2-2014

Temperature, Hypoxia, and Mycobacteriosis: Effects on Adult Striped Bass Morone Saxatilis Metabolic Performance

Dominique Lapointe
Wolfgang K. Vogelbein
Mary C. Fabrizio
David T. Gauthier
Old Dominion University, dgauthie@odu.edu

Richard W. Brill

Follow this and additional works at: https://digitalcommons.odu.edu/biology_fac_pubs
Part of the Aquaculture and Fisheries Commons, and the Veterinary Medicine Commons

Repository Citation
Lapointe, Dominique; Vogelbein, Wolfgang K.; Fabrizio, Mary C.; Gauthier, David T.; and Brill, Richard W., "Temperature, Hypoxia, and Mycobacteriosis: Effects on Adult Striped Bass Morone Saxatilis Metabolic Performance" (2014). Biological Sciences Faculty Publications. 229.
https://digitalcommons.odu.edu/biology_fac_pubs/229

Original Publication Citation

This Article is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.
Temperature, hypoxia, and mycobacteriosis: effects on adult striped bass *Morone saxatilis* metabolic performance

Dominique Lapointe1,4,*, Wolfgang K. Vogelbein1, Mary C. Fabrizio1, David T. Gauthier2, Richard W. Brill3

1Virginia Institute of Marine Science, College of William & Mary, PO Box 1346, Gloucester Point, Virginia 23062, USA
2Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529, USA
3Ecosystem Processes Division, Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Atlantic Highlands, New Jersey 07732, USA
4Present address: Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada

ABSTRACT: Mycobacteriosis, a chronic bacterial disease of fishes, is prevalent in adult striped bass from Chesapeake Bay (USA). Although environmental factors may play a role in disease expression, the interaction between the disease and environmental stress remains unexplored. We therefore examined the individual and interactive effects of elevated temperature, hypoxia, and mycobacteriosis on the metabolism of wild-caught adult striped bass from Chesapeake Bay using respirometry. Because the spleen is the primary target organ of mycobacteriosis in striped bass, we hypothesized that the disease interferes with the ability of fish to increase their hematocrit in the face of increasing oxygen demands. We determined standard metabolic rate (SMR), maximum metabolic rate under normoxia (MMRN), critical oxygen saturation (Scrit), and MMR under hypoxia (3 mg O₂ l⁻¹: MMR₃) for healthy and visibly diseased fish (i.e. exhibiting skin lesions indicative of mycobacteriosis). Measurements were taken at a temperature within the preferred thermal range (20°C) and at an elevated temperature (28°C) considered stressful to striped bass. In addition, we calculated aerobic scope (ASN = MMRN − SMR, AS₃ = MMR₃ − SMR) and factorial scope (FSN = MMRN SMR⁻¹, FSH = MMR₃ SMR⁻¹). SMR increased with increasing temperature, and hypoxia reduced MMR, AS, and FS. Mycobacteriosis alone did not affect either MMRN or MMR₃. However, elevated temperature affected the ability of diseased striped bass to tolerate hypoxia (Scrit). Overall, our data indicate that striped bass performance under hypoxia is impaired, and that elevated water temperatures, hypoxia, and severe mycobacteriosis together reduce aerobic scope more than any of these stressors acting alone. We conclude that the scope for activity of diseased striped bass in warm hypoxic waters is significantly compromised.

KEY WORDS: Oxygen · Critical · Aerobic scope · Disease · Hematocrit · Spleen

Resale or republication not permitted without written consent of the publisher

INTRODUCTION

The striped bass *Morone saxatilis* is an ecologically and economically important finfish inhabiting much of the US Atlantic coast. In the mid-1980s, extremely low production prompted implementation of coast-wide restrictions on both commercial and recreational fisheries for this species (Richards & Rago 1999), but since the mid-1990s, striped bass abundance along the Atlantic coast has rebounded and fishing restrictions have been eased (Hartman & Margraf 2003). Although the abundance of Chesapeake Bay striped bass has rebounded, disease remains a concern as mycobacteriosis has been identified in this species (Richards & Rago 1999). Mycobacteriosis is an acute bacterial disease and is widespread in striped bass in Chesapeake Bay (Vogelbein et al. 2002). Mycobacteriosis is characterized by skin lesions and reduced hematocrit in adult striped bass (Weinstein et al. 2005). Although environmental factors may play a role in disease expression, the interaction between the disease and environmental stress remains unexplored.
peake Bay striped bass is currently considered high, concerns have developed with respect to the health of the Atlantic coastal migratory stock. Striped bass exhibiting poor body condition and clinical signs of mycobacteriosis (including severe skin ulceration in some fish) were first reported from Virginia waters in 1997 (Vogelbein et al. 1998). Concomitant with the first reports of this disease, significant increases in natural mortality for Chesapeake Bay striped bass were reported (Jiang et al. 2007). The disease is caused by acid-fast bacteria belonging to the genus Mycobacterium. In aquaculture situations, outbreaks of mycobacteriosis are associated with stressful environmental conditions and are invariably lethal (Nigrelli & Vogel 1963, Backman et al. 1990, Bruno et al. 1998, Chinabut 1999). In Chesapeake Bay striped bass, the disease is characterized by granulomatous inflammation with the presence of acid-fast bacteria, predominantly in the spleen and kidney. However, severe skin ulceration is also commonly observed (Vogelbein et al. 1999, Cardinal 2001). The prevalence of mycobacteriosis in Chesapeake Bay striped bass is alarmingly high, exceeding 90% by the time fish are 4 to 5 yr of age (Overton et al. 2003, Gauthier et al. 2008). A recent study provided the first evidence of mortality associated with mycobacteriosis in Chesapeake Bay striped bass (Gauthier et al. 2008). However, the magnitude of this disease-associated mortality, the role of environmental stressors in disease expression, and the specific physiological impacts of the disease remain largely unexplored.

Aside from the etiologic agents, the underlying causes of mycobacteriosis in striped bass are currently not known. Two predominant hypotheses proposing underlying environmental stressors as modulators of disease expression have recently been forwarded. The first hypothesis suggests that disease emergence may be linked to food limitation, as poor nutrition of laboratory-held fish resulted in severe systemic disease, high bacterial loads, and rapid progression to mortality in experimentally infected striped bass (Jacobs et al. 2009). A second hypothesis posits that increasing eutrophication of Chesapeake Bay and the resulting expansion of hypoxic (<4 mg O₂ l⁻¹) bottom waters is forcing striped bass to inhabit waters outside their normal thermal range (Kemp et al. 2003, Martino & Secor 2009). The recent increase in hypoxic events has had significant impacts on the productivity of Chesapeake Bay (Price et al. 1985, Adams et al. 2003, Breitburg et al. 2003, Kemp et al. 2005, Diaz & Breitburg 2009). Adult striped bass prefer temperatures <25°C, and in freshwater reservoirs, they have been demonstrated to use deeper, cooler waters as summer thermal refugia (Coutant 1985). It is possible that striped bass in Chesapeake Bay experience a ‘temperature−oxygen squeeze,’ whereby hypoxic bottom water forces them to inhabit more oxygenated but warmer, more stressful surface waters during the summer, predisposing them to this infectious disease. Nonetheless, this ‘temperature−oxygen squeeze’ hypothesis has yet to be linked to the physiological requirements of wild striped bass.

Physiological responses of finfishes to both elevated temperatures and hypoxia have been well documented (e.g. Pörtner & Lanning 2009). Temperature controls and limits metabolic rates in fishes, and aerobic scope (AS) expressed as a function of temperature typically takes the form of a bell-shaped curve (Fry 1947, Claireaux & Lagardère 1999, Claireaux et al. 2000, Farrell 2009). AS represents the metabolic confines within which all energy-requiring work (e.g. gonadal and somatic growth, activity) must be undertaken, and is typically defined as the difference between maximum metabolic rate (MMR) and standard metabolic rate (SMR) (Fry 1971, Claireaux & Lefrançois 2007). Factorial scope (FS) is defined as the ratio of MMR to SMR (Schurmann & Steffensen 1997). SMR can be estimated from the lowest metabolic rate of a fish in a post-absorptive state, when movements are restricted and the fish is protected from outside stimuli (Fry 1971, Brett 1972). MMR is often reached during recuperation from exhaustive exercise (Bushnell et al. 1994, Reidy et al. 1995, Svendsen et al. 2012) and can be assessed by measuring oxygen consumption after a chase protocol (Black 1958). Moreover, oxygen consumption during activity or following exhaustive exercise decreases with reductions in ambient oxygen (Fry 1947, Basu 1959, Claireaux & Lagardère 1999, Claireaux et al. 2000, Dutil et al. 2007). The relationship between dissolved oxygen and AS in European sea bass showed that at a fixed temperature, AS decreases with decreasing ambient water oxygen content (Claireaux & Lagardère 1999). Critical oxygen saturation (S₉₅) is commonly used as a measure of hypoxia tolerance in fishes (Chapman et al. 2002, Mandic et al. 2009, 2013). S₉₅ is defined as the ambient oxygen level at which the SMR can no longer be sustained. Thus S₉₅ is thought to reflect the ability of a fish to extract oxygen from the environment (Fry 1947, Schurmann & Steffensen 1997, Speers-Roesch et al. 2012).

The interactive effects of hypoxia, temperature, and infectious disease remain largely unexplored in finfishes. Our objective, therefore, was to quantify the individual and combined influences of temperature and hypoxia on the metabolic performance of
Lapointe et al.: Metabolism of healthy and diseased striped bass from Chesapeake Bay. In teleosts, the spleen functions as a reservoir for red blood cells which can be ejected into the circulation to increase blood oxygen carrying capacity during periods of hypoxia and elevated metabolic oxygen demands (Yamamoto et al. 1980, 1983, Yamamoto 1987, Yamamoto & Itazawa 1989, Gallaugher & Farrell 1998). Because the spleen is the primary target organ of mycobacteriosis in striped bass, we suggest that the disease compromises splenic function by interfering with the ability of fish to increase their hematocrit in the face of increasing oxygen demands. We thus hypothesized that mycobacteriosis exacerbates the negative consequences of hypoxia and elevated temperatures on metabolic performance, and that the deleterious effects of temperature, hypoxia, and mycobacteriosis are additive. We further contend that skin ulceration interferes with hydromineral balance, thereby increasing the osmoregulatory burden (Kieser et al. 1991, Briand et al. 2012). Hence, we hypothesized that severe dermal mycobacteriosis results in an increase in SMR as well as an increase in the activity of sodium–potassium adenosine triphosphatase (Na⁺-K⁺-ATPase). In order to test these hypotheses, we determined SMR, MMR under normoxia (MMRN), $S_{crit}$, and MMR under a fixed level of hypoxia (MMRH) at normal (20°C) and elevated (28°C) temperatures, in both healthy and diseased fish. We also calculated AS (ASN, ASH) and FS (FSN, FSH). To assess the ability of the spleen to serve as an erythrocyte reservoir, we determined hematocrit and hemoglobin concentration. Finally, we measured gill and intestinal Na⁺-K⁺-ATPase activity.

MATERIALS AND METHODS

Animal care and experimental protocols were approved by the College of William & Mary Institutional Animal Care and Use Committee (protocol no. IACUC-2010-11-02-6990-rwbril), and complied with all applicable laws of the USA.

Fish collection and maintenance

Adult striped bass were captured by commercial pound net at the mouth of the Rappahannock River (December 2010 sample) and the Great Wicomico River (Spring 2011 and Fall 2011 samples); both rivers are tributaries to Chesapeake Bay. Fish of varying dermal disease severity (see below) were collected and transported live in a 1000 l aerated tank to the Virginia Institute of Marine Science (Gloucester Point, VA) where they were tagged with individually numbered T-bar anchor tags. Fish were maintained in a filtered recirculating system of 3 circular 2500 l fiberglass tanks (mean ± SD; 21.4 ± 2.3°C, 18.1 ± 2.3 psu) supplied with a constant input of filtered and UV-sterilized York River water (dissolved oxygen, DO > 80%). An artificial lighting regime matched the natural photoperiod cycle (revised monthly). Once acclimated to laboratory conditions, striped bass were fed ad libitum 3 times wk⁻¹ with commercially prepared food (Zeigler Brothers), blue crabs Callinectes sapidus, or goldfish Carassius auratus. Fish were acclimated for a minimum of 3 wk prior to the beginning of the experiments.

Experimental design

We determined MMR$_N$, SMR, $S_{crit}$, and MMR$_H$ using an intermittent-flow respirometry system (Schurmann & Steffensen 1997, Horodysky et al. 2011, Roche et al. 2013) at 20 and 28°C. Two independent single respirometry chambers were run simultaneously. Each cylindrical respirometry chamber (24 cm diameter and 75 cm long, 34 l volume, Loligo Systems) was constructed of plexiglass. Oxygen levels in the respirometer were measured with a galvanic oxygen sensor (Cellox 325) and accompanying meter (Oxi 1970i, both from WTW) in one chamber, and with a fluorescence oxygen sensor (Fibox 3 mini sensor, PreSens) in the other. Both oxygen sensors were mounted in a flow-through cell inserted in the water recirculation tubing. The digital outputs from the oxygen meters were recorded with computers running custom-designed software developed in Dasylab 9.02 (National Instruments, www.ni.com). Oxygen saturation (%) values were converted to oxygen content (mg O₂ l⁻¹) using standard equations (Richards 1965) within the Dasylab software routines. The respirometers were submerged in separate temperature-controlled water basins bubbled with air (for normoxic conditions) or nitrogen (for hypoxic conditions). The flow of nitrogen was controlled by oxygen meters with galvanic oxygen sensors (Cellox 325) and accompanying meter (Oxi 1970i, both from WTW) in one chamber, and with a fluorescence oxygen sensor (Fibox 3 mini sensor, PreSens) in the other. Both oxygen sensors were mounted in a flow-through cell inserted in the water recirculation tubing. The digital outputs from the oxygen meters were recorded with computers running custom-designed software developed in Dasylab 9.02 (National Instruments, www.ni.com). Oxygen saturation (%) values were converted to oxygen content (mg O₂ l⁻¹) using standard equations (Richards 1965) within the Dasylab software routines. The respirometers were submerged in separate temperature-controlled water basins bubbled with air (for normoxic conditions) or nitrogen (for hypoxic conditions). The flow of nitrogen was controlled by oxygen meters with galvanic oxygen sensors (OX10000, Loligo Systems) and solenoid valves to maintain fixed levels of oxygen saturation. The water surface of each basin was covered with a plastic sheet to minimize air–water exchange of gases, and an insulated cover was placed on top of the plastic sheet to minimize external stimuli.
The oxygen levels in the respirometers were recorded at either 1 or 5 s intervals (from the fluorescence or galvanic oxygen sensors systems, respectively). The 10 min cycle required for a metabolic rate measurement consisted of a 5 min flush, followed by a 2 min equilibration interval, then 5 min of data recording for calculation of metabolic rate ($MO_2$). At the conclusion of the data recording interval, the Dasylab software executed a call to an Excel macro routine which calculated the rate of change of O$_2$ content with time ($\Delta$[O$_2$] $t^{-1}$) based on a linear regression of the recorded oxygen levels against elapsed time ($t$). The Excel macro routine then calculated $MO_2$ as:

$$MO_2 = (\Delta[O_2] t^{-1}) \times V \times W^{-1} \quad (1)$$

where $V = \text{respirometer volume (l)}$ corrected for fish volume and $W = \text{weight of the fish (kg)}$. To account for variations in $MO_2$ due to size differences among the fish, $MO_2$ estimates were adjusted to a standard body weight of 1 kg using a weight exponent of 0.82 (Edwards et al. 1972):

$$X_s = \left( \frac{1}{W} \right)^{0.82} \times X_m \quad (2)$$

where $X_s$ is the standardized $MO_2$ value, $W$ is the weight of the fish (kg), and $X_m$ is the measured $MO_2$ value. Background oxygen consumption ($\Delta$[O$_2$] $t^{-1}$) was measured and subtracted from $\Delta$[O$_2$] $t^{-1}$ measured when fish were in the respirometer. Fish were fasted for 48 h prior to their introduction into the respirometer. Fasting period and time intervals between sequential determination of MMRN, SMR, Scrit, and MMRH were established based on preliminary experiments and ensured minimal impact of a given measurement on the others.

### Maximum metabolic rate under normoxia

To measure MMRN, individuals were transferred into a 900 l circular tank (chase tank) and then gently prodded to produce short periods of burst swimming until exhaustion (i.e. until fish showed no response to being handled and removed from the water; Black 1958, Lapointe et al. 2006). Fish were then immediately transferred to the respirometer where $MO_2$ was measured for a minimum of 48 h, or until the $MO_2$ displayed minimal to no variation. We defined MMRN as the highest $MO_2$ measured during the first 12 h based on results from preliminary experiments.

### Standard metabolic rate

SMR was estimated using the average of the 10 lowest routine $MO_2$ values observed during the last 24 h of the 48 h period during which the fish were in the respirometer (Schurmann & Steffensen 1997, Claireaux et al. 2000, Lapointe et al. 2006). Under these conditions, the rate of oxygen consumption is influenced only by spontaneous activity because fish movements are restricted and external stimuli are minimal (Fry 1971).

### Critical oxygen saturation

Following the estimation of SMR, $S_{crit}$ was determined by decreasing the oxygen content in the water basin and hence, respirometer, in a stepwise fashion (Schurmann & Steffensen 1997). $MO_2$ was monitored at 9 levels of oxygen saturation (90, 80, 70, 60, 50, 40, 30, 20, and 10%), or until the fish was not able to maintain SMR as evidenced by a drastic decrease in $MO_2$. At each O$_2$ level, 2 to 4 $MO_2$ measurements were performed, each of which lasted approximately 10 min. On average, $S_{crit}$ trials were completed within 4 h. $S_{crit}$ was determined using a 2-segment piece-wise linear regression of $MO_2$ on the DO content of the water, with the first segment forced through the origin (Schurmann & Steffensen 1997, Capossela et al. 2012), using Sigmaplot 11 (Systat Software). After reaching $S_{crit}$, the oxygen content of the water basin and respirometer was restored to full saturation and the fish were left undisturbed until the next day, when they were transferred into the chase tank and allowed to recover for 24 h.

### Maximum metabolic rate under hypoxic conditions

Following the 24 h recovery period, striped bass were subjected to a second chase protocol. Once exhausted, fish were transferred into the respirometer, and the oxygen content was decreased to 3 mg O$_2$ l$^{-1}$. The targeted O$_2$ level was reached in 36 ± 9 and 18 ± 5 min (mean ± 1 SD) at 20°C and 28°C, respectively. The $MO_2$ was recorded from the time of transfer into the respirometer until $MO_2$ stabilized or for a maximum of 3 h. The highest $MO_2$ recorded during that 3 h period corresponded to MMRH. The oxygen content of the water was restored to full saturation and the fish were left undisturbed for at least 1 h before transfer to the chase tank. On the following day, they were fed, and the day after feeding, the
temperature in the chase tank was increased to 28°C (over a 15 to 18 h period). Fish were then subjected to the protocols described above, at the increased temperature.

Fish were euthanized after completion of the experimental protocol via immersion in a tricaine methanesulfonate (MS-222) solution (400 mg l⁻¹), measured (fork length, cm), weighed (kg), and aseptically necropsied. Spleen, skin (if pigmented foci or ulcers were present), gill, gonad, and liver tissue samples were taken and placed in Z-fix fixative (Anatech) for histological processing. The spleen was divided into 6 pieces of equal size prior to fixation. Gill and intestinal tissue samples were collected for measurement of Na⁺-K⁺-ATPase activity and immediately placed in a −80°C freezer.

**Determination of disease status and severity**

Fixed tissues were processed by routine methods for paraffin histology (Prophet et al. 1992). Briefly, some tissues (e.g. gill) were decalcified, washed for 3 h in running tap water, dehydrated in ethanol, cleared in xylene, and infiltrated and embedded in paraffin wax. The 6 pieces of spleen were embedded in 2 paraffin blocks to facilitate simultaneous sectioning at 6 levels within the spleen. Tissues were sectioned at 5 µm on a rotary microtome and stained with hematoxylin and eosin (HE). All sections were examined on an Olympus AX-70 light microscope for the presence of granulomas. Quantification of mycobacterial disease severity was based on counting granulomas in the 6 sections of spleen obtained from each of the fish. Splenic lesions comprised mainly of epithelioid cells with or without a necrotic core were considered to be mycobacterial granulomas (Cotran et al. 1999) and were counted in all 6 splenic sections to obtain a total granuloma count. Granulomas containing helminth parasites were excluded from the counts. Digital image files of spleen sections examined for granulomas were then acquired using a scanner. Total area (mm²) of all 6 splenic sections was measured using MetaMorph software (Universal Imaging). A disease severity index (SI) was then calculated as log₁₀([total count of granulomas in 6 splenic sections × total splenic sectional area⁻¹] + 1) (Latour et al. 2012). Based on the number of granulomas mm⁻² of spleen, fish were then assigned to 1 of 3 mycobacterial visceral disease severity categories: (1) ‘Healthy’ if SI ≤ 0.1 (n = 16 individuals); (2) ‘Moderate’ if 0.1 < SI ≤ 0.5 (n = 6); and (3) ‘Heavy’ if SI > 0.5 (n = 10).

Dermal disease status was determined by visual examination of both sides of the fish. Lesions were classified as either ‘ulcer,’ for areas in which scales and epidermis were completely eroded, or ‘pigmented focus,’ a small (<2 mm) pigmented (pale tan to brown) focal lesion. We have examined both of these types of lesions extensively using histological methods and have found that they are consistently associated with granulomatous inflammation and acid-fast bacteria (W. K. Vogelbein et al. unpubl.). Fish with no skin lesions were classified as ‘Healthy.’ Fish with <50 pigmented foci and no ulcer >2 cm² were considered ‘Moderate,’ and fish with >50 pigmented foci and/or ulcers >2 cm² were classified as ‘Heavy.’ We have used this classification system extensively for tag-recapture studies of striped bass in the Rappahannock River, VA (Sadler et al. 2012). Dermal disease status was used to establish the groups for Na⁺-K⁺-ATPase analyses.

**Na⁺-K⁺-ATPase activity**

Na⁺-K⁺-ATPase activity in gill and intestinal tissue was used to estimate osmoregulatory costs across the 3 dermal disease groups (Gibbs & Somero 1990, Kirschner 1995), as this enzyme plays an important role in active ion transport in fishes (Jampol & Epstein 1970). Frozen gill and intestinal tissue samples were thawed on ice and individually homogenized (using a Tissuemizer Model DT-1810, Tekmar) in 30 volumes of ice-cold buffer (pH 7.3; 0.05 M imidazole, 0.02 M sodium EDTA; 0.3 M sucrose, 0.1% sodium deoxycholate). The homogenate was centrifuged at 16 000 × g (30 s), and the supernatant was removed and stored on ice.

The assay procedure used to determine Na⁺-K⁺-ATPase activity was modified from that described by Kültz & Somero (1995). The assay is based on the coupling of ATPase activity to the conversion of NADH to NAD measured spectrophotometrically at 340 nm. The assay buffer contained 30 mM imidazole, 45 mM NaCl, 15 mM KCl, 3 mM MgCl₂·6H₂O, and 0.4 mM KCN, with pH adjusted to 7.4. The reaction mixture was prepared fresh daily using the assay buffer and contained 1 mM Na₂ATP, 0.2 mM Na₂NADH, 2 mM PEP, 3 IU ml⁻¹ pyruvate kinase, and 2 IU ml⁻¹ lactate dehydrogenase. The assay volume included 1 ml of reaction mixture, 100 µl of distilled water (replaced with 100 µl of 11.25 mM ouabain for controls), and 20 µl of supernatant combined in a spectrophotometer cuvette. All assays were run in duplicate and performed at 24°C using a
temperature-controlled spectrophotometer (Shimadzu Bio-Spec 1601, Shimadzu Scientific Instruments). Na⁺-K⁺-ATPase activity was determined as the difference between total ATPase activity and that measured in controls. Total protein content was measured using a bicinchoninic acid protein assay kit (Sigma-Aldrich). Activities were expressed in IU (mmol of substrate converted to product min⁻¹) mg⁻¹ of protein and IU g⁻¹ of wet tissue weight.

Hematocrit and blood hemoglobin concentration

Following the first bout of exhaustive exercise at 20°C, blood samples were taken via direct puncture of the caudal vein to determine hematocrit and hemoglobin concentration. Microhematocrit tubes were filled with whole blood and centrifuged at 10 000 × g (10 min). Whole blood hemoglobin concentration (mg ml⁻¹) was measured using Drabkin’s reagent (Product code D5941; Sigma-Aldrich).

Calculated parameters and statistical analysis

Fulton’s condition factor was calculated as $K = \frac{mass (g) \times 100}{length^{-3} (cm)}$. $ASN$ was calculated as the difference between $MMRN$ and $SMR$ (Fry 1971), whereas $FSN$ was calculated by dividing $MMRN$ by $SMR$ (Schurmann & Steffensen 1997). To determine $AS$ and $FS$ under a fixed level of hypoxia ($ASN_{II}$ and $FSN_{II}$), $MMRN_{II}$ was replaced by $MMRH$.

Mean morphological parameters, hematocrit, blood hemoglobin levels, and Na⁺-K⁺-ATPase activities among groups were compared using ANOVAs with a posteriori Tukey-Kramer tests in SigmaPlot 11.0 (Systat Software). All tests used the 5% significance level, and the normality and homogeneity of variance criteria were verified using the Shapiro-Wilk and Levene Median tests, respectively.

To evaluate the effect of temperature and disease status on $SMR$ and $S_{\text{crit}}$, and the effect of temperature, disease status, and oxygen level on $MMR$, $AS$, and $FS$, we used a multivariate repeated-measures model implemented with the MIXED procedure in SAS 9.3 (SAS Institute) (Seco et al. 2007, Withers & Cooper 2011). Responses (i.e. $SMR$, $S_{\text{crit}}$, $MMR$, $AS$, or $FS$) were not independent and were thus modeled using a repeated measures approach (Seco et al. 2007). $SMR$ and $S_{\text{crit}}$ were modeled as a function of the disease status (Healthy, Moderate, or Heavy), temperature (20 or 28°C), and the interaction of status and temperature; $MMR$, $AS$, and $FS$ were similarly modeled, but this model included the effect of oxygen condition (normoxia or hypoxia), and all 2- and 3-way interactions between the main effects.

We modeled the heterogeneity in responses among fish assigned to the 3 disease states using the group option in the MIXED procedure in SAS and specified the Kenward-Roger method for calculating the degrees of freedom (Kenward & Roger 1997). Several covariance structures were fit to the data using restricted maximum likelihood estimation, and Akaike’s Information Criterion adjusted for small sample sizes (AICc) was used to identify the model with the appropriate random structure (Littell et al. 2006). The model for $SMR$ and $S_{\text{crit}}$ was best fit using a double-banded unstructured covariance structure, whereas the model for $MMR$, $AS$, and $FS$ was best fit using a banded main diagonal unstructured covariance structure; these are highly flexible but complex structures that account for the unequal correlations and variances among observed measures, in contrast to the simple (but unrealistic) compound symmetric structure typically assumed by repeated measures models (Littell et al. 2006). Finally, a priori contrasts of least-squares means were obtained using the LSM estimate statement in the MIXED procedure and used to make inferences about the effects of temperature, hypoxia, and disease state on the 5 measured responses.

RESULTS

Mean fish weight did not differ among groups, whereas mean length and condition factor did (Table 1). Striped bass in the Moderate and Heavy groups had a lower condition factor compared to Healthy fish (Table 1). Mean values of post-exercise hematocrit and blood hemoglobin levels did not significantly differ among groups, and gill and intestinal Na⁺-K⁺-ATPase activities were not significantly higher in diseased fish (Table 1).

The mean $S_{\text{crit}}$ for the Healthy, Moderate, and Heavy groups at 20°C was 25 ± 2, 24 ± 6, and 30 ± 6%, respectively, and at 28°C, it was 35 ± 2, 34 ± 5, and 43 ± 5%, respectively (Fig. 1a). $S_{\text{crit}}$ was higher under elevated water temperature compared to values observed at 20°C, across all groups (Fig. 1a).
However, $S_{crit}$ at either temperature was 1.2-fold higher in Heavy animals compared to fish in the Healthy and Moderate groups, although this difference was significant only at 28°C (Fig. 1a).

The mean SMR for the Healthy, Moderate, and Heavy groups at 20°C was 75 ± 11, 80 ± 37, and 86 ± 18 mg O$_2$ kg$^{-1}$ h$^{-1}$, respectively, and at 28°C, it was 138 ± 20, 156 ± 71, and 170 ± 35 mg O$_2$ kg$^{-1}$ h$^{-1}$, respectively (Fig. 1b). As expected, SMR significantly increased with increasing temperature (Fig. 1b), but we measured no significant effect of mycobacteriosis on SMR at either 20 or 28°C (Fig. 1b).

The mean MMR$_N$ for the Healthy, Moderate, and Heavy disease groups at 20°C was 284 ± 40, 336 ± 89, and 283 ± 66 mg O$_2$ kg$^{-1}$ h$^{-1}$, respectively, and at 28°C, it was 384 ± 69, 413 ± 153, and 362 ± 105 mg O$_2$ kg$^{-1}$ h$^{-1}$, respectively (Fig. 2a). The mean MMR$_H$ for the Healthy, Moderate, and Heavy groups at 20°C was 198 ± 42, 198 ± 67, and 225 ± 101 mg O$_2$ kg$^{-1}$ h$^{-1}$, respectively, and at 28°C, it was 278 ± 55, 265 ± 82, and 228 ± 64 mg O$_2$ kg$^{-1}$ h$^{-1}$, respectively (Fig. 2a). Time to reach MMR$_N$ was 3.2 ± 3.2 h, whereas MMR$_H$ was reached in 1.6 ± 1.0 h. Except for the Heavy group at 20°C and the Moderate group at 28°C, MMR$_H$ was significantly lower than MMR$_N$, regardless of temperature (Fig. 2a). However, MMR$_N$ and MMR$_H$ did not differ between disease groups, under any set of conditions.

ASH was significantly lower than AS$_N$ at both temperatures, except for the Healthy group at 20°C (Fig. 2b). The mean AS$_N$ for the Healthy, Moderate, and Heavy disease groups at 20°C was 284 ± 40, 336 ± 89, and 283 ± 66 mg O$_2$ kg$^{-1}$ h$^{-1}$, respectively, and at 28°C, it was 384 ± 69, 413 ± 153, and 362 ± 105 mg O$_2$ kg$^{-1}$ h$^{-1}$, respectively (Fig. 2a). The mean MMR$_H$ for the Healthy, Moderate, and Heavy disease groups at 20°C was 198 ± 42, 198 ± 67, and 225 ± 101 mg O$_2$ kg$^{-1}$ h$^{-1}$, respectively, and at 28°C, it was 278 ± 55, 265 ± 82, and 228 ± 64 mg O$_2$ kg$^{-1}$ h$^{-1}$, respectively (Fig. 2a). Time to reach MMR$_N$ was 3.2 ± 3.2 h, whereas MMR$_H$ was reached in 1.6 ± 1.0 h. Except for the Healthy group at 20°C and the Moderate group at 28°C, MMR$_H$ was significantly lower than MMR$_N$, regardless of temperature (Fig. 2a). Mean MMR$_N$ and MMR$_H$ were higher after transfer to 28°C, but this increase was significant only for the Healthy group (Fig. 2a). Surprisingly, MMR$_N$ and MMR$_H$ did not differ between disease groups, under any set of conditions.

$AS_{H}$ was significantly lower than $AS_{N}$ at both temperatures, except for the Healthy group at 20°C (Fig. 2b). The mean $AS_{N}$ for the Healthy, Moderate, and Heavy disease groups at 20°C was 210 ± 34, 255 ± 69, and 197 ± 50 mg O$_2$ kg$^{-1}$ h$^{-1}$, respectively, and at 28°C, it was 246 ± 55, 257 ± 115, and 198 ± 75 mg O$_2$ kg$^{-1}$ h$^{-1}$, respectively (Fig. 2b). The mean $AS_{H}$ for the Healthy, Moderate, and Heavy groups at 20°C was 123 ± 33, 118 ± 31, and 140 ± 87 mg O$_2$ kg$^{-1}$ h$^{-1}$, respectively, and at 28°C, it was 140 ± 43, 109 ± 44,
and $64 \pm 30$ mg O$_2$ kg$^{-1}$ h$^{-1}$, respectively (Fig. 2b). We measured no significant influence of temperature on either AS$_N$ or AS$_H$. Interestingly, AS$_H$ of Heavy fish under elevated temperature was significantly lower than AS$_H$ of the Healthy group under the same conditions (Fig. 2b).

FS$_H$ was significantly lower than FS$_N$ at both temperatures (Fig. 2c). In addition, both FS$_N$ and FS$_H$
were reduced at elevated temperature (Fig. 2c). The mean FSN for Healthy, Moderate, and Heavy groups at 20°C was 3.9 ± 0.4, 4.8 ± 1.3, and 3.3 ± 0.3 mg O_2 kg\(^{-1}\) h\(^{-1}\), respectively, and at 28°C, it was 2.8 ± 0.3, 2.7 ± 0.5, and 2.2 ± 0.3 mg O_2 kg\(^{-1}\) h\(^{-1}\), respectively (Fig. 2c). The mean FSH for the Healthy, Moderate, and Heavy groups at 20°C was 2.6 ± 0.3, 2.6 ± 0.4, and 2.5 ± 0.6 mg O_2 kg\(^{-1}\) h\(^{-1}\), respectively, and at 28°C, it was 2.0 ± 0.3, 1.7 ± 0.2, and 1.4 ± 0.2 mg O_2 kg\(^{-1}\) h\(^{-1}\), respectively (Fig. 2c). Striped bass in the Heavy group had a significantly lower FSN than fish in the Healthy group, regardless of temperature. Finally, FSH of Heavy animals was significantly lower than that of Healthy striped bass at elevated temperature. Assuming that the value obtained for FSN within the Healthy group in normoxia at 20°C represents the value for healthy adult striped bass under preferred temperature and oxygen conditions, hypoxia, temperature, and severe mycobacteriosis occurring alone reduced the FS by 1.5-, 1.4-, and 1.2-fold, respectively. When the stressors of hypoxia and elevated temperature were combined, however, FS was reduced by 2.8-fold (Fig. 2c).

**DISCUSSION**

To the best of our knowledge, this is the first study to report the interactive effects of temperature, oxygen levels, and infectious disease in finfishes. Our results indicate that when 3 stressors are present together (elevated water temperature, hypoxia, and mycobacteriosis), they act synergistically to reduce AS more than any single stressor acting alone (Fig. 2b). The AS was not influenced by temperature alone but was affected by hypoxia (ASN > ASh), except for the Heavy group at 20°C. SMR in striped bass did, however, increase with increasing water temperature. This has been shown to be true for other species, as demonstrated in numerous studies (e.g. Fry 1947, Beamish 1964, Kruger & Brocksen 1978, Schurmann & Steffensen 1997, Claireaux & Lagardère 1999, Claireaux et al. 2000, Sylvestre et al. 2007). Disease alone did not influence ASN. However, ASh at 28°C was significantly lower in Heavy fish compared to the Healthy group. Under the influence of all 3 stressors (28°C, hypoxia, severe disease), the AS was reduced to approximately one-third of that of healthy fish held at 20°C under normoxia.

AS in fishes has long been hypothesized to increase with temperature until an optimal temperature is reached, and then decline with further increases in temperature, taking the form of a bell-shaped curve (Claireaux & Lagardère 1999, Claireaux et al. 2000, Pörtner & Farrell 2008, Farrell 2009, Pörtner 2010). Alternatively, Clark et al. (2013) hypothesized that AS continues to increase beyond the optimal temperature, until close to the upper critical temperature. In both instances, the temperature dependence of AS is driven by the failure of maximum metabolic rate to continue increasing with temperature, while SMR exponentially increases until temperature approaches a lethal level (Fry 1947, Fry & Hart 1948, Farrell 2009). Thus, following the first hypothesis, the absence of a significant difference between AS measured at 20 and 28°C in adult striped bass may indicate that these 2 temperatures are respectively below and above the preferred or optimal temperature for adult striped bass. However, following the second hypothesis, our results for AS may suggest that 28°C is close to their upper critical temperature, and that mycobacteriosis narrows their thermal window. Alternatively, the absence of a significant influence of temperature on AS might be caused by the high inter-individual variability observed in this study. In contrast to temperature, hypoxia significantly reduced AS. For striped bass in the Healthy group, ASH was 1.70- and 1.75-fold lower than ASN measured at 20 and 28°C, respectively. This reduction in AS under hypoxia was similar to that reported for European sea bass (Claireaux & Lagardère 1999), common sole (Lefrançois & Claireaux 2003), and Atlantic cod (Claireaux et al. 2000, Dutil et al. 2007).

Temperature, hypoxia, and mycobacteriosis had a synergistic effect on FS, similar to the observed effects of these factors on AS of striped bass (Fig. 2c). FS appeared to be a more sensitive indicator of physiological impairment because temperature alone elicited a significant effect. Both FSN and FSH were significantly lower at 28°C than at 20°C, regardless of disease severity. Additionally, FSH was significantly lower than FSN, regardless of water temperature and/or disease severity. Disease state also significantly influenced FS. FSN was significantly lower in fish from the Heavy group than Healthy and Moderate animals, except for Moderate at 28°C. Likewise, FSH was significantly lower in fish from the Heavy group compared to the Healthy and Moderate groups, but in this case only at 28°C. Under the influence of all 3 stressors (28°C, hypoxia, severe disease), like AS, FS was reduced to approximately one-third of that of Healthy fish held at 20°C under normoxia.

Because of the large differences in SMR and MMR among fish species (e.g. Brill & Bushnell 2001, Korsmeyer & Dewar 2001), we argue that FS is a more informative measure for inter-species comparisons, especially when considering the effects of tem-
perature. In line with our results, a reduction in FS with increasing water temperature was previously reported for Atlantic cod measured at an acclimation temperature of 7°C and following an acute transfer to 11°C (Sylvestre et al. 2007). However, in Atlantic cod acclimated to different water temperatures (acclimation period ranged from 3 wk to several months), FS did not vary with temperature (Schurmann & Stef fensen 1997, Claireaux et al. 2000). In contrast, in European sea bass acclimated for 10 to 15 d to different temperatures, FS increased with increasing acclimation temperature (Claireaux & Lagardère 1999).

Similar to our findings, a reduction in FS under hypoxia has been reported for European sea bass (Claireaux & Lagardère 1999) and Atlantic cod (Claireaux et al. 2000). To our knowledge, this is the first report of a significant reduction in FS associated with an infectious disease.


Mycobacteriosis damages and in some instances completely destroys significant portions of the splenic parenchyma, which is largely replaced by granulomatous inflammatory tissues (Fig. 3), likely compromising splenic function of striped bass. This may effectively reduce or completely eliminate the spleen’s ability to serve as an erythrocyte reservoir. We therefore expected hematocrit and blood hemoglobin concentration in diseased animals to be significantly below that of non-diseased fish during periods of high oxygen demand (i.e. after exercise). Although post-exercise hematocrit and blood hemoglobin concentration tended to be lower in Heavy animals compared to the Healthy group (Table 1), we found no significant differences in these parameters among disease states. This may explain why we likewise observed no effect of disease state alone on either MMRN or MMRH. Thus, in adult striped bass, compromised splenic function associated with mycobacteriosis may not translate into a significantly reduced blood oxygen carrying capacity, although this was not directly tested in the present study. Our results suggest the presence of compensatory mechanisms that enable diseased fish to maintain near optimal circulating erythrocyte concentrations (hematocrit) and hemoglobin values, thereby maintain-
Hypoxia tolerance in fishes, as indicated by $S_{\text{crit}}$, varies considerably. Adult striped bass from Chesapeake Bay have a relatively high $S_{\text{crit}}$ value in comparison with other species held at their preferred temperature (Table 2), suggesting that striped bass are more vulnerable to hypoxia. Furthermore, elevated water temperature in this study increased the $S_{\text{crit}}$ of striped bass, impacting their ability to cope...
with oxygen deprivation. Critical oxygen saturation was 1.4-fold higher at 28°C compared to 20°C, indicating that a fish’s capacity to sustain its oxygen consumption rate under hypoxic conditions is significantly reduced at elevated water temperatures. This was expected, as similar results have been observed in other fishes (e.g. Fry & Hart 1948, Fernandes & Rantin 1989, Schurmann & Steffensen 1997).

The absence of a significant increase in MMRN and MMRH with increasing temperature in Moderate and Heavy striped bass suggests that mycobacteriosis shifted the relationship between maximum metabolic rate and temperature compared to Healthy fish. This was particularly evident for MMRH measured in the Heavy group. Therefore, mycobacteriosis appears to reduce maximum rates of oxygen delivery by the cardio-respiratory system at elevated water temperatures under hypoxic conditions. In exercising goldfish *Carassius auratus*, maximum metabolic rate ceased to increase with temperature above an optimal temperature (Fry 1947, Fry & Hart 1948). Moreover, modeling the relationship between active metabolic rate (AMR), temperature, and oxygen content in European sea bass showed that AMR increases with temperature to a maximum and then decreases as temperature further increases, whereas at a given temperature, AMR decreases with decreasing ambient water oxygen content (Claireaux & Lagardère 1999). As for the effect of hypoxia, MMRH was generally significantly lower than MMRN regardless of disease state. This is consistent with other studies where oxygen consumption during activity, or following exhaustive exercise, was found to decrease in concert with reductions in ambient oxygen (Fry 1947, Basu 1959, Claireaux & Lagardère 1999, Claireaux et al. 2000, Dutil et al. 2007).

In conclusion, given that the scope for activity (both AS and FS) of diseased striped bass in warm hypoxic waters is greatly compromised, diseased fish under similar conditions are likely to fatigue more rapidly, be restricted in their ability to elude predators or secure prey, have lower growth rates, and exhibit reduced reproductive performance and immune function. Because of the high prevalence and severity of mycobacteriosis in adult striped bass from Chesapeake Bay, and our demonstration of the disease’s impact on their physiological capacities (especially scope for activity under elevated temperature

### Table 2. Critical oxygen saturation (S_{crit}) and critical oxygen content (C_{crit}) of striped bass *Morone saxatilis* acclimated to 20°C and following an acute increase to 28°C, in comparison with values previously measured for other fish species. Data are shown as means ± 95% CI. n: number of individuals. Species are ranked based on their vulnerability to hypoxia at a normal temperature, from the less tolerant to the most tolerant (descending S_{crit})

<table>
<thead>
<tr>
<th>Species</th>
<th>Temperature (°C)</th>
<th>n</th>
<th>S_{crit} (%)</th>
<th>C_{crit} (mg l⁻¹)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Pangasianodon hypophthalmus</em></td>
<td>27</td>
<td>13</td>
<td>37 ± 6</td>
<td>3.0</td>
<td>Lefevre et al. (2011)</td>
</tr>
<tr>
<td><em>Cyprinodon variegatus</em></td>
<td>20</td>
<td>8−18</td>
<td>36.5−39.6</td>
<td>3.3−2.8</td>
<td>Haney &amp; Nordlie (1997)</td>
</tr>
<tr>
<td><em>Astronotus ocellatus</em></td>
<td>28</td>
<td>10</td>
<td>30 ± 4</td>
<td>2.3</td>
<td>Scott et al. (2008)</td>
</tr>
<tr>
<td><em>Paralichthys dentatus</em></td>
<td>22</td>
<td>10</td>
<td>27.2 ± 1.7</td>
<td>2.0 ± 0.1</td>
<td>Capossela et al. (2012)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>39.0 ± 1.9</td>
<td>2.4 ± 0.1</td>
<td>Capossela et al. (2012)</td>
<td></td>
</tr>
<tr>
<td><em>Morone saxatilis</em></td>
<td>20</td>
<td>16</td>
<td>25.0 ± 2.0</td>
<td>2.0 ± 0.1</td>
<td>This study</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>16</td>
<td>35.4 ± 2.4</td>
<td>2.5 ± 0.2</td>
<td>This study</td>
</tr>
<tr>
<td><em>Etheostoma spp.</em></td>
<td>10</td>
<td>47</td>
<td>34.5</td>
<td>3.9</td>
<td>Ullsch et al. (1978)</td>
</tr>
<tr>
<td>(6 species)</td>
<td>20</td>
<td>61</td>
<td>23.1</td>
<td>2.1</td>
<td>Ullsch et al. (1978)</td>
</tr>
<tr>
<td><em>Dicentrarchus labrax</em></td>
<td>10−25</td>
<td>64−80</td>
<td>18−29</td>
<td>~2</td>
<td>Claireaux &amp; Lagardère (1999)</td>
</tr>
<tr>
<td><em>Scophthalmus maximus</em></td>
<td>17</td>
<td>7</td>
<td>19</td>
<td>1.5</td>
<td>Maxime et al. (2000)</td>
</tr>
<tr>
<td><em>Oreochromis niloticus</em></td>
<td>22</td>
<td>7</td>
<td>18.0 ± 1.5</td>
<td>1.6</td>
<td>Speers-Roesch et al. (2010)</td>
</tr>
<tr>
<td><em>Gadus morhua</em></td>
<td>2−10</td>
<td>27</td>
<td>15−20</td>
<td>1.4−2.2</td>
<td>Claireaux et al. (2000)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>16.5 ± 2.4</td>
<td>1.7</td>
<td>Schurmann &amp; Steffensen (1997)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>23.2 ± 5.3</td>
<td>2.1</td>
<td>Schurmann &amp; Steffensen (1997)</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>11</td>
<td>30.3 ± 5.9</td>
<td>2.5</td>
<td>Schurmann &amp; Steffensen (1997)</td>
</tr>
<tr>
<td><em>Silurus meridionalis</em> Chen</td>
<td>25</td>
<td>10</td>
<td>16.4</td>
<td>1.31</td>
<td>Zhang et al. (2010)</td>
</tr>
<tr>
<td><em>Oncorhynchus mykiss</em></td>
<td>10</td>
<td>–</td>
<td>13.5</td>
<td>1.2</td>
<td>Svendsen et al. (2012)</td>
</tr>
<tr>
<td><em>Oreochromis niloticus</em></td>
<td>20</td>
<td>5</td>
<td>12 ± 2</td>
<td>1.1</td>
<td>Fernandes &amp; Rantin (1989)</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>6</td>
<td>12 ± 3</td>
<td>1.0</td>
<td>Fernandes &amp; Rantin (1989)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>5</td>
<td>19 ± 3</td>
<td>1.4</td>
<td>Fernandes &amp; Rantin (1989)</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>5</td>
<td>19.4 ± 0.4</td>
<td>1.4</td>
<td>Fernandes &amp; Rantin (1989)</td>
</tr>
<tr>
<td><em>Carassius auratus</em></td>
<td>5−35</td>
<td>10−20</td>
<td>26−16</td>
<td>3.3−1.1</td>
<td>Fry &amp; Hart (1948)</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td>11.5</td>
<td>1.0</td>
<td>Fry &amp; Hart (1948)</td>
</tr>
</tbody>
</table>
and hypoxia), any attempts to quantify the impacts of environmental factors on striped bass must include healthy and diseased fish. Our results therefore suggest that the increasing occurrence and severity of summer hypoxic events in Chesapeake Bay may have negative impacts on striped bass populations. Indeed, there are documented increases in natural mortality rates associated with mycobacteriosis (Jiang et al. 2007, Gauthier et al. 2008), and a recent modeling analysis of adult striped bass from Chesapeake Bay showed that growth in disease-positive fish was compromised (Latour et al. 2012). Hence, it is likely that the differences in condition factor we measured among the 3 groups at the end of the trials reflected the differences among individuals before they were captured. We specifically argue that anthropogenic impacts on environmental quality, possible changes in forage abundance, the recent decline in striped bass condition, and the emergence of mycobacteriosis are completely interlinked processes. Therefore, we contend that summer temperature-oxygen conditions increase the prevalence and severity of mycobacteriosis, and that in turn, the disease reduces the tolerance of striped bass to elevated water temperature and hypoxia. This situation creates multiple positive feedback loops, possibly resulting in the observed high prevalence of disease, reduced growth rates, and elevated rates of natural mortality.

Acknowledgements. This paper is contribution no. 3326 of the Virginia Institute of Marine Science, The College of William & Mary. Mention of trade names or commercial companies is for identification purposes only and does not imply endorsement by the National Marine Fisheries Service, NOAA. Funding for this research was provided by the Chesapeake Bay Office of NOAA and Virginia Sea Grant (VASG). We extend special thanks to R. L. Mann and D. Gonzales (VIMS) who kindly provided equipment for this project; to J. E. Brister (VIMS) for technical support; and to K. J. Blackshear (VIMS), who performed the histological preparation of our samples. We also acknowledge the contribution of our ‘chasers’: O. G. Foulds, C. Hopper-Brill (VIMS), R. W. Schloesser (VIMS), L. N. Nys (VIMS), L. S. Machut (VIMS), J. C. Greeney (VIMS), A. J. Norris (VIMS), J. Seiler (VIMS), and C. Lapointe.

LITERATURE CITED

- Basu SP (1959) Active respiration of fish in relation to ambient concentrations of oxygen and carbon dioxide. J Fish Res Board Can 16:175–212
- Beamish FH (1964) Respiration of fishes with special emphasis on standard oxygen consumption. II. Influence of weight and temperature on respiration of several species. Can J Zool 42:177–194
- Brett JR (1972) The metabolic demand for oxygen in fish, particularly salmonids, and a comparison with other vertebrates. Respir Physiol 14:151–170


Nigrelli RF, Vogel H (1963) Spontaneous tuberculosis in fishes and in other cold-blooded vertebrates with special reference to Mycobacterium fortuitum Cruz from fish and human lesions. Zoologica 48:131–144


Withers PC, Cooper CE (2011) Using a priori contrasts for multivariate repeated-measures ANOVA to analyze thermoregulatory responses of the dillbler (Parantechi- nus apicalis; Marsupialia, Dasyuridae). Physiol Biochem Zool 84:514–521


