.5.2) has a globally convergent Fliess operator representation

given by Fd ◦̂ c. This subsection and subsection 4.1.2 have shown that the Wiener-Fliess com-

position product preserves both local and global convergence. This section has characterized

the convergence for the mixed composition product and Wiener-Fliess composition product,

both of which are utilized in the computation of the Wiener-Fliess feedback as described in

Theorem 3.3.2. Next, the convergence results obtained in this section is used to prove the

local convergence of Wiener-Fliess feedback product.

4.3 LOCAL CONVERGENCE OF WIENER-FLIESS FEEDBACK

The objective of this section is to prove that additive static feedback preserves local con-

vergence. It translates as, a locally convergent Fliess operator Fc in additive static feedback

with a locally convergent analytic map fd is represented by a locally convergent Fliess op-

erator Fc@̂d. The following result is essential to produce the desired result. It states that

the antipode of the Hopf algebra corresponding to dynamic output feedback group preserves

local convergence.

Theorem 4.3.1. [Gray, et al. (2014a)] For any c ∈ Rm
LC〈〈X〉〉 with growth constants
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Kc,Mc > 0 it follows that

|(c◦−1, η)| ≤ K(A (Kc)Mc)
|η||η|! ∀η ∈ X∗

for some K > 0 and

A (Kc) =
1

1−mKc ln(1 +
1

mKc
)
.

Theorem 4.3.1 is essential as the additive static feedback product involves the antipode

operation from the dynamic output feedback group. The following states that the local

convergence is preserved by the Wiener-Fliess feedback product.

Theorem 4.3.2. Given a series c ∈ Rℓ
LC〈〈X〉〉 and d ∈ Rm

LC [[X̃ ]] with |X| = m + 1 and

|X̃| = ℓ, if either of the following conditions hold:

1. The series c is proper,

2. The commutative series d is a polynomial,

then c@̂d ∈ Rℓ
LC〈〈X〉〉. Specifically, if c is proper, then c@̂d ∈ Rℓ

p,LC〈〈X〉〉.

Proof: Consider the case of c being a proper series. Clearly, d ∈ Rm
LC [[X̃ ]] if and only if

−d ∈ Rm
LC [[X̃ ]]. Since c ∈ Rℓ

p,LC〈〈X〉〉, then by Theorem 4.1.5

(−d ◦̂ c) ∈ R
m
LC〈〈X〉〉.

Hence, applying Theorem 4.3.1 yields

(−d ◦̂ c)◦−1 ∈ Rm
LC〈〈X〉〉 ⇔ δ + (−d ◦̂ c)◦−1 = (−d ◦̂ c)◦−1δ ∈ Rm

LC〈〈X〉〉.

Therefore, by Theorem 4.1.1

c@̂d = c ◦̃ (−d ◦̂ c)◦−1δ ∈ Rℓ
LC〈〈X〉〉.
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Since c is proper, then by definition of mixed composition product,

c@̂d = c ◦̃ (−d ◦̂ c)◦−1δ ∈ Rℓ
p,LC〈〈X〉〉.

Now consider the case of d ∈ Rm [X̃ ]. Since c ∈ Rℓ
LC〈〈X〉〉, then by Theorem 4.2.16,

(−d ◦̂ c) ∈ Rm
LC〈〈X〉〉. The rest of the proof is exactly analogous to the previous case.

The following example demonstrates that Wiener-Fliess feedback product does not pre-

serve global convergence.

Example 4.3.1. [Thitsa & Gray (2012)] Let X = {x0, x1}. Define c ∈ R〈〈X〉〉 as c = x∗1 =

∑∞
k=0 x

k
1. Observe that c ∈ RGC〈〈X〉〉. The Fliess operator Fc describes the input-output

behavior of the state space model

ż = zu, z(0) = 1,

y = z,

where z(t), u(t) ∈ R. Define d ∈ R[[w]] as the monomial d = w. Note that the monomial

d ∈ RGC [[w]]. The Fliess operator Fc@̂d describes the closed-loop system of Fc under unity

feedback. The zero-input dynamics of the closed-loop system are given by the solution of

the following differential equation

ż = z2, z(0) = 1.

Specifically, z(t) =

(

1

1− t

)

= 1 + t + t2 + · · · for t < 1. Recall that Exn
0
[u] =

tn

n!
. The

zero-input response corresponds to the F(c@̂d)
N

, where
(

c@̂d
)

N
is the natural part of the
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Wiener-Fliess feedback product given by

(

c@̂d
)

N
=

∞
∑

k=0

k!xk0.

Observe that the subseries
(

c@̂d
)

N
is only locally convergent. Hence, the Wiener-Fliess

feedback product of c ∈ RGC〈〈X〉〉 and d ∈ RGC [[w]], c@̂d, is only locally convergent.

Finally, under the assumptions stated in Theorem 4.3.2 and applying Theorem 2.4.2

the following statement can be asserted. The additive static feedback connection of a locally

convergent Fliess operator Fc with a locally convergent real analytic function fd is represented

by a locally convergent Fliess operator Fc@̂d.
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CHAPTER 5

SHUFFLE RATIONAL FORMAL SERIES

The dissertation shifts the focus onto the second of the two problems being considered.

Rational series in the literature are those in the rational closure of polynomials with respect

to the Cauchy product [Berstel & Reutenauer (1988)]. This chapter describes the abstract

notion of rationality and considers the rational closure of polynomials with respect to the

shuffle product and its equivalent characterizations. Prior to that, the evaluation of static

rational function of formal series is addressed.

5.1 RATIONAL FUNCTIONS OF FORMAL SERIES

This section describes the evaluation of commutative polynomial maps and rational func-

tions over noncommutative formal power series. First observe that the set of non-proper

series in R〈〈X〉〉 constitutes a group under the shuffle product [Gray, et al. (2014b)]. The

shuffle inverse in this case is taken to be

c ⊔⊔ −1 = ((c, ∅)(1− c′)) ⊔⊔ −1 = (c, ∅)−1(c′) ⊔⊔ ∗, (5.1.1)

where c′ , 1 − c/(c, ∅) is proper, and (c′) ⊔⊔ ∗ ,
∑

k∈N0
(c′) ⊔⊔ k. Here (c′) ⊔⊔ k , c′ ⊔⊔ (c′) ⊔⊔ k−1

with (c′) ⊔⊔ 0 = 1.

Example 5.1.1. Let c = 1 − x1 ∈ R〈〈X〉〉 so that c′ = x1. Then c ⊔⊔ −1 = x ⊔⊔ ∗
1 =

∑

k∈N0
k! xk1.

Since R〈〈X〉〉 under the shuffle product is a commutative and associative R-algebra, for

any k ∈ N and c ∈ R〈〈X〉〉 one can write c ⊔⊔ k = yk(c), where yk ∈ R[y]. Similarly, if d is a

proper series, then

(1− d) ⊔⊔ −1 = d ⊔⊔ ∗
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= 1 + d+ d ⊔⊔ 2 + d ⊔⊔ 3 + · · ·

= (1 + y + y2 + y3 + · · · )(d)

=

(

1

1− y

)

(d).

Therefore, the shuffle inverse of a series can be written as a rational function of the

proper part of the series. The notions of a polynomial map and a rational function of a

noncommutative formal power series are formalized by the following definition.

Definition 5.1.1. Let p, q ∈ R[y] and c ∈ R〈〈X〉〉. Assume p(y) =
k
∑

i=0

aiy
i, where k ∈ N0,

and q((c, ∅)) 6= 0. The composition of p and c is defined as

p(c) =

k
∑

i=0

aic
⊔⊔ i.

Extending the definition to rational functions gives

p

q
(c) = p(c) ⊔⊔ q(c) ⊔⊔ −1.

These definitions can be generalized to functions on k-tuples of series by first observing

that R〈〈X〉〉 is a commutative ring with the shuffle product. Therefore, R〈〈X〉〉 is an R〈〈X〉〉-

module, where scalar multiplication of the ring with a module element is also defined by

the shuffle product. In other words, R〈〈X〉〉
⊗

R〈〈X〉〉R〈〈X〉〉 is isomorphic to R〈〈X〉〉 in

the category of commutative R〈〈X〉〉-modules. Let A,B be R-modules and denote the set

of all R-linear morphisms by Hom(A,B). Recall that Hom(A,B) forms an R-module by

itself. Let Γ ∈ R-module Hom

(

A,Hom
(

B,C
)

)

, where the modules A ,
⊕

k∈N

⊗

R

k

i=1R[yi],

B ,
⊕

k∈N

∏k

i=1R〈〈X〉〉, and C ,
⊕

k∈N

⊗

R〈〈X〉〉
k

i=1
R〈〈X〉〉. The morphism Γ is defined as

Γ

(

⊗

R

k

i=1

pi

)

(c1, c2, . . . , ck) =
⊗

R〈〈X〉〉

k

i=1

pi(ci),
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where pi ∈ R[yi] and ci ∈ R〈〈X〉〉, i = 1, 2, . . . k. The right-hand side is expanded using the

shuffle product as
⊗

R〈〈X〉〉

k

i=1

pi(ci) = p1(c1) ⊔⊔ p2(c2) ⊔⊔ · · · ⊔⊔ pk(ck).

The image of Γ, denoted by Im(Γ), is an R-module. In fact, it possesses an R-algebra

structure as
⊗

R〈〈X〉〉
k

i=1
R〈〈X〉〉 is an R-algebra. If p, p′ ∈

⊗

R

k

i=1R[yi], then

(Γ(p)Γ(p′))(c1, . . . , ck) = (Γ(p))(c1, . . . , ck) ⊔⊔ (Γ(p′))(c1, . . . , ck).

As the shuffle product has no zero divisors, it is simple to check that the underlying ring

structure on R-algebra Im(Γ) is an integral domain. Hence, the quotient field Im(Γ) is the

set of rational functions

Γ(p)

Γ(p′)
(c1, . . . , ck) = Γ(p)(c1, . . . , ck) ⊔⊔ (Γ(p′)(c1, . . . , ck))

⊔⊔ −1,

where p, p′ ∈
⊗

R

k

i=1R[yi]. The symbol Γ is henceforth suppressed for brevity so that given

p⊗ p′ ∈ R[y]⊗ R[y′],

p⊗ p′(c, c′) =
(

Γ(p⊗ p′)
)

(c, c′) = p(c) ⊔⊔ p′(c′).

Likewise, if p, q ∈
⊗

R

k

i=1R[yi], then

p

q
(c1, . . . , ck) =

Γ(p)

Γ(q)
(c1, . . . , ck).

The evaluation of rational functions over a noncommutative formal power series requires

one to compute shuffle powers and the shuffle inverse of series. Such computations can be

implemented algorithmically with the aid of the Hopf algebra corresponding to the shuffle

group as described in Chapter 3 and summarized below.
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Consider the set

M , {1 + c : c ∈ R〈〈X〉〉, (c, ∅) = 0} ⊂ R〈〈X〉〉.

M is an Abelian group under the shuffle product with 1 as the identity element. The shuffle

inverse is defined as in (5.1.1). The set of coordinate maps on R〈〈X〉〉 is taken to be

H = {aη :M −→ R, η ∈ X∗},

where aη(c) = (c, η). H constitutes a commutative R-algebra with addition, scalar multipli-

cation and product defined, respectively, as

(aη + aζ)(c) = aη(c) + aζ(c)

(kaη)(c) = k(aη(c))

m(aη, aζ)(c) = aη(c)aζ(c),

where η, ζ ∈ X∗, k ∈ R. The unit for the product is 1 ∼ a∅ so that 1(c) = 1, ∀c ∈ M . Define

the coproduct ∆ : H −→ H
⊗

H as ∆aη(c, d) = aη(c ⊔⊔ d), where c, d ∈ M and η ∈ X∗. It

can be computed inductively as

∆1 = 1⊗ 1

∆ ◦ θi = (θi ⊗ 1+ 1⊗ θi) ◦∆,

where θi denotes the vector space endomorphism on H specified by θiaη = axiη, i =

0, 1, . . . , m. The counit map ǫ is defined as

ǫ(aη) =















k : aη = ka∅

0 : otherwise.



107

It is simple to check that (H,m, 1,∆, ǫ) forms a commutative and cocommutative bialgebra

structure. The bialgebra is graded based on word length. Hence, H =
⊕

k∈N0
Hk with

aη ∈ Hk if and only if |η| = k. Since R ∼= H0 in the category of algebras with ǫ acting as the

isomorphism, H is a connected and graded bialgebra, and thus a Hopf algebra [Figueroa &

Gracia-Bond́ıa (2005)]. The reduced coproduct ∆′ is defined as

∆′(aη) =















∆(aη)− aη ⊗ 1− 1⊗ aη : aη 6= a∅

0 : aη = a∅.

Using Sweedler’s notation, the coproduct can be written as

∆(aη) =
∑

a(η1) ⊗ a(η2),

where the sum is over all words η1, η2 such that η1 ⊔⊔ η2 = η [Sweedler (1969)]. The antipode

map S : H −→ H is given by S(aη)(c) = aη(c
⊔⊔ −1). It can be computed inductively for any

a ∈ H+ (where H+ ,
⊕

k≥1Hk) by

S(aη) = −aη −
∑

a′(η1)S(a
′
(η2)

),

where the summation is taken over all the components of the reduced coproduct ∆′(aη) .

The coproduct ∆ is useful for computing shuffle powers of formal power series. For

example, if c ∈ R〈〈X〉〉 is non-proper, then c = (c, ∅)c′, where c′ ∈ M . For any η ∈ X∗, it

follows that

(c ⊔⊔ 2, η) = (c, ∅)2(c′ ⊔⊔ 2, η)

= (c, ∅)2aη(c
′ ⊔⊔ 2)

= (c, ∅)2∆aη(c
′, c′).

In the case where c is proper, one can use the corresponding group element (1 + c) and

compute the reduced coproduct since (c ⊔⊔ 2, η) = ∆′aη((1 + c), (1 + c)). The shuffle inverse



108

of a non-proper series c ∈ R〈〈X〉〉 can be computed directly using the antipode S as

(c ⊔⊔ −1, η) = (c, ∅)−1(c′ ⊔⊔ −1, η)

= (c, ∅)−1S(aη)(c
′).

The coproduct can be linearly extended to computing the polynomial map of arbitrary formal

power series. Let ∆◦k denote the composition of the coproduct ∆ with itself k times where

k ≥ 1. If c ∈ M and η ∈ X∗, for brevity ∆◦kaη(c, c, . . . , c) with the argument c repeated

(k + 1) times is written as ∆◦kaη(c). Suppose p ∈ R[x] is written as p(x) =
m
∑

i=0

aix
i. Then

for c ∈ R〈〈X〉〉 observe

(p(c), η) = aη(p(c))

= {a0ǫ+ a1 + a2∆+ · · ·+ am−1∆
◦(m−2) + am∆

◦(m−1)} (aη) (c).

Now assume p(x), q(x) ∈ R[x] such that

p

q
(x) =

m
∑

i=0

aix
i

n
∑

j=0

bjxj
,

and q(1) = 1 without loss of generality. The computation of (p/q)(c) is done as follows

(

p

q
(c), η

)

=
(

P (ǫ,∆)⊗Q(ǫ,∆, S)
)

◦∆aη(c),

where

P (ǫ,∆) = a0ǫ+ a1 + a2∆+ · · ·+ am−1∆
◦(m−2) + am∆

◦(m−1). (5.1.2a)

Q(ǫ,∆, S) = b0(ǫ ◦ S) + b1S + b2(∆ ◦ S) + · · ·+ bn−1(∆
◦(n−2) ◦ S) + bn(∆

◦(n−1) ◦ S).

(5.1.2b)

Here P (ǫ,∆) and Q(ǫ,∆, S) are the operator polynomials corresponding to the rational
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function p/q. This computation is abbreviated as

(

p

q
(c), η

)

= Υ(ǫ,∆, S)(aη)(c),

where Υ(ǫ,∆, S) ,
(

P (ǫ,∆)
⊗

Q(ǫ,∆, S)
)

◦ ∆. The operator Υ is viewed as the compu-

tational block for the rational function p/q. The computation of a rational function of a

series in M is naturally extended when p, q ∈
⊗

R

k

i=1
R[yi]. Let p = p1 ⊗ p2 ⊗ · · · ⊗ pk

and q = q1 ⊗ q2 ⊗ · · · ⊗ qk, where pi, qi ∈ R[yi]. Let Υ1,Υ2, . . . ,Υk be the corresponding

computational blocks. Therefore,

(

p

q
(c1, . . . , ck), η

)

=

(

k
⊗

i=1

Υi

)

◦∆◦(k−1)aη(c1, . . . , ck), (5.1.3)

where c1, c2, . . . , ck ∈M .

The computational framework above can be further extended to rational functions of

arbitrary non-proper formal power series. Let c ∈ R〈〈X〉〉 be non-proper with (c, ∅) = α 6= 0

and c = αc′. Fix p(x), q(x) ∈ R[x] such that

p

q
(x) =

m
∑

i=0

aix
i

n
∑

j=0

bjxj
,

and q(α) = 1 without loss of generality. The computation of (p/q)(c) is done as

(

p

q
(c), η

)

=

(

(

αP (α−1ǫ, (α∆))
)

⊗
(

αQ(α−1ǫ, (α∆), S)
)

◦∆

)

(aη)(c
′),

where the operator polynomials P and Q are defined as in (5.1.2). The computation is

abbreviated as the computational block Υ so that

(

p

q
(c), η

)

= Υ(ǫ,∆, S)(aη)(c
′),
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where Υ(ǫ,∆, S) ,
(

αP (α−1ǫ, (α∆))
⊗

αQ(α−1ǫ, (α∆), S)
)

◦ ∆. The computation of a

rational function of a non-proper series is naturally extended when p, q ∈
⊗

R

k

i=1R[yi]. Let

p = p1 ⊗ p2 ⊗ · · · ⊗ pk and q = q1 ⊗ q2 ⊗ · · · ⊗ qk, where pi, qi ∈ R[yi]. Let Υ1,Υ2, . . . ,Υk be

the corresponding computational blocks and c1, c2, . . . , ck be all non-proper series such that

(ci, ∅) = αi 6= 0, i = 1, 2, . . . , k. Let c′i ∈M be the corresponding group element of ci defined

as ci = αic
′
i. In which case,

(

p

q
(c1, . . . , ck), η

)

=

(

k
⊗

i=1

Υi

)

◦∆◦(k−1)aη(c
′
1, . . . , c

′
k).

The framework for the computation of a rational function of a proper series c such that

q(0) = 1 is extended from (5.1.2) similarly except that the coproduct ∆ in the operator

polynomials is replaced with the reduced coproduct ∆′. The extension to computation of

rational function of ordered collection of proper series c1, c2, . . . , ck is immediate with respect

to (5.1.3) except that the coproduct is replaced with the reduced coproduct. The case where

c1, c2, . . . , ck is a mixture of proper and non-proper series is difficult and does not fit well in

the current scheme.

5.2 RATIONAL SERIES

This section describes the concept of rationally closed subalgebras and, hence, the notion of

rational series in the broadest sense. First, the classical example is briefly reviewed followed

by the notion of a shuffle-rational series.

Definition 5.2.1. [Fliess (1974)] An R-subalgebra F of an R-algebra on R〈〈X〉〉 is said

to be rationally closed if and only if the inverse of all invertible elements of F belongs to

F . The rational closure of an R-subalgebra F ′ of an R-algebra on R〈〈X〉〉 is the smallest

rationally closed subalgebra F containing F ′.

Classically, rational series are defined to be those in the rational closure of the R-

subalgebra of polynomials R〈X〉, where the R-algebra structure on R〈〈X〉〉 is under the
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Cauchy product [Berstel & Reutenauer (1988)]. This noncommutative algebra of rational

series is denoted by R〈(X)〉. Since R〈〈X〉〉 also forms a commutative R-algebra under the

shuffle product, a corresponding notion of rationality is possible as described next.

Definition 5.2.2. The rational closure of the R-subalgebra R〈X〉 of the shuffle algebra on

R〈〈X〉〉 is called the algebra of shuffle-rational series and denoted by R
⊔⊔ 〈(X)〉.

In other words, R ⊔⊔ 〈(X)〉 is the smallest rationally closed subalgebra of R〈〈X〉〉 under the

shuffle product that contains R〈X〉. The next example establishes that R〈(X)〉 6⊂ R ⊔⊔ 〈(X)〉,

while the subsequent example shows that R ⊔⊔ 〈(X)〉 6⊂ R〈(X)〉.

Example 5.2.1. Let c be the rational series

c = (1− x1)
−1

= 1 + x1 + x21 + x31 + · · ·

= 1 +
x1
1!

+
x ⊔⊔ 2
1

2!
+
x ⊔⊔ 3
1

3!
+ · · ·

, exp(x ⊔⊔

1 ).

Observe that c cannot be represented by a finite number of shuffle products as the exponential

map is an entire function and cannot be represented by a finite number of terms or as a

rational function. Hence, it is not shuffle-rational.

Example 5.2.2. Let c be the shuffle-rational series

c = (1− x1)
⊔⊔ −1

= 1 + x1 + x ⊔⊔ 2
1 + x ⊔⊔ 3

1 + · · ·

= 1 + x1 + 2!x21 + 3!x31 + · · ·

Clearly, c 6∈ R〈(X)〉 since all rational series have Gevrey order s = 0 [Berstel & Reutenauer

(1988)].
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In the case of a single indeterminate X = {x}, it is simple to verify that

R〈(X)〉 =

{

p(x)

q(x)
: p(x), q(x) ∈ R[X ]

}

R
⊔⊔ 〈(X)〉 =

{

p(x) ⊔⊔ q(x) ⊔⊔ −1 : p(x), q(x) ∈ R[X ]
}

,

where q(x) 6= 0 in either case.

5.3 RECOGNIZABLE SERIES

In this section, the classical definition of a recognizable series is first introduced.

Schützenberger showed in [Schützenberger (1961)] that a series is rational under the Cauchy

product if and only if it is recognizable. Next, the shuffle analogue of Schützenberger’s

theorem is stated and proved.

Definition 5.3.1. [Berstel & Reutenauer (1988)] A series c ∈ R〈〈X〉〉 is said to be rec-

ognizable if ∃N ∈ N, a monoid morphism µ : X∗ −→ RN×N , and vectors λ, γ ∈ RN such

that (c, w) = λTµ (w) γ, ∀w ∈ X∗. Note that R
N×N is considered to be a multiplicative

monoid. The tuple (λ, µ, γ) is called a representation of c with dimension N . The set of all

recognizable series is denoted by Rrec〈〈X〉〉.

The following lemma will be useful in the work that follows.

Lemma 5.3.1. A series c ∈ R〈〈X〉〉 is a polynomial if and only if it has a representation

(λ, µ, γ) with µ(xi) being a strictly upper triangular matrix ∀xi ∈ X.

Proof: If c has a representation with µ(xi) strictly upper triangular ∀xi ∈ X , then ∃k ∈ N

such that µ(w) = 0 when |w| ≥ k, as strictly upper triangular matrices are always nilpotent.

Hence, c is a polynomial. Conversely, if c is a polynomial, then the underlying vector fields of

any realization of Fc form a nilpotent distribution [Kawski (1992)]. Since R〈X〉 ⊂ R〈(X)〉,

and the underlying vector fields associated with any generating series in R〈(X)〉 comes from
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the Lie algebra gl(RN), the fact that the subalgebra of strictly upper triangular matrices is a

nilpotent Lie subalgebra of the Lie algebra gl(RN) completes the proof [Humphreys (1973)].

Example 5.3.1. It is easily checked that c = x0x1 has the representation

µ(x0) =













0 1 0

0 0 0

0 0 0













, µ(x1) =













0 0 0

0 0 1

0 0 0













,

λ = e1 = [1 0 0]T , and γ = e3 = [0 0 1]T . Note that µ(x0) and µ(x1) are strictly upper

triangular matrices and nilpotent of index 2.

The notion of shuffle recognizability is presented next.

Definition 5.3.2. Let k ∈ N and {N1, N2, . . .Nk} be a multiset of k positive integers. Let

{λi}
k
i=1, {γi}

k
i=1 be ordered collections of k vectors such that λi, γi ∈ RNi. Assume {µi}

k
i=1 is

an ordered collection of k monoid morphisms µi : X
∗ −→ R

Ni×Ni such that µi(xj) is a strictly

upper triangular matrix ∀xj ∈ X , i = 1, . . . , k. Define two polynomials p, q ∈
⊗

R

k

i=1R[yi]

such that q(λTi γi) 6= 0, i = 1, . . . , k. A series c ∈ R〈〈X〉〉 is said to be shuffle-recognizable if

c = p/q

(

∑

w∈X∗ λ
Tµ(w)γ w

)

, where λT = (λT1 ×λ
T
2 ×· · ·×λTk ), µ = (µ1×µ2×· · ·×µk), and

γ = (γ1 × γ2 × · · · × γk). The tuple (p, q, {λi}
k
i=1, {µi}

k
i=1, {γi}

k
i=1) is called a k order shuffle-

representation of c. The set of all such shuffle-recognizable series is denoted by R ⊔⊔ rec〈〈X〉〉.

Let c ∈ R ⊔⊔ rec〈〈X〉〉 with a shuffle-representation (p, q, {λ}ki=1, {µ}
k
i=1, {γ}

k
i=1). The com-

putation of (c, η), η ∈ X∗ can be made algorithmic using the Hopf algebra corresponding

to the shuffle group. By Lemma 5.3.1, observe that the expression
∑

w∈X∗ λTµ(w)γ is a

Cartesian product of k polynomials, say d1, d2, · · · dk. Hence, for all η ∈ X∗

(c, η) =

(

p

q
(d1, d2, . . . , dk), η

)

,
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which can be computed directly using (5.1.3). In addition,

R ⊔⊔ rec〈〈X〉〉 =
{

p(c1, c2, . . . , ck) ⊔⊔ q(c1, c2, . . . , ck)
⊔⊔ −1 : p, q ∈

⊗

R

k

i=1

R[yi]
}

, (5.3.1)

where c1, . . . , ck ∈ R〈X〉, (q(c1, . . . , ck), ∅) 6= 0.

Example 5.3.2. Suppose

c = 1 + x1 + x ⊔⊔ 2
1 + · · ·+ x ⊔⊔ k

1 + · · ·

= (1− x1)
⊔⊔ −1

=
( 1

1− y

)

(x1).

Note that µ : X∗ −→ R2×2, where µ(x1) =







0 1

0 0






, γ = e2, and λ = e1 give a representation

of x1, that is, x1 =
∑

w∈X∗ λTµ(w)γ w. Hence, c = x ⊔⊔ ∗
1 is a shuffle-recognizable series with

shuffle-representation (1, 1− y, {e1}, {µ}, {e2}).

Equation (5.3.1) states that the set of shuffle-recognizable series are generated by finite

shuffle products of polynomials and their shuffle inverses. Hence, R ⊔⊔ rec〈〈X〉〉 ⊆ R ⊔⊔ 〈(X)〉 in

the category of sets. This leads to the central question of whether R ⊔⊔ rec〈〈X〉〉 = R
⊔⊔ 〈(X)〉.

The following theorem states that this is the case.

Theorem 5.3.1. A series is shuffle-rational if and only if it is shuffle-recognizable.

Proof: It is sufficient to prove that R ⊔⊔ 〈(X)〉 ⊆ R ⊔⊔ rec〈〈X〉〉. First it is shown that all

polynomials and the shuffle inverses of shuffle-invertible polynomials are shuffle-recognizable.

As every shuffle-rational series is in the rational closure of the polynomials, it only remains

to be shown that shuffle-recognizability is preserved under the remaining shuffle-rational

operations: scalar multiplication, addition, and the shuffle product.

Let c ∈ R〈X〉. From Lemma 5.3.1 there exists a nilpotent representation (λ, µ, γ) such
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that

c =
∑

w∈X∗

λTµ(w)γ w =
y

1

(

∑

w∈X∗

λTµ(w)γ w

)

.

Therefore, trivially, c is shuffle-recognizable with tuple (y, 1, {λ}, {µ}, {γ}). It is equally

clear that if c is non-proper, and c′ = 1 − (c/(c, ∅)) has a representation (λ′, µ′, γ′), then

d = c ⊔⊔ −1 is ⊔⊔ -recognizable with tuple ((c, ∅)−1, 1− y, {λ′}, {µ′}, {γ′}).

Shuffle-recognizability is also preserved by scalar multiplication. If α ∈ R and d is

shuffle-recognizable with representation (p, q, {λi}
k
i=1, {µi}

k
i=1, {γi}

k
i=1), then αd is shuffle-

recognizable with representation (αp, q, {λi}
k
i=1, {µi}

k
i=1, {γi}

k
i=1).

It is next shown that shuffle-recognizability is closed under addition. Let d, d′ ∈ R ⊔⊔ 〈(X)〉

with representations (p, q, {λi}
k
i=1, {µi}

k
i=1, {γi}

k
i=1) and (p′, q′, {λ′i}

n
i=1, {µ

′
i}

n
i=1, {γ

′
i}

n
i=1), re-

spectively. Define λT =
∏k

i=1 λ
T
i , γ =

∏n

i=1 γi, µ =
∏k

i=1 µi, and likewise for λ′T , γ′ and µ′.

In which case,

d+ d′ =
p

q
(c1) +

p′

q′
(c2)

= (p(c1) ⊔⊔ q(c1)
⊔⊔ −1) + (p′(c2) ⊔⊔ q′(c2)

⊔⊔ −1)

with c1 =
∑

w∈X∗ λTµ(w)γ w and c2 =
∑

w∈X∗ λ′Tµ′(w)γ′ w. Multiplying by

q(c1) ⊔⊔ q(c1)
⊔⊔ −1

⊔⊔ q′(c2) ⊔⊔ q′(c2)
⊔⊔ −1 on both sides of the expression on the right gives

d+ d′ = [(p(c1) ⊔⊔ q′(c2)) + (p′(c2) ⊔⊔ q(c1))] ⊔⊔

[q(c1) ⊔⊔ q′(c2)]
⊔⊔ −1

= {(p⊗R q
′) + (q ⊗R p

′)}(c1, c2) ⊔⊔

(

{q ⊗R q
′}(c1, c2)

)

⊔⊔ −1
.

Hence, d + d′ is shuffle-recognizable with representation
(

((p ⊗R q
′) + (q ⊗R p

′)), q ⊗R

q′, {Λi}
k+n
i=1 , {Ψi}

k+n
i=1 , {Γi}

k+n
i=1

)

, where Λi = λi, Ψi = µi, and Γi = γi if 1 ≤ i ≤ k, and

Λi = λ′i−k, Ψi = µ′i−k, and Γi = γ′i−k if (k + 1) ≤ i ≤ (k + n).
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Finally, the case of the shuffle product is addressed. Using the same notation as in the

previous case, observe

d ⊔⊔ d′ =
p

q
(c1) ⊔⊔

p′

q′
(c2)

= p(c1) ⊔⊔ q(c1)
⊔⊔ −1

⊔⊔ p′(c2) ⊔⊔ q′(c2)
⊔⊔ −1

= (p(c1) ⊔⊔ p′(c2)) ⊔⊔ (q(c1) ⊔⊔ q′(c2))
⊔⊔ −1

= (p⊗R p
′)(c1, c2) ⊔⊔ ((q ⊗R q

′)(c1, c2))
⊔⊔ −1

= (p⊗R p
′)

(

∑

w∈X∗

(λT × λ′T )(µ× µ′)(w)(γ × γ′)w

)

.

Hence, d ⊔⊔ d′ is shuffle-recognizable with representation
(

p ⊗R p′, q ⊗R q′, {Λi}
k+n
i=1 ,

{Ψi}
k+n
i=1 , {Γi}

k+n
i=1

)

.

The final theorem is useful in the next section where shuffle-rational series are used as

generating series for Fliess operators.

Theorem 5.3.2. A series c ∈ R ⊔⊔ 〈(X)〉 is globally convergent if c = p(c1, c2, . . . , ck) ⊔⊔

q(c1, c2, . . . , ck)
−1 with deg(q) = 0 and only locally convergent otherwise.

Proof: If deg(q) = 0, then c is a polynomial, which is always globally convergent. It is known

that if c ∈ RLC〈〈X〉〉 then c ⊔⊔ −1 ∈ RLC〈〈X〉〉 [Gray, et al. (2014b)]. Hence, if deg(q) 6= 0

then, q(c) ⊔⊔ −1 is locally convergent. Therefore, p(c) ⊔⊔ q(c) ⊔⊔ −1 ∈ RLC〈〈X〉〉.

5.4 STATE SPACE REALIZATIONS

This section presents a realization theory for Fliess operators with shuffle-rational generat-

ing series. The classical result is given first for rational series as a point of comparison. Then

it is shown that a series is shuffle-rational if and only if its corresponding Fliess operator has

a certain Wiener-Fliess realization as shown in Figure 6 [Venkatesh & Gray (2020)]. As an

application, the concept is applied to bilinear systems with output saturation.
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bilinear system
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q 
_ 

Fig. 6: Wiener-Fliess system comprised of a nilpotent bilinear system and a static rational
function

Theorem 5.4.1. [Fliess (1974),Fliess (1981)] A series c ∈ R〈(X)〉 if and only if the Fliess

operator y = Fc[u] has a bilinear state space realization

ż(t) =

(

A0 +
m
∑

i=1

Aiui(t)

)

z(t), z(0) = γ

y(t) = λT z(t),

where Ai ∈ RN×N for i = 0, 1 . . . , m, and γ, λ ∈ RN .

The following is the shuffle-rational analogue of this theorem. Note that convergence of

the underlying operator is ensured by Theorem 5.3.2.

Theorem 5.4.2. A series c ∈ R ⊔⊔ 〈(X)〉 if and only if the Fliess operator y = Fc[u] has a

state space realization consisting of a nilpotent bilinear system followed by a static rational

function.

Proof: If c ∈ R ⊔⊔ 〈(X)〉, then there exists a k order shuffle-representation (p, q, {λi}
k
i=1,

{µi}
k
i=1, {γi}

k
i=1) of c. From Lemma 5.3.1 and Theorem 5.4.1 it follows that each tuple

(λi, µi, γi) corresponds to a nilpotent bilinear realization

żi(t) =

(

Ai,0 +

m
∑

j=1

Ai,juj(t)

)

zi(t), zi(0) = γi

yi(t) = λTi zi(t),

where zi(t) ∈ RNi , and the matrices Ai,j are strictly upper triangular matrices.
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Let di =
∑

w∈X∗ λTi µi(w)γiw denote the corresponding generating polynomials so that

c =

k
∐

i=1

pi(di) ⊔⊔ qi(di)
⊔⊔ −1.

It then follows directly that

Fc[u] =
k
∏

i=1

pi
qi

(

Fdi [u]
)

,

so that y = Fc[u] has the desired realization with state z = [zT1 zT2 · · · zTk ]
T , and Ai =

blkdiag(A1,i, . . . , Ak,i), i = 0, 1, . . . , m.

Conversely, consider an arbitrary nilpotent system

ż(t) =

(

A0 +
m
∑

i=1

Aiui

)

z(t), z(0) = z0 (5.4.1a)

y(t) =
p

q
(z(t)), (5.4.1b)

where each Ai ∈ RN×N is strictly upper triangular, and p, q ∈ R[z1, z2, . . . , zN ] such that

q(z) 6= 0 on a neighborhood of z0. First observe that the following set of N nilpotent

bilinear systems

ż(t) =

(

A0 +

m
∑

i=1

Aiui(t)

)

z(t), z(0) = z0

yi(t) = zi(t),

has a corresponding representation (ei, µ, γ) with respect to Lemma 5.3.1, where µ(xi) = Ai,

i = 1, 2, . . . , N , and γ = z0. If di ,
∑

w∈X∗ e
T
i µ(w)γ, then Fdi [u] = zi, i = 1, 2, . . . , N .

As the tensor algebras R[z1, z2, . . . , zN ] and
⊗N

i=1R[zi] are isomorphic, there exists p′, q′ ∈
⊗N

i=1R[zi] such that

p

q
(z) =

p′

q′
(z1, z2, . . . , zN ).

Therefore, the input-output behavior of system (5.4.1) is described by a Fliess operator Fd,
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where

d =
p′

q′
(d1, d2, . . . , dN).

Hence, d ∈ R ⊔⊔ 〈(X)〉 since it has the shuffle-representation
(

p′, q′, {ei}
N
i=1, {µi}

N
i=1, {γi}

N
i=1

)

,

where µi = µ and γi = γ for i = 1, 2, . . . , N .

The following example illustrates how a system with a shuffle-rational generating series

can appear in practice.

Example 5.4.1. Consider a double integrator system with zero initial conditions followed

by a saturation nonlinearity

Γ(x) =















min(x, 1) : x ≥ 0

max(x,−1) : x < 0.

As shown in Figure 7, Γ is well approximated by the hyperbolic tangent function as

tanh(1.15x) =
exp(1.15x)− exp(−1.15x)

exp(1.15x) + exp(−1.15x)
.

Using a Taylor series approximation of the exponential functions up to degree N gives

tanh(1.15x) ≈ fn(x) ,
p(x)

q(x)
=

∑n
k=0

(1.5x)2k+1

(2k+1)!
∑n

k=0
(1.5x)2k

(2k)!

,

where n = ⌈N
2
⌉. The quality of the approximation of Γ(x) for a few values of n is shown in

Figure 7. The input-output behavior of the overall system is given by

y(t) = Γ(Fc[u])(t) ≈ fn(Fc[u])(t) =
p

q

(

Fc[u]
)

(t) = Fd[u](t) = ŷ(t),
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Fig. 7: Saturation function Γ(x) and its approximations

where c = x0x1 and

d =

( n
∑

k=0

(1.5c) ⊔⊔ (2k+1)

(2k + 1)!

)

⊔⊔

( n
∑

k=0

(1.5c) ⊔⊔ (2k)

(2k)!

)

⊔⊔ −1

.

The output response y(t) of the given system and its shuffle-rational approximation ŷ(t)

when n = 100 are shown in Figure 8 for the applied input u(t) = cos(t).

In light of Example 5.4.1, the following statement can be asserted. Shuffle-rational series

can approximate nilpotent bilinear systems with hard non-linearities such as the saturation

non-linearity. Nilpotent bilinear systems appear in the modeling of robotic systems [Murray

& Sastry (1993)]. Hence, the shuffle-rational series potentially have a great applicability in

the modeling of engineering systems where the associated hard nonlinearities are difficult to
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Fig. 8: Output response y(t) and its shuffle-rational approximation ŷ(t)
in Example 5.4.1

neglect.
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CHAPTER 6

CONCLUSIONS, CONJECTURES AND FUTURE WORK

The objectives of this chapter are to draw the conclusions from the dissertation and provide

a few insights into the potential future lines of research extending from the dissertation. The

discussion of future topics is meant only to serve as an initial viewpoint, and the reader is

cautioned against taking it as a final word.

6.1 CONCLUSIONS

In this dissertation it was proved that when a Chen-Fliess series Fc is in additive static

feedback connection with a static map fd, the closed-loop system has a Chen-Fliess series

representation, and the closed form expression of the generating series is developed. It is also

proved that the additive static feedback connection preserves local convergence and does not

preserve global convergence in general with the aid of a counterexample. The dissertation

also characterized the convergence of the shuffle product, mixed composition product and

Wiener-Fliess composition product in the course of proving the preservation of local con-

vergence under static feedback connection. All these products were shown to preserve both

the local and global convergence of Fliess operators. Next, the notions of shuffle rationality

and shuffle recognizability were developed akin to the traditional notion of rational series

and recognizability. An analogue of Schützenberger’s theorem for the shuffle-rational series

showed that shuffle rationality and shuffle recognizability are equivalent. Another equivalent

characteristic of shuffle rational series was given in terms of canonical state space realizations.

It is known that a Fliess operator Fc, where c is a rational series, has a canonical bilinear

state space realization. Likewise, it was shown that a Fliess operator Fc, where c is shuffle-

rational, has a canonical bilinear state space realization as a Wiener-Fliess composition of a

nilpotent bilinear system with a rational static map.
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6.2 REMARKS ON FUTURE WORK

The dissertation has completely answered the questions that were posed. However, the

answers suggest new directions for research. For example, regarding the static feedback

problem which was addressed in Chapters 3 and 4, the same questions can be asked for a

multiplicative static feedback connection instead of the additive feedback connection. If a

Chen-Fliess series Fc is in a multiplicative feedback connection with a static map fd, does

the closed-loop system have a Chen-Fliess series representation? If so, can a closed form

expression for the generating series of the closed-loop system be derived and computed? Does

the closed-loop system preserve local convergence? Does the closed-loop system preserve

global convergence? The remainder of this chapter provides some preliminary observations

regarding the shuffle rationality problem.

6.2.1 Hankel Rank of a Series

An equivalent notion of rational series is described by the finiteness of its Hankel rank.

The Hankel matrix for a series c ∈ R〈〈X〉〉, denoted by H (c), is given by an infinite tableau

of entries with rows and columns indexed by the words, arranged by some ordering. An

element in ηζ (η-row, ζ-column) position viz. H (c)ηζ = (c, ηζ). A bilinear realization exists

for a series c ∈ R〈〈X〉〉, equivalently c ∈ R〈(X)〉 iff rank of H (c) is finite. The dimension of

the minimal bilinear state space realization for the generating series c is given by the rank

of H (c) [Fliess (1974)]. The notions of Hankel matrix and Hankel rank evidently cannot be

extended for the ⊔⊔ -rational series, since for c ∈ R ⊔⊔ 〈(X)〉, the series no longer embraces the

bilinear structure if deg(q) 6= 0, as seen from the previous subsection. This can be further

illustrated by revisiting Example 5.2.2.

Example 6.2.1. Let X = {x1} and c = x ⊔⊔ ∗
1 ∈ R〈〈X〉〉. Then, c =

∑

k∈N0

k!xk1. It is simple

to observe that rank of H (c) is infinite.
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Remark: For the rest of this section, the shuffle rational series is often abbreviated as ⊔⊔ -

rational series for brevity.

Given that ⊔⊔ -rational series describe nilpotent systems with Wiener-Fliess composition

of a rational function, mathematical tools more sophisticated than linear algebra are required

to have similar equivalent criteria due to the non-linearities in the output equation. The

underlying picture becomes clearer in the next subsection, where the structure of input-

output differential equations satisfied by Fliess operators Fc where c ∈ R〈(X)〉 and c ∈

R ⊔⊔ 〈(X)〉 are investigated.

6.2.2 Structure of the Input-Output Differential Equation

An equivalent characterization of a rational series is given by the structure of the differ-

ential equation characterizing its input-output behaviour. The fact that a rational series c

should have a finite Hankel rank provides a view of the structure of the differential equa-

tion in discussion. It is first important to understand the concept of differential field before

further discussion [Kaplansky (1957)].

Definition 6.2.1. A differential field L is a commutative field with the additive endomor-

phism D on L satisfying the Leibnitz rule

D(a.b) = D(a).b+ a.D(b) ∀a, b ∈ L.

The constants of a differential field L, denoted by Ω(L), is the subfield given by the kernel

of the endomorphism D viz.

Ω(L) = {v ∈ L : D(v) = 0}.
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Given a formal input u, let u̇, ü, . . . , u(n), . . . denote the successive formal derivatives of

u with respect to time. Define R{u} to be the R-algebra of polynomials in the countable

number of commutative indeterminates u, u̇, ü, . . .. Since this R-algebra (polynomial ring)

is an integral domain, consider its field of fractions (quotient field), denoted by R({u}). It

is easy to verify that R({u}) is a differential field, and it is known that Ω(R({u})) ∼= R in

the category of fields [Fliess & Reutenauer (1982),Fliess & Reutenauer (1983)]. A rational

series c ∈ R〈(X)〉, say of Hankel rank N , satisfies a differential equation of order N with

coefficients from R({u}). The following result is a precise description of the preceding fact.

Theorem 6.2.1. A series d ∈ R〈(X)〉 has a Hankel matrix of rank N if and only if

y, ẏ, ÿ, . . . , y(N−1) are R({u})-linearly independent where y = Fd[u] and hence, d satisfies

a differential equation of the form

y(N) + c1y
(N−1) + c2y

(N−2) + · · ·+ cNy = 0,

where c1, c2, . . . , cN ∈ R({u}).

The above result proved in [Fliess & Reutenauer (1983)] provides the structure of a

rational system which is a homogeneous linear differential equation with the coefficients that

are rational functions of the input and their successive derivatives with respect to time. The

following example is an illustration of this fact.

Example 6.2.2. Let X = {x1, x2} and consider the series c ∈ R〈〈X〉〉 given by c = (x1x2)
∗.

It is simple to check that the series c is rational and its Hankel rank is two. The series has

the following bilinear realization with states z1, z2; inputs u1, u2; and the output y.

ż1 = z2u1

ż2 = z1u2

y = z1.
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The above realization satisfies the following input-output linear homogeneous differential

equation

ÿ −

(

u̇1
u1

)

ẏ − u1u2y = 0.

To better understand what follows, it is necessary to understand the extension of a

differential field. Let (A, dA) and (B, dB) be two differential algebras. Then h : A −→

B is called a differential algebra homomorphism if h is an algebra homomorphism and h

commutes with the derivation viz. h ◦ dA = dB ◦ h. A differential field L′ is said to be

an extension of a differential field L if and only if the inclusion map i : L −→ L′ is an L-

differential algebra homomorphism. The differential field R({u}) in the preceding theorem

is an extension of the trivial differential field R. Consider the R-algebra R{u, y} defined

to be the algebra of polynomials in the countable number of commutative indeterminates

u, u̇, ü, · · · and y, ẏ, ÿ, · · · . Since it is an integral domain, consider its quotient field, denoted

by R({u, y}). This is algebra of fractions of polynomials in the input u and output y and

their successive derivatives with respect to time. Hence, R({u, y}) is a differential field and

is traditionally called the observation algebra. It is the equivalent of an algebraically closed

field for differential polynomials underlying system theory. The following arrow diagram

precisely illustrates the field extensions.

R −→ R({u}) −→ R({u, y})

Say a field L′ is an extension of L. Then [L′ : L] denotes the dimension of the vector space

L′ over the field L. If [L′ : L] is finite, then L′ is said to be a finite extension of L. For

example, in the case of algebraic fields, the field C is a finite extension of R as [C : R] = 2.

Definition 6.2.2. An input-output differential equation is called algebraic of order k, if

the differential equation has the form p(u, u̇, ü, . . . , u(k), y, ẏ, ÿ, . . . , y(k)) = 0 where p is a
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polynomial in R{u, y}.

The following theorem states a necessary condition for the existence of an algebraic

input-output differential equation for a given input-ouput system [Wang (1990)].

Theorem 6.2.2. If a formal dynamical system Σ : u 7→ y satisfies an algebraic input-output

differential equation, then
[

R({u, y}) : R({u})
]

is finite.

If the formal system Σ can be described by a Fliess operator with generating series

c ∈ R〈〈X〉〉, then the degree of extension is alternatively called the Lie rank of the series.

The literature normally approaches this topic through the Lie algebra of the formal vector

fields and distributions [Fliess (1981)]. Note, when a series c is rational viz. c ∈ R〈(X)〉, the

Hankel rank of c is greater than or equal to the degree of the extension
[

R({u, y}) : R({u})
]

.

However, ⊔⊔ -rational series do not necessarily satisfy an input-output algebraic differential

equation. The following is an instance, where the series c ∈ R ⊔⊔ 〈(X)〉 satisfies an input-

output algebraic differential equation.

Example 6.2.3. Let X = {x0, x1} and say c ∈ R ⊔⊔ 〈(X)〉 is described by c = (x0x1)
⊔⊔ ∗.

Note, the underlying polynomial d (viz c = d ⊔⊔ ∗) is described by d = x0x1, and the Fliess

operator Fd satisfies the input-output algebraic differential equation of minimal order two,

equivalently, [R{u, y} : R{u}] = 2 with respect to the series d. Let yc = Fc[u] denote

the output of the system described by the generating series c and likewise yd denotes the

output of the system described by the generating series (polynomial) d. The input-output

differential equation satisfied by yd is given by ÿd = u. Then,

yc =
∑

k∈N0

ykd = (1− yd)
−1 =

(

1

1− z

)

(yd)

ẏc =

(

1

(1− z)2

)

(yd)ẏd = y2c ẏd.

Observe that yc 6= 0. Hence,

ẏd =
ẏc
y2c
.
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Therefore,

ÿc = 2ycẏcẏd + y2c ÿd =
2ẏc

2

yc
+ y2cu.

Thus,

ycÿc − 2ẏc
2 − y3cu = 0.

Hence, the system describing the series c satisfies an algebraic input-output differential equa-

tion of order two locally given by ycÿc − 2ẏc
2 − y3cu = 0. Note that the shuffle closure did

not change the degree of the extension from the underlying polynomial.

The following example is an instance where the shuffle closure of the polynomial does

not satisfy an algebraic input-output differential equation.

Example 6.2.4. Let X = {x1} and say c ∈ R ⊔⊔ 〈(X)〉 is described by c = x1 ⊔⊔ (1 +

x ⊔⊔ 2
1 ) ⊔⊔ −1. Note, the underlying polynomial d is x1, and the Fliess operator Fd satisfies the

input-output differential equation of order one, given by ẏd = u. By following the previous

example, the input-output differential equation locally satisfied by the Fliess operator Fc is

ẏc −
2y2c
√

1− 4y2c

1−
√

1− 4y2c
u = 0.

Hence, the system describing the series c does not satisfy an algebraic input-output differen-

tial equation due to presence of the radical
√

1− 4y2c . However, note that the order of the

differential equation is invariant from the underlying polynomial.

The following counterexample demonstrates that not all Fliess operators described by a

⊔⊔ -rational series can even be described by an input-output differential equation.

Example 6.2.5. Let X = {x0, x1} and consider c ∈ R ⊔⊔ 〈(X)〉 described by c =

(x1)
⊔⊔ ∗

⊔⊔ x0x1. The series (x1)
⊔⊔ ∗ satisfies the differential equation ẏ1 − y21u = 0, where

y1 = F(x1) ⊔⊔ ∗ [u], and the polynomial x0x1 satisfies the input-output differential equation

ÿ2 = u. Let y = Fc[u], then y = y1y2. The time derivative of y is not invertible; hence, y1, y2
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and their successive derivatives cannot be expressed merely in terms of y and its derivatives.

Therefore, an input-output differential equation is not possible.

The above examples inspire the following theorem about the existence and nature of

the input-output differential equations for ⊔⊔ -rational series. Only a sketch of the proof is

provided.

Theorem 6.2.3. Let c ∈ R ⊔⊔ 〈(X)〉 with the representation tuple (p, q, λ, µ, γ), where p, q ∈
⊗

R

k

i=1R[yi]. Let d1, d2, · · · dk be the underlying polynomials, where c = p

q
(d1, · · · dk). Then

the following statements are true:

1. Let k = 1 and [R{u, y} : R{u}] = N with respect to d1. If
(Γ(p)
Γ(q)

)′
(λTγ) 6= 0, then

the Fliess operator Fc satisfies locally an input-output differential equation of minimal

order N , not necessarily algebraic. The structure involves radicals of the polynomials

in the output variable y.

2. If k > 1 and ∃i ∈ {1, · · · , k} such that ∀j 6= i, polynomial dj lies in the shuffle closure

di. Then the series c can be represented as just shuffle closure di, and reverts to the

case 1 for the existence of input-output differential equation.

Proof: (Sketch) If
(Γ(p)
Γ(q)

)′
(λTγ) 6= 0, then by the inverse mapping theorem, there is a

formal local diffeomorphism mapping the derivatives of c to the derivatives of the underlying

polynomial series around the initial condition.

The study of the rational closure of polynomials under the shuffle product can be con-

nected to the study of rational maps. It is evident that the computation of the input-output

differential equation relies typically on solving the roots of polynomial equations. This might

pave the way for using the Galois theory of polynomials, known for studying the solvability

of polynomials, making it a potential future topic. The final section is the study of shuffle

closure of rational series for which most of the results can be extended from the results of

the shuffle-rational series due to the generality in the definition of the map Γ.
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6.2.3 Shuffle Rationality of Rational Series

The R-algebra of rational series with the catenation product, R〈(X)〉, is closed under the

shuffle product. In other words, the underlying R-module of rational series adjoined with

the bilinear shuffle product forms a commutative R-algebra R ⊔⊔ 〈(X)〉 and a R-subalgebra

of R〈〈X〉〉. Hence, it is a valid notion to consider the rational closure of R ⊔⊔ 〈(X)〉. The

rational closure of R ⊔⊔ 〈(X)〉 in R〈〈X〉〉 is denoted by R ⊔⊔ 〈(X)〉. By definition, it is evident

that R ⊔⊔ 〈(X)〉 ⊇ R〈(X)〉 ∪ R ⊔⊔ 〈(X)〉. The following example proves that R ⊔⊔ 〈(X)〉 6=

R〈(X)〉 ∪ R
⊔⊔ 〈(X)〉.

Example 6.2.6. Let the alphabet X = {x1, x2}. Consider the series c ∈ R〈〈X〉〉 given

by c = ((x1x2)
∗) ⊔⊔ −1. Observe that c is the shuffle inverse of not a polynomial, hence

c 6∈ R ⊔⊔ 〈(X)〉. A direct calculation gives

c = 1− x1x2 + 4x21x
2
2 + x1x2x1x2 + · · ·

Note that

(x1)
0 (c) = c = 1− x1x2 + 4x21x

2
2 + x1x2x1x2 + · · ·

(x1)
−1 (c) = −x2 + 4x1x

2
2 + x2x1x2 + · · ·

(x1)
−2 (c) = 4x22 + · · ·

The leading term of the higher left-shift powers of x1 on c increase in powers of x2. The

leading term of x−k1 (c) is unique to the series in the collection {x−k1 (c)}k∈N0. Hence, the

collection of series {x−k1 (c)}k∈N0 are R-linearly independent. Thus rank of H (c) is infinite.

Therefore, c 6∈ R〈(X)〉; hence, c 6∈ R〈(X)〉 ∪ R ⊔⊔ 〈(X)〉.

Hence, R ⊔⊔ 〈(X)〉 is not a disjoint union of R ⊔⊔ 〈(X)〉 and R〈(X)〉. A series c ∈ R〈(X)〉

implies c ∈ RGC〈〈X〉〉 and from [Gray, et al. (2014b)], the shuffle closure of a globally
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convergent series c is locally convergent. Hence, if a series c ∈ R ⊔⊔ 〈(X)〉, then c ∈ RLC〈〈X〉〉.

The following example proves that R ⊔⊔ 〈(X)〉 6= R〈〈X〉〉.

Example 6.2.7. Let X = {x1}. Consider the series c ∈ R〈〈X〉〉 described as c =

∑

n∈N0

22
n

xn1 . Using Landau’s notation, since 22
n

= ω(n!), the series c 6∈ RLC〈〈X〉〉 and hence,

c 6∈ R ⊔⊔ 〈(X)〉.

The notion of a series c being completely-recognizable is presented next.

Definition 6.2.3. Let k ∈ N and {N1, N2, . . .Nk} be a multiset of k positive integers. Let

{λi}
k
i=1, {γi}

k
i=1 be ordered collections of k vectors such that λi, γi ∈ RNi. Assume {µi}

k
i=1 is

an ordered collection of k monoid morphisms µi : X
∗ −→ RNi×Ni. Define two polynomials

p, q ∈
⊗

R

k

i=1R[yi] such that q(λTi γi) 6= 0, i = 1, . . . , k. A series c ∈ R〈〈X〉〉 is said to be

completely-recognizable if c = p/q

(

∑

w∈X∗ λ
Tµ(w)γ w

)

, where λT = (λT1 × λT2 × · · ·× λTk ),

µ = (µ1×µ2×· · ·×µk), and γ = (γ1×γ2×· · ·×γk). The tuple (p, q, {λi}
k
i=1, {µi}

k
i=1, {γi}

k
i=1)

is called a k order complete-representation of c. The set of all such completely-recognizable

series is denoted by Rrec
⊔⊔
〈(X)〉.

The expression

(

∑

w∈X∗
λTµ(w)γw

)

defines a rational series in the traditional sense, as

per Schützenberger’s theorem. Hence, the set of Rrec
⊔⊔
〈(X)〉 consists of results of shuffle

product of rational series and the shuffle inverses of invertible (non-proper) rational series.

More precisely,

Rrec
⊔⊔
〈(X)〉 =

{

p(c1, .., ck) ⊔⊔ q(c1, .., ck)
⊔⊔ −1 : p, q ∈

⊗

R

k

i=1

R[yi]
}

, (6.2.1)

where q(c1, ..ck) is not proper and c1, · · · , ck ∈ R〈(X)〉.

Example 6.2.8. Let X = x1 and consider c ∈ R〈〈X〉〉 described by c = (x∗1)
⊔⊔ −1. Let
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c′ , 1− x∗1. Then,

c = (1− c′) ⊔⊔ −1 = (c′) ⊔⊔ ∗

= 1 + c′ + (c′) ⊔⊔ 2 + · · ·+ (c′) ⊔⊔ k + · · ·

=

(

1

1− y

)

(c′).

Note that the rational series c′ has the representation tuple (λ, µ, γ), where µ : X∗ −→

R2×2 with µ(x1) =







1 −1

0 0






, and λ, γ ∈ R2 with λ = e1, γ = e2. Hence, c = (x∗1)

⊔⊔ −1.

Therefore, c ∈ R ⊔⊔ 〈(X)〉 has the representation (1, 1−y, λ, µ, γ) which implies c ∈ Rrec
⊔⊔
〈(X)〉.

Note that from equation (6.2.1), it is evident that Rrec
⊔⊔
〈(X)〉 ⊆ R ⊔⊔ 〈(X)〉. The above ex-

ample inspires an analogue of Schützenberger’s theorem for the set of completely-recognizable

series, which is addressed in the following theorem.

Theorem 6.2.4. R ⊔⊔ 〈(X)〉 = R
rec
⊔⊔
〈(X)〉 are isomorphic as sets. Equivalently, a series is

in the shuffle closure of rational series if and only if it is completely recognizable.

Proof: The proof is similar to Theorem 5.3.1.
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