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ABSTRACT

JOINT LINEAR AND NONLINEAR COMPUTATION WITH DATA ENCRYPTION
FOR EFFICIENT PRIVACY-PRESERVING DEEP LEARNING

Qiao Zhang
Old Dominion University, 2021

Director: Dr. Hongyi Wu

Deep Learning (DL) has shown unrivalled performance in many applications such as im-

age classification, speech recognition, anomalous detection, and business analytics. While

end users and enterprises own enormous data, DL talents and computing power are mostly

gathered in technology giants having cloud servers. Thus, data owners, i.e., the clients, are

motivated to outsource their data, along with computationally-intensive tasks, to the server

in order to leverage the server’s abundant computation resources and DL talents for develop-

ing cost-effective DL solutions. However, trust is required between the server and the client

to finish the computation tasks (e.g., conducting inference for the newly-input data from the

client, based on a well-trained model at the server) otherwise there could be the data breach

(e.g., leaking data from the client or the proprietary model parameters from the server).

Privacy-preserving DL takes data privacy into account where various data-encryption

based techniques are adopted. However, the efficiency of linear and nonlinear computa-

tion for each DL layer remains a fundamental challenge in practice due to the intrinsic

intractability and complexity of privacy-preserving primitives (e.g., Homomorphic Encryp-

tion (HE) and Garbled Circuits (GC)). As such, this dissertation targets deeply optimizing

state-of-the-art frameworks as well as newly designing efficient modules by joint linear and

nonlinear computation, with data encryption, to further boost the overall performance of

privacy-preserving DL. Four contributions are made.



First, deep optimization on the HE-based linear computation in HE-GC-based privacy-

preserving DL inference, GALA, is presented that features a row-wise weight matrix encod-

ing, a combination of the share generation and a first-Add-second-Perm approach to reduce

the most expensive permutation operations. GALA demonstrates an inference runtime boost

by 2.5× to 8.3× over the state-of-the-art frameworks.

Second, the GC-based nonlinear calculation is replaced with a newly-designed joint linear

and non-linear computation for each DL layer, in HE-GC-based privacy-preserving DL in-

ference, based on the Homomorphic Secret Sharing. This construction achieves an inference

speedup as high as 48× compared with state-of-the-art frameworks.

Third, the nonlinear calculation of each layer is completed for free by a carefully par-

titioned DL framework, GELU-Net, where the server performs linear computation on en-

crypted data utilizing a less complex homomorphic cryptosystem, while the client securely ex-

ecutes non-polynomial computation in plaintext without approximation. GELU-Net demon-

strates 14× to 35× inference speedup compared to the classic systems.

Finally, we propose the WISE framework to completely eliminate the most expensive

HE permutation in HE-based linear calculation and reduce the communication cost from 4.5

rounds to only half round by a joint permutation-free computation between the nonlinear

transformation in the current layer and the linear transformation in the next layer. WISE

achieves 2× to 13× speedup over one of the most recent works through various widely-

adopted neural layers and demonstrates a speedup up to 5.3× on practical DL models.
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CHAPTER 1

INTRODUCTION

Large-volume data is generated in daily life due to the rapid evolution and utilization

of information technology such as the Internet of Things (IoT) [8, 9]. Global data creation

is projected to grow to more than 180 zettabytes by 2025 [10], which has become a driv-

ing force for the development of Deep Learning (DL) technologies [11–14]. DL has shown

its unrivalled performance in many applications such as image classification [15, 16], speech

recognition [17–19], anomalous detection [20–22], and business analytics [23, 24]. The suc-

cess of DL largely depends on three key ingredients: massive amount of high-quality training

data, high-performance computation resources and well-designed model structures [25, 26].

These ingredients are often owned by different entities. For instance, end users and enter-

prises possess enormous data, while DL talents and computing power are mostly gathered

in technology giants such as Google, Facebook and Microsoft. Data owners are motivated

to outsource their data, along with computationally intensive tasks, to the clouds (e.g., Mi-

crosoft Azure and Google Cloud) in order to leverage abundant resources and DL talents for

developing cost-effective DL solutions.

DL includes the training phase and inference phase where the former utilizes the training

data to produce a well-trained model, based on which the latter conducts the prediction

for newly-input data. For example, assume Alice owns her data, while Bob owns the cloud

platform. In the training phase, Alice would like to have her data processed by Bob to

create a well-trained DL model. In the inference phase, Bob, the cloud server with the

trained model and computational resources, performs predictions for clients is often known

as Machine Learning as a Service (MLaaS) [27,28].

However, both phases require trust between the (cloud) servers (i.e., service providers)

and clients (i.e., data owners). Due to different trust domains, privacy issues arise from
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exposure to servers the private information in the outsourced data and from the intermedi-

ate data through the interactions between clients and servers. Both involve data breaches

corresponding to either the original data or model parameters. There are various instances

where the original data or model parameters should not be public [29–32]. As the data

breach becomes a critical concern, more and more governments have established regula-

tions for protecting users’ data, such as General Data Protection Regulation (GDPR) in the

European Union [33], Personal Data Protection Act (PDPA) in Singapore [34], California

Consumer Privacy Act (CCPA) [35] and the Health Insurance Portability and Accountabil-

ity Act (HIPAA) [36] in the US. The cost of the data breach is high. For instance, in the

breach of 600,000 drivers’ personal data in 2016, Uber paid $148 million to settle the investi-

gation [37]; SingHealth was fined about $750,000 by the Singapore government for a breach

of PDPA data [38]; Google was fined about $57 million for a breach of GDPR data [39],

which is the largest penalty as of March 18, 2020 under the European Union privacy law.

Besides the protection for processed (usually personal) data (from clients), the servers

that created/computed the DL models in MLaaS, also wish not to make these highly-valued

model parameters publicly available. By releasing the parameters of their DL models, the

servers are worried about losing their intellectual property. Furthermore, DL models are

shown to memorize information about their training data [40]. In particular, the parameters

of DL models could lead to exposure of training data [41], which are considered confidential

in many cases.

1.1 PRIVACY-PRESERVING DEEP LEARNING (PPDL)

Privacy-Preserving Deep Learning (PPDL) takes ethical and legal privacy concerns into

account, and various privacy-preserving techniques are adopted in the computation process of

DL in order to protect sensitive data (e.g., private data from the client and model parameters

from the server in MLaaS). In this dissertation, we focus on multi-party privacy-preserving
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techniques based on data encryption, which are widely studied in PPDL as shown in Table 11.

Specifically, the Homomorphic Encryption (HE) [48–53], Garbled Circuits (GC) [54–58],

Oblivious Transfer (OT) [59, 60] and Secret Sharing (SS) [61–63] are four dominant data-

encryption based techniques2. Meanwhile, there are two dominant privacy-preserving DL

scenarios in multi-party computation, i.e., data-encryption based privacy-preserving MLaaS

and training. In data-encryption based privac-preserving MLaaS as shown in Figure 1 (a),

the data owner is the client and the cloud server has a well-trained deep learning model.

The cloud server provides the inference service based on the private data from the client.

For example, an encrypted medical image (such as a chest X-ray) is sent by a doctor to the

cloud server, which runs the DL model and returns the encrypted prediction to the doctor.

The prediction is then decrypted by the doctor into a plaintext result to assist diagnosis

and health care planning. In this case, besides the protection of the outsourced data from

clients, it is required that neither the clients nor any other parties learn anything about the

model parameters at the cloud servers, other than the final predictions. In this dissertation,

we mainly focus on privacy-preserving MLaaS.

As for data-encryption based privacy-preserving training shown in Figure 1 (b), multiple

clients securely outsource their partial data and jointly communicate with the cloud server to

obtain a well-trained model. For instance, multiple health care providers (such as hospitals)

send their encrypted medical data (such as the chest X-ray) to the cloud server, and the final

model is obtained by interactions among them. Health care providers can utilize the more

comprehensive model to improve accuracy. The cloud servers or any other involved parties

should not learn anything about clients’ outsourced data other than its size. Meanwhile, the

updated model parameters are supposed to be respectively blind to data owners and cloud

servers [4] during the training process.

1There are another two branches of research for privacy-preserving DL with Differential Privacy (DP) [42–
45] and Trusted Execution Environment (TEE) [46, 47] which mainly deal with user data and computation
in plaintext and we make it orthogonal to the dissertation scope as we mainly focus on privacy-preserving
DL with various data-encryption based techniques.

2The detailed introduction about these four techniques is described in Section 2.1 of Chapter 2.
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Figure 1. PPDL: (a) Privacy-preserving MLaaS, (b) Privacy-preserving training.

The DL models are cascaded with layers, each of which features linear and nonlinear

computation. In this dissertation, we mainly focus on the Convolutional Neural Network

(CNN), which is widely used in many PPDL frameworks [4,64–66]. The linear computation

in CNN includes dot product and convolution while the nonlinear computation contains

various activation functions3. Either a single technique, i.e., single computation in Table 1,

or a combination of techniques, i.e., hybrid computation in Table 1, is adopted in the two

building-block computation to realize PPDL.

Among the privacy-preserving techniques shown in Table 1, single-HE schemes [6,77–85]

need no extra trusted party while they need to approximate the nonlinear functions into

polynomials. Single-SS schemes [67–73] generally involve more parties, e.g., an extra trusted

party or multiple non-colluding cloud servers, and a larger number of interactions, e.g.,

communication round among the parties. Single-GC schemes [74–76] aim to minimize the

non-XOR gates in the constructed Boolean circuits or to adopt more GC-friendly models

such as Binary Neural Networks [76].

3The detailed introduction for the CNN model is described in Section 2.1 of Chapter 2.
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Table 1. Data-encryption Based Techniques used in PPDL.

Schemes
Data-encryption Based Techniques Number of parties

Single computation Hybrid computation 2 3 ≥4

Liu [67] SS ◦ ◦ • ◦
Falcon [68] SS ◦ ◦ • ◦
Swift [69] SS ◦ ◦ • •

Securenn [70] SS ◦ ◦ • ◦
Trident [71] SS ◦ ◦ ◦ •
Huang [72] SS ◦ ◦ • ◦
Leia [73] SS ◦ • ◦ ◦

Soteria [74] GC ◦ • ◦ ◦
Deepsecure [75] GC ◦ • ◦ ◦

Xonn [76] GC ◦ • ◦ ◦
Zhu [77] HE ◦ ◦ ◦ •

Cryptonets [78] HE ◦ • ◦ ◦
Faster [79] HE ◦ • ◦ ◦
E2dm [80] HE ◦ • ◦ ◦

Homopai [81] HE ◦ • ◦ ◦
Spindle [82] HE ◦ ◦ ◦ •
Badawi [83] HE ◦ • ◦ ◦
Chen [84] HE ◦ ◦ ◦ •

Cryptodl [6] HE ◦ • ◦ ◦
Hervé [85] HE ◦ • ◦ ◦

Privedge [86] ◦ SS+GC • ◦ ◦
Secureml [3] ◦ SS+GC • ◦ ◦

Chameleon [87] ◦ SS+GC ◦ • ◦
Minionn [65] ◦ SS+GC • ◦ ◦
DElphi [66] ◦ SS+GC • ◦ ◦

Quotient [88] ◦ OT+GC • ◦ ◦
Bayhenn [89] ◦ HE+SS • ◦ ◦
Gelunet [90] ◦ HE+SS • ◦ ◦
Cheetah [91] ◦ HE+SS • ◦ ◦

Xu [92] ◦ HE+SS • ◦ ◦
Cheetah [93] ◦ HE+GC • ◦ ◦
Falcon [94] ◦ HE+GC • ◦ ◦
Gazelle [64] ◦ HE+GC • ◦ ◦

Autoprivacy [95] ◦ HE+GC • ◦ ◦
Ensei [96] ◦ HE+GC • ◦ ◦
Helen [97] ◦ HE+GC ◦ ◦ •

“•” and “◦” denote adopted and unadopted item, respectively. Each item in “Hybrid

computation” is listed with linear primitive + nonlinear primitive.
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Generally, the hybrid-primitive computation achieves better overall performance com-

pared with the single-primitive counterpart. As one of the most preferred combinations in

hybrid-primitive computation, HE-GC schemes [64,93–97] utilize HE’s capability for efficient

linear computation and GC’s advantage in computing the comparison function. Meanwhile,

no extra trusted party is needed, which is more suitable for scenarios where parties are mu-

tually distrusted. Specifically, the HE-GC framework, GAZELLE [64], has demonstrated

three orders of magnitude faster than the single-HE framework, CryptoNets [78], which is

one of the classic privacy-preserving systems.

1.2 CHALLENGES IN PPDL

Although PPDL has witnessed encouraging performance improvement, there are still two

main challenges.

(1) Dedicated effort is still needed to make the data-encryption based privacy-preserving

schemes more practical.

As one of the most efficient PPDL frameworks, GAZELLE’s running time for AlexNet [15]

and VGG [16], which are two of the state-of-the-art DL models, is over one hundred and

over one thousand seconds, respectively [98]. This cost is prohibitive in many applications.

For example, the time constraints in many real-time speech recognition systems (such as

Alexa and Google Assistant) are within 10 seconds [99,100] while autonomous cars demand

an immediate response time less than one second [101]. Meanwhile, several gigabytes and

tens of gigabytes for AlexNet and VGG also pose a challenge to the network traffic [98].

(2) There is a tradeoff between efficiency and model accuracy in an effort to reduce the

communication/computation cost in PPDL.

Specifically, the model accuracy could drop by adopting the approximation mechanism

for nonlinear computation, while the communication/computation cost is reduced. To have

a more quantitative estimation for such tradeoff in data-encryption based privacy-preserving
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Table 2. Quantitative Evaluation for Different PPDL Schemes.

Schemes Number of layers Accuracy drop (%)
Efficiency level

Days Hrs Mins Ss

All-HE schemes
Homopai [81] ∼2 ∼1 ◦ ◦ • ◦
Spindle [82] ∼2 ∼1 ◦ ◦ • ◦
Cryptodl [6] ∼3 ∼4 ◦ • ◦ ◦

Cryptonets [78] ∼3 ∼1 ◦ ◦ • ◦
E2dm [80] ∼3 ∼1 ◦ ◦ ◦ •
Chen [84] ∼3 ∼1 ◦ ◦ ◦ •
Zhu [77] ∼8 ∼1 ◦ ◦ ◦ •

Hervé [85] ∼8 ∼1 ◦ ◦ • ◦
Badawi [83] ∼11 ∼4 ◦ ◦ • ◦
Faster [79] ∼50 ∼4 ◦ ◦ • ◦

All-SS schemes
Securenn [70] ∼4 ∼1 ◦ • ◦ ◦

Liu [67] ∼6 ∼2 ◦ • ◦ ◦
Falcon [68] ∼16 ∼1 • ◦ ◦ ◦
Swift [69] ∼3 ∼1 ◦ ◦ ◦ •

Trident [71] ∼3 ∼1 ◦ ◦ ◦ •
Huang [72] ∼10 ∼1 ◦ ◦ ◦ •
Leia [73] ∼13 ∼7 ◦ ◦ ◦ •

All-GC schemes
Deepsecure [75] ∼3 ∼1 ◦ ◦ ◦ •

Soteria [74] ∼13 ∼10 ◦ ◦ ◦ •
Xonn [76] ∼16 ∼13 ◦ ◦ ◦ •

HE-GC schemes
Helen [97] ∼2 ∼1 ◦ • ◦ ◦

Gazelle [64] ∼5 ∼1 ◦ ◦ ◦ •
Falcon [94] ∼10 ∼1 ◦ ◦ ◦ •
Ensei [96] ∼18 ∼1 ◦ ◦ ◦ •

Autoprivacy [95] ∼32 ∼1 ◦ ◦ ◦ •
Cheetah [93] ∼50 ∼1 ◦ ◦ ◦ •

Systems marked with orange indicate they are training-enabled.
“•” and “◦” denote adopted and unadopted item, respectively.

DL, Table 2 shows model accuracy and efficiency with respect to different network sizes4,

i.e., number of model layers, in single-primitive and hybrid-primitive schemes, e.g., single-

HE schemes [6, 77–85], single-SS schemes [67–73], single-GC schemes [74–76], and HE-GC

schemes [64,93–97].

For single-HE training schemes [6, 81, 82], back propagation is explored in small-size

4The statistics are reported in the respective paper.
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networks, e.g., the 2-layer linear model or a 3-layer neural network. The massive iterations

in back propagation result in significant computation cost even in plaintext DL models [26],

which cannot be easily addressed with deeper networks. While the efficiency decreases

from minutes (Mins) to days with more layers, the model accuracy of trained models also

drops [6] since the nonlinear functions are approximated. For single-HE inference schemes,

the classic CryptoNets [78] tackles a small CNN model with an efficiency level of Mins. The

efficiency is further improved to seconds (Ss) by optimizations to reduce the complexity of

HE operations [77, 80, 84, 85]. Meanwhile, the inference accuracy drops [79, 83] with more

layers due to the approximated nonlinear functions.

As for the single-SS training schemes, the model accuracy is kept with negligible loss as

the network goes deeper, while the tradeoff lies in the efficiency from hours (Hrs) to days

or even to weeks. For single-SS inference schemes, the inference accuracy is maintained by

introducing more parties, i.e., the extra trusted party [72] or multiple servers [73], to generate

the desired shares. Furthermore, special computation-efficient models, e.g., BNNs in [73],

could result in the accuracy drop with deeper networks.

As for single-GC schemes, the tradeoff tends to maintain efficiency (at the level of seconds)

while accepting the certain loss of model accuracy. One of the reasons is that the networks

are appropriately modified to keep the efficiency [76] as complexity increases with deeper

models.

As for HE-GC training schemes, small-size networks, e.g., a simple 2-layer linear model,

are explored to have a good balance between model accuracy and efficiency. For HE-GC

inference schemes, model accuracy is maintained as the nonlinear functions, e.g., ReLU, can

be exactly computed by GC. Meanwhile, efficiency is improved by deep optimizations of

respective HE and GC calculation [64,93–96].

1.3 DISSERTATION CONTRIBUTIONS

In order to shorten the gap to practical usability and mitigate the efficiency-accuracy
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Figure 2. Overview of Works in the Dissertation.

tradeoff in PPDL, by considering the joint linear and nonlinear computation to reduce or

eliminate the expensive computing load in traditional function-wise computation (see Fig-

ure 25), this dissertation targets deeply optimizing state-of-the-art frameworks and designing

computation modules with data encryption, to fasten the overall performance. Four contri-

butions are made as follows.

First, a deep optimization for the HE-based linear computation in HE-GC-based privacy-

preserving DL inference, GALA [102], is presented. It features a row-wise weight matrix

encoding, a combination of the share generation and a first-Add-second-Perm approach to

reduce the most expensive permutation operations. GALA demonstrates an inference run-

time boost by 2.5× to 8.3× over the state-of-the-art frameworks.

Second, the GC-based nonlinear calculation is replaced with a newly-designed joint linear

and non-linear computation for each DL layer [103], in HE-GC-based privacy-preserving DL

5Here we use f(x) to denote the whole network as a function while z(x) and a(x) are the linear and
nonlinear functions, respectively. The term “Hb” denotes specific privacy-preserving primitive such as HE,
GC, SS, or OT, etc.
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inference, based on the Homomorphic Secret Sharing. This construction achieves an infer-

ence speedup as high as 48× compared with state-of-the-art frameworks.

Third, the nonlinear calculation of each layer is completed for free by a carefully par-

titioned DL framework, GELU-Net [90], where the server performs linear computation on

encrypted data utilizing a less complex homomorphic cryptosystem, while the client se-

curely executes non-polynomial computation in plaintext without approximation. GELU-

Net demonstrates 14× to 35× inference speedup compared to the classic systems.

Finally, we propose WISE framework to completely eliminate the most expensive HE per-

mutation in HE-based linear calculation and reduce the communication cost from 4.5 rounds

to only a half round, by a joint permutation-free computation between the nonlinear trans-

formation in the current layer and the linear transformation in the next layer. WISE achieves

2× to 13× speedup over one of the most recent works through various widely-adopted neural

layers and demonstrates a speedup up to 5.3× on practical DL models.

1.4 ORGANIZATION OF THE DISSERTATION

The remainder of the dissertation is organized as follows. In Chapter 2, we introduce

the necessary preliminaries that are adopted in this dissertation. They include the system

models, threat model and privacy-preserving tools. The system models describe in detail

the DL architecture, i.e, CNN. The threat model defines the semi-honest adversaries that

are considered in this dissertation as well as shows the diagram to prove the security against

such adversaries. Privacy-preserving tools explain the HE, SS, GC and OT techniques.

Chapter 3 presents GALA, which focuses on a deep optimization of the HE-based linear

computations to minimize the most expensive permutation operations in privacy-preserving

MLaaS, thus substantially reducing the overall computation time. It views the HE-based

linear computation as a series of Homomorphic Add, Mult and Perm operations and chooses

the least expensive operation in each linear computation step to reduce the overall cost.

SecureTrain is detailed in Chapter 4 where the GC-based nonlinear calculation is replaced
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with a newly-designed joint linear and non-linear computation for each DL layer, based on

the Homomorphic Secret Sharing. Furthermore, it explores a piggyback design for privacy-

preserving training by carefully devising the share set and integrating the dataflow of the

whole training process.

In Chapter 5, we elaborate the GELU-Net architecture, which securely completes the

nonlinear calculation of each layer for free by carefully partitioning a deep neural network

to two non-colluding parties. One party performs linear computation on encrypted data

utilizing a less complex homomorphic cryptosystem, while the other executes non-polynomial

computation in plaintext but in a privacy-preserving manner.

Chapter 6 proposes WISE, a hybrid privacy-preserving MLaaS protocol that features a

permutation-free scheme which completely eliminates the most expensive HE permutation

operations in the linear transformation and a joint permutation-free computation between

the nonlinear transformation in the current layer and the linear transformation in the next

layer, which reduces the communication cost from 4.5 rounds to only a half round. Finally,

Chapter 7 concludes the dissertation.



12

CHAPTER 2

PRELIMINARIES

In this chapter, we introduce the necessary preliminaries that are adopted in this dis-

sertation. They include the system models in Section 2.1, threat model in Section 2.2 and

privacy-preserving tools in Section 2.3. The system models describe in detail the DL architec-

ture, i.e, CNN. The threat model defines the semi-honest adversaries that are considered in

this dissertation as well as shows the diagram to prove the security against such adversaries.

Privacy-preserving tools explain the HE, SS, GC and OT techniques.

2.1 SYSTEM MODELS

There are typically two PPDL scenarios, i.e., privacy-preserving MLaaS and privacy-

preserving training, as shown in Figure 1. Specifically, in privacy-preserving MLaaS shown

in Figure 1 (a), there are two parties: the client C and the server S (or service provider). S

provides MLaaS using its internal DL model, e.g., CNN, that is well trained with massive

data. C owns private input and requests to make prediction by sending its data, in a privacy-

preserving way, to S. S runs prediction using its proprietary DL model (parameters) and

sends the prediction result back to C. For example, a doctor, i.e., C, sends an encrypted

medical image (such as a chest X-ray) to S, which runs the DL model and returns the

encrypted prediction to the doctor. The prediction is then decrypted into a plaintext result

to assist diagnosis and health care planning. In privacy-preserving training shown in Figure 1

(b), a set of clients, e.g., hospitals, own the private data and prefer to jointly train a more

comprehensive DL model for better diagnosis performance, e.g., medical diagnosis. Clients

send the data to and interact with S in a privacy-preserving way to finally produce a well-

trained model.
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Figure 3. Basic structure of CNN.

Meanwhile, the computational flow of a DL model includes a cascade of layers. Each layer

is composed of linear function that is followed by nonlinear function as shown in Figure 3.

The two typical linear functions are dot product and convolution. The dot product takes as

input a ni × 1 vector and a weight matrix of the size of no × ni. The output is a vector

with the size of no × 1. The j-th element of the output vector is calculated as a sum of

element-wise product between the j-th row of the weight matrix and the input vector. The

input of convolution is the feature maps with the size of H ×W × ci and co kernels with the

size of fh × fw × ci, where H, W and ci are respectively the height, width and number of

channels of the input feature maps; fh and fw are the height and width of each kernel. For

the first layer, the feature maps are simply the input image(s) as shown in Figure 3.

The convolution will produce the feature output, with a size of H ′×W ′×co. Specifically,

the process of convolution can be visualized as placing each of the co kernels at different
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locations of the input feature maps. At each location, a sum of element-wise product is

computed between the kernel and corresponding data values within the kernel window. An

example of convolution is shown in Figure 3 where ci = 2, co = 1, fh = fw = 2, H = W = 3,

and H ′ = W ′ = 3. Note that a bias value can be added to the output of the dot product

and convolution. The output of the linear function is fed into the nonlinear function in an

element-wise manner. In this dissertation, we mainly focus on ReLU function, ReLU(x) =

max{0, x}, which is one of the most widely used nonlinear functions in the state-of-the-art

DL models [15,16,25,26].

The layer containing convolution is called the convolution layer while the one with dot

product is the fully-connected (dense) layer. Another type of layer is the pooling layer, which

typically operates on the output channels of a convolution layer. The pooling operation (in

the pooling layer) slides a window on the input channels and aggregates the elements within

the window into a single output value. In this dissertation, we mainly adopt mean pooling,

which is one of the most common pooling operations in DL. It takes the mean of elements

within the sliding window as the output value and can be easily performed on the shares of

secret [78]. Furthermore, pooling layers typically reduce the input size, i.e., H and W , but

do not affect the number of channels, i.e., ci.

Given the input data, the forward propagation repeats the linear transformation, i.e., dot

product or convolution, and nonlinear transformation, i.e., activation functions or pooling

functions, until the last layer where the nonlinear transformation is softmax1 and the output

is the prediction result. In data-encryption based privacy-preserving MLaaS, the cloud server

receives encrypted data from the client and then completes the forward propagation such

that the prediction result is finally returned back to the client. Meanwhile, the softmax can

be ignored in data-encryption based privacy-preserving MLaaS as it is monotone and thus

does not affect the prediction result. This dissertation mainly focuses on privacy-preserving

1With the form f(zj) = ezj∑
j e

zj .
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MLaaS. We firstly present an optimized privacy-preserving MLaaS, GALA, in Chapter 3.

Then we replace the GC-based nonlinear calculation with a newly-designed joint linear and

non-linear computation for each DL layer in Chapter 4. Chapter 5 elaborates the GELU-Net

architecture, which securely completes the nonlinear calculation for free. Chapter 6 proposes

WISE with a permutation-free scheme and a joint permutation-free computation between

the nonlinear transformation in the current layer and the linear transformation in the next

layer.

In order to do training, the output of forward propagation is fed into the back propagation

to update the model parameters, i.e, weight matrix, bias and kernels, through gradient

descent where the derivatives of activation functions and pooling functions are involved [15].

The goal of data-encryption based privacy-preserving training is to make the process of

parameter update blind to all involved parties, given that all the clients send their encrypted

data to the cloud servers, which obliviously update the model parameters by multi-party

interactions [4, 67]. Chapter 4 and Chapter 5, respectively, extend the privacy-preserving

MLaaS to privacy-preserving training with a piggyback design that combines the dataflow

in forward and back propagation and the plaintext computation for nonlinear functions.

2.2 THREAT MODEL

There are mainly two adversarial behaviors considered in data-encryption based PPDL:

1) a participant is defined to be semi-honest (SH) or passive if this participant executes the

pre-defined protocols correctly but tries to learn as much private information as possible

by analyzing the messages exchanged during the protocol execution, and 2) a participant is

defined to be malicious (MA) or active if he arbitrarily deviates from the protocol specifi-

cations. Concretely, in data-encryption based PPDL with SH participants, the clients (data

owners) and cloud servers are assumed to follow all protocols during the entire learning

process, while the individual client tries to learn the model parameters or private data of

other clients (in training), and cloud servers try to infer clients’ input data, or the model



16

parameters (in training). As for data-encryption based PPDL with MA participants, the

individual client arbitrarily deviates from the protocols by sending cloud servers incorrect

input or intermediate data, while the cloud servers deviate from the protocols by applying

incorrect model parameters (in MLaaS) or by sending clients incorrect intermediate data.

The two adversarial behaviors result in either misleading prediction in MLaaS or meaning-

less model parameters in training. One should prove the security against either SH or MA

adversaries in the designed PPDL framework.

The security proofs against SH adversaries are given in Yao’s protocol [54, 104] and the

Goldreich-Micali-Wigderson (GMW) protocol [62,63], while the security proofs against MA

adversaries are based on zero-knowledge protocols [62,105]. The SH threat model is weaker

than the MA counterpart, but it allows us to build highly efficient protocols and is therefore

widely adopted in data-encryption based PPDL [68]. In this dissertation, we mainly focus

on the privacy-preserving MLaaS with SH threat model2. Specifically, the security lies in the

existence of two simulators respectively for the corrupted client and the corrupted server,

such that the view of each simulator in the ideal world is computationally indistinguishable

from that of each simulated party in the real world. As shown in Figure 4, the view of a party

includes its input, randomness and received message(s). In the ideal world, the simulator

interacts with a Trust Third Party (TTP) while in the real world, it communicates with the

simulated party according to the specific protocol. As for a corrupted client, the simulator

abstracts its (private) input data, sends it to the TTP and receives the final result in the

ideal world, while it also interacts with the client in the real world based on the available

data and the same randomness (with the client). As for a corrupted server, the simulator

abstracts its (proprietary) model parameters, sends it to the TTP and receives none in the

ideal world, while it also interacts with the server in the real world based on the available

data and the same randomness (with the server).

Meanwhile, as the data-encryption based PPDL tackles the privacy issues during the

2The analysis for privacy-preserving training with SH threat model follows similar diagram.
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Figure 4. Simulator for the (a) corrupted client and (b) corrupted server in MLaaS.

learning process, i.e., inference or training, the black-box attacks that utilize the prediction

results, e.g., model extraction [106, 107], model inversion [41], membership inference [108],

detection evasion [109,110], are out of the scope of this dissertation.

2.3 PRIVACY-PRESERVING TOOLS

In this section, we review four data-encryption based privacy-preserving primitives used

for linear and nonlinear computation in the dissertation.

2.3.1 HOMOMORPHIC ENCRYPTION

Homomorphic Encryption (HE) [48, 49, 51–53] is a kind of public-key encryption that

additionally supports linear operations, e.g., addition and multiplication, over the cipher-

texts. Conventional HE scheme operates on individual ciphertext [48, 49], while the packed

homomorphic encryption (PHE) packs multiple values into a single ciphertext and performs

element-wise operation in a Single Instruction Multiple Data (SIMD) manner [111] to par-

allel the HE computation3. Specifically, an HE scheme involves a tuple of algorithms HE =

(KeyGen, Enc, Dec, Eval) with the following syntax:

• HE.KeyGen → (pk, sk). HE.KeyGen randomly outputs a public key pk and a secret key

3We recommend the readers to [112,113] for a more basic and concrete description about PHE.
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sk.

• HE.Enc(pk, m)→ [m]pk. HE.Enc takes as input the public key pk and plaintext vector

m ∈ Zn and outputs a ciphertext [m]pk. We denote [m]C and [m]S as the ciphertext

where m is respectively encrypted by the public key of client C and server S.

• HE.Dec(sk, [m]pk)→m. HE.Dec takes as input the secret key sk and ciphertext [m]pk,

and outputs plaintext vector m.

• HE.Eval(pk, [m1]pk, [m2]pk, L(m1, m2)) → [m3]pk. With the input of public key pk,

two ciphertexts [m1]pk and [m2]pk
4, and a linear function L, HE.Eval outputs a new

ciphertext [m3]pk where m3 = L(m1, m2). Here the three basic HE operations in

HE.Eval are addition, multiplication, and permutation (Perm). The addition (mul-

tiplication) between [m1]pk and [m2]pk adds (multiplies) m1 and m2 in element-wise

manner, while permutation transforms the element order in m1 (or m2) such that its

j-th element becomes its first element. Among the three basic HE operations, Perm is

the most expensive one [64]. Specifically, in Chapter 3, we aim to minimize the Perm

operation for the linear computation and a Perm-free scheme is proposed in Chap-

ter 6 such that the overall computation cost is noticeably reduced. Furthermore, the

involved multiplication in our designs is scalar multiplication between one ciphertext

and one plaintext, which is faster than the ciphertext-ciphertext counterpart.

2.3.2 SECRET SHARING

In the 2-of-2 additive secret sharing protocol5, a value x is shared between two parties, e,g,

client C and server S, such that combining the two secrets yields the true value. Specifically,

a party that wants to share a secret x selects a random number r to form a pair (〈x〉1, 〈x〉2) =

(x− r, r). Here, x can be either plaintext or ciphertext. That party then sends one of the

shares (either 〈x〉1 or 〈x〉2) to the other party. To reconstruct the secret x, one needs to

4It can also be one ciphertext [m1]pk and one plaintext m2.
5This type of secret sharing is used in this dissertation.
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only add the two shares x = 〈x〉1 + 〈x〉2. Given a share 〈x〉1 or 〈x〉2, the secret x is perfectly

hidden. In this dissertation, we apply the 2-of-2 additive secret sharing to share the linear

result at S as well as the nonlinear result at C such that the computation over ciphertext

is transformed by the counterpart over shares (in plaintext), which efficiently reduces the

computation overhead6.

2.3.3 GARBLED CIRCUITS

In Yao’s garbled circuits [54], a garbled version of a Boolean circuit is interactively eval-

uated by two parties. One party, called garbler, creates the garbled circuit and encodes its

inputs based on the garbled circuit. The other party, called evaluator, receives the garbled

circuit and obtains encodings of its inputs via Oblivious Transfer (OT) [59]. The evaluator

then evaluates the circuit gate by gate to finally compute the encoding of the output, which

is decoded by garbler. Formally, a garbling scheme is a tuple of algorithms GC = (Garble,

Eval) with the following syntax [66]:

• GC.Garble(C)→(C̃, {labeli,0, labeli,1}). On input a boolean circuit C, Garble outputs

a garbled circuit C̃ and a set of labels {labeli,0, labeli,1}. Here labeli,b represents

assigning the value b ∈ {0, 1} to the i-th input label.

• GC.Eval(C̃,{labeli,xi}i∈[n])→ y. On input a garbled circuit C̃ and labels {labeli,xi}i∈[n]

corresponding to an input x = {xi} ∈ {0, 1}n, Eval outputs a string y = C(x).

The GC tuple must be complete: the output of Eval must equal C(x). Second, it must

be private: given C̃ and {labeli,xi}, the evaluator should not learn anything about C or x

except the size of |C| (i.e., the number of gates in C denoted by 1|C|) and the output C(x).

Meanwhile, Yao’s protocol has a constant number of communication rounds and the main

overhead stems from the total number of AND gates in the circuit, as XOR gates can be

6In Chapter 4, we detail another type of secret sharing called Homomorphic Secret Sharing (HSS), which
shares a desired function output (corresponding to x) by a homomorphic evaluation algorithm (corresponding
to the generation of the pair (x− r, r)).
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evaluated for free [55]. Other state-of-the-art GC optimizations are point-and-permute [56],

fixed-key AES garbling [57], and half-gates [58]. The ReLU result can be obtained by the GC

with a comparison circuit [64], which is combined in Chapter 3 with an optimization of HE

based linear computation to reduce the overall cost.

2.3.4 OBLIVIOUS TRANSFER

In the 1-out-of-k Oblivious Transfer (OT) [114], denoted as (k
1
)-OT`, the sender’s in-

puts are the k strings, m0,m1, · · · ,mk−1 ∈ {0, 1}`, and the receiver’s input is a value

i ∈ {0, 1, · · · , k − 1}. At the end of the OT execution, the receiver obtains mi from the

functionality, and the sender receives no output. Here, the OT protocol guarantees that 1)

the receiver learns nothing about mj,j 6=i, and 2) the sender learns nothing about i. An ad-

vancement in the practicality of OT protocols is the OT extension [60,115], which is further

optimized such as in [116]. The state-of-the-art approaches rely on OT-based multiplica-

tion in ReLU computation [7], which involves 4 rounds of communication. In contrast, the

proposed WISE protocol in Chapter 6 totally eliminates this overhead by reconstructing the

multiplication formula in ReLU computation, thus contributing to the reduction of the overall

computation cost.

2.4 CHAPTER SUMMARY

This chapter has introduced the necessary preliminaries that are adopted in this disser-

tation. They have included the system models in Section 2.1, threat model in Section 2.2

and privacy-preserving tools in Section 2.3. The system models have described in detail the

DL architecture, i.e, CNN. The threat model has defined the semi-honest adversaries that

are considered in this dissertation and shown the diagram to prove the security against such

adversaries. Privacy-preserving tools have explained the HE, SS, GC and OT techniques.
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CHAPTER 3

GREEDY COMPUTATION FOR LINEAR ALGEBRA IN PPDL

Recall from Section 1.1 that the schemes that exploit Homomorphic Encryption (HE)-

based linear computations and Garbled Circuit (GC)-based nonlinear computations have

demonstrated superior performance to enable privacy-preserving MLaaS. Nevertheless, there

is still a significant gap in the computation speed. Our investigation has found that the HE-

based linear computation dominates the total computation time for state-of-the-art deep

neural networks. Furthermore, the most time-consuming component of the HE-based linear

computation is a series of Permutation (Perm) operations that are imperative for dot product

and convolution in privacy-preserving MLaaS. This chapter focuses on a deep optimization

of the HE-based linear computations to minimize the Perm operations, thus substantially

reducing the overall computation time.

To this end, we propose GALA: Greedy computAtion for Linear Algebra in privacy-

preserving neural networks, which views the HE-based linear computation as a series of

Homomorphic Add, Mult and Perm operations and chooses the least expensive operation

in each linear computation step to reduce the overall cost. GALA makes the following

contributions: (1) It introduces a row-wise weight matrix encoding and combines the share

generation that is needed for the GC-based nonlinear computation, to reduce the Perm

operations for the dot product; (2) It designs a first-Add-second-Perm approach (named

kernel grouping) to reduce Perm operations for convolution. As such, GALA efficiently

reduces the cost for the HE-based linear computation, which is a critical building block

in almost all of the recent frameworks for privacy-preserving neural networks, including

GAZELLE (Usenix Security’18), DELPHI (Usenix Security’20), and CrypTFlow2 (CCS’20).

With its deep optimization of the HE-based linear computation, GALA can be a plug-and-

play module integrated into these systems to further boost their efficiency.
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Our experiments show that it achieves a significant speedup up to 700× for the dot

product and 14× for the convolution computation under different data dimensions. Mean-

while, GALA demonstrates an encouraging runtime boost by 2.5×, 2.7×, 3.2×, 8.3×, 7.7×,

and 7.5× over GAZELLE and 6.5×, 6×, 5.7×, 4.5×, 4.2×, and 4.1× over CrypTFlow2,

on AlexNet, VGG, ResNet-18, ResNet-50, ResNet-101, and ResNet-152, respectively. The

rest of this chapter is organized as follows. Section 3.1 details the motivation of GALA.

Section 3.2 introduces the primitives that GALA relies on. Section 3.3 describes the design

details of GALA. Section 3.4 presents the security analysis of GALA. The experimental re-

sults are illustrated and discussed in Section 3.5. Finally, Section 3.6 concludes this chapter.

3.1 MOTIVATION

Since designing and training a deep neural network model requires intensive resource and

DL talents, cloud providers began to offer Machine Learning as a Service (MLaaS) [117],

where a proprietary DL model is trained and hosted on a cloud. Clients can utilize the

service by simply sending queries (inference) to the cloud and receiving results through a web

portal. While this emerging cloud service is embraced as an important tool for efficiency and

productivity, the interaction between clients and cloud servers leads to new vulnerabilities.

This chapter focuses on the development of privacy-preserving and computationally efficient

MLaaS.

Although communication can be readily secured from end to end, privacy still remains

a fundamental challenge. On the one hand, the clients must submit their data to the cloud

for inference, but they want the data privacy well protected, preventing the curious cloud

provider or attacker with access to the cloud from mining valuable information. In many

domains such as health care [118] and finance [119], data are extremely sensitive. For ex-

ample, when patients transmit their physiological data to the server for medical diagnosis,

they do not want anyone (including the cloud provider) to see it. Regulations such as the

Health Insurance Portability and Accountability Act (HIPAA) [36] and the General Data
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Protection Regulation (GDPR) in Europe [120] are in place to impose restrictions on shar-

ing sensitive user information. On the other hand, cloud providers do not want users to

be able to extract their proprietary model that has been trained with significant resource

and efforts [107]. Furthermore, the trained model contains private information about the

training data set and can be exploited by malicious users [40, 108, 121]. To this end, there

is an urgent need to develop effective and efficient schemes to ensure that in MLaaS a cloud

server does not have access to users’ data and a user cannot learn the server’s model.

A series of efforts have been made to enable privacy-preserving MLaaS, by leveraging

cryptographic techniques as summarized in Section 1.1. The first is the Homomorphic En-

cryption (HE)-Based Approach. For example, in CryptoNets [78], Faster CryptoNets [79]

and CryptoDL [6], the client encrypts data using HE and sends the encrypted data to the

server. The server performs polynomial computations (e.g., addition and multiplication)

over encrypted data to calculate an encrypted inference result. The client finally obtains

the inference outcome after decryption. E2DM [80] adopts a more efficient HE (i.e., packed

HE [111]) which packs multiple messages into one ciphertext and thus improves computation

efficiency. The second approach is based on Garbled Circuit (GC) [104]. DeepSecure [75]

and XONN [76] binarize the computations in neural networks and employ GC to obliviously

obtain the prediction without leaking sensitive client data. The third approach exploits Se-

cret Sharing (SS). SS is used in [122] and [4] to split the client data into shares. The server

only owns one share of the data. The computations are completed by interactive share

exchanges. In addition, Differential Privacy (DP) [123–125] and Trusted Execution Envi-

ronment (TEE) [126–129] are also explored to protect data security and privacy in neural

networks. In order to deal with different properties of linearity (weighted sum and convolu-

tion functions) and nonlinearity (activation and pooling functions) in neural network com-

putations, several efforts have been made to orchestrate multiple cryptographic techniques

to achieve better performance [1–3,5,7,64–66,87,90,97,130–134]. Among them, the schemes
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with HE-based linear computations and GC-based nonlinear computations (called the HE-

GC neural network framework hereafter) demonstrate superior performance [64–66, 130].

Specifically, the GAZELLE framework [64] represents the state-of-the-art design for the HE-

based linear computation and achieves a speedup of three orders of magnitude faster than

the classic CryptoNets inference system [78].

Despite rapid improvement, there is still a significant gap in computation speed, rendering

the existing schemes infeasible for practical applications. For example, the time constraints

in many real-time applications (such as speech recognition) are within a few seconds [99,100].

In contrast, our benchmark has shown that GAZELLE takes 43 seconds and 659 seconds

to run the well-known deep neural networks ResNet-18 and ResNet-152 [26] on an Intel

i7-8700 3.2GHz CPU (see detailed experimental settings in Section 3.5), which renders it

impractical in real-world applications.

This performance gap motivates us to further improve the efficiency of the HE-GC neural

network frameworks. In the deep neural network, both the fully-connected and convolutional

layers are based on the linear computation, while the activation functions perform nonlinear

computation. The former dominates the total computation time in state-of-the-art deep

neural networks. For example, the runtime of the nonlinear computation in GAZELLE

is merely 2.3%, 1.8%, 1.7%, 1.5%, 1.6%, and 2%, respectively, on AlexNet [15], VGG [16],

ResNet-18 [26], ResNet-50 [26], ResNet-101 [26], and ResNet-152 [26]. The nonlinear cost

in the original plaintext models is even lower (averaged 1.7%). This indicates a great poten-

tial to speed up the overall system through optimizing linear computations. Although a few

recent approaches, e.g., DELPHI [66] and CrypTFlow2 [7], perform better than GAZELLE

in terms of the overall system runtime, they all inherit the HE-based linear computation

in GAZELLE. This work contributes a solid optimization on the HE-based linear com-

putation (i.e., dot product and convolution), which can be integrated into those systems

(including GAZELLE, DELPHI and CrypTFlow2) to further improve their overall system

performance. The HE-based computation consists of three basic operations: Homomorphic
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Addition (Add), Multiplication (Mult), and Permutation (Perm). Our investigation has

shown that the most time-consuming part of the HE-based computation is a series of Perm

operations that are imperative to enable dot product and convolution. Our experiments

show that Perm is 56 times slower than Add and 34 times slower than Mult. As shown in

Table 3, in the dot product by multiplying a 2×2048 matrix with a length-2048 vector, the

cost in GAZELLE is dominated by Perm, which takes about 98% of the computation time.

This observation motivates the proposed linear optimization, which aims to minimize the

Perm operations, thus substantially reducing the overall computation time. With smaller

number of Perm operations, the proposed approach demonstrates 10× speedup in the above

matrix-vector computation.

Table 3. Cost of matrix-vector multiplication (time in millionsecond).

Method Total (ms)
Perm Mult Add

# time # time # time
GAZELLE 2 11 1.96 2 0.01 11 0.037
Proposed 0.2 1 0.17 2 0.01 1 0.003

This significant speedup lies in a simple and efficient idea to choose the least expensive

operation in each linear computation step to reduce the overall cost. We name the proposed

approach GALA: Greedy computAtion for Linear Algebra in privacy-preserving neural net-

works. We view the HE-based linear computation as a series of Homomorphic Add, Mult

and Perm operations. The two inputs are the encrypted vector (or channels) from the client

and the plaintext weight matrix (or kernel) from the server. The output is the encrypted

dot product (or convolution). The objective in each step is to choose the most efficient

operations in the descending priorities of Add, Mult and Perm. To this end, we (1) design
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a row-wise weight matrix encoding with combined share generation1 (i.e., a row-encoding-

share-RaS (Rotated and Sum) approach) to reduce the number of Perm operations in the

dot product by log2
n
no

where n is the number of slots in a ciphertext and no is the output

dimension of dot product and (2) propose a first-Add-second-Perm approach (named kernel

grouping) to reduce the number of Perm operations of convolution by a factor of ci
cn

where ci

and cn are respectively the number of channels in input data, and the number of channels

that can be packed in a ciphertext. n is always greater than and can be up to 8192 times of

no depending on the dimension of dataset [135] and HE implementation [136].

At the same time, ci
cn

is at least one and can be up to 256 for state-of-the-art neural

network architectures such as ResNets [26] where the large channels, i.e., 1024 and 2048,

and small kernel size, i.e., 1×1 and 3×3, are adopted. The larger input data from users

will result in smaller cn, which accordingly contributes to higher speedup especially in the

state-of-the-art CNNs. As such, GALA efficiently boosts the performance of HE-based linear

computation, which is a critical building block in almost all of the recent frameworks for

privacy-preserving neural networks, e.g., GAZELLE, DELPHI, and CrypTFlow2. Further-

more, GALA’s deep optimization of the HE-based linear computation can be integrated as

a plug-and-play module into these systems to further improve their overall efficiency. For

example, GALA can serve as a computing module in the privacy-preserving DL platforms,

MP2ML [133] and CrypTFlow [134], which are compatible with the user-friendly Tensor-

Flow [137] DL framework. Our experiments show that GALA achieves a significant speedup

up to 700× for the dot product and 14× for the convolution computation under various data

dimensions. Meanwhile, GALA demonstrates an encouraging runtime boost by 2.5×, 2.7×,

3.2×, 8.3×, 7.7×, and 7.5× over GAZELLE and 6.5×, 6×, 5.7×, 4.5×, 4.2×, and 4.1×

over CrypTFlow2, on AlexNet, VGG, ResNet-18, ResNet-50, ResNet-101, and ResNet-152,

respectively. More details are given in Section 3.5.

1The resultant linear output will be shared between server and client as the input of GC-based nonlinear
computation.
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3.2 PRELIMINARIES

We consider an MLaaS system shown in Figure 1 (a). The client owns private data. The

server is in the cloud and has a well-trained deep learning model to provide the inference

service based on the received client’s data. For example, a doctor sends an encrypted medical

image (such as a chest X-ray) to the server, which runs the neural network model and returns

the encrypted prediction to the doctor. The prediction is then decrypted into a plaintext re-

sult to assist diagnosis and health care planning. Meanwhile, we focus on the Convolutional

Neural Network (CNN) with the ReLU activation function as described in Section 2.1, and

GALA mainly addresses privacy-preserving linear optimization (i.e., convolution and dot

product). The privacy-preserving nonlinear optimizations (especially activations) are based

on GC as introduced in other HE-GC approaches such as GAZELLE [64]. Furthermore, sim-

ilar to GAZELLE [64] and other previous works, namely the SecureML [3], MiniONN [65],

DeepSecure [75] and XONN [76], GALA adopts the semi-honest model introduced in Sec-

tion 2.2, in which both parties try to learn additional information from the message received

(assuming they have a bounded computational capability). That is, the client C and server

S will follow the protocol, but C wants to learn model parameters and S attempts to learn

the client’s data.

GALA mainly adopts two privacy-preserving tools (see Section 2.3) namely Brakerski-

Fan-Vercauteren (BFV) scheme [52] which is one of the PHE techniques, and Secret Sharing

(SS). Recall in Section 2.3.1 that the run-time complexity of Add and ScMult2 is significantly

lower than that of Perm among the three basic HE operations. From our experiments,

a Perm operation is 56 times slower than an Add operation and 34 times slower than a

ScMult operation3. This observation motivates the proposed linear optimization, which

aims to minimize the number of Perm operations, thus substantially reducing the overall

computation time. Meanwhile, PHE introduces noise in the ciphertext which theoretically

2We use it to denote the scalar multiplication.
3It is based on GAZELLE’s implementation at https://github.com/chiraag/gazelle_mpc.

https://github.com/chiraag/gazelle_mpc
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hides the original message [51, 64]. Assume the noise of two PHE-encrypted ciphertext are

η0 and η1, then the noise after the Add operation is approximately η0 + η1. The noise

after a ScMult operation is ηmultη0 where ηmult is the multiplicative noise growth of the

SIMD scalar multiplication operation [64]. The noise after a Perm operation is η0 + ηrot

where ηrot is the additive noise growth of a permutation operation [64]. Roughly, we have

ηrot > ηmult � η0 � 1. If the noise goes beyond a certain level, the decryption would fail.

Thus, it is also important to have good noise management over the ciphertext. We will

show in Section 3.3.3 that GALA has better noise control than GAZELLE, which further

guarantees the overall success for the linear computations. On the other hand, while the

overall idea of secret sharing (SS) is straightforward, creative designs are often required

to enable its effective application in practice. Specifically, in the HE-GC neural network

framework, the linear result from the dot product or convolution is encrypted at the server

side and needs to be shared with the client to enable the following GC-based nonlinear

computation. Assume m is the resulted ciphertext of a linear computation at the server,

GAZELLE then generates the share 〈m〉0 = r and sends 〈m〉1 = m−r to the client. The two

shares act as the input of the GC-based nonlinear computation. Here the computation of m

involves a series of Perm operations, which is time-consuming. Instead of directly generating

the share 〈m〉0 = r for m, we develop a share-RaS (Rotate and Sum) computing for dot

product which lets the server generate an indirect share r′ for the incomplete m, m′, while

the true r is easy to be derived from r′ and the true 〈m〉1 = m− r is easy to be derived from

m′− r′. The computation of m′ eliminates a large number of Perm operations thus reducing

the computation complexity. Specifically, our result shows that the proposed share-RaS

computing demonstrates 19× speedup for the dot product by multiplying a 16×128 matrix

with a length-128 vector (the detailed benchmarks are shown in Section 3.5).

3.3 SYSTEM DESCRIPTION

In this section, we introduce the proposed system, GALA, for streamlining the linear
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computations (i.e., matrix-vector multiplication and convolution) in privacy-preserving neu-

ral network models. The HE-based linear computation consists of three basic operations:

Homomorphic Addition (Add), Multiplication (Mult), and Permutation (Perm). Our inves-

tigation has shown that the linear computation dominates the total computation cost and

the most time-consuming part of HE-based linear computation is a series of Perm operations

that are imperative to enable dot product and convolution. GALA aims to minimize the

Perm operations, thus substantially reducing the overall computation time. We view the

HE-based linear computation as a series of Add, Mult and Perm. The two inputs to linear

computation are the encrypted vector (or channels) from the client and the plaintext weight

matrix (or kernel) from the server. The output is the encrypted dot product (or convolu-

tion). The objective in each step is to choose the most efficient operations in the descending

priorities of Add, Mult and Perm. Therefore, the overhead for the HE-based linear compu-

tation can be efficiently reduced by GALA. The recent privacy-preserving neural network

frameworks can integrate GALA as a plug-and-play module to further boost their efficiency.

We also analyze the (better) noise management and (guaranteed) system security of GALA.

3.3.1 ROW-ENCODING-SHARE-RAS MATRIX-VECTOR MULT

We first focus on matrix-vector multiplication (dot product) which multiplies a plaintext

matrix at the server with an encrypted vector from the client. We first discuss a naive method

followed by the mechanism employed in the state-of-the-art framework (i.e., GAZELLE [64]),

and then introduce the proposed optimization of GALA that significantly improves the

efficiency in matrix-vector multiplication.

For a lucid presentation of the proposed GALA and comparison with the state-of-the-art

framework, we adopt the same system model used in [64]. More specifically, we consider

a Fully Connected (FC) layer with ni inputs and no outputs. The number of slots in one

ciphertext is n. We also adopt the assumptions used in [64]: n, ni and no are powers of two,

and no and ni are smaller than n. If they are larger than n, the original no × ni matrix can
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be split into n×n sized blocks that are processed independently.

1) Naive Method: The naive calculation for matrix-vector multiplication is shown in

Figure 5, where w is the no×ni plaintext matrix on the server and [x]C is the HE-encrypted

vector provided by the client. The server encodes each row of w into a separate plaintext

vector (see step (a) in Figure 5). The length of each encoded vector is n (including padded

0’s if necessary). We denote these encoded plaintext vectors as w0,w1, · · · ,w(no−1). For

example, the yellow and green rows in step (a) of Figure 5 are w0 and w1, respectively.

The server intends to compute the dot product between w and [x]C. To this end, it first

uses ScMult to compute the elementwise multiplication between wi and the encrypted input

vector [x]C to get [ui]C = [wi � x]C (see step (b) in Figure 5). The sum of all elements in

ui will be the i-th element of the desired dot product between w and [x]C. However, as

discussed in Section 2.3.1, it is not straightforward to obtain the sum under the packed HE.
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Figure 5. Naive matrix-vector multiplication.
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A rotate-and-sum (RaS) calculation must be used here, as illustrated in step (c) of Figure 5.

Specifically, the entries in [ui]C are first rotated through Perm by ni

2
positions such that the

first ni

2
entries of the rotated [ui]C are actually the second ni

2
entries of the original [ui]C.

Then the server uses Add to conduct elementwise addition between the rotated [ui]C and

the original [ui]C, which results in a ciphertext whose first ni

2
entries contain the elementwise

sum of the first and second ni

2
entries of ui. The server conducts this RaS process for log2 ni

iterations. Each iteration acts on the resulted ciphertext from the previous iteration, and

rotates by half of the previous positions, as shown in Step (c) of Figure 5. Finally, the

server gets a ciphertext where the first entry is the i-th element in wx. By applying this

procedure on each of the no rows (i.e., w0,w1, · · · ,w(no−1)), the server obtains no ciphertext.

Altogether, the first entries of those ciphertext correspond to wx.

We now analyze the complexity of the above linear computation process, in terms of

the number of operations and output ciphertext. We consider the process starting from the

server’s reception of [x]C (i.e., the encrypted input data from the client) until it obtains

the to-be-shared ciphertext4 (i.e., the no ciphertext after RaS). There are a total of no

scalar multiplications (ScMult) operations, no log2 ni Perm operations and no log2 ni Add

operations. It yields no output ciphertext, each of which contains one element of the linear

result wx. This inefficient use of the ciphertext space results in a low efficiency for linear

computations.

2) Hybrid Calculation (GAZELLE): In order to fully utilize the n slots in a ciphertext

and further reduce the complexity, the state-of-the-art scheme is to combine the diagonal

encoding [138] and RaS, by leveraging the fact that no is usually much smaller than ni in

FC layers. This hybrid method shows that the number of expensive Perm operations is a

function of no rather than ni, thus accelerating the computation of FC layers [64]. The basic

idea of the hybrid method is shown in Figure 6.

4In HE-GC neural network computing, the resultant ciphertext from linear calculation are shared between
client and server as the input of GC-based nonlinear function.
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Figure 6. Hybrid matrix-vector multiplication.

Specifically, the server encodes w into no plaintext vectors through a diagonal manner.

For example, in step (a) of Figure 6, the first plaintext vector w0 consists of the yellow

elements of matrix w, (A1, B2, A3, B4), and the second plaintext vector w1 consists of the

green elements (A2, B3, A4, B1). Note that the w0 in this method is different from the w0

in the naive method of Figure 5. So is w1.

The server then rotates [x]C by i positions, shown in step (b), and uses ScMult to perform

elementwise multiplication with wi. For example, in step (c) of Figure 6, w0 is multiplied

with the encrypted data [x]C and w1 is multiplied with the input that is rotated by one

position (i.e., [x′]C). As a result, the server gets no multiplied ciphertext, {[ui]C}. The

entries in each of {[ui]C} are partial sums of the elements in the matrix-vector multiplication

wx. For example, as shown in step (c) of Figure 6, the server obtains two multiplied

ciphertext (i.e., [u0]C and [u1]C) whose elements are partial sums of the first and second

elements of wx (i.e., (A1M1 + A2M2 + A3M3 + A4M4) and (B1M1 + B2M2 + B3M3 +

B4M4)). Then the server sums them up elementwise, to form another ciphertext, which is
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the vector in the middle of step (d) in Figure 6. At this point, similar to the naive method,

the server proceeds with log2
ni

no
RaS iterations and finally obtains a single ciphertext whose

first no entries are the corresponding no elements of wx (see the first two elements of the

vector after RaS in step (d)).

Furthermore, as the number of slots n in a ciphertext is always larger than the dimension

of the input vector, ni, the computation cost is further reduced by packing copies of input

x as much as possible to form [xpack]C. Thus [xpack]C has n
ni

copies of x and the server is

able to multiply n
ni

encoded vectors with [xpack]C by one ScMult operation. Therefore, the

server gets nino

n
rather than no multiplied ciphertext. The resultant single ciphertext now

has n
no

rather than ni

no
blocks. The server then applies log2

n
no

RaS iterations to get the final

ciphertext, whose first no entries are the no elements of wx.

The hybrid method requires nino

n
scalar multiplications (ScMult), nino

n
− 1 HstPerm ro-

tations for [xpack]C, log2
n
no

Perm rotations, and nino

n
+ log2

n
no
− 1 additions (Add). There is

only one output ciphertext, which efficiently improves the slot utilization compared to the

naive method.

3) Row-encoding-share-RaS Multiplication (GALA): The proposed GALA frame-

work is motivated by two observations on the hybrid method. First, the hybrid method

essentially strikes a tradeoff between Perm and HstPerm operations, where the number of

Perms (which is the most expensive HE operation) is proportional to the number of slots in

a ciphertext. This is not desired as we prefer a large n to pack more data for efficient SIMD

HE. GALA aims to make the number of Perm operations disproportional to the number of

slots and eliminate all HstPerm operations on the input ciphertext.

The second observation is the log2
n
no

RaS operations. We discover that this is actually

unnecessary. Specifically, the unique feature in the HE-GC neural network framework is

that the resultant single ciphertext from linear computing is shared between the client and

server, to be the input for the nonlinear computing in the next phase. As the shares are
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Figure 7. Row-encoding-share-RaS multiplication.

in plaintext, we propose to transfer the final log2
n
no

RaS operations in the HE domain to

log2
n
no

RaS operations in plaintext. This significantly reduces expensive Perm operations.

For example, multiplying a 16×128 matrix with a length-128 vector by our proposed scheme

shows about 19× speedup compared with the hybrid method [64] on a commodity machine

(see detailed benchmarks in Section 3.5).

Figure 7 illustrates GALA’s matrix-vector calculation. The server first conducts the row-

wise weight matrix encoding which encodes w into no plaintext vectors in a diagonal manner,

as shown in step (a) in Figure 7. Compared with the hybrid method, the row-wise weight

matrix encoding of GALA enables the server to directly multiply wi and [x]C, eliminating

the Perm operations on [x]C in step (b). Furthermore, the encoding also benefits the noise

management in the resultant to-be-shared ciphertext as to be analyzed in Section 3.3.3.

As a result, the server gets no multiplied ciphertext, {[ui]C}, such that the first entry

of [ui]C is a partial sum of the i-th element of the matrix-vector multiplication wx. For

example, in step (b) of Figure 7, the first element A1M1 in [u0]C is a partial sum of the
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first element of wx (i.e., A1M1 + A2M2 + A3M3 + A4M4), and the first element in [u1]C

is a partial sum of the 2nd element of wx (i.e., B1M1 + B2M2 + B3M3 + B4M4). Then,

the server conducts rotations on each [ui]C, with totally (no− 1) Perm operations excluding

the trivial rotation by zero, to make the first entry of [ui]C to be a partial sum of the first

element of wx. Next, the server adds all of the rotated [ui]C to obtain a single ciphertext

whose entries are repeatedly a partial sum of the elements of wx. For example, in step (c)

of Figure 7, [u1]C is rotated by one position and then added the [u0]C to get one ciphertext,

whose entries are the partial sum of the first and second elements of wx.

Till now, the natural next step is to conduct log2
ni

no
RaS iterations to get a final ci-

phertext whose first no entries are the no elements of wx, i.e., the approach used by the

hybrid method [64, 65]. With GALA, we propose to eliminate the log2
ni

no
time-consuming

RaS iterations by integrating it with the generation of shares for the GC-based nonlinear

computing.

As introduced in the hybrid method [64, 65], in order to do the GC-based nonlinear

computing, the encrypted linear output is shared as follows: (1) the server generates a

random vector; (2) the server subtracts the random vector from the ciphertext (the encrypted

linear output); (3) the subtracted ciphertext is sent to the client, which subsequently decrypts

it and obtains its share.

Here we let the server encode a similar random vector and subtract it from the ciphertext

obtained in step (c) of Figure 7. The subtracted ciphertext is sent to the client, which de-

crypts ciphertext, and then applies log2
ni

no
RaS iterations on the plaintext, as illustrated in

step (d) of Figure 7. Similarly, the server gets its share by log2
ni

no
plaintext RaS iterations on

its encoded random vector. Hence, in GALA, the server replaces the ciphertext RaS opera-

tions by much faster plaintext RaS operations. This significantly improves the computation

efficiency.

Furthermore, in order to make use of all slots in a ciphertext, the client packs n
ni

input x

to form a packed vector [xpack]C. Then the server multiplies n
ni

encoded weight vectors with
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[xpack]C by one ScMult operation. As a result, the server obtains nino

n
multiplied ciphertext,

which are respectively rotated to enable the elementwise sum, finally producing a single

ciphertext that has n
no

to-be-accumulated blocks. Without any further HE RaS iterations,

the server then starts to encode the random vector for the share generation. The only extra

computation is the plaintext RaS iteration(s) at both the client and server, which is much

faster compared to the ones in the HE domain.

As a result, GALA needs nino

n
ScMult operations, (nino

n
−1) Perm operations, and (nino

n
−1)

Add operations. It yields one output ciphertext and makes efficient utilization of cipher-

text slots. Table 4 compares the complexity among the naive method, the hybrid method

(i.e., GAZELLE) and the proposed row-encoding-share-RaS matrix-vector multiplication

(GALA). We can see that the proposed method completely eliminates the HstPerm opera-

tions5 and significantly reduces the Perm operations.

Table 4. Complexity comparison of three methods.

Method # Perm # HstPerm # ScMult # Add

Naive no log2 ni 0 no no log2 ni

GAZELLE log2
n
no

nino

n
− 1 nino

n
log2

n
no

+ nino

n
− 1

GALA nino

n
− 1 0 nino

n
nino

n
− 1

3.3.2 KERNEL GROUPING BASED CONVOLUTION

In this subsection, we introduce GALA’s optimization for convolution. Similar to the

discussion on the matrix-vector multiplication, we first begin with the basic convolution

for the Single Input Single Output (SISO), then go through the state-of-the-art scheme for

5Based on GAZELLE’s implementation, the computation cost for a series of Perm operations on the same
ciphertext can be optimized by first conducting one Perm Decomposition (DecPerm) on the ciphertext and
then doing the corresponding series of Hoisted Perm (HstPerm) operations [64]. Since only one DecPerm is
involved, it can amortize the total permutation time.
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Figure 8. SISO convolution.

the Multiple Input Multiple Output (MIMO) (i.e., the GAZELLE framework [64]). Finally

we elaborate GALA’s first-Add-second-Perm (kernel grouping) scheme that achieves more

efficient convolution computation. We assume the server has co plaintext kernels with a size

of kw × kh × ci and the client sends to the server the encrypted data in the size of uw × uh

with ci channels. The server needs to homomorphically convolve the encrypted data from

the client with its plaintext kernels to produce the encrypted output.

1) Basic SISO convolution: SISO is a special case of MIMO where ci = co = 1. In

this case, the encrypted data from the client has a size of uw × uh with one channel (i.e.,

a 2D image) and there is only one kernel with size kw × kh (i.e., a 2D filter) at the server.

The SISO convolution is illustrated by an example in Figure 8 where [x]C is the encrypted

data from the client and K is the plaintext kernel at the server. The process of convolution

can be visualized as placing the kernel K at different locations of the input data [x]C. At

each location, a sum of an element-wise product between the kernel and corresponding data

values within the kernel window is computed. For example, in Figure 8, the first value of the

convolution between [x]C and kernel K is (M1F5 + M2F6 + M4F8 + M5F9). It is obtained

by first placing the center of K, i.e., F5, at M1 and then calculating the element-wise product

between K and the part of [x]C that is within K’s kernel window (i.e., M1, M2, M4 and M5).
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The final result is the sum of the element-wise product. The rest of convolution values are

calculated similarly by placing F5 at M2 to M9.

We now elaborate the convolution by an example when F5 is placed at M5 (i.e., the central

element of [x]C). In this example, the kernel size is kwkh = 9. The convolution is derived

by summing the element-wise product between the 9 values in K and the corresponding

9 values around M5. This can be achieved by rotating [x]C in a raster scan fashion [64].

Specifically, [x]C is converted to a vector by concatenating all rows. Then, it is rotated by

(kwkh − 1) rounds, with half of them in the forward direction and the other half in the

backward direction. We denote πj as the rotation by j positions, where a positive sign of j

indicates the forward direction and negative the backward direction, as shown in step (a) of

Figure 8.

The convolution is obtained by (1) forming the kernel coefficients according to the partial

sum at the corresponding location as shown in step (b) of Figure 8, (2) scaling the 9 rotated

πj with the corresponding kernel coefficients, and (3) summing up all scaled πj (see step

(c)). The rotation for [x]C is completed by HstPerm6. The scaling is done by ScMult

and the summation is achieved by Add. Therefore, the SISO convolution requires a total

of (kwkh − 1) HstPerm operations (excluding the trivial rotation by zero), kwkh ScMult

operations and (kwkh−1) Add operations. The output is one ciphertext7 which contains the

convolution result.

2) Output Rotation based MIMO convolution (GAZELLE): We now consider the

more general case, i.e., MIMO, where ci or co is not one. The naive approach is to directly

apply SISO convolution by first encrypting the ci input channels into ci ciphertext, {[xi]C}.

Each of the co kernels includes ci filters. Each [xi]C is convolved with one of the ci filters by

SISO and the final convolution is obtained by summing up all of the ci SISO convolutions.

As a result, the naive approach requires ci(kwkh − 1) HstPerm operations (for ci input

6With a common DecPerm operation.
7We assume the input size uwuh is smaller that the ciphertext size n.



39

C1

C3

K11

K21

K12

K22

K1

[x1]c

C2

C4

K13 K14

K23 K24

K31

K41

K32

K42

K33 K34

K43 K44

K2

K3 K4

K11 K22

K21 K12

K13 K24

K14K23

K31 K42

K41

K13

K32

K24K33

K14

K44

K23 K34K43

Step (a)

K11 K22

K21 K12

C1

C2

C1

C2

C1K11 C2K22C1K21 C2K12 C2K12 C1K21

Perm

C3K13 C4K24C3K23 C4K14 C4K14 C3K23

Perm

C1K31 C2K42C1K41 C2K32 C2K32 C1K41

Perm

C3K33 C4K44C3K43 C4K34 C4K34 C3K43

Perm
Step (b)

K13 K24 C3

C4

K14K23

K31 K42

K41 K32

K33 K44

K34K43

C3

C4

[x0]c

Figure 9. MIMO convolution.

channels), cicokwkh ScMult operations and co(cikwkh − 1) Add operations. There are co

output ciphertext.

Given the number of slots n in a ciphertext is usually larger than the channel size uwuh,

the ciphertext utilization (i.e., the meaningful slots that output desired results) in the co

output ciphertext is low.

In order to improve the ciphertext utilization and computation efficiency for MIMO

convolution, the state-of-the-art method (i.e., the output rotation [64]) first packs cn channels

of input data into one ciphertext, which results in ci
cn

input ciphertext (see Figure 9 where the

four input channels form two ciphertext, each of which includes two channels). Meanwhile,

the co kernels are viewed as a co × ci kernel block and each row of the block includes ci 2D

filters for one kernel. Then the MIMO convolution is viewed as a matrix-vector multiplication

where the element-wise multiplication is replaced by convolution. As each ciphertext holds

cn channels, the kernel block is divided into coci
c2n

blocks (see step (a) in Figure 9, where the

kernel block is divided into K1 to K4).

Next, each divided block is diagonally encoded into cn vectors such that the first filters in
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Figure 10. Kernel grouping based MIMO convolution.

all vectors are in the first column of the kernel block (see the four groups of vectors in step

(a) of Figure 9). In this way, each input ciphertext can directly convolve with the vectors

in each divided block by SISO, and the convolution for each divided block is obtained by

rotating the cn convolved vectors to the same kernel order as the diagonal one and summing

them up (see step (b)).

Finally, the convolution for cn kernels is calculated by adding the convolution of ci
cn

blocks

associated with the same kernels as illustrated in step (b) of Figure 9.

Clearly, there are co
cn

output ciphertext, as expected. For each of the coci
c2n

blocks, there

are totally cn SISO-like convolutions, requiring cnkwkh ScMult operations, (cn − 1) Perm

operations and (cnkwkh − 1) Add operations. Next, there are ci
cn

block convolutions which

are associated with the same kernel order. Thus, they are added up to obtain the final

convolution result. Meanwhile, the rotation group for each input ciphertext is reused to

convolve with different kernel blocks. Thus, there are ci(kwkh−1)
cn

HstPerm operations with ci
cn

common DecPerm operations. In all, the MIMO convolution needs a total of cico
c2n

(cn − 1)

Perm, ci
cn

(kwkh − 1) HstPerm, kwkh
cico
cn

ScMult and co
cn

(cikwkh − 1) Add operations.
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3) Kernel Grouping Based MIMO convolution (GALA): One key observation on

the above MIMO convolution is that, each of the coci
c2n

blocks needs (cn − 1) expensive Perm

operations in order to get the convolution for that block. However, we actually do not need

to get the convolution for each block. As our goal is to get the convolution for each kernel,

the blocks that are associated with the same kernel are combined in our proposed first-Add-

second-Perm approach (kernel grouping) to reduce the Perm cost. Specifically, in step (a) of

Figure 10, the whole kernel block is divided into two blocks K1 and K2 such that each block

is the combination of ci
cn
cn-by-cn divided blocks, which correspond to the same kernels (i.e.,

the first and second kernel in K1 and the third and fourth kernel in K2).

For each newly formed block, all of the vectors are first convolved with the corresponding

input ciphertext by SISO-like convolution. Then the convolved vectors that are associated

with the same kernel order are first added together (see the addition of convolved vectors

before rotation in step (b) of Figure 10). Finally, these added vectors are rotated to the

same kernel order and summed up to obtain the convolution result (see the rotation and

final addition for each block in step (b) of Figure 10).

This kernel grouping calculation results in (cn − 1) Perm operations for each of co
cn

newly formed blocks, which reduces the Perm complexity by a factor of ci
cn

compared with

GAZELLE’s MIMO convolution. This reduction is nontrivial especially for the state-of-the-

art neural networks such as ResNets [26], where ci
cn

can be 256. This is because these neural

networks contain a large number of large-size feature maps in order to capture the complex

input features [15, 16,26].

Similar to the output rotation based MIMO convolution discussed above, there are co
cn

output ciphertext in the proposed scheme. For each of the co
cn

newly formed blocks, there are

ci SISO-like convolutions. Then for each of the cn kernel orders, there are ci
cn

convolutions to

be summed up, which results in cn added convolutions. These added convolutions are further

rotated to the same kernel order and summed up to get the final convolution. Therefore,

the proposed MIMO convolution requires a total of co
cn

(cn− 1) Perm, ci
cn

(kwkh− 1) HstPerm,
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kwkh
cico
cn

ScMult, and co
cn

(cikwkh − 1) Add operations.

Table 5 compares the overall complexity for convolution computations. GALA’s kernel

grouping approach reduces the expensive Perm operations by a factor of ci
co

without increasing

other operations compared with the output rotation based MIMO convolution (i.e., the

GAZELLE framework). The reduction in Perm operations leads to a significant speedup.

Specifically, GALA shows about 14× speedup compared with GAZELLE in the convolution

between input data with a size of 16×16 with 2048 channels, and 512 kernels with a size of

1×1@2048 on a commodity machine (see detailed benchmarks in Section 3.5).

Table 5. Complexity comparison of convolution.

Method # Perm # HstPerm] # ScMult # Add

GAZELLE cico(cn−1)
c2n

ci(kwkh−1)
cn

cicokwkh
cn

co(cikwkh−1)
cn

GALA co(cn−1)
cn

ci(kwkh−1)
cn

cicokwkh
cn

co(cikwkh−1)
cn

]Rotations of the input with ci
cn

common DecPerm operations.

3.3.3 NOISE MANAGEMENT

The packed HE (e.g., the BFV scheme) introduces noise in the ciphertext which theoret-

ically hides the original message [51, 64]. However, the noise management is critical to the

correct decryption of ciphertext after a series of HE operations. We will show that GALA

has better noise management compared with GAZELLE.

Based on the computation complexity of matrix-vector multiplication and convolution,

along with the noise change for HE operations as described in Section 3.2, Table 6 shows

the noise growth of different schemes. As for the matrix-vector multiplication, GALA has a

lower noise growth while keeping the number of output ciphertext as small as one8. As for

8Note that the noise in Table 6 is calculated by assuming (nino

n −1) ≥ 0. The noise of GALA is still lower
than that of GAZELLE when (nino

n − 1) < 0 as it means one ciphertext can hold data with size no × ni,
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Table 6. Comparison of noise management.

Matrix-vector Multiplication
Method Noise after computation # Cipher
Naive niη0ηmult + (ni − 1)ηrot no

GAZELLE niη0ηmult + [nino−n
no

ηmult + n−no

no
]ηrot 1

GALA nino

n η0ηmult + (nino

n − 1)ηrot 1

Convolution Computation
Method Noise after computation # Cipher

GAZELLE ciη∆ + ci
cn

(cn − 1)ηrot
co
cn

GALA ciη∆ + (cn − 1)ηrot
co
cn

η∆ = kwkhηmultη0 + (kwkh − 1)ηrotηmult

the convolution computation, GALA reduces the noise term associated with rotation by a

factor of ci
cn

compared to GAZELLE. This is nontrivial especially for state-of-the-art neural

networks such as ResNets [26], where ci
cn

can be 256. The number of output ciphertext is

also maintained as small as co
cn

. Overall, GALA features a lower noise growth and lower

computation complexity compared with GAZELLE.

3.4 SECURITY ANALYSIS

GALA is based on the same security framework as GAZELLE [64]. The security proof is

based on the simulation for the ideal world and the real world as described in Section 2.29.

Generally, the security of linear computation in GALA is fully protected by the security of

HE (e.g., the BFV scheme [51, 52]). The nonlinear computation (which is not the focus of

this chapter) is protected by Garbled Circuits (GC) [104] or its alternatives. The security of

GC-based nonlinear computation has been proven in TASTY [139] and MP2ML [133].

3.5 PERFORMANCE EVALUATION

We conduct the experiments in both LAN and WAN settings. The LAN setting is

which only involves one ScMult operation in GALA, and GAZELLE needs to subsequently conduct a series
of RaS operations.

9We refer the readers to Section 6.4 for a more concrete and specific elaboration.
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implemented on a Gigabit Ethernet in our lab between two workstations as the client and

server, respectively. Both machines run Ubuntu, and have an Intel i7-8700 3.2GHz CPU

with 12 threads and 16 GB RAM. The WAN setting is based on a connection between

a local PC and an Amazon AWS server with an average bandwidth about 200Mbps and

round-trip time around 13ms. We have downloaded the codes released by GAZELLE10,

DELPHI11 and CrypTFlow212, and have run all experiments on the same hardware devices

and network settings. We conducted a series of experiments under various neural network

architectures. In each experiment, we first ran the baseline algorithm (i.e., GAZELLE,

DELPHI or CrypTFlow2) to obtain the baseline total runtime (including online runtime

and offline runtime), and then replaced the linear computation of the baseline algorithm by

GALA to get a new total runtime, which was then used to compute the speedup.

While the codes for GAZELLE, DELPHI and CrypTFlow2 are implemented in different

ways (for example, GAZELLE is based on its crypto platform while DELPHI and CrypT-

Flow2 are based on the Microsoft SEAL library), we focus on the speedup of GALA on

top of each of them. We also set the cryptographic parameters in line with GAZELLE:

1) Parameters for both HE and GC schemes were selected for a 128-bit security level. 2)

A plaintext modulus p of 20 bits is enough to store all the intermediate values in the net-

work computation. 3) The ciphertext modulus q was chosen to be a 60-bit pseudo-Mersenne

prime that is slightly smaller than the native machine word on a 64-bit machine to enable

lazy modular reductions. 4) The selection of the number of slots is the smallest power of

two that allows for a 128-bit security which in our case is n = 2048. We refer readers to [64]

for more details about the parameter selection.

3.5.1 MICROBENCHMARKS

In this section, we benchmark and compare the runtime of GALA’s linear optimization

10Available at https://github.com/chiraag/gazelle_mpc
11Available at https://github.com/mc2-project/delphi
12Available at https://github.com/mpc-msri/EzPC/tree/master/SCI

https://github.com/chiraag/gazelle_mpc
https://github.com/mc2-project/delphi
https://github.com/mpc-msri/EzPC/tree/master/SCI
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(i.e., matrix-vector multiplication and convolution computation) with state-of-the-art ap-

proaches. We claim the same communication cost and inference accuracy with GAZELLE

and achieve improved computation efficiency.

1) Matrix-Vector Multiplication: Table 7 compares the computation complexity of

GALA’s matrix-vector optimization with GAZELLE and two other optimization schemes

(i.e., a diagonal method (Diagonal) [138] and an extended method (Extended) [84]). We

can see that GALA largely reduces the expensive Perm operation to zero in our cases (in-

cluding the HstPerm) while GAZELLE needs up to 11 Perm and Extended [84] needs up

to 520 Perm (including HstPerm). On the other hand, GALA also maintains a light over-

head for HE multiplication/addition, i.e., only one multiplication, compared with the other

three optimizations, e.g., Diagonal [138] and Extended [84] involve up to 2048 multiplica-

tions/additions.

The runtime results for matrix-vector multiplication are summarized in Table 8, which

includes the original runtime of GAZELLE, DELPHI and CrypTFlow2, and the speedup of

GALA on top of each. We take the share-RaS calculation cost (see the plaintext computing

for final share at the client in step (d) of Figure 7) as part of the runtime cost of GALA for

fair comparison. Meanwhile, as multiple copies are packed in one ciphertext, the HstPerm

operation includes a common DecPerm to enable hoist optimization for rotation (see the

details in [64]). As can be seen from Table 8, GALA’s optimization gains a large speedup

due to the row-encoding-share-RaS module, which reduces the costly Perm, Mult, and Add

operations for a series of RaS calculations. Specifically, GALA achieves the speedup of

1795×, 208× and 57× over the Diagonal [138] under different matrix dimensions in the LAN

setting. This benefit stems from the fact that the computation complexity of the Diagonal

is related to the input dimension ni, which is always large in the state-of-the-art neural

networks such as AlexNet [15], VGG [16] and ResNets [26]. For a similar reason, GALA

significantly outperforms the Extended method [84].

Meanwhile, GALA has a speedup of 59×, 13× and 19× over GAZELLE under different
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Table 7. Computation complexity of matrix-vector multiplication.

Dimension (no × ni): 1×2048
Metric Diagonal [138] GAZELLE Extended [84] GALA

# Perm 0 11 0 0
# HstPerm\ 2047 0 2047 0
# ScMult 2048 1 2048 1

# Add 2047 11 2047 0

Dimension (no × ni): 2×1024
Metric Diagonal [138] GAZELLE Extended [84] GALA

# Perm 0 10 9 0
# HstPerm\ 1023 0 511 0
# ScMult 1024 1 512 1

# Add 1023 10 520 0

Dimension (no × ni): 16×128
Metric Diagonal [138] GAZELLE Extended [84] GALA

# Perm 0 7 4 0
# HstPerm\ 127 0 7 0
# ScMult 128 1 8 1

# Add 127 7 11 0
\Rotations of the input with a common DecPerm

matrix dimensions in the LAN setting. This computation gain comes from the HstPerm-free

scheme (i.e., row-encoding) and elimination of RaS computation (i.e., share-RaS scheme)

compared to GAZELLE, which is particularly effective for large ni

no
ratio and large cipher-

text slots (see the superior performance for the neural network with a dimension of 1×2048).

These features well suit the current convolutional neural networks which have tens of thou-

sands of values to be fed into the fully connected layers [16,26].

Compared with DELPHI and CrypTFlow2, GALA achieves a speedup for weight matrix

multiplication up to 700× in the LAN setting. This is largely due to GALA’s deep optimiza-

tion for HE computation. We also notice that GALA’s speedup slows down in WAN which

is due to the communication rounds needed for conversions between HE and GC. Therefore

it leads to significant round time in total compared with the light HE computation overhead.

For example, the round-trip time is around 13 milliseconds while the GALA’s optimized HE

cost is within one millisecond.

2) Convolution Computation: We benchmark and compare the computation complexity



47

Table 8. Runtime cost of matrix-vector multiplication.

Dimension (no × ni): 1×2048

Approach
Comm. LAN (ms) WAN (ms)
(MB) Time Speedup Time Speedup

Diagonal [138] 0.03 57 1795× 75 4×
Extended [84] 0.03 57.5 1796× 77 4×

GAZELLE [64] 0.03 1.9 59× 19.3 1×
DELPHI [66] 0.14 28 700× 59.5 3.2×

CrypTFlow2 [7] 0.13 28 700× 46.2 2.5×
Dimension (no × ni): 2×1024

Diagonal [138] 0.03 28 208× 47 2.5×
Extended [84] 0.03 16 116× 36 1.9×

GAZELLE [64] 0.03 1.8 13× 19 1×
DELPHI [66] 0.13 26.5 176× 57.8 3.1×

CrypTFlow2 [7] 0.13 26.5 176× 44.7 2.4×
Dimension (no × ni): 16×128

Diagonal [138] 0.03 3.7 57× 21 1×
Extended [84] 0.03 1 16× 20.4 1×

GAZELLE [64] 0.03 1.2 19× 21 1×
DELPHI [66] 0.13 20.5 292× 51.7 2.8×

CrypTFlow2 [7] 0.13 20.5 292× 38.7 2.1×

and runtime of GALA with GAZELLE, DELPHI and CrypTFlow2 for convolution calcu-

lation. The details are illustrated in Tables 9 and 10. As for the computation complexity,

we compare GALA with GAZELLE whose privacy-preserving convolution calculation over

HE is one of the most optimized methods in current literature. While introducing no extra

HE multiplication/addition, GALA reduces the most expensive Perm, i.e., DecPerm and

HstPerm, by up to 59× for input size of 16×16@2048 with kernel size of 1×1@512. This

block with large channels and small kernel size is featured in state-of-the-art neural networks

such as ResNets [26], which makes GALA suitable to boost the modern networks.

As for runtime comparison shown in Table 10, GALA demonstrates 9×, 14× and 2.6×

speedup over GAZELLE with different input and kernel dimensions in LAN setting. As

analyzed in Section 3.3.2, due to the fundamental complexity reduction by GALA’s ker-

nel grouping approach, GALA reduces the expensive Perm operation by a factor of ci
cn

.

As we mention above, the large speedup is achieved under large input channels and small
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Table 9. Computation complexity of convolution.

Input † Kernel ‡ Metric GAZELLE [64] GALA

16×16@128 1×1@128

# DecPerm 1792 112
# HstPerm 1792 112
# ScMult 2048 2048

# Add 2032 2032

16×16@2048 1×1@512

# DecPerm 114944 2048
# HstPerm 114688 1792
# ScMult 131072 131072

# Add 130944 130944

16×16@128 3×3@128

# DecPerm 1808 128
# HstPerm 1920 240
# ScMult 18432 18432

# Add 18416 18416

16×16@2048 5×5@64

# DecPerm 14592 312
# HstPerm 20480 6200
# ScMult 409600 409600

# Add 409592 409592
†Dim. is in the form of uw × uh@ci
‡Dim. is in the form of kw × kh@co with ci channels per kernel

kernel sizes, so the proposed approach fits very well with state-of-the-art networks such as

ResNets [26], where the feature maps are always with large channels (which results in large ci

while cn is fixed) and small kernels (that are usually 1×1, 3×3 and 5×5 at most, which benefit

small HE multiplication/addition). Meanwhile, the speedup over DELPHI and CrypTFlow2

is up to 7.4× in the LAN setting. On the other hand, the speedup of GALA in the WAN

setting is also decent, up to 8.7×, 6.3× and 6.5× for GAZELLE, DELPHI and CrypTFlow2,

respectively. This is because the computation cost of convolution increases accordingly with

regard to the communication cost, compared with the case of matrix-vector multiplication.

3.5.2 PERFORMANCE WITH CLASSIC NETWORKS

In this section, we benchmark the GALA performance on a 4-layer Multi Layer Per-

ceptron (MLP)13 which is also adopted in other privacy preserving frameworks including

13MPL consists of FC layers. The adopted network structure is 784-128-128-10.
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Table 10. Runtime cost of convolution.

Dimension (Input Dim.†, Kernel Dim.‡): 16×16@128, 1×1@128

Approach
Comm. LAN (ms) WAN (ms)
(MB) Time Speedup Time Speedup

GAZELLE 0.5 321 9× 408 3.2×
DELPHI 2.1 391 3.1× 502 2.3×

CrypTFlow2 2 389 3.1× 482 2.2×
Dimension (Input Dim.†, Kernel Dim.‡): 16×16@2048 , 1×1@512
GAZELLE 8 20583.5 14× 21784 8.7×
DELPHI 31 17939 4.4× 19205 3.7×

CrypTFlow2 29 17928 4.4× 19101 3.6×
Dimension (Input Dim.†, Kernel Dim.‡): 16×16@128, 3×3@128

GAZELLE 0.5 457 2.6× 547 2.1×
DELPHI 2 2563.6 5.8× 2671 5×

CrypTFlow2 1.9 2559 5.8× 2648 5×
Dimension (Input Dim.†, Kernel Dim.‡): 16×16@2048, 5×5@64

GAZELLE 8 5875.2 1.7× 7073 1.5×
DELPHI 31 56499 7.4× 57765 6.3×

CrypTFlow2 29 56409 7.4× 57582 6.5×
†Dim. is in the form of uw × uh@ci
‡Dim. is in the form of kw × kh@co with ci channels per kernel

GAZELLE, SecureML [3] and MiniONN [65] as a baseline network, as well as state-of-the-

art neural network models including AlexNet [15], VGG [16], ResNet-18 [26], ResNet-50 [26],

ResNet-101 [26], and ResNet-152 [26]. We use MNIST dataset [140] for the MLP and

CIFAR-10 dataset [141] for state-of-the-art networks.

Table 11 shows computation complexity of the proposed GALA compared with

GAZELLE. We can see that GALA reduces GAZELLE’s Perm by 34×, 31×, 30×, 47×,

39×, and 36× for AlexNet, VGG, ResNet-18, ResNet-50, ResNet-101, and ResNet-152,

respectively. The fundamental base for this speedup lies in GALA’s deep optimization for

HE-based linear computation. We also notice that GALA achieves limited reduction of Perm

in MLP (from 70 to 55). This is due to the small ratio between the number of slots in the

ciphertext and output dimension in each layer, i.e, n
no

, which limits the performance gain.

The limited gain is also observed in Table 12 which shows the system speedup of GALA over

GAZELLE, CrypTFlow2, DELPHI, SecureML and MiniONN. Specifically, GALA boosts
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Table 11. Computation complexity of state-of-the-art neural network models.

Net. Frameworks Metric GAZELLE [64] GALA

MLP
# Perm 70 55

# ScMult 56 56
# Add 70 55

AlexNet

# Perm 40399 1157
# DecPerm 143 142
# HstPerm 1493 1492
# ScMult 481298 481298

# Add 481096 481089

VGG

# Perm 66055 2115
# DecPerm 161 160
# HstPerm 1283 1280
# ScMult 663556 663556

# Add 663370 663363

ResNet-18

# Perm 180375 5921
# DecPerm 483 482
# HstPerm 3467 3464
# ScMult 1399363 1399363

# Add 1398778 1398771

ResNet-50

# Perm 1464119 30615
# DecPerm 2819 2818
# HstPerm 3863 3848
# ScMult 2935408 2935408

# Add 2931734 2931727

ResNet-101

# Perm 2560823 64887
# DecPerm 6083 6082
# HstPerm 8215 8200
# ScMult 5302896 5302896

# Add 5294326 5294319

ResNet-152

# Perm 3463991 95127
# DecPerm 8963 8962
# HstPerm 12055 12040
# ScMult 7252592 7252592

# Add 7239894 7239887

CrypTFlow2 by 2.3× in the LAN setting. SecureML also gains 2.6× in the LAN setting.

Meanwhile, GALA’s performance is similar to GAZELLE and MiniONN. The is due to the

relatively small network size and noticeable communication overhead (i.e., the large round

time in total compared with computation cost). Nevertheless, none of the competing schemes

achieves a better performance than GALA.

It is worth pointing out that the MLP network is not widely adopted in practical scenarios.
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Table 12. Runtime cost of classic model.

Network Model: MLP

Approach
Comm. LAN (ms) WAN (ms)
(MB) Time Speedup Time Speedup

SecureML 0.21 31.9 2.6× 79.3 1.5×
MiniONN 4.4 14.1 1× 227.6 1×
GAZELLE 0.21 15 1× 84.9 1×
DELPHI 84 204.5 3.1× 3658.3 1×

CrypTFlow2 12.4 246 2.3× 780.6 1.2×

On the other hand, as the state-of-the-art deep neural networks utilize large channels and

small-size kernels to capture data features while the size of feature maps is large, GALA is

especially effective for accelerating such large state-of-the-art network models.

Table 13 shows the runtime of GAZELLE, DELPHI and CrypTFlow2, and the speedup

of GALA on top of each. By reducing HE operations, especially Perm operations, GALA

achieves noticeable boost over the GAZELLE, DELPHI and CrypTFlow2 frameworks.

Specifically, the results show that GALA boosts GAZELLE by 2.5× (from 11s to 4.3s),

2.7× (from 18s to 6.5s), 3.2× (from 43s to 13s), 8.3× (from 276s to 33s), 7.7× (from 486s to

62s), and 7.5× (from 659s to 87s) in LAN setting, on AlexNet, VGG, ResNet-18, ResNet-50,

ResNet-101, and ResNet-152, respectively.

CrypTFlow2 (CCS’20) is the latest framework for privacy preserved neural networks. It

optimizes the nonlinear operations of DELPHI, and adopts a similar HE scheme of DEL-

PHI for linear operations. GALA is an efficient plug-and-play module to optimize the linear

operations of CrypTFlow2. As shown in Tables 8 and 10, GALA’s optimization of linear

operations can further boost CrypTFlow2 by 700× and 7.4× for matrix-vector multiplica-

tion and convolution in the LAN setting, respectively. This speedup stems from GALA’s

streamlined HE calculation compared with the one of CrypTFlow2. Slow-down is observed

in the WAN setting, but CrypTFlow2 can still gain up to 6.5× speedup for convolution due

to the computation-intensive nature for large input channels with small kernel dimensions

featured in state-of-the-art network models. As for the overall system speedup, GALA can
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Table 13. Runtime cost of state-of-the-art models.

Network Model: AlexNet

Approach
Comm. LAN (ms) WAN (ms)
(MB) Time Speedup Time Speedup

GAZELLE 17.45 11,019.2 2.5× 13,669.6 1.9×
DELPHI 617 90,090.1 2.9× 114,955 2×

CrypTFlow2 116.6 69,133.6 6.5× 73,876.8 4.8×
OT-based

2,108 226,431.7 21× 310,985.6 20×
CrypTFlow2

Network Model: VGG
GAZELLE 22.8 18,067.4 2.7× 21,566.2 2×
DELPHI 718.5 123,198.4 2.9× 152,176.4 1.5×

CrypTFlow2 150 97,038.9 6× 103,169.1 4.6×
OT-based

5,063.7 340,342.9 21× 543,242 24×
CrypTFlow2

Network Model: ResNet-18
GAZELLE 54 42,748.3 3.2× 51,032.7 2.3×
DELPHI 2,033.9 250,618.4 2.6× 332,524.2 1.9×

CrypTFlow2 354 190,684.7 5.7× 205,146.8 4.3×
OT-based

6,292.1 650,989.7 19.5× 903,492.6 19×
CrypTFlow2

Network Model: ResNet-50
GAZELLE 297.1 276,886.8 8.3× 321,600.2 4×
DELPHI 10,489 746,568.8 1.7× 1167,566.8 1.4×

CrypTFlow2 1,831 425,454.4 4.5× 499,429.6 2.9×
OT-based

13,104 1364,463.2 14.4× 3307,902.6 19×
CrypTFlow2

Network Model: ResNet-101
GAZELLE 603.1 486,745.2 7.7× 577,454.9 3.7×
DELPHI 22,199.4 1411,383.8 1.7× 2302,091.8 1.3×

CrypTFlow2 3,582.8 777,057.4 4.2× 921,735.6 2.8×
OT-based

23,857 2467,606.1 13.3× 6006,071.4 18.2×
CrypTFlow2

Network Model: ResNet-152
GAZELLE 873.1 659,833.7 7.5× 786,587 3.6×
DELPHI 29,433 1975,798.9 1.6× 3157,176.8 1.3×

CrypTFlow2 5,141 1065,103.4 4.1× 1272,772.6 2.7×
OT-based

32,804 3379,188.7 13× 8245,124.5 17.5×
CrypTFlow2

boost CrypTFlow2 by 6.5×, 6×, 5.7×, 4.5×, 4.2×, and 4.1× in LAN, and by 4.8×, 4.6×,

4.3×, 2.9×, 2.8×, and 2.7× in WAN, based on the aforementioned network architectures.

It might appear counter-intuitive that while CrypTFlow2 is a more recent system than

DELPHI, the speedup of GALA over DELPHI is smaller than its speedup over CrypTFlow2.

This is because CrypTFlow2 has optimized the nonlinear part of DELPHI, significantly

reducing its runtime. As a result, the runtime of linear operations in CrypTFlow2 accounts
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Table 14. Percentages of linear computation in state-of-the-art neural network models.

Networks GAZELLE DELPHI CrypTFlow2 Plaintext
AlexNet 97.7 76.9 98.7 98.5
VGG 98.2 77.9 98.8 98.1

ResNet-18 98.3 75.1 98.6 98.9
ResNet-50 98.5 55.2 96.8 97.9
ResNet-101 98.4 53.2 96.5 98.3
ResNet-152 98 52 96.4 98.4

Table 15. Accuracy with floating and fixed point in state-of-the-art neural network models.
Top-1 accuracy: only the prediction with the highest probability is a true label; Top-5
accuracy: any one of the five model predictions with higher probability is a true label.

Network Models
Floating-point Fix-point
Top1 Top5 Top1 Top5

AlexNet 78.89% 97.32% 78.43% 97.26%
VGG 92.09% 99.72% 92.05% 99.68%

ResNet-18 93.33% 99.82% 93.21% 99.81%
ResNet-50 93.86% 99.85% 93.86% 99.84%
ResNet-101 94.16% 99.79% 94.12% 99.79%
ResNet-152 94.23% 99.81% 94.15% 99.79%

for a very high percentage as illustrated in Table 14. Hence, CrypTFlow2 can benefit more

from GALA’s optimization of linear computation, resulting in a higher speedup in terms of

the overall runtime. It is worth pointing out that the ability to accelerate CrypTFlow2 is

highly desirable since it is the latest privacy-preserving framework. Meanwhile, we also show

GALA’s speedup on top of the OT-based CrypTFlow2 which relies on OT to complete the

linear computation. As significant communication cost, including round cost, is involved in

OT, the overhead of linear computation, especially in the WAN setting, increases compared

with HE-based CrypTFlow2, which results in greater speedup achieved by GALA.

Next we examine the runtime breakdown of different layers for those six state-of-the-art

networks as shown in Figure 11, which allows detailed observation. Note that the layer index-

ing here is slightly different from the original plaintext model for the sake of HE operations,
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Figure 11. Layer-wise accumulated runtime and GALA speedup over GAZELLA on dif-
ferent networks: (a) AlexNet; (b) VGG; (c) ResNet-18; (d) ResNet-50; (e) ResNet-101; (f)
ResNet-152. The bar with values on the left y-axis indicates speedup, and the curve with
values on the right y-axis indicates the accumulated runtime. The layers with speedup of 1
are nonlinear layers.
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e.g., the nonlinear activation or pooling following a convolution operation is counted as a

separate layer. The x-axis of each subfigure in Figure 11 shows the layer index of a sequence

of linear (convolution or matrix-vector multiplication) and nonlinear (activation or pooling)

layers that constitute each network model. The y-axis plots the accumulated running time

(milliseconds) up to a layer, and the speedup of GALA over GAZELLE in each layer.

For example, Figure 11 (a) illustrates the result for AlexNet. The most time-consuming

computation in GAZELLE is in layers “6”, “8” and “10”, which are all convolution com-

putations. This is evidenced by the large jump of runtime from these layers to the next

layer. GALA decreases the time for these linear computations by nearly 3×. Meanwhile,

the nonlinear layers (activation/pooling) have a speedup of 1, as GALA has the same com-

putation cost as GAZELLE in those layers. Since the nonlinear computation contributes to

only a small portion of the total cost, it does not significantly affect the overall performance

gain of GALA that focuses on accelerating the linear computation. Note that GALA does

not benefit much in the first layer of AlexNet, i.e., the first convolution, as the input has

only three channels. However, the speedup for the following more costly convolutions allows

GALA to effectively reduce the overall cost. A similar observation can be seen from the

result on VGG. As for the four ResNets frameworks, the most significant performance gain

stems from the convolution with 1×1 kernels. As ResNets repeat the blocks with multiple

1×1 convolution kernels, GALA effectively accelerates this type of convolution due to its

deeply optimized linear computation mechanism (see details in Section 3.3.2), thus reducing

the overall runtime. The similar trend is observed for DELPHI and CrypTFlow2.

It is also worth mentioning that GALA focuses on optimizing the HE-based linear oper-

ations only and can be integrated into a baseline model (such as GAZELLE, CryptFlow2,

or DELPHI). The proposed approach does not introduce approximation. Hence, it does

not result in any accuracy loss compared to the baseline privacy preserved model. Further-

more, compared with the original plaintext model, the only possible accuracy loss in GALA

comes from the quantification of floating point numbers to fixed point numbers in the HE
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operations. Such quantification is indispensable in all HE-based frameworks including Crypt-

Flow2. From our experiments, the model accuracy loss due to quantification is negligible, as

shown in Table 15.

3.6 CHAPTER SUMMARY

This chapter has focused on a deep optimization on the HE-based linear computation in

privacy-preserving neural networks. It aims to minimize the Perm operations, thus substan-

tially reducing the overall computation time. To this end, we have proposed GALA: Greedy

computAtion for Linear Algebra, which views the HE-based linear computation as a series of

Homomorphic Add, Mult and Perm operations and chooses the least expensive operation in

each linear computation step to reduce the overall cost. GALA can be a plug-and-play mod-

ule integrated into HE-based systems to further boost their efficiency. GALA demonstrates

an encouraging runtime boost by 2.5×, 2.7×, 3.2×, 8.3×, 7.7×, and 7.5× over GAZELLE

and 6.5×, 6×, 5.7×, 4.5×, 4.2×, and 4.1× over CrypTFlow2, on AlexNet, VGG, ResNet-18,

ResNet-50, ResNet-101, and ResNet-152, respectively.
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CHAPTER 4

OBSCURE COMPUTATION WITH PIGGYBACK

PROPAGATION IN PPDL

Recall from Section 2.1 that one layer of the CNN model includes linear and nonlin-

ear computation. A deep optimization for the privacy-preserving linear computation, i.e.,

GALA, is presented in the previous chapter, which has demonstrated noticeable perfor-

mance improvement over various DL models. In this chapter, we explore the optimization

for a whole layer by replacing the GC-based nonlinear calculation with a newly-designed joint

linear and non-linear computation based on the Homomorphic Secret Sharing. Furthermore,

it expands the forward computation to enable backward propagation with a piggyback de-

sign that carefully devises the share set and integrates the dataflow of the whole training

process. As such, we propose SecureTrain that achieves an inference speedup as high as 48×

compared with state-of-the-art inference frameworks. The rest of this chapter is organized

as follows. Section 4.1 details the motivation of SecureTrain. Section 4.2 introduces the

primitives that SecureTrain is based on. Section 4.3 describes the design details of Secure-

Train. Section 4.4 presents the security analysis of SecureTrain. The experimental results

are illustrated and discussed in Section 4.5. Finally, Section 4.6 concludes this chapter.

4.1 MOTIVATION

The success of DL relies on three core elements: massive computing power, expertise

to construct good DL models, and large datasets for model training [15, 16, 142]. It is

common that the entities possessing data are different than the organizations that own

the computing power and DL expertise. For example, end users, enterprises, and regional

Internet Service Providers (ISPs) possess a large volume of data, while the DL talent and
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computing power are mostly gathered in technology giants such as Google and Microsoft.

The former has a strong motivation to utilize the computing power and DL talent of the

latter to solve challenging problems in networks, e.g., to optimize network design. However,

a fundamental challenge is data privacy. For example, those data can have precious business

value and need to be protected. Moreover, they can be sensitive and protected by laws

from disclosure [33,41,107,108,143–145]. To this end, there has been a great interest in the

research community to develop privacy-preserving DL systems, such as the CryptoNets [78],

SecureML [3], MiniONN [65], EzPC [132], and Xonn [76].

Fig. 12 illustrates a privacy-preserving DL system to provide real-time, networked diag-

nosis to patients who are covered by Wireless Body Area Networks (WBANs). Each patient

is monitored by various sensors, such as the ear tempetature sensor, electrocardiograph and

pulse oximeter. The health data of patients, e.g., temperature, heart rate and blood oxygen,

is collected by WBANs and reported to a health provider such as a hospital. The latter sends

the health data to a server in a cloud (e.g., the Microsoft cloud), which hosts a trained DL

model to provide the health diagnosis service. To protect the privacy of sensitive data, the

health provider (as a client) encrypts the data before sending to the server. The encrypted

data is processed by the server on the crypto domain, and the diagnosis result, which is

also on the crypto domain, is returned to the client. The client decrypts the result into

plaintext, and uses it for better patient treatment. Data privacy is fully protected in this

process by the underlying encryption scheme, such that sensitive patient information is not
Client Server

Neural network

Tumor

Sensitive data

Private prediction

CT scan

Health
provider Server

Neural networkSensitive data

Private prediction

Temperature
Heart rate

Blood oxygen

Health
diagnosis 

Wireless body 
area network

Figure 12. A framework of privacy-preserving inference.
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leaked. Furthermore, the privacy-preserving DL system also aims to protect the intellectual

property of the DL model on the server to ensure the users (such as health care providers)

cannot learn the server’s proprietary model.

While there has been good progress on privacy-preserving DL, the current systems are

primarily designed for inference only, and face great challenges for model training. Due to the

intractability of privacy-preserving non-polynomial computation (e.g., softmax), the current

approaches have chosen to approximate the non-polynomial functions to enable computa-

tion over the crypto domain. However, such approximation comes with a price that leads

to the drop of system accuracy [1, 2, 146]. Moreover, applying it to model training (back

propagation) results in unwarranted stability [3–6]. Although one can infinitely approximate

a function to alleviate those problems, e.g., using piece-wise linear functions, the resultant

large-size approximation function hinders the system efficiency and usability. Furthermore,

the current systems use a large number of Homomorphic permutation operation (Perm) to

achieve inference over the crypto domain, since it is needed to compute the weighted sum

and convolution, two critical operations in DL. As discussed in 2.3.1, the Perm operation is

time-consuming, which hinders the system efficiency of current systems.

In this chapter, we propose a novel framework, called secure model training (Secure-

Train), to address the two fundamental challenges faced by privacy-preserving DL model

training: (1) model accuracy loss and training instability due to use of function approx-

imation, and (2) computation efficiency. The overarching goal is to eliminate the use of

function approximation to carry out training without accuracy loss and instability, and re-

duce the use of Perm operation to improve computation efficiency. First of all, in order

to achieve approximation-free computation, SecureTrain features an innovative design that

enables joint linear and non-linear computation based on the Homomorphic Secret Sharing

(HSS) [147–149]. Second, it eliminates the time consuming Perm operations by carefully

designing the share set. Moreover, SecureTrain exploits the data flow in both forward and

back propagation to enable an efficient piggybacking, thus further accelerating the overall
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Table 16. Key notations.

Symbol Definition

C/S Client/Server

x Input data from client

w/b Initial model weight and bias

wC/wS Weight share at client/server

wC1/w
C
2 Weight shares of wC

bC/bS Bias share at client/server

ŵ/b̂ Updated model weight/bias

[ ]C/[ ]S Ciphertext encrypted by client/server

z Linear output of neural network

r, r1, r2, h1, h2 Random numbers

δ back propagation error

computation and reducing communication cost.

We analyze the computation and communication complexity of SecureTrain and prove

its security using the standard simulation approach [62, 150]. The proposed SecureTrain is

benchmarked with well-known datasets for both inference and training. For inference, our

results show that SecureTrain not only ensures privacy-preserving inference but also achieves

an inference speedup of 48×, 10×, 7× and 1.3×, respectively, compared with state-of-the-

art privacy-preserving inference systems: SecureML [3], MiniONN [65], EzPC [132], and

Xonn [76]. For training, SecureTrain achieves the training accuracy and stability comparable

to plaintext learning.

4.2 PRELIMINARIES

The system model of SecureTrain includes both MLaaS and training as shown in Figure 1.

We now elaborate the neural network training, and the cryptographic background for HSS.

Table 16 summaries the key notations that we use in the rest of the chapter. Similar to

GALA in Chapter 3, we adopt PHE to enable computation over ciphertext at the server,

and the threat model is semi-honest.
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4.2.1 NEURAL NETWORK TRAINING

A neural network consists of multiple computation layers that represent a complex rela-

tion between the high-dimensional input and the output. Training a neural network is to fit

model parameters to a training dataset. A typical training process consists of both forward

propagation and back propagation. Consider a multiclass classification problem to classify

m-dimension input x = (x1, x2, · · · , xm) into a number of l classes, i.e., yn = (y1, y2, · · · , yl).

Assume that there are totally n layers except for the input layer. wi and bi are the weight

and bias matrices corresponding to the i-th (1 ≤ i ≤ n) layer. Generally, the input x is

denoted as the 0-th layer.

Forward Propagation: The forward propagation calculates weighted-sums1, i.e., dot prod-

uct, layer by layer. The output of the i-th layer is activation ai = f(zi), where zi is

the weighted-sum ai−1wi + bi; f(·) is the activation function, i.e., ReLU. The last layer

adopts the softmax to map a high-dimensional vector into a list of prediction probabilities,

yn = ezn/
∑l

j=1 e
znj , where zn = an−1wn + bn.

Back propagation: Once the forward propagation derives the prediction probability yn,

the distance between the prediction and the true label t = (t1, t2, · · · , tl) is calculated as the

cost. SecureTrain adopts the widely used cross entropy cost function, C = −
∑l

j=1

(
tj ln yj +

(1− tj) ln(1− yj)
)

[15,16,26]. The weight and bias are then updated based on the backward

error propagation as ŵi = wi − η∆wi and b̂i = bi − η∆bi where η is the learning rate. The

gradients ∆wi, ∆bi are calculated as follows,

∆wi = ai−1δi,∆bi = δi, (1)

where δn = yn− t that is based on the cross-entropy cost, δi = δi+1wi+1� ∂ai

∂zi
, and a0 = x.

As for the ReLU, it is straighforward to compute ∂ai

∂zij
= 1 if zij ≥ 0, and ∂ai

∂zij
= 0 otherwise.

Since the learning rate η is a constant pre-determined by the client and server, we simplify

1The convolution operation in Convolutional Neural Network (CNN) can also be transformed into
weighted-sum operation [151].
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the notations for updating the weight and bias as follows, assuming η has been multiplied

into δi,

ŵi = wi − ai−1δi, b̂i = bi − δi. (2)

4.2.2 HOMOMORPHIC SECRET SHARING

In the secret sharing protocol, a value is shared between two parties, such that combining

the two secrets yields the true value. SecureTrain is developed with an efficient secret share

mechanism based on the Homomorphic Secret Sharing (HSS) [147–149]. Specifically, a two-

party HSS scheme for a class of programs P consists of algorithms (Gen, Enc, Eval) with the

following syntax: 1) Gen(1λ): On input a security parameter 1λ, the key generation algorithm

outputs a public key pk and a pair of evaluation keys (ek0, ek1). 2) Enc(pk,x): Given public

key pk and secret input value x, the encryption algorithm outputs a ciphertext ct. 3)

Eval(b, ekb, (ct1, · · · , ctn), P ): On input party index b ∈ {0, 1}, evaluation key ekb, vector

of n ciphertext, a program P ∈ P with n inputs, the homomorphic evaluation algorithm

outputs yb, constituting party b’s share of an output y = P (x).

For different functions (i.e., different programs P ) with different homomorphic encryption

(i.e., the different encryption algorithms Enc(pk,x)), the Eval function should be specifically

designed, which, in our case is to develop the Eval function for the linear and nonlinear

computation in neural networks with the packed homomorphic encryption. Here creative

designs are required to enable its effective application in practice. This is because in many

applications the two parties need to securely obtain x and perform computation on their

respective shares to produce correct results. How to compute x (i.e., construct a set of data

ct1, · · · , ctn) and reconstruct the results (i.e., get the yb) with the Eval function at each

party is non-trivial, particularly for encrypted nonlinear computation in neural networks.
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4.3 SYSTEM DESCRIPTION

A key design challenge to enable secure and privacy-preserving training is to develop a se-

cure training framework that is accurate and efficient. The accuracy is imperative to ensure

the success of training, while the computation efficiency is critical for practical applicability.

In this chapter, we propose a novel secure training framework, SecureTrain, that features

the following design principles. First, SecureTrain is developed based on the Homomorphic

Secret Sharing (HSS) approach [147–149] that enables secure and approximation-free compu-

tation for linear and non-linear functions, in order to achieve stable neural network training

without accuracy loss. Second, SecureTrain is carefully designed according to the neural

network architecture, by piggybacking part of the computation of the back propagation into

the forward propagation, and by combining linear and non-linear computation in both the

forward and back propagation to accelerate the overall computation and minimize the total

communication cost.

4.3.1 SYSTEM OVERVIEW

The proposed SecureTrain framework supports multiple clients to work with a server to

collaboratively train a neural network. The server sequentially interacts with each client to

complete the training process. In the following discussion, we will focus on one client and

one server only. Once the training with one client is finished, the client passes its share of

the neural network model parameters to the next client. Note that the randomness of the

share does not reveal user data or model parameters to the next client.

To start the training process, the weight and bias (i.e., w and b) of each layer are

initialized randomly. Without loss of generality, we consider the operation of one layer in

the neural network in the discussions since the operations of different layers are similar.

Moreover, for the ease of description, we omit the subscript or superscript to denote the

network layer, and simply refer to w and b unless specified otherwise.
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A novel secret share scheme is carefully crafted to protect both the user data and the

neural network model parameters. More specifically, the client C and server S respectively

keep their weight and bias shares wC, wS , bC, and bS , subject to w = wC + wS and

b = bC + bS .

Initially, the client C has the input data and the random share of weights and bias, while

the server S has the other share of weights and bias. During training, the client and server

update their shares of the weights and bias, respectively. Each training round consists of

three stages, namely forward propagation, softmax calculation, and back propagation.

4.3.2 FORWARD PROPAGATION

During the forward propagation, the input data is fed in the forward direction through

the network layers, as introduced in 4.2.1. Each layer takes a vector of data, x, as input

to compute a linear transformation (i.e., the weighted sum, z = xw + b) followed by the

nonlinear activations (i.e., a = f(z)). The output (i.e., the activations a) is then fed to the

next layer, serving as the input to continue the forward propagation. The challenge is how

to perform such computation in a secure and privacy-preserving manner based on the shares

owned by C and S.

The overall design principle of SecureTrain is based on the Homomorphic Secret Sharing

(HSS). In this research, we apply HSS to develop an efficient approach to enable secure

linear and non-linear computation. In particular, the key contribution is to devise innovative

evaluation algorithms, i.e., Eval, based on the HSS masked paring scheme to ensure P (χ),

i.e., the linear and non-linear functions in each layer, can be efficiently reconstructed from

Eval(χ1, P ) and Eval(χ2, P ). The computation in all layers is essentially similar, but the

treatment for the first layer and the rest of layers is slightly different. In the following

discussion, we introduce Layer 1 first and then highlight the difference in computing Layer

k when k ≥ 2.
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Client	(C):	x,	wC,	bC														Server	(S):	wS,	bS
				Output:

Client	(C):	Server	encrypted	non-linear	activation	[f(z)]s		
				Client	(C):

				
Server	(S):			

Non-linear	activation
Linear	weighted	sum

wS,	bS
HSS	based	share	set	X1		

HSS	based	share	set	X2		

x,	wC,	bC

Eval(X2,	f(z))
Eval(X1,	xw+b)

Output:	[f(z)]S	

Input:

Figure 13. Forward propagation.

Calculation for The First Layer

As illustrated in Fig. 13, the input of the first layer is the client’s data x. In order to

protect x, C generates two random vectors x1 and x2 where x = x1 + x2. It also generates

two random numbers r1 and r2. C sends a tuple (r1x1, r2x2) to S. This design is based on the

(t, w)-threshold scheme [61] tailored by data splintering [152]. The detailed security analysis

is given in Appendix A.1. Furthermore, C computes and sends [r2]C, [ r2
r1

]C and [r2(xwC+bC)]C

to S. Hereafter, the subscription [·]C denotes ciphertext encrypted by the client’s private

key, while [·]S denotes ciphertext encrypted by the private key of the server. All encryptions,

unless specified otherwise, are realized by packed HE (e.g., CKKS [53]).

Here (r1x1, r2x2), [r2]C, [ r2
r1

]C, and [r2(xwC + bC)]C form the HSS based share set χ1,

which will be used by S for calculating the linear weighted sum Eval(χ1,xw + b) that will

be introduced next.

Calculation of linear weighted sum at server. The server S has its share of the neural

network model parameters, i.e., wS and bS . Upon receiving (r1x1, r2x2), [r2(xwC + bC)]C,
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[r2]C and [ r2
r1

]C from C, S computes the following:

 r1x1w
S � [ r2

r1
]C = [r2x1w

S ]C,

bS � [r2]C = [r2b
S ]C,

(3)

where ‘�’ denotes element-wise multiplication, which is based on the packed HE if it in-

volves ciphertext2. Then S computes [r2x1w
S ]C + r2x2w

S + [r2b
S ]C = [r2(xwS + bS)]C, and

finally obtains the following which is essentially the weighted sum, but scrambled by r2 and

encrypted by C:

[r2(xwS + bS)]C + [r2(xwC + bC)]C = [r2z]C. (4)

Calculation of non-linear ReLU activation at client. The next step is to calculate

the activation. Here, we focus on ReLU, which is predominantly used in state-of-the-art

deep neural networks due to its superior performance [15]. S cannot perform the non-linear

activation calculation directly by HE. A naive approach is to let S send [r2z]C to C, which

then recovers z and calculates the ReLu function. However, releasing the weighted sum z to

C can leak the model parameters as shown in [90,107].

To securely perform the activation calculation, S scrambles each element in r2z by a

random vector vS :

[r2z]C � vS = [r2z � vS ]C. (5)

Meanwhile, S generates a vector uS satisfying uS � vS = {1}, and constructs two vectors

g1 and g2 with the same dimension as z:

g1 = [g11, g12, · · · , g1j, · · · ],

g2 = [g21, g22, · · · , g2j, · · · ],

2The addition between two ciphertext (or between one ciphertext and one plaintext) is also in element-wise
manner.
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where (g1j, g2j) is a pair of polar indicators, given below:

(g1j, g2j) =

 (0, uSj ), if vSj > 0,

(uSj ,−uSj ), if vSj < 0.
(6)

S encrypts g1 and g2 into [g1]S and [g2]S , and sends them along with [r2z � vS ]C to C.

These three items form the HSS based share set χ2, which will be used by C for calculating

the non-linear ReLU activation Eval(χ2, f(z)). Note that, [g1]S and [g2]S can be transmitted

offline since g1 and g2 are pre-generated by S. Upon receiving the inputs from S, C first

obtains y = z� vS by decrypting [r2z� vS ]C and canceling the r2 term. We now show how

the client C can compute ReLU based on y, [g1]S and [g2]S .

Lemma 1 ): [g1]S�y + [g2]S � f(y) recovers the server-encrypted true ReLU function

outcome, i.e., [f(z)]S .

Proof. If C had the true weighted sum outcome, i.e., z, the corresponding ReLU function

would be calculated as follows:

f(zj) =

 zj, if zj ≥ 0

0, if zj < 0,
(7)

for each element zj in z, as introduced in 4.2.1.

However, C only has yj = vSj × zj. Since vSj is a random number that could be positive

or negative, it is infeasible to obtain the correct activation directly. Instead, C computes

[g1]S � y + [g2]S � f(y). (8)

Since yj = vSj × zj, f(yj) may yield four possible outputs, depending on the signs of vSj
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and zj.

f(yj) =



yj, if vSj > 0 & zj > 0

yj, if vSj < 0 & zj < 0

0, if vSj > 0 & zj ≤ 0

0, if vSj < 0 & zj ≥ 0.

(9)

For example, when vSj > 0 and zj > 0, we have g1j = 0 and g2j = uSj according to Eq. (6).

Therefore,

[g1j]S � yj = [0]S , [g2j]S � f(yj) = [uSj × vSj × zj]S .

Note that we have chosen vSj u
S
j = 1. Therefore, Eq. (8) should yield [zj]S . This is clearly the

server-encrypted ReLU output, i.e., the correct result of [f(zj)]S . Similarly, it can be shown

that Eq. (8) always produces the server-encrypted ReLu outcome for other cases of vSj and

zj in Eq. (9). The lemma is thus proven. �

By Lemma 1, C has successfully obtained [f(z)]S . This ends the computation in the first

layer.

Calculation for the k-th Layer (2 ≤ k ≤ n)

In a neural network, the activations will be fed into the next layer as the input to continue

the forward propagation. So, we essentially want to let x = f(z) and repeat the calculations

discussed above for all layers.

However, we are facing a new challenge because C only has the encrypted [f(z)]S , but

not the plaintext data as in the first layer. C could still let x = [f(z)]S . As discussed in the

first layer, it is not an option to provide x directly to S, since S would recover f(z) and

accordingly derive the user data [41,90,107]. As a result, C generates two shares, x1 and x2

where x1 is a random vector and x2 = x−x1, as discussed before. Note that, x2 is essentially

encrypted by S since x is in the PHE domain. This leads to a fundamental challenge in

calculating r2(xwC + bC), because it would require a vector multiplication namely the dot
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product, which is computationally expensive in the PHE domain as discussed in 3.1. This

renders it impractical to implement the envisioned secure training framework for modern

neural networks.

We take a different approach by again adopting the (t, w)-threshold splintering strategy.

More specifically, C constructs the tuple (h1w
C
1 , h2w

C
2 ), where wC1 + wC2 = wC, and h1 and

h2 are two random numbers. It sends the tuple along with [ 1
h1

]C and [ 1
h2

]C to S. Similar to

the discussion for the first layer, C also sends (r1x1, r2x2), [r2(x1w
C + bC)]C, [r2]C and [ r2

r1
]C

to S. The above two tuples and five ciphertext form the HSS based share set χ1, which will

be used by S for calculating the linear weighted sum Eval(χ1,xw + b).

Upon receiving the inputs from C, S performs the following calculation using the received

two tuples and five ciphertext:

• Similar to the discussion in the first layer, S computes r1x1w
S � [ r2

r1
]C = [r2x1w

S ]C.

• Similar to the first layer, S computes r2x2w
S .

• Similar to the first layer, S computes bS � [r2]C = [r2b
S ]C.

• S computes r2x2h1w
C
1 � [ 1

h1
]C = [r2x2w

C
1 ]C.

• S computes r2x2h2w
C
2 � [ 1

h2
]C = [r2x2w

C
2 ]C.

Summing up the above five terms along with [r2(x1w
C+bC)]C received from C, S obtains

the following:

[r2(x1w
C + bC)]C + [r2x1w

S ]C + r2x2w
S

+[r2x2w
C
1 ]C + [r2x2w

C
2 ]C + [r2b

S ]C

= [r2(xw + b)]C = [r2z]C.

(10)

Thus, S has obtained the weighted sum that is scrambled by r2 and encrypted by C.

This is the same as Eq. (4) introduced in the first layer. The same method can be applied

to continue the calculation of the non-linear activation. The process repeats until it reaches

the last layer, which is followed by softmax to be discussed next.
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Figure 14. Softmax calculation.

4.3.3 SOFTMAX CALCULATION

After S obtains the masked weighted sum [r2z]C for the last layer, it starts to calculate

the non-linear softmax function for back propagation. As discussed in 4.1, softmax is critical

to the training process.

It is fundamentally challenging to efficiently calculate softmax under the secure training

framework because the two mainstream approaches for secure computation (i.e., HE and

GC) have limitations to calculate non-linear functions as discussed in 1.2. Fig. 14 illustrates

the softmax calculation under the secure training framework. The goal is to let C and S

each obtain a secret share of the true softmax value, i.e., ez∑l
j=1 e

zj
.

In order to precisely and securely calculate the softmax shares, random vectors are

introduced at three occasions to protect the true value of z. First, S generates a random

vector dS with the same dimension as z, and constructs [e−dS ]S which will be used for noise

cancellation later. Recall that S has obtained [r2]C from C in the forward propagation, so S

can compute

[r2z]C + dS � [r2]C = [r2(z + dS)]C, (11)
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where z is scrambled by dS , and thus even C decrypts the above, it would not know z. S

sends both [r2(z+dS)]C and [e−dS ]S to C. The above two ciphertext form the HSS based share

set χ1, which will be used by C for calculating the non-linear softmax Eval(χ1,
ez∑l

j=1 e
zj

).

Upon receiving them, C decrypts the former and cancels r2 to obtain z + dS , and then

computes the following:

re(z+dS) � [e−dS ]S + o = [rez + o]S , (12)

where r is a random number and o is a random zero-sum vector with
∑l

j=1 oj = 0. r and o

are introduced here to protect z. C further generates a random vector dC and computes:

dC � e(z+dS), (13)

where dC is introduced to protect z. C sends the results of Eqs. (12) and (13) to S, which

form the HSS based share set χ2 that will be used by S for calculating the non-linear softmax

Eval(χ2,
ez∑l

j=1 e
zj

).

S decrypts [rez + o]S to obtain rez + o, and subsequently sums up all elements of the

vector to compute r
∑l

j=1 e
zj . At the same time, since S has dS , it obtains dC � ez by

cancelling edS in Eq. (13). Therefore, S computes its softmax share as follows:

dC � ez

r
∑l

j=1 e
zj
. (14)

Meanwhile, C constructs r
dC

as its share of softmax. Clearly, the true softmax value can

be recovered by multiplying the two shares:

dC � ez

r
∑l

j=1 e
zj
� r

dC
=

ez∑l
j=1 e

zj
.

The shares at C and S serve as the input for back propagation.
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Figure 15. Back propagation diagram.

4.3.4 BACK PROPAGATION

As introduced in 4.2.1, the back propagation begins from the last layer to recursively

update the network parameters. The weights and bias in the i-th layer are updated as

follows where x is the activation from the previous layer, and w, b, and δ are the weight,

bias and error in the current layer.

ŵ = w − xδ, b̂ = b− δ, (15)

Fig. 15 shows the back propagation. According to Eq. (15), the weight w, bias b and

error δ in the current layer, as well as non-linear activation x in the previous layer are needed

to update the weight and bias for the current layer. As discussed earlier, w, b and x are

shared between C and S as wC, bC, r1x1 and wS , bS , r2x2, respectively.
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Update of Weight/Bias in the Last Layer

In order to update the weights and bias for the last layer, we first introduce how to

calculate δ. Recall that, after the softmax calculation, C and S respectively have the

shares r
dC

and dC�ez
r
∑l

j=1 e
zj

. For back propagation, C sends [ r
dC

]C and [t]C to S (piggybacked

to the transmission of the results of Eqs. (12) and (13)), where [t]C is the C-encrypted label

vector. S computes the following C-encrypted ciphertext, i.e., [δ]C, which essentially shows

the difference between the output of softmax and the label vector:

dC � ez

r
∑l

j=1 e
zj
� [

r

dC
]C − [t]C = [

ez∑l
j=1 e

zj
− t]C = [δ]C. (16)

Next, three steps are followed within one communication round to update the weights

and bias at C and S.

Step 1: Bias Share Update at S. Once S obtains [δ]C by Eq. (16), it generates

its share of δ as a random vector δS and updates its bias share by b̂S = bS − δS . Note

that this update involves no communication as δS is self-generated by S. Meanwhile, four

ciphertext are created by S, which form the HSS based share set χ1 and will be used to

update weights and bias shares at C. The first ciphertext is the other share of δ for C:

[δ]C − δS = [δ − δS ]C = [δC]C. The second ciphertext is generated by masking δ element-

wisely with a random noise vector lS : [δ]C � lS = [δ � lS ]C.

The third ciphertext, [−−→r2x2]S , is transformed and encrypted by S based on r2x2, which

is the share of S for the activation function in the previous layer. As to be introduced in

Step 2, C will need to compute the arithmetic multiplication (dot product) between r2x2 and

δ� lS . However, the arithmetic multiplication is computationally expensive if directly done

in HE as discussed in 3.1. The transformation converts it into element-wise multiplication,

which is significantly more efficient for HE computation. As illustrated in the figure below,

the transformation essentially expands the original vector r2x2 to a matrix (−−→r2x2) by row

filling, i.e., duplicating the element of each row, such that the dot product can be realized



74

by element-wise multiplication. The fourth ciphertext, [
−→
lS ]S , is transformed and encrypted

by S according to lS . It is generated in a way similar to the third ciphertext, but by column

filling, i.e., duplicating the element of each column of lS .

=

r2 x2

l

Dot product

r2 x21l1 1 r2 x21l2 2 r2x21l3 3

r2x22l1 1 r2x22l2 2 r2x22l3 3

r2x23l1 1 r2x23l2 2 r2 x23l3 3

r2x24l1 1 r2x24l2 2 r2x24l3 3

r2x21

r2x22

r2x23

r2x24

l1 1 l2 2 l3 3

r2x21 r2x21 r2x21

r2x22 r2x22 r2x22

r2x23 r2x23 r2x23

r2x24 r2x24 r2x24

l1 1

l1 1

l1 1

l1 1

l2 2

l2 2

l2 2

l2 2

l3 3

l3 3

l3 3

l3 3

r2 x2 

S

l
S

Step 2: Weight/Bias Share Update at C. Upon receiving the four ciphertext gen-

erated by S, C decrypts [δC]C and [δ � lS ]C. Note that since δ is perturbed by lS , C cannot

deduce δ. Then, C updates its bias share as:

b̂C = bC − δC. (17)

C generates a random matrix ∆C and updates its weight share as

ŵC = wC −∆C. (18)

We will show later that the shares at C and S together result in a correct update of the

weights and bias of the neural network.
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C then calculates two terms that will enable S to update its weight share in Step 3.

Specifically, the first term is

x1(δ � lS). (19)

The second term is

[−−→r2x2]S �
−−−→
δ � lS , (20)

where
−−−→
δ � lS is transformed from δ� lS by column filling as illustrated in the former figure.

As C has r2, it can cancel r2 to obtain

[−→x2 �
−−−→
δ � lS ]S . (21)

Adding Eq. (19) and Eq. (21) results in

x1(δ � lS) + [−→x2 �
−−−→
δ � lS ]S = [x(δ � lS)]S ,

where x = x1 + x2 as discussed in 4.3.2.

Finally, C calculates the corresponding weight share for S as:

[x(δ � lS)]S −∆C � [
−→
lS ]S = [x(δ � lS)−∆C �

−→
lS ]S , (22)

which forms the HSS based share set χ2 and is then sent to S for weight update in Step 3.

Step 3: Weight Share Update at S. By decrypting the ciphertext from Eq. (22),

S gets x(δ � lS)−∆C �
−→
lS . As lS is known by S, it can be cancelled, yielding xδ −∆C. S

finally updates its weight share by

ŵS = wS − (xδ −∆C). (23)
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It is easy to verify that the sum of updated weight and bias at C and S are

b̂C + b̂S = b− δ and ŵC + ŵS = w − xδ,

which are exactly the updated weights and bias as shown in Eq. (15). By now the update

of weights and bias at C and S is completed for the last layer. The communication is within

one round.

Update of Weight/Bias in the k-th Layer (k ≤ (n− 1))

The back propagation in the k-th layer is very similar to that in the last layer as

introduced above. The only difference is the calculation of [δ]C. In the last layer,

[δ]C = [ ez∑l
j=1 e

zj
− t]C as shown in Eq. (16), which is simply the difference between the

output of softmax and the label vector. In the k-th layer, [δ]C depends on the derivative of

the activation function, i.e., ∂x
∂z

. More specifically, δ in the k-th layer should be computed

as:

δ = δ̊ẘ � ∂x
∂z

= (̊δC + δ̊S)(ẘC + ẘS)� ∂x
∂z
,

where ẘ and δ̊ are the weight and error of the (k + 1)-th layer, while ∂x
∂z

is the derivative of

the current layer’s activation function.

The key challenge is to securely compute the derivative. This can be achieved by em-

bedding the computation into the forward propagation. Recall that [g1]S and [g2]S have

been introduced in the forward propagation to enable C to obtain the S-encrypted ReLU by

Eq. (8). To compute the derivative, S introduces another vector g3 and sends [g3]S to C,

where

g3j =

 0, if vSj > 0

1, if vSj < 0.
(24)

Accordingly, while C calculates the S-encrypted ReLU by Eq. (8), it also computes the
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S-encrypted ReLU derivative as follows:

f ′R(y) + (1− 2f ′R(y))� [g3]S , (25)

where y is the masked weighted sum as discussed in 4.3.2 and f ′R(yj) denotes the derivative

of ReLU, which is 1 if yj > 0 or 0 otherwise as introduced in 4.2.1.

Lemma 2 ): Eq. (25) yields the S-encrypted ReLU derivative, i.e., [∂x
∂z

]S .

Proof. If vSj > 0, then g3j = 0 and accordingly Eq. (25) results in [f ′R(yj)]S . Since yj = vSj ×zj

and vSj > 0, it is straightforward to show that f ′R(yj) = f ′R(zj). Therefore, Eq. (25) yields

the S-encrypted ReLU derivative. On the other hand, if vSj < 0, we have g3j = 1, and thus

Eq. (25) results in [1 − f ′R(yj)]S . It is again easy to show that f ′R(yj) = 1 − f ′R(zj) when

vSj < 0. Therefore, Eq. (25) still yields the S-encrypted ReLU derivative. �

Till now, C has obtained the ReLU derivative in a way piggybacked to the forward propa-

gation with marginal computation cost. A secret share approach can then follow to compute

the back propagation using a method similar to the last layer as discussed in Sec. 4.3.4. The

detailed design is presented in Appendix A.2.

4.3.5 COMPLEXITY ANALYSIS

The computation and communication complexities in a layer of SecureTrain are sum-

marized in Tables 17 and 18, where ni is the input dimension at a layer; no is the output

dimension; ns is the number of slots in a CKKS ciphertext; sc is the size of a CKKS cipher-

text in bit; and sp is the size of a plaintext value in bit. We assume ns � ni, no, which is

also adopted in [64].

The detailed analysis can be found in Appendix A.3. Table 17 summarizes the compu-

tation complexity of SecureTrain in the forward propagation (i.e., inference), softmax, and
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Table 17. Computation complexity.

Methodology Perm Mult Add

Halevi-Shoup [138] O(ni) O(ni) O(ni)

GAZELLE [64] O(log ns

no
+ nino

ns
) O(nino

ns
) O(log ns

no
+ nino

ns
)

SecureTrain(Inf.) 0 O(1) O(1)

SecureTrain(Sof.) 0 O(1) O(1)

SecureTrain(Bac.) 0 O(nino

ns
) O(nino

ns
)

Table 18. Communication complexity in each part.

Comput. part Commu. cost in bit Commu. round

Forward Prop. 8sc + 2nisp(1 + no) 1

Softmax 3sc + nosp 1

Backprop. 4nosp + (11 + 3nino

ns
)sc 1

back propagation. It also compares with classic methodology in [138] and the state-of-the-art

approach in GAZELLE [64]. Note that [138] and [64] focus on inference only. SecureTrain

reduces the layer-wise forward calculation to constant complexity by integrating secret-share-

based plaintext calculation and the HE-based non-permutation computation. It is worth

pointing out that SecureTrain finishes the linear and non-linear calculation for each layer

with above complexity while [138] and [64] only compute the linear part. Meanwhile, we

give the analytical communication complexity of SecureTrain in Table 18. The quantitative

performance comparison is given in 4.5.

4.4 SECURITY ANALYSIS

We prove the security of SecureTrain using the simulation approach [62]. Specifically, the

semi-honest adversary A can compromise any one of the client or server, but not both (i.e.,

the client and server do not collude). Here, security means that the adversary only learns
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the inputs from the party that it has compromised, but nothing else beyond that. It is

modeled by two interactions. The first is an interaction in the real world that parties follow

the protocol in the presence of a simulator sim which constructs the messages to the target

parties, based on their inputs and randomness; the second is an ideal interaction that sim

forward inputs of target parties to a functionality machine F that acts as the Trusted Third

Party (TTP). To prove security, we demonstrate that no simulator sim can distinguish the

real and ideal interactions. In other words, we want to show that the real-world simulator

achieves the same effect in the ideal interaction.

(1) Security against a semi-honest client. We define a simulator sim that simulates an

admissible adversary A which has compromised the client in the real world. As for forward

propagation (see Figure 13), sim conducts the following: 1) receives from client the HSS

based share set χ1; 2) sends χ1 to F and receives the HSS based share set χ2, including

three ciphertext (see from Eq. (5)); 3) constructs another HSS based share set χ̃1, which

has the same data structure as χ1; and 4) sends χ̃1 to S and receives the HSS based share

set χ̃2. Here, χ̃2 is indistinguishable from χ2 due to the randomness of vS in Eq. (5)3 and

the security of CKKS. Thus the forward propagation is secure against a semi-honest client.

In softmax calculation as shown in Figure 14, sim conducts as follows: 1) abstracts the

randomness of client and forms a random number r and a random vector dC; 2) sends r

and dC to F and receives the HSS based share set χ1, including two ciphertext (see from

Eq. (11)); 3) constructs another random number r̃ and random vector d̃C, which have the

same structure as r and dC; and 4) receives from S the HSS based share set χ̃1. Here χ1

is indistinguishable from χ̃1 due to the randomness of dS in Eq. (11) and the security of

CKKS. Thus the softmax calculation is secure against a semi-honest client.

In back propagation as shown in Figure 15, sim conducts as follows: 1) abstracts the

randomness of client and forms the random matrix ∆C; 2) sends ∆C to F and gets HSS

3The approximation calculation in CKKS makes the linear result z non-zero with high probability, thus
the randomness of vS makes z always blind to client.
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Table 19. Inference performance comparison.

Framework Runtime (s) Communication Accuracy (%)

SecureML [3] 4.88 - 93.1

Minionn [65] 1.04 15.8MB 97.6

EzPC [132] 0.7 76MB 97.6

Xonn [76] 0.13 4.29MB 97.6

SecureTrain 0.1 1.89MB 97.6

based share set χ1; 3) constructs another random matrix ∆̃C; and 4) receives from S the

HSS based share set χ̃1. Here χ̃1 is indistinguishable from χ1 due to randomness of δS and

lS , and the security of CKKS.

Furthermore, the calculation for [δ]C is piggybacked in the weight/bias update for the

previous layer to enable the next round of weight/bias update. In such case, sim conducts as

follows: 1) abstracts the randomness of client and forms a random vector pC; 2) sends pC to F

and gets a ciphertext according to Eq. (33) and a plaintext tuple (r3δ
S
1 , r4δ

S
2 ); 3) constructs

another random vector p̃C; 4) receives from S the ciphertext [g3]S and calculates the ReLU

derivative by Eq. (25); 5) calculates a ciphertext [p̃S ]S by Eq. (32) and sends [p̃C]C and [p̃S ]S

to S; and 6) receives from S the ciphertext of Eq. (33) and the plaintext tuple with the same

structure as (r3δ
S
1 , r4δ

S
2 ). Here the ciphertext in step 2) are indistinguishable from these in

step 6) due to the randomness of qS . The plaintext tuple in step 2) is also indistinguishable

from the one in step 6) due to randomness of δ̊S . Thus, the back propagation is secure

against a semi-honest client.

(2) Security against a semi-honest server. The proof is similar to the security against a

semi-honest client, as detailed in Appendix A.4.

4.5 PERFORMANCE EVALUATION

We implement SecureTrain using a C++ backend. The source code is published at
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Figure 16. Performance comparison for ReLU calculation: (a) Runtime and (b) Communi-
cation cost with different output dimensions.
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Figure 17. Comparison of the last layer output of different approximations over 10 epochs:
(a) Piecewise linear approximation [1]; (b) Maclaurin approximation [2]; (c) ReLU based
softmax approximation [3, 4]; (d) ReLU based sigmoid approximation [5]; (e) Polynomial
based sigmoid approximation [6]; (f) Non-approximation in SecureTrain.

GitHub4. Both the client and server run Ubuntu and have an Intel i7-8700 3.2GHz CPU

with 12 threads and 16 GB RAM. The network link between them is a Gigabit Ethernet. This

experiment setting is similar to the ones adopted in existing works such as [76]. The Microsoft

SEAL package is used for HE computation [136]. The CKKS scheme is adopted in Secure-

Train. Note that CKKS directly supports floating point encryption/decryption/operations.

That is, it does not need to encode floating point numbers in NN computation into inte-

gers for encryption/decryption as many other encryption schemes. The five parameters of

4https://github.com/ChiaoThon/SecureTrain
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CKKS, i.e., the polynomial modulus degree, coefficient modulus size, noise standard devi-

ation, number of slots in the ciphertext, and the precision of floating point in bits, are set

as 8192, 200, 3.2, 4096, and 40, respectively. Such parameter selection can guarantee the

correct decryption of the 0-multiplicative-depth ciphertexts in SecureTrain (e.g., the ran-

domized ciphertexts from server in Eq. (5)) on the crypto domain, as demonstrated in the

SEAL library [136]. We test SecureTrain on the widely used MNIST dataset [140] with 60K

training images and 10K testing images. We adopt a classic neural network model that has

been widely used in previous works including SecureML [3], GELU-Net [90], CryptoDL [6],

SecureNN [4] and ABY [5]. It includes four layers including two hidden layers. The input

dimension is 784 which corresponds to the total number of pixels in a MNIST image. The

dimension for two hidden layers is 128. The output dimension is 10 which corresponds to 10

digit classes of the MNIST dataset.

4.5.1 PERFORMANCE IN INFERENCE

SecureTrain is able to conduct both inference and training. We first look at the inference

performance compared with four state-of-the-art privacy-preserving inference frameworks.

Table 19 illustrates their inference performance including the runtime, communication cost,

and the inference accuracy. The runtime is the duration from the moment when the client

sends an image to the server, to the moment when the client receives the inference result

from the server. SecureTrain achieves an inference speedup of 48×, 10×, 7×, and 1.3×,

respectively, compared with SecureML [3], MiniONN [65], EzPC [132], and Xonn [76]. Se-

cureTrain achieves the same inference accuracy, 97.6%, as Minionn, EzPC and Xonn. With

regard to the communication cost, SecureTrain outperforms other schemes by 2× to 40×.

This is because all those schemes adopted GC for non-linear activation calculations, while

SecureTrain uses a highly efficient approach based on HSS.

Next, as shown in Figure 16, we illustrate the performance gain of SecureTrain in non-

linear computation by comparing the performance of ReLU calculation using GC and the
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Figure 18. Training loss and testing accuracy: (a) Loss during training and (b) Testing
accuracy with different approximation approaches. The softmax is non-approximation in
SecureTrain while [3, 4] are with ReLU based softmax approximation, [2] is with Maclaurin
approximation, [1] is with Piecewise linear approximation, [6] is with Polynomial based
sigmoid approximation, and [5] is with ReLU based sigmoid approximation.

scheme used by SecureTrain. Specifically, the SecureTrain scheme saves time about two

orders of magnitude compared with GC. In these cases, the runtime of GC ranges from 50

to 171 milliseconds while the SecureTrain scheme can complete it for around 0.4 millisecond.

The communication cost reduction reaches up to one order of magnitude, thanks to both

significantly reduced computation complexity and the scalability of data processing of the

packed HE technique.

4.5.2 PERFORMANCE IN TRAINING

In neural network training, a critical step is the computation of softmax, which is needed

by the backpropagation. It is more difficult than other nonlinear functions, due to the specific

form of the function which involves the exponential normalization of the input. The existing

schemes mainly use approximation, e.g., the piecewise linear sigmoid5 approximation [1],

5This function with the form f(x) = 1
1+e−x is adopted to approximate the softmax for the last layer.
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Maclaurin sigmoid approximation [2], polynomial sigmoid approximation by CryptoDL [6],

ReLU based sigmoid approximation by ABY [5], and ReLU based approximation by SecureML

[3] and SecureNN [4]. Note that the first four schemes did not directly approximate the

softmax function, but used an approximated sigmoid to substitute the softmax function.

Figs. 17(a)–(f) illustrate the training output over 10 epochs by the above five approxima-

tion approaches compared with SecureTrain that implements the original softmax function.

Each row in a subfigure is the output vector corresponding to the 10 digit classes at a given

epoch by the corresponding approach, while each column is the output value for a given class

over 10 epochs. The training image is a digit ‘7’. Fig. 17(f) indicates that the training using

SecureTrain that implements the original softmax function efficiently learns the input fea-

ture even at the early epochs, with a dominant value in the 8-th column (which corresponds

to the class ‘7’) and much smaller values in other columns. In contrast, all five approxi-

mation approaches (Fig. 17(a)–(e)) have poor performance. Among them, the piecewise

linear approximation (Fig. 17(a)) performs better and converges, while other approximation

approaches cannot learn the input feature ‘7’ well and do not converge.

Next we examine the overall training loss and testing accuracy, as illustrated in Fig. 18.

Among the approximation approaches, the piecewise linear approximation has a converged

training loss. However, there is still a significant performance gap compared with Secure-

Train, which converges significantly faster and achieves a 93.17% testing accuracy after 10

epochs. Other approximation approaches cannot even converge and have a poor testing

accuracy. Fig. 18(a) illustrates that these approximation approaches have an unstable loss.

ReLU based sigmoid approximation and Maclaurin approximation have about 10% accuracy,

which is equivalent to a random guess, and indicates the trained models actually have not

learned the features effectively. The polynomial based sigmoid approximation has an almost

flat loss curve and a poor 10% accuracy, which indicates the model does not become better

with the training. This happens when the input has a relatively wide range, which results

in the polynomial approximation significantly deviating from the original softmax function.
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To examine the training stability of each approximation approach, we train the network

500 times using each approach, and record the loss and testing accuracy for each experiment.

Fig. 19 plots the probability density distribution (PDF) of the loss from the 500 experiments.

While SecureTrain keeps the training loss around 0.23, the approximation based approaches

have large loss. This indicates the poor training stability of those approaches. The polyno-

mial based sigmoid approximation has a loss around 2.3. While it is relatively small, the

problem of this approach is that the loss does not reduce or converge throughout the training

process. Fig. 20 plots the PDF of the testing accuracy over the 500 trainings for each ap-

proach. The testing accuracies of SecureTrain are all very close, centering around 93%. The

piecewise linear approximation has an accuracy of around 73% to 77%. In contrast, other

approximations have highly diverse accuracies among different experiments. This again in-

dicates the poor training stability. The polynomial based sigmoid has a consistently poor

accuracy around 10%, as the training process does not really converge. In summary, the

training by SecureTrain is consistently stable, and the accuracy is much better than the

approximation based approaches.

Next, we explore the performance under different network structures. We change the

number of hidden neurons in each hidden layer from as small as 8 to 1024, where 1024 is

widely used in modern neural network structures. All network structures are trained for

10 epochs. Fig. 21 illustrates the output distribution of SecureTrain and the five approxi-

mation approaches, as a function of the number of neurons in the hidden layer. Each row

in a subfigure is the 10-dimension output vector for a network with the given number of

hidden neurons. As can be seen, SecureTrain effectively learns the data feature under dif-

ferent network structures, which has a large output value for class ‘7’ (corresponding to

the 8-th column in the subfigure). Among the approximation schemes, the piecewise linear

approximation performs relatively better than others. Nevertheless, it still has a significant

performance gap compared with SecureTrain. It needs 128 or more hidden neurons to effec-

tively recognize the input image. The remaining approximation approaches show unstable
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Figure 22. Training loss of different network structures under different approximations:
(a) Piecewise linear approximation [1]; (b) Maclaurin approximation [2]; (c) ReLU based
softmax approximation [3, 4]; (d) ReLU based sigmoid approximation [5]; (e) Polynomial
based sigmoid approximation [6]; (f) Non-approximation in SecureTrain.

output distributions under different network structures. This illustrates the instability of

these approximations as they work for certain network structures, but do not achieve the

consistent stability for general larger networks.

Fig. 22 plots the training loss over 10 epochs under different network structures. We
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(a) Piecewise linear approximation [1]; (b) Maclaurin approximation [2]; (c) ReLU based
softmax approximation [3, 4]; (d) ReLU based sigmoid approximation [5]; (e) Polynomial
based sigmoid approximation [6]; (f) Non-approximation in SecureTrain.

have the following observations: 1) the piecewise linear approximation approach performs

better with a larger network (more hidden neurons); 2) the loss of the Maclaurin based

approximation increases under all network settings; 3) the ReLU based approximation ap-

proach has loss decreasing for the network with 128 hidden neurons, while the loss bumps

up and down or stays flat for all other networks; 4) the ReLU based sigmoid approximation

approach performs similarly as the ReLU based approximation approach; 5) the loss of the

polynomial based sigmoid approximation stays flat or decreases slightly (by about 10−5

for 10 epochs), which is technically not trainable. In contrast, SecureTrain converges for all

network structures at a fast pace, thanks to its novel implementation of the original softmax.

The testing accuracies under different network structures for each approach are illustrated

in Fig. 23. SecureTrain significantly outperforms all other approaches. Besides the low ac-

curacy, another serious issue for the approximation based approaches (except the piecewise

linear approximation) is that their accuracy decreases under a larger, more sophisticated

Table 20. Comparison of training time.

Framework Accuracy (%) Time per batch (s) TTP

SecureNN [4] 73.8 263.6 3

SecureTrain 92.9 25.6 7
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network structures. The piecewise linear approximation approach is better than other ap-

proximation based approaches in that its accuracy increases under a larger network and

reaches around 80% accuracy for the network with 1024 hidden neurons. However, it is still

significantly lower than the 94% accuracy of SecureTrain.

Furthermore, Table 20 shows the time cost of the state-of-the-art scheme and SecureTrain

in training phase with batch size 128. We can see that SecureTrain keeps over 19% higher

accuracy and a 10× training speedup. Meanwhile, SecureTrain does not need a Trust Third

Party (TTP), which is another sharp contrast in terms of practical usability as the TTP is

not preferred in practice.

In summary, the softmax function in the last layer is critical for the backpropagation

in training. Most existing approaches for privacy preserved neural network training must

reply on approximation. However, most of them result in unstable training, which finally

leads to an unusable model. The proposed SecureTrain uses a creative design to enable the

secure implementation of the original softmax function as well as the updating process in a

cost-efficient manner. Therefore, it maintains all the good features as the plaintext version of

training, including the same model accuracy, the convergence of training, and better accuracy

with a larger, more sophisticated model structure. SecureTrain also significantly outperforms

all existing approaches in training speed, testing accuracy, and convergence speed.

4.6 CHAPTER SUMMARY

In this chapter, we have explored the optimization for a whole layer by replacing the GC-

based nonlinear calculation with a newly-designed joint linear and non-linear computation

based on the Homomorphic Secret Sharing. Furthermore, the forward computation has been

expanded to enable backward propagation with a piggyback design that carefully devises

the share set and integrates the dataflow of the whole training process. As such, we have

proposed SecureTrain that achieves an inference speedup as high as 48× compared with

state-of-the-art inference frameworks.
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CHAPTER 5

GLOBALLY ENCRYPTED AND LOCALLY UNENCRYPTED

PPDL

In previous chapter, we explored the optimization for each layer by replacing the GC-

based nonlinear calculation with a newly-designed joint linear and non-linear computation

based on the Homomorphic Secret Sharing. While the nonlinear computation is over ci-

phertext in Chapter 4, the nonlinear calculation is completed for free in this chapter by

a carefully partitioned DL framework, GELU-Net, where the server performs linear com-

putation on encrypted data utilizing a less complex homomorphic cryptosystem, while the

client securely executes non-polynomial computation in plaintext without approximation.

GELU-Net demonstrates 14× to 35× inference speedup compared to the classic systems.

The rest of this chapter is organized as follows. Section 5.1 details the motivation of GELU-

Net. Section 5.2 introduces the primitives that GELU-Net adopts. Section 5.3 describes

the design details of GELU-Net. Section 5.4 presents the security analysis of GELU-Net.

The experimental results are illustrated and discussed in Section 5.5. Finally, Section 5.6

concludes this chapter.

5.1 MOTIVATION

Privacy is a fundamental challenge for many smart applications that depend on data ag-

gregation and collaborative learning across different entities. Existing endeavors take differ-

ent directions to address the privacy issue. Two major directions are differential privacy [123]

and fully homomorphic encryption [78]. Differential privacy injects noise into query results

to avoid inferring information about any specific record. However, it needs careful cali-

bration to balance privacy and model usability. Further, private attributes still remain in
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plaintext so users may still have security concerns. A more promising solution comes from

the recent advance in fully homomorphic encryption (FHE) [153]. It allows users to encrypt

data with the public key and offload computation to the cloud. The cloud computes over the

encrypted data and generates encrypted results. Without the secret key, the cloud simply

serves as a computation platform but cannot access any user information. This powerful

technique has been integrated with deep learning in the pioneering work of [78], known as

CryptoNets, which built a convolutional neural network on FHE to process inference queries.

However, it faces three fundamental problems: P1) FHE is extremely costly in computation,

thus unsuitable for large-scale neural networks; P2) the activation functions are not cryp-

tographically computable, hence, they have to be approximated by polynomials, leading

to degraded model accuracy; P3) only inference is supported, but training is unstable due

to approximated polynomial activation functions. privacy-preserving training is considered

in [2], which also utilizes polynomial approximation (e.g., Taylor expansion) to circumvent

the difficulty of activations. Thus, it suffers from the same problems of CryptoNets including

accuracy loss and training instability.

In this chapter, we propose a novel privacy-preserving learning architecture that resolves

three problems of existing FHE-based approaches such as CryptoNets. It is dubbed Globally

Encrypted, Locally Unencrypted Deep Neural Network (GELU-Net). The intrinsic strategy is

to split each neuron into linear and nonlinear components and implement them separately on

non-colluding parties. Linear computations are conducted based on a partially homomorphic

cryptosystem, i.e., Paillier [48]. It offers sufficient security strength to keep data globally

encrypted, and is significantly more efficient than FHE used in CryptoNets. As such, it

solves P1. Note that it would be impossible to use Paillier without the novel design of

separating the two components, because Paillier does not support nonlinear polynomials.

The cryptographically incomputable activations are resolved in a locally unencrypted yet still

privacy-preserving manner to retain the original accuracy, which solves P2 and P3. GELU-

Net can effectively perform model training without the stability and accuracy loss issues. We
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apply techniques such as random masking to surgically inject privacy-preserving components

into the backpropagation algorithm, at minimal computation and communication cost while

ensuring loss-free model accuracy.

Our contributions are summarized as follows: 1) we propose a novel privacy-preserving,

computationally efficient, homomorphic encryption-based learning architecture, GELU-Net,

which successfully resolves the three major problems of CryptoNets and other similar ap-

proaches; 2) we carry out security analysis and compare the complexity of GELU-Net with

existing approaches; 3) we conduct extensive experiments on common datasets and demon-

strate that GELU-Net achieves 14 to 35 times speed-up compared to CryptoNets in different

environments.

5.2 PRELIMINARIES

Similar to Securetrain, the system model of GELU-Net includes both MLaaS and training

as shown in Figure 1, and the threat model is semi-honest. We adopt a well-known partially

homomorphic encryption system called Paillier [48]. Paillier supports unlimited number of

additions between ciphertext, and multiplication between a ciphertext and a scalar constant.

5.3 SYSTEM DESCRIPTION

We first give an overview of GELU-Net and then elaborate the proposed protocol.

5.3.1 OVERVIEW OF GELU-NET ARCHITECTURE

In CryptoNets, the entire neural network is implemented on the server based on FHE

operations. The private data are encrypted by the clients using FHE. Each client sends

the encrypted data to the server, which runs the model and returns the encrypted inference

result to the client. In GELU-Net, the overall neural network model is still implemented

on the server. However, the nonlinear activation is securely outsourced and resolved in an

unencrypted form. More specifically, each client uses Paillier to encrypt its private data (it is
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referred as “Globally Encrypted”). Similar to CryptoNets, the encrypted data are sent to the

neural network model on the server. The server is able to perform most computation based

on the partially homomorphic encrypted data. However, it cannot compute the activation

function, which is nonlinear and thus unsupported by the Paillier cryptosystem. To this

end, the input for the activation (i.e., the intermediate weighted-sum in encrypted form) is

sent back to the client, which, as the corresponding data owner, has the key and thus can

decrypt the input (referred as “Locally Unencrypted”), execute the activation, re-encrypt

the result, and send it to the server for the next layer.

The proposed GELU-Net has two prominent advantages as summarized below. The first

advantage of this design is to enable activation without approximation, because it is now

computed by the client in plaintext form. This ensures free of accuracy loss and the desired

stability in training, thus addressing problems P2 and P3 introduced in 5.1. The second

advantage is the significantly improved computation efficiency. The neural network runs

much faster than CryptoNets, solving problem P1.

While the first advantage is obvious, the second seems counter-intuitive at the first glance.

Given the proposed GELU-Net requires communication between server and client as well as

decryption and encryption for computing each activation, would it become a performance

bottleneck? Surprisingly, not only is it not a performance bottleneck, it also contributes

significant performance gain. To fully understand such potential, we conduct a set of ini-

tial experiments on a commodity desktop using the Paillier package1, and compare it with

FHE implemented by Microsoft’s SEAL Library2. Table 21 shows the different computation

times of an activation function, approximated by square (that is used in CryptoNets and

involves FHE multiplication between two ciphertext), 5-th order Taylor expansion (a bet-

ter approximation using FHE), and our proposed approach where the activation is securely

1Paillier Cryptosystem (in Python), https://github.com/n1analytics/python-paillier
2Simple Encrypted Arithmetic Library, https://www.microsoft.com/en-us/research/project/simple-

encrypted-arithmetic-library
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Scheme Communication Crypto Activation Total

Square 0 0 90.6 90.6

5-th order 0 0 1619.6 1619.6

GELU-Net 5 3.7 0.2 8.9

Table 21. Computation time of activation in different schemes (ms).

outsourced. The results show that, despite the cost paid for communication and encryp-

tion/decryption, the computation of an activation in GELU-Net is 10 times faster than the

square approximation used in CryptoNets and about 180 times faster than the 5-th order

approximation.

The above discussion is based on activation only. As discussed in 5.5, the overall perfor-

mance gain is even higher, because other functions of GELU-Net are also implemented by

Paillier, which enjoys significantly lower complexity than FHE as shown in [154,155]. To this

end, GELU-Net aims to avoid FHE as long as Paillier is sufficient to meet privacy require-

ment. This would significantly improve computation efficiency and accordingly boost the

overall performance. It is worth mentioning that running the entire neural network model

on a client is not an option since we aim to perform collaborative learning, i.e., building a

model utilizing the data from all clients.

5.3.2 PRIVACY-PRESERVING LEARNING ALGORITHMS

In this section, we elaborate the proposed privacy-preserving learning algorithms. For

lucid presentation, the following description is based on training between a client and a server.

The same process repeats for all clients. In Paillier, given a public key pair (pku, sku) from

party u, a vector of ciphertext is denoted as [xi]u encrypted by public key pku. Initially,

the client and server generate key pairs (pkc, skc) and (pks, sks) respectively and publish

their public keys. The proposed scheme consists of privacy-preserving forward propagation

(Algorithm 1) and back propagation (Algorithm 2) as described below.
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Algorithm 1: Privacy Preserved Forward Propagation

Input: Client : Data x, set gradient/random accumulator ∆wc
i ,∆b

c
i , r

wc
i , rbci to 0. Server :

Initialize model, training bound dmax. Record initial parameters wI
i and bI

i (Section 4)
Output: Softmax output y

1 for d = 1, 2, 3, · · · , dmax do
2 Client: a0 ← xd
3 for i = 1, 2, · · · , n− 1 do
4 Client: Encrypt ai−1 with pkc as [ai−1]c and send it to server

5 Server: Compute [z̃i]c ← (w̃i ⊗ [ai−1]c)⊕ b̃i and send [z̃i]c to client
6 Client: Decrypt [z̃i]c with skc, call Algorithm 4 to remove randomness in z̃i
7 if i = n− 1 then
8 Client: y ← ezi/

∑
j e

zi (softmax)

9 else
10 Client: ai ← f(zi) (next layer)

11 Call Algorithm 2 for back propagation

Privacy-preserving Forward Propagation

The forward propagation is summarized in Algorithm 1. The client first encrypts the

data with pkc and sends it to the server. The weighted sum is homomorphically calculated

by the server, [z̃i]c = (w̃i ⊗ [ai−1]c) ⊕ b̃i, which can be carried out by Paillier, since only

one quantity is in the encrypted form. To prevent the server from inferring activations and

data during the back propagation (which will be discussed next), random masks are applied

on wi and bi (denote by w̃i and b̃i, respectively). The encrypted weighted-sum [z̃i]c with

random masks is sent back to the client for computing activation. The client calls Algorithm

4 to remove randomness in z̃i and compute the activation for the next layer. The process

repeats until the final layer is reached.

Note that in each layer i, the client can accumulate ai−1 and zi over several iterations

to solve the linear equation wiai−1 + bi = zi for wi and bi. In an iteration, a number of m

linear equations can be established (where m is the number of neuron in the layer). There

are m2+m unknowns including m2 weighted connections and m biases. In the next iteration,

an additional m equations are established while there is only one more unknown, i.e., the
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Algorithm 2: Privacy Preserved Back Propagation

1 Server: Encrypt 1
η with pks as [ 1

η ]s and send it to client

2 Client: For the last layer (n− 1), compute δn−1 ← y − t, ∆wn−1 ← an−2δn−1, ∆bn−1 ← δn−1,
3 ∆wc

n−1 ← ∆wc
n−1 + ∆wn−1,∆b

c
n−1 ← ∆bcn−1 + ∆bn−1

4 for i = n− 2, n− 3, · · · , 1 do
5 Client: Encrypt δi+1 with pkc as [δi+1]c and send it to server
6 Server: Compute [q̃i+1]c ← [δi+1]c ⊗ w̃i+1, and send it to client
7 Client: Decrypt [q̃i+1]c with skc, call Algorithm 4 to remove randomness in q̃i+1 ,and calculate

δi ← δi+1wi+1ai(1− ai), ∆wi ← ai−1δi, ∆bi ← δi.
8 Update ∆wc

i ← ∆wc
i + ∆wi,∆b

c
i ← ∆bci + ∆bi

9 if d < dmax then

10 Client: Call Algorithm 3 to mask ∆wi and ∆bi as [∆w̃i]s and [∆b̃i]s, send to server

11 Server: Decrypt [∆w̃i]s and [∆b̃i]s with sks, and update w̃i ← w̃i − η∆w̃i and

b̃i ← b̃i − η∆b̃i

12 Call Algorithm 1 for the next iteration or call Algorithm 5 to update model parameter on server
when finish

learning rate η. This is because wi = wi − η∆wi and ∆wi is known by the client during

back propagation. Thus, the client can extract the model after m + 2 iterations, which can

accordingly cause leakage of the training data [107]. To address this problem, the server

imposes a bound dmax randomly selected between (1,m + 2) so that a client’s data can be

used continuously for training. If dmax is reached, the next client is selected. The server can

always return to the same client for training at a later time but not continuously exceeding

dmax (see Section 5.4 for detailed analysis).

Privacy-preserving Back Propagation

As illustrated in Algorithm 2, back propagation starts from the last layer i = n − 1 to

compute the error δi between softmax prediction y and true label t. Note that Paillier can

be used because all computations involve at most one quantity in the encrypted form. Then

the error is propagated backward throughout the network via gradients ∆wi and ∆bi for all

the layers. In order to correctly update weights on the server, the client must send private

gradients to the server. Revealing such private gradients to the server can cause privacy

leaks. To this end, the client calls Algorithm 3 to protect the gradients by random masking
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Figure 24. Server reconstructs training data via activations.

before sending them to the server.

On the other hand, the random mask should be removed by the client before the nonlinear

activation; otherwise, it would be difficult to recover the original value after activation. To

achieve this, the client calls Algorithm 4 to recover qi from masked q̃i = δiw̃i. The client

does this in each iteration so the error does not accumulate and there is no need to keep

track of it. The client only needs to track the sum of the correct gradients ∆wc
i and ∆bci ,

as well as the sum of injected randomness rwci and rbci in each gradient update for the final

model update in Algorithm 5 when training finishes.

Secure Gradient Updates

The gradients should be protected during back propagation. Otherwise, the server can

similarly establish ∆wi = ai−1δi, ∆bi = δi from the received gradients and quickly derive

the activations. From those private activations, the server can further invert the neural

network to reconstruct user data [156]. Fig. 24 shows an example to reconstruct private

data of handwritten digits. For fully connected networks, the server can simply utilize the

Moore−Penrose inverse [157] to estimate data x by, x̂ = wT
1 (w1w

T
1 )−1(z1−b1), where z1 =

f−1(a1) is the inverse of the activation function from the first layer. To protect the gradients,

random vectors are introduced to prevent the server from deriving activation and user data.

For layer i, random vectors rwi and rbi (uniformly distributed over ZN) are generated by the

client. Using the learning rate encrypted by the server [ 1
η
]s, the client injects the randomness

into the encrypted gradients by homomorphically computing [∆w̃i]s = ∆wi⊕([ 1
η
]s⊗rwi ) and
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Algorithm 3: Prevent Gradient Leakage by Client

Input: ∆wi, ∆bi, [ 1
η ]s, and rwi , rbi ∈ ZN

Output: [∆w̃i]s, [∆b̃i]s, r
wc
i and rbci

1 [∆w̃i]s ← ∆wi ⊕ ([ 1
η ]s ⊗ rwi )

2 [∆b̃i]s ← ∆bi ⊕ ([ 1
η ]s ⊗ rbi )

3 rwci ← rwci + rwi , rbci ← rbci + rbi

Algorithm 4: Randomness Cancellation by Client

1 if Forward propagation then
Input: z̃i, ai−1, rwci and rbci
Output: Recovered weighted sum zi

2 zi ← z̃i + rwci ai−1 + rbci

3 if Backpropagation then
Input: q̃i+1, δi+1, and rwci+1

Output: Recovered error qi+1

4 qi+1 ← q̃i+1 + δi+1r
wc
i+1

[∆b̃i]s = ∆bi ⊕ ([ 1
η
]s ⊗ rbi ) for weights and biases. The server decrypts the masked gradients

by sks and blindly updates the parameters as,

w̃i = w̃i − η(∆wi + rwi /η) = w̃i − η∆wi − rwi ,

b̃i = b̃i − η(∆bi + rbi/η) = b̃i − η∆bi − rbi . (26)

In this way, the server is oblivious of the actual weights and has no way to figure out

the activations (detailed proofs in Section 5.4). Note that random errors are accumulated

at the server in each iteration. To perform activation on the actual weighted-sum, the client

needs to remove randomness in [z̃i]c during forward propagation and [δi+1]c ⊗ w̃i+1 in back

propagation. Eq. (26) shows that the actual weights/biases on server arewi−rwci and bi−rbci

after each update. In forward propagation, to recover zi from z̃i = (wi−rwci )ai−1 +bi−rbci ,

the client adds rwci ai−1 +rbci to z̃i. Similarly, in back propagation, it adds δi+1r
wc
i+1 to [q̃i+1]c.

These steps are summarized in Algorithm 4.
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Algorithm 5: Final Parameter Updates

Input: Final values of ∆wc
i ,∆b

c
i , initial weights wI

i and bI
i

Output: Final weights wF
i and bF

i

1 for i = 1, 2, 3, · · · , n− 1 do
2 Client: Encrypt ∆wc

i ,∆b
c
i with PKs as [∆wc

i ]s and [∆bci ]s and send them to server

3 Server: Decrypt [∆wc
i ]s and [∆bci ]s with sks, update wF

i = wI
i − η∆wc

i and bF
i = bI

i − η∆bci

Final Parameter Update

Once the training is completed, the final weights are updated on the server in one shot

by subtracting the cumulative sum of actual gradients as shown in Algorithm 5.

While the above discussion is based on fully connected networks, a convolutional neural

network (CNN)-based GELU-Net can be implemented in a similar way, since convolution is

a linear operation and thus can be computed homomorphically. Max pooling can be adapted

by mean pooling, thus handled by the server. Feature activations are returned to the clients

and gradients are securely updated. Due to space limitation we skip the details but present

its results in 5.5.

5.3.3 COMPLEXITY ANALYSIS

Communication Cost: The communication cost is analyzed as the total number of mes-

sages transmitted between the client and server. We assume a unit message size for en-

crypted data. For an n-layer network, in the forward propagation, the communication cost

is 2m(n − 1), where m is the number of activations in a layer. This is because total m

ciphertexts need to be transmitted by the client and the server, for the sum of inputs zi and

activations ai, respectively, at each layer. In the back propagation, the client needs m2+m+1

messages for model updates between two consecutive layers. Except the final layer, the client

interacts with the server to calculate the gradients, which requires transmitting encrypted er-

ror [δi+1]c in m messages between client and server for each layer. Summing up cost from the
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forward and back propagation, the entire network requires O(nm2) communication messages

for an iteration.

Computation Cost: Arithmetic multiplications and additions are mapped to modular

exponentiations and modular multiplications over ciphertext, respectively. Here, we denote

such cost of conducting homomorphic arithmetic in Paillier by p. For n layers, both forward

and back propagations take O(nm2p) so the total computation cost is O(nm2p).

Numerical Comparison: Two previous studies have considered privacy-preserving train-

ing for DNN. [2] uses a doubly homomorphic encryption called BGN [50] that supports one

multiplication between ciphertext and unlimited additions. We call this scheme BGN-Net

henceforth. [1] adopts ElGamal for homomorphic encryption [49], which supports either addi-

tive or multiplicative computation but not both. The arithmetic costs of BGN and ElGamal

are denoted by b and e, respectively. Our tests show that the running time is e ≤ p � b.

BGN is at least 15 times slower than Paillier and Paillier is comparable with ElGamal. Note

that CryptoNets do not support training, and thus is not comparable here.

Table 22 compares the complexity between different schemes in terms of computation and

communication for an n-layer fully connected network. GELU-Net achieves over an order of

magnitude improvements in the computation cost compared to ElGamal-Net, which requires

all Z parties to participate in each iteration. In BGN-Net, since the 5-th order polynomial

is employed to approximate activation, a large number of C homomorphic computations

(C > 30) is needed using BGN. This actually gives GELU-Net a leverage. As long as the

number of neurons per layer (m) is smaller than 450, GELU-Net is faster. Furthermore,

a drawback of both schemes is that they are built on vertically divided data among users

where the partial update of plaintext parameters will involve global activation values, from

which the data distribution of other users can be derived.
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Approach Computation Communication
GELU-Net O(nm2p) O(nm2)
BGN-Net O(Cnmb) O(nm2)

ElGamal-Net O(Z2m3ne) O(Z2m2n)

Table 22. Complexity comparison (per iteration).

5.4 SECURITY ANALYSIS

In this section, we perform security analysis of GELU-Net against the well-known equa-

tion solving attack in the semi-honest model [107]. Recently, there are also other attacks to

the neural networks, such as the membership attack [108] and adversarial examples [158,159].

These attacks target the vulnerabilities of the neural network itself, but are not directly rel-

evant to the inherent privacy issues studied in this chapter.

Proposition 1. (Gradients protection in backpropagation) The server cannot learn true

values of ∆wi and ∆bi in order to reconstruct activations and private user data.

Proof. The prove follows the simulation method [62]. The basic idea is to construct simu-

lators given the input to a party and global output, and show that it learns nothing except

the final result. During training, the server attempts to remove the randomness from the

received gradients. Given a value rj selected by the client and an attempt rk from the server,

both in the space of ZN , the probability that rj equals rk is Pr{rj = rk} ≤ 1−e−2/|ZN | [160].

|ZN | is the size of a finite field identical to the cipher space of Paillier. Since the elements of

the random mask is independent, the server can correctly yield matrices of rwi and rbi with

probabilities Pr{r = rwi } ≤ (1 − e−2/|ZN |)m
2

and Pr{r = rbi} ≤ (1 − e−2/|ZN |)m. Because

|ZN | is a large number, the probability that the server can successfully derive the gradients

is close to zero. �

Proposition 2. (Model protection in forward propagation) The accumulated function

groups {zi = wiai−1 + bi}d reveal nothing but the subspaces of weights and bias from which
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the matrices wi and bi cannot be reconstructed by client.

Proof. Let z
(i)
m×1 = w

(i)
m×ma

(i−1)
m×1 + b

(i)
m×1 denote the function group obtained by client after

one forward propagation. Since a client is continuously trained for d = dmax (less than

the bound of m + 2 in Section 5.3.2), the function group does not reveal any information

regarding the actual values of the matrices wi and bi but the subspaces linearly combined

by infinitely many possible matrices solutions. Hence, model weights wi and bi cannot be

successfully reconstructed by the client with d = dmax. �

Proposition 3. (Gradients protection in final model update) The accumulated parameter

update groups {wF
i = wI

i − η∆wc
i , b

F
i = bI

i − η∆bci}i reveal nothing but the subspaces of

gradients from which the matrices ∆wi and ∆bi in the previous back propagations cannot be

reconstructed.

Proof. In the final model update, the client sends ∆wc
i and ∆bci to server. Since the client is

allowed for dmax training iterations, the server ultimately obtains dmax−1 pairs of randomized

gradients ∆w̃i and ∆b̃i. For each element in weight/bias matrices, there are totally dmax

linear equations with 2dmax − 1 unknown parameters (dmax − 1 random numbers and dmax

gradients for each backward propagation). Since dmax > 1 and there is no way the server

can add extra equations, the function group does not reveal any information regarding the

actual values of ∆wi and ∆bi but the subspaces linearly combined by infinitely many possible

matrices solutions. Therefore, the intermediate gradients cannot be reconstructed by the

server. Fig. 25 shows an example when gradient protection is in place. We can see that the

server can no longer reconstruct training data during back propagation. �

5.5 PERFORMANCE EVALUATION

To evaluate the performance of GELU-Net, we use commodity workstations to implement

the clients and server. The workstations have 2.8 GHz Intel Core i7 CPU and 8GB RAM
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Figure 25. Server reconstruction with/without gradient protection.

connected by 1 Gbps LAN. The Paillier package is integrated with Numpy and Theano

to build the neural network. We run experiments based on Iris, Diabetes, kr-vs-kp and

MNIST datasets to compare with CryptoNets (implemented in Microsoft’s SEAL library)

and BGN-Net in terms of training stability, accuracy and computation speed.

5.5.1 TRAINING STABILITY AND ACCURACY

Square activation is proposed in [161] to train convex objectives and inject hidden neurons

in a gradual manner. Inspired by this idea, polynomial activation is adopted in secure neural

networks. CryptoNets uses square function and BGN-Net uses the k-th order polynomial

(Taylor expansion) to approximate the activation. However, polynomials may incur insta-

bility on non-convex objectives. Our results indicate that they make the network hard to

train. In contrast, GELU-Net leaves the activation function unscathed so model parameters

are still learnable in a privacy-preserving manner.

To compare the training stability, we implement the BGN-Net network architecture of 1

densely connected hidden layer with 5, 12, 15, 300 neurons. As shown in Fig. 26, the square

activation of CryptoNets fails quickly. A higher order approximation (e.g., 3rd or 5th order)

used by BGN-Net is better, but still unsuccessful as training terminates prematurely.

Next we compare the accuracy of these approaches in Table 23. Since CryptoNets and

BGN-Net are unstable in training, they are pre-trained with plaintext data. Encrypted data

are used for inference only. GELU-Net is able to retain the original model accuracy while

other two approaches suffer an accuracy loss ranging from 2% to 7%. This makes GELU-Net
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Figure 26. Training stability of different schemes.

Datasets GELU-Net CryptoNets BGN-Net

Iris 0.986±0.004 0.966±0.012 0.96±0.007
Diabetes 0.760±0.011 0.741±0.023 0.723±0.028
kr-vs-kp 0.967±0.008 0.948±0.015 0.944±0.014
MNIST 0.969±0.004 0.919±0.0009 0.901±0.006

Table 23. Comparison of accuracy.

especially appealing in many smart applications on large datasets when model accuracy is

the key consideration.

5.5.2 COMPUTATION SPEED

We compare the computation speed between GELU-Net and CryptoNets on MNIST.

Note that our testing shows that BGN encryption is even slower than FHE, so we only

compare GELU-Net with CryptoNets here. First, we adopt the CNN architecture used

in CryptoNets (denoted by Conv-1) and then stack more convolutional layers to form an

architecture identical to LeNet-5.

• Conv-1: Conv(5×5, stride 2, 5 filters)-ReLU (square)-Mean Pooling-ReLU (square)- Softmax.

• LeNet-5: Conv(5×5, stride 1, 6 filters)-Mean Pooling-ReLU (square)-Conv(5×5, stride 1, 16

filters)-Mean Pooling-ReLU (square)-Dense(120)-Dense(84)-Softmax.
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Architecture Time (s) Accuracy

GELU-Net (Conv-1) 67.5±2.8 0.936±0.006
CryptoNets (Conv-1) 1271.8±1.9 0.909±0.002

GELU-Net (LeNet-5) 85.5±2.1 0.989±0.001
CryptoNets (LeNet-5) 3009.6±1.7 0.967±0.003

Table 24. Computation speed in different networks (s).

Architecture Cloud-Local Cloud-Cloud Local-Local

Dense(12) 0.381±0.002 0.156±0.005 0.281±0.01
Dense(300) 147.5±9.8 59.7±1.9 107.4±3.5

Conv1 91.3±5.4 37.5±1.6 67.5±2.8
LeNet-5 126.7±6.3 47.5±1.2 85.5±2.1

Table 25. GELU-Net speed in different environments (s).

Since CryptoNets only supports inference, the model is loaded with pre-trained weights on

MNIST. Table 24 shows the computation time (for one inference) and the accuracy. We

observe that GELU-Net achieves 18 to 35× speed-up over CryptoNet with no accuracy

loss. The performance gain is more obvious when the network gets deeper because more

expensive homomorphic multiplications over ciphertext (for square activations) are required

in CryptoNets. Since the network communication is an integral part of GELU-Net, we further

evaluate its performance in two different environments. We first deploy the server in a cloud

computing infrastructure while clients on workstations with different network domains. This

scenario is denoted as Cloud-Local. Then we put both the server and clients on different

virtual machines in the cloud, denoted as Cloud-Cloud. Table 25 shows the computation

time for one inference. We observe that GELU-Net achieves optimal performance in the

data center since the propagation delay is minimal. The communication cost increases when

the client and server reside in different network domains. In the worst case, GELU-Net still

achieves 14× speed-up compared to CryptoNets.
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5.6 CHAPTER SUMMARY

In this chapter, the nonlinear calculation has been completed for free by a carefully

partitioned DL framework, GELU-Net, where the server performs linear computation on

encrypted data utilizing a less complex homomorphic cryptosystem, while the client securely

executes non-polynomial computation in plaintext without approximation. GELU-Net has

demonstrateed 14× to 35× inference speedup compared to the classic systems.
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CHAPTER 6

PERMUTATION ELIMINATION AND OT REDUCTION IN

PPDL

While it is encouraging to witness the recent development in PPDL including works

in previous chapters, there still exists a significant performance gap for its deployment in

real-world applications. We have considered optimizing either the linear computation (in

Chapter 3) or the linear and nonlinear computation of each layer (in Chapter 4 and Chap-

ter 5). In this chapter, we further jointly consider the computation of two consecutive

layers to optimize system efficiency. Specifically, we propose WISE1, a novel hybrid protocol

that features (1) a permutation-free scheme which completely eliminates the most expensive

ciphertext permutation operations in the linear transformation and (2) a joint permutation-

free computation between the nonlinear transformation in the current layer and the linear

transformation in the next layer, which reduces the communication cost from 4.5 rounds to

only a half round. As such, WISE achieves 2× to 13× speedup over CrypTFlow2 (ACM

CCS’20) for various neural layers used in the state-of-the-art DL architectures. Furthermore,

WISE demonstrates a speedup of 5.3×, 2×, 1.97×, 1.95×, 1.94×, 1.93×, 3.63×, 2.94× over

CrypTFlow2 on practical DL models LeNet, AlexNet, VGG-11, VGG-13, VGG-16, VGG-19,

ResNet-18, and ResNet-34. The rest of this chapter is organized as follows. Section 6.1

details the motivation of WISE. Section 6.2 introduces the primitives that WISE adopts.

Section 6.3 describes the design details of WISE. Section 6.4 presents the security analysis

of WISE. The experimental results are illustrated and discussed in Section 6.5. Finally,

Section 6.6 concludes this chapter.

1Under submission.
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6.1 MOTIVATION

To achieve usable privacy-preserving MLaaS, a series of recent works have made inspiring

progress towards system efficiency [3, 5, 7, 64–66, 75, 76, 78, 87, 90, 102, 133, 162–164]. Specif-

ically, the inference speed has gained several orders of magnitude from CryptoNets [78] to

the most recent frameworks such as CrypTFlow2 [7]. At a high level, several cryptographic

primitives, e.g., the Homomorphic Encryption (HE) [51–53] and Multi-Party Computation

(MPC) techniques [150] (such as Oblivious Transfer (OT) [114], Secret Sharing (SS) [61] and

Garbled Circuits (GC) [104, 165]), are carefully considered and adopted in those systems

to compute the linear (e.g., dot product and convolution) and nonlinear (e.g., activation)

functions, which are the building blocks in a DL model. For example, CrypTFlow2 is cur-

rently one of the leading frameworks for privacy-preserving DL and has shown significant

speedup compared with other schemes such as GAZELLE [64] and DELPHI [66]. The input

of CrypTFlow2 is the private data from the client. It is encrypted and sent to the server

which performs HE-based computation for the linear function. Therein the HE addition,

multiplication, and permutation, which are three basic operators over encrypted data, are

performed between encrypted data from the client and model parameters at the server. The

output is the respective shares (in plaintext) of the linear function at the client and server,

which serve as the input of the following OT-based computation for the nonlinear function.

The corresponding output (shares) acts as the input for the next layer’s linear computation.

The computation is repeated layer by layer until the final output.

While it is encouraging to witness the recent development in privacy-preserving DL, there

still exists a significant performance gap for its deployment in real-world applications. For

example, our benchmark has shown that CrypTFlow2 takes 115 seconds and 147 seconds to

run the well-known DL networks VGG-19 [16] and ResNet-34 [26] on the Intel(R) Xeon(R) E5-

2666 v3 @ 2.90GHz CPU (see the detailed experimental settings and results in Section 6.5).

It is worth pointing out that the response time constraints in many practical applications
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Figure 27. WISE protocol compared with CrypTFlow2 [7].

(such as speech recognition and wearable health monitoring) are within a few seconds or up

to one minute [99,166]. This performance gap motivates us to further improve the efficiency

of privacy-preserving DL.

Our Contributions. In this chapter, we propose WISE (tWeaking prIvacy-preServing DL

inference through permutation Elimination and OT reduction), which features a novel hybrid

protocol to reduce the prediction latency by replacing expensive operations with faster ones

throughout the linear and nonlinear computation. More specifically, WISE proposes the

following new techniques:

1. a permutation-free scheme, which completely eliminates the most expensive ciphertext

permutation operations in the HE-based linear transformation, and

2. a joint permutation-free computation between the nonlinear transformation in the cur-

rent layer and the linear transformation in the next layer, which reduces the communi-

cation cost from 4.5 rounds to only a half round2, introducing negligible computation

overhead.

2One round is the communication trip from source node to sink node and then from sink node back to
source node, while 0.5 round is either communication trip from source node to sink node or the one from
sink node to source node.
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The above two key techniques enable WISE to achieve significant improvement in predic-

tion latency over CrypTFlow2. Figure 27 compares WISE with CrypTFlow2 in terms of the

computation and communication in each neural layer. WISE involves no permutations in

the linear transformation, while CrypTFlow2 relies on a series of permutations to obtain the

result that is required for the subsequent nonlinear computation. For instance, 2048 permu-

tations are needed to calculate one of the convolutions3 in ResNet [26]. In contrast, WISE

enables a permutation-free calculation that effectively reduces the computation complexity.

After the linear transformation, WISE and CrypTFlow2 both follow an OT-based computa-

tion to obtain the derivative of ReLU4. After that, CrypTFlow2 involves another OT-based

computation with 4 rounds of communication between the client and server to finally get

the ReLU output plus another half-round communication to support the HE computation to

form the input for the next layer. On the other hand, WISE features a joint permutation-

free strategy that efficiently integrates the linear and nonlinear computation. It results in a

total of only a half round communication to construct the input for the next-layer’s linear

transformation. As a result, WISE achieves over 2× to 13× speedup for various neural layers

used in state-of-the-art DL architectures.

6.2 PRELIMINARIES

We consider a privacy-preserving MLaaS system shown in Figure 1 (a). The threat model

in WISE is similar to that of the prior privacy-preserving frameworks such as MiniONN [65],

GAZELLE [64], DELPHI [66] and CrypTFlow2 [7]. WISE relies on PHE, additive Secret

Sharing (SS) and Oblivious Transfer (OT)5. Among the three basic PHE operations, Perm

3Convolution [167] is one of the typical linear functions in modern DL models and the detailed permutation
complexity is analyzed in Section 6.3.

4One can obtain the ReLU output based on its derivative as described in Section 6.3.
5As described in Section 2.3.
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is the most expensive [64]. WISE totally eliminates the Perm such that the overall com-

putation cost is noticeably reduced. Furthermore, the multiplication involved in WISE is

scalar multiplication between one ciphertext and one plaintext, which is faster than the

ciphertext-ciphertext counterpart. Meanwhile, we apply the 2-of-2 additive secret sharing to

share the linear result at S as well as the nonlinear result at C such that the computation

over ciphertext is replaced by the counterpart over shares (in plaintext), which efficiently re-

duces the computation overhead. Finally, the state-of-the-art approaches rely on OT-based

multiplication in ReLU computation [7], which involves 4 rounds of communication. In a

contrast, the proposed WISE protocol totally eliminates this overhead by reconstructing the

multiplication formula in ReLU computation (see details in Section 6.3), thus contributing to

the reduction of the overall computation cost.

6.3 SYSTEM DESCRIPTION

The proposed WISE protocol introduces two novel techniques to reduce the prediction

latency in privacy-preserving DL. First, it eliminates the most expensive operation in HE, i.e.,

permutation for linear transformation. Second, the joint computation for nonlinear (in the

current layer) and linear (in the next layer) transformations cuts down the communication

cost from 4.5 rounds to only a half round, introducing the negligible computation overhead.

In this section, we elaborate WISE based on the system model introduced in Section 6.2.

We use a simple two-layer DL model for a lucid presentation, but note that WISE is appli-

cable to the state-of-the-art DL models with more complex layer structures and input data

sizes. Specifically, the example DL model is expressed as:

z = w · f(k ∗ x), (27)

where f(·) is the ReLU activation function6, x is the 2× 2 input data, k is a 3× 3 kernel for

6We use f(·) to specifically denote the ReLU function through out the chapter.
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Figure 28. Data transformation for convolution.

the convolution layer, “∗” stands for convolution, “·” stands for dot product and w is the

weight matrix for the fully-connected (dense) layer:

x =

 x1,1 x1,2

x2,1 x2,2

 , k =


k1,1 k1,2 k1,3

k2,1 k2,2 k2,3

k3,1 k3,2 k3,3

 and also

w =

 w1,1 w1,2 w1,3 w1,4

w2,1 w2,2 w2,3 w2,4

.
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6.3.1 PERM-FREE COMPUTATION FOR LINEAR TRANSFORMATION

Let’s start with the linear computation for the first layer where the client C encrypts its

private input x by HE, e.g., BFV algorithm [52], into [x]C and sends it to the cloud server

S. S then performs perm-free operations over the encrypted input [x]C based on its model

parameters k and sends the result back to C, which decrypts the linear result and uses it as the

input for the subsequent nonlinear computation. In the later layers, the input to S’s linear

transformation is the encrypted output of the nonlinear transformation from the previous

layer (i.e., the encrypted f(k ∗ x) in our case), which will be discussed in Section 6.3.2. As

such the S similarly conducts perm-free HE operations for linear computation and sends

the result (i.e., the final result of w · f(k ∗ x) in our case) back to the client. The client

accordingly conducts the decryption and repeats the process until the last layer.

Perm-free Computation for Linear Transformation in the First Layer

If both the input x and the kernel k are plaintext, the convolution between x and k

should yield a vector y with four elements as y = k ∗ x = (y1, y2, y3, y4):



y1 = x1,1k2,2 + x1,2k2,3 + x2,1k3,2 + x2,2k3,3

y2 = x1,1k2,1 + x1,2k2,2 + x2,1k3,1 + x2,2k3,2

y3 = x1,1k1,2 + x1,2k1,3 + x2,1k2,2 + x2,2k2,3

y4 = x1,1k1,1 + x1,2k1,2 + x2,1k2,1 + x2,2k2,2,

which is actually a dot product y = k′ · x′7 as shown in Figure 28. Here k′ is the flattened

vector of k in row wise, and x′ is constructed in a way that the dot product of its i-th column

and k′ produces yi. For example, it is easy to verify that the dot product between k′ and

the first column of x′ results in y1, so on and so forth.

Clearly, the above dot product of k′ · x′ can also be expressed as follows: the values in

7Note that any convolution can be similarly converted into dot product computation as shown in [151].
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j-th row of x′ are firstly multiplied with the j-th value in k′, and these multiplied rows are

then added up to get the final result. For example, the first row in x′ is multiplied with the

first element in k′, i.e., k1,1, and the second row in x′ is multiplied with the second element

in k′, i.e., k1,2, , so on and so forth. After all rows are multiplied with the corresponding

kernel values, the result y is calculated by adding all multiplied rows in x′. Therefore, we

observe the following result.

Observation 1. If the client C encrypts each row of x′ as one ciphertext, then the

convolution can be achieved by the server S with only homomorphic multiplication and

addition, as analogue with the above plaintext computation, which totally eliminates the

most expensive permutation.

While the above observation is promising, it is not directly applicable in privacy-

preserving DL, because encrypting each row of x′ would result in a significant encryption

and communication cost at the client. This cost is proportional to the size of k′, i.e., the

number of rows of x′, that can be over one thousand in state-of-the-art DL networks such

as AlexNet [15], VGG [16] and ResNet [26].

In order to make the permutation-free computation a true advantage, WISE combines

the encryption of packed HE and the computation over plaintext shares to reduce the overall

cost for convolution. Specifically, multiple rows are firstly packed into one ciphertext. For

example, let’s assume that three rows in x′ can be packed in one ciphertext by C, which forms

three ciphertexts: [x′1]C, [x
′
2]C, and [x′3]C, as shown in Figure 28. These three ciphertexts are

sent to S, which first conducts three HE multiplications8:

[x′1]C ⊗ k′1, [x′2]C ⊗ k′2, [x′3]C ⊗ k′3,

where k′i (i ∈ {1, 2, 3}) are transformed from k′ to make sure that each row (from x′) in

8We denote “⊗” as homomorphic multiplication in element wise manner if any ciphertext is involved.
Otherwise “⊗” is plaintext multiplication in element manner. Similar logic is applied to addition denoted
as “⊕” or “	”.
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Figure 29. Perm-free convolution.

x′i is multiplied with the corresponding value in k′. For example, as shown in Figure 29,

[x′1]C is the encryption of x′1, which includes the first three rows from x′. Therefore, k′1 is

constructed such that the first three values from k′ are respectively multiplied with the first

three rows contained in x′1. Similar construction is applied to k′2 and k′3.

Since each multiplied row in x′ (i.e., the row that is multiplied with corresponding value

in k′) can be added as shown in Figure 28, the resultant three ciphertext are then added up

to form

[y′]C = ([x′1]C ⊗ k′1)⊕ ([x′2]C ⊗ k′2)⊕ ([x′3]C ⊗ k′3).

As shown in Figure 29, [y′]C contains the encrypted partial sum of convolution. At

this point, a straightforward approach is to conduct a series of permutations and additions
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over [y′]C to get an encrypted y. This approach is adopted in the state-of-the-art privacy-

preserving DL frameworks such as [7,64,66,102]. More specifically, two other ciphertexts are

formed by respectively rotating [y′]C such that the first element in each rotated ciphertext is

the fifth and ninth element in y′. By adding the above two rotated ciphertexts as well as the

original [y′]C, the first four elements in the resultant ciphertext are exactly the four elements

in y. Actually, this permutation and addition is analogous to adding the three four-element

blocks in [y′]C that have partial sum of the convolution. After S gets the encrypted y, it

then generates a share r and sends [y]C 	 r = [y	 r]C to the client, which decrypts [y	 r]C

into (y 	 r). As a result, the client and server respectively own a share of y. The r from

S and (y 	 r) from C are the inputs of the subsequent nonlinear computation, e.g., ReLU

function.

This conventional approach is obviously not permutation-free. In contrast, we discover

an interesting observation, which shows that it is actually unnecessary to compute [y]C.

Observation 2. Given [y′]C, there are two equivalent ways to generate the shares of

y, i.e., r at S and (y 	 r) at C. One approach (i.e., the conventional approach) is to first

derive [y]C over [y′]C and then generate the shares. The other approach is to first share [y′]C

between S and C, and then each party uses its share to derive its corresponding share of y.

Based on the above observation, we propose a novel, permutation-free scheme. It does

not compute [y]C over [y′]C, and thus completely eliminates the expensive permutation over

ciphertext [y′]C. More specifically, as shown in Figure 29, S directly generates the share of

y′, i.e., r′, and sends [y′]C 	 r′ = [y′ 	 r′]C to C. C decrypts [y′ 	 r′]C into (y′ 	 r′), and

get (y 	 r) by a series of rotation and addition in plaintext. Specifically, C rotates (y′ 	 r′)

to form two plaintexts such that the first element in each rotated plaintext is the fifth and

ninth element in (y′	r′). As such, (y	r) is obtained by adding the two rotated plaintexts

with (y′ 	 r′), as shown in Figure 29. Meanwhile, S rotates r′ to form two plaintexts such

that the first element in each rotated plaintext is the fifth and ninth element in r′, and r is

then obtained by adding the two rotated plaintexts with r′.
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The rotation and addition calculations are similar to the method discussed earlier to

obtain [y]C from [y′]C at S, but it is much faster because it is based on plaintext with no

permutation over ciphertext. We will provide detailed complexity analysis in Section 6.3.3

to show WISE’s fundamental improvement for speeding up privacy-preserving DL inference

computation. It is easy to verify that the proposed scheme achieves the same result as the

conventional approach: C and S respectively owns a share of y, i.e., r from S and (y 	 r)

from C, that will be the input of the subsequent nonlinear computation.

Now let’s put all pieces together to summarize the perm-free computation for linear trans-

formation in the first layer. Client C transforms input x into x′ and respectively encrypts

x′1, x′2 and x′3 as [x′1]C, [x′2]C and [x′3]C (see Figure 28). These three ciphertexts are sent

to S. S computes a ciphertext [y′ 	 r′]C by HE multiplication and addition based on its

transformed kernels k′1, k′2 and k′3 (see Figure 29). The ciphertext is subsequently sent back

to C, which decrypts [y′ 	 r′]C into (y′ 	 r′) to obtain its share of the linear result, i.e.,

(y	 r), by plaintext rotation and addition. (y	 r) and r (obtained from r′ by S as shown

in Figure 29) are fed into the nonlinear computation module, i.e., f(y), to be discussed in

Section 6.3.2. Note that the bias, b, which is another model parameter as an additive term

to the convolution as (y ⊕ b), is easily added to r′ such that C and S will obtain the shares

of (y ⊕ b).

Perm-free Computation for Linear Transformation in the l-th Layer (l >1)

In the first layer, the input of linear transformation at S is the ciphertext from C (e.g.,

[x′1]C, [x′2]C, and [x′3]C in Figure 28). Similarly, the input to S for the linear transformation

in other layers is the (encrypted) output of nonlinear computation, i.e., f(k ∗ x) or f(y)

in our example DL model shown in Eq. (27). As will be discussed in Section 6.3.2, the

nonlinear output is similar to [x′i]C (i ∈ {1, 2, 3}), which is ready to be processed by S in a

way as shown in Figure 29. As such, the linear calculation at S for other layers is in line

with the calculation in the first layer. As a result, the client and server respectively obtains
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a share, i.e., r (at S) and (y 	 r) (at C) that will be the input of the subsequent nonlinear

computation.

6.3.2 PERM-FREE JOINT LINEAR AND NONLINEAR COMPUTATION

Recall that at the end of the linear transformation, C and S respectively gets the share

of the convolution y = k ∗x, i.e., (y	 r) and r. The next step is to compute the nonlinear

ReLU function f(y), based on the shares at C and S.

As shown in [4], f(y) can be calculated as:

f(y) = fD(y)⊗ y, (28)

where fD(·) is the derivative of the ReLU function:

fD(yi) =

 1, if yi > 0

0, others
,

where i ∈ {1, 2, 3, 4} for our example.

It has been shown in [7] that fD(y) can be efficiently computed where the input is the

shares of linear transformation, e.g., (y	r) and r in our case, and the output is the Boolean

shares9 of fD(y) denoted as âC ∈ {0, 1}410 (at C) and âS ∈ {0, 1}4 (at S) such that the XOR

between âC and âS is fD(y)11. However, it is worth pointing out that the computation of the

final multiplication, fD(y)⊗ y, needs two OT processes with four rounds of communication

between C and S, which account for about half of the total communication rounds as shown

in the state-of-the-art framework CrypTFlow2 [7]. Specifically, the input of this OT module

is the shares of fD(y), i.e., âC and âS , and the shares of y, i.e., (y 	 r) and r, while the

9The shares are arithmetic shares if not specified.
10The dimension of 4 is for our example.
11We refer the readers to [7] for more details about the privacy-preserving calculation for derivative of

ReLU.
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output is the shares of nonlinear result f(y) denoted as aC (at C) and aS (at S) such that

aC ⊕ aS = a = f(y). After that, C encrypts aC as [aC]C and sends it to S. S adds [aC]C

with aS to obtain

[aC]C ⊕ aS = [aC ⊕ aS ]C = [f(y)]C,

which forms the encrypted input for the linear computation in the next layer. Therefore,

there is a total amount of 4.5 communication rounds to get the next-layer linear input after

C and S obtain the shares of derivative of ReLU.

Perm and OT-Free Computation after fD

We now show that the computation and communication costs can be further reduced by

combining the two separate processes, i.e., the OT-based multiplication to get the shares of

f(y) and the HE-based data encryption and computation to get [f(y)]C. Specifically, given

the shares of linear transformation, (y	 r) (at C) and r (at S), and the shares of derivative

of ReLU fD(y), âC (at C) and âS (at S), we aim to reconstruct Eq. (28) such that C and S

directly get the respective share of f(y) without the four-round OTs.

To this end, we rewrite Eq. (28) as follows to aggregate the terms that can be calculated

locally by C and S, respectively:

f(y) = fD(y)⊗ y

= (âC ⊕ âS 	 (2⊗ âC ⊗ âS))︸ ︷︷ ︸
1

⊗((y 	 r)⊕ r)

= ((y 	 r)⊗ âC)︸ ︷︷ ︸
2

⊕((y 	 r)⊗ (1	 (2⊗ âC))︸ ︷︷ ︸
3

⊗âS)⊕

((r 	 (2⊗ r ⊗ âS))︸ ︷︷ ︸
4

⊗âC)⊕ (r ⊗ âS)︸ ︷︷ ︸
5

,

where 1 = {1}412, 2 = {2}4, and the term 1 obtains the value of fD(y) from Boolean shares

12The dimension of 4 is for our example.
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âC and âS . Recall that C owns (y 	 r) and âC, and S owns r and âS . It is also worth

pointing out that both r and âS can be pregenerated because r is independent of the input

x and one of the shares for fD(y) can be predetermined [7].

Observation 3. Based on this newly transformed f(y) expression, it is easy to observe

that terms 2 and 3 can be locally calculated by C while terms 4 and 5 by S. This allows

C and S to subsequently generate their shares of f(y).

More specifically, S pregenerates r and âS , readily calculates term 5 as its share aS of

f(y), and sends âS along with term 4 to C in the offline phase13 then C is able to calculate

all but term 5 of f(y), i.e., the share aC of f(y). However, directly sending the above two

terms raises the privacy issue. In order to protect privacy, S encrypts them with its public

key as [âS ]S and [r 	 (2⊗ r ⊗ âS)]S . As such, C correspondingly gets

[aC]S = ((y 	 r)⊗ âC)︸ ︷︷ ︸
2

⊕((y 	 r)⊗ (1	 (2⊗ âC))︸ ︷︷ ︸
3

⊗[âS ]S)

⊕ [r 	 (2⊗ r ⊗ âS)]S︸ ︷︷ ︸
4

⊗âC.

Next, C is supposed to send [aC]S to S such that S gets the nonlinear output [f(y)]S =

[aC]S⊕aS , which is the input for the next layer. However, [aC]S and [f(y)]S are S-encrypted,

which can be decrypted by S and thus f(y) is exposed to S. We resolve this problem by

letting C randomly generate another term g and calculates its share for f(y) as

[aC]S = (((y 	 r)⊗ âC)	 g)︸ ︷︷ ︸
2

⊕((y 	 r)⊗ (1	 (2⊗ âC))︸ ︷︷ ︸
3

⊗

[âS ]S)⊕ [r 	 (2⊗ r ⊗ âS)]S︸ ︷︷ ︸
4

⊗âC, (29)

13The offline phase is independent of the input x while the online phase is the process dependant of input
x.
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Figure 30. Data transformation for dot product.

where the term 2 is changed from ((y 	 r) ⊗ âC) to ((y 	 r) ⊗ âC) 	 g. Meanwhile, C

encrypts g with its public key as [g]C, and sends it along with [aC]S to S. In this way, S

decrypts [aC]S into aC and gets C-encrypted nonlinear output as

aS ⊕ aC ⊕ [g]C = [f(y)]C. (30)

Here, as aC is masked with g and [g]C is semantic secure to S, S only gets an encrypted

f(y) without other information. Note that the randomness of g and r is guaranteed as âC and

âS are Boolean shares. The concrete security proof is given in Section 6.4. Meanwhile, g can

be pregenerated, encrypted by C as [g]C, and sent to S in the offline phase, which introduces

no HE cost for the encryption and communication in the online phase. As such, we make

the whole process for nonlinear computation after fD perm-free, and the communication is

reduced to 0.5 round, i.e., C sends [aC]S to S, which is a sharp contrast to 4.5 rounds in

CrypTFlow2 [7]. We will formally analyze the computation and communication costs in

Section 6.3.3.
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Data Transformation

While [f(y)]C is obtained by Eq. (30), a simple but necessary data transformation is

needed to ensure that S can repeat the perm-free linear computation proposed in Sec-

tion 6.3.1, i.e., S multiplies [f(y)]C with its associated kernel data (like k′i (i ∈ {1, 2, 3}) in

Figure 29), forms the partial share (like [y′ 	 r′]C in Figure 29), and sends it back to C to

get the share of the linear result namely w · f(y) in plaintext (like the way to get (y 	 r)

in Figure 29). As we transform the convolution into dot product, the dot product w · f(y)

is similarly processed as shown in Figure 30. Specifically, multiple copies of f(y), i.e., a

in Figure 30, are packed in a single ciphertext, which forms a C-encrypted ciphertext [a′]C.

[a′]C is sent to S. S flattens w to w′ in row wise and multiplies it with [a′]C. It results in

a ciphertext containing the partial sum of the linear result w · f(y) which is in line with

[y′]C in convolution. Thus, S similarly generates r′, forms a partial share (like [y′ 	 r′]C in

Figure 29), and sends it to C. C does the decryption and obtains the exact share of w · f(y)

with plaintext computation. Note that the random term r′ for the last layer is not applied

or is filled with a single value since C must get the prediction output.

Based on the above analysis, before Eq. (30) is performed, C packs multiple copies of g

in one ciphertext to form a new [g]C and sends it to S in offline phase. As (aS ⊕ aC) is in

plaintext at S according to Eq. (30), S simply forms the plaintext that has multiple copies of

(aS ⊕aC), and then Eq. (30) finally outputs a new ciphertext [f(y)]C that actually contains

multiple copies of f(y). Till now, S is able to repeat the perm-free linear computation. Note

that if the next linear computation is convolution, g and (aS ⊕ aC) in Eq. (30) are treated

as x (in convolution) and similar transformation is performed as shown in Figure 28, which

enables S to get the new [f(y)]C that is similar to the linear input [x′i]C (i ∈ {1, 2, 3}).

We now summarize the overall process for the proposed perm-free joint linear and non-

linear computation to generate the input for the linear computation of the next layer. It

includes offline and online phases. In the offline phase, S pregenerates r and âS and gets two
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ciphertext [r	(2⊗r⊗âS)]S and [âS ]S , which are then sent to C. Meanwhile, C pregenerates

g, encrypts it into [g]C, and sends it to S. In the online phase, right after C gets the share of

fD(y), i.e., âC, it calculates [aC]S as shown in Eq. (29) and sends [aC]S to S. Upon receiving

[aC]S , S decrypts it into aC and gets [f(y)]C by Eq. (30). Here [f(y)]C has been transformed

to the data format according to Section 6.3.2, serving as the input for the next-layer linear

computation. Note that the offline process in WISE is totally non-interactive, which does

not need the involved parties to synchronously exchange the calculated data and then finish

the process. Therefore, it eliminates the interactive offline computation that is often used in

state-of-the-art frameworks such as DELPHI [66] and MiniONN [65].

6.3.3 COMPLEXITY ANALYSIS

In this section, we formally show that WISE is computationally advantageous to state-

of-the-art perm-involved frameworks [7, 64, 66]. To ease our analysis, we reiterate some

necessary variables as follows.

• ci, co: number of input and output channels in the current convolution layer;

• fh, fw: height and width of kernel in the current convolution layer;

• f ′h, f
′
w: height and width of kernel in the next convolution layer;

• c′o: number of output channels in the next convolution layer;

• cn: number of input channels that can be packed into one ciphertext14.

Computation Complexity

At the very beginning, as the convolution is transformed into dot product, e.g., the input

x is transformed into x′ in Figure 28, the size of the input to be packed by C increases fhfw

times compared with the original. Thus, the number of resultant ciphertext transmitted

from C to S is fhfwci/cn. After S receives the fhfwci/cn ciphertexts, it conducts fhfwci/cn

14We uniformly analyze the convolution layers as the fully connected layer can also be transformed into
convolution layer [94,168]. And we always start with the calculation for the current layer.
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multiplications and (fhfwci/cn−1) additions to get one intermediate ciphertext for one kernel

(like [y′]S for kernel k in Figure 29). As the number of output channels is co, i.e., there are co

kernels, S obtains co intermediate ciphertexts with a total of fhfwcico/cn multiplications and

(fhfwci/cn− 1)co additions. Then another co additions are performed on the co intermediate

ciphertexts to get co ciphertexts that have the partial share of the convolution (like [y′	r′]C

in Figure 29). Therefore, the total number of additions is fhfwcico/cn. These co intermediate

ciphertexts are sent back to C, which does the decryption and obtains the share of convolution
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in plaintext.

At this point, C and S finish the linear computation in the first layer, where C has the

linear share y	r and S has the linear share r. The comparison of computation complexity15

is summarized in block a of Figure 31. It is interesting to observe that WISE essentially

converts (cn − 1)co/cn permutations in CrypTFlow2 to decryption, and replaces ci(fhfw −

1)/cn permutations in CrypTFlow2 by encryption. Since the cost for permutation is generally

more expensive than decryption and encryption, this demonstrates the lighter computation

complexity of WISE compared with CrypTFlow2.

Next, C and S collaborate to calculate the derivative of ReLU based on their respective

linear shares, and the output is the corresponding Boolean share âC and âS as shown in

block b of Figure 31. Note that the data size of âC and âS is co/cn (in ciphertext). Then,

C computes the S-encrypted nonlinear share [aC]S with 2co/cn multiplications and 2co/cn

additions, as shown in Eq. (29). [aC]S (with co/cn ciphertext) is sent to S. Upon receiving

[aC]S , S performs co/cn decryption to obtain aC and gets [f(y)]C with cof
′
hf
′
w/cn additions

according to Eq. (30). This is because (aS ⊕ aC) and g in Eq. (30) is transformed in a way

similar to transforming x into x′ in Figure 28, which forms the input for linear computation

of the next layer.

The comparison of the computation process to get the linear input of the next layer

is shown in block c of Figure 31. As decryption is generally faster than encryption [133],

WISE’s co/cn decryption is more advantageous than CrypTFlow2’s co/cn encryption. Mean-

while, WISE has extra co(f
′
hf
′
w+1)/cn additions (as another co/cn additions offset with co/cn

additions in CrypTFlow2) in block c , which only introduce a light cost as addition is the

cheapest operation for HE, e.g., within microseconds per operation in our experiments. We

also show in Section 6.5 that these additions are negligible. Furthermore, we will show next

that WISE’s remaining 2co/cn multiplications are also cheaper by combining with the linear

15Note that we use the lower bound of permutation cost for the HE-based linear computation among the
state-of-the-art frameworks [7, 64,66,102] to show WISE’s fundamental computation strength.
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computation for the next layer, as shown in block d of Figure 31.

Note that S obtains [f(y)]C with cof
′
hf
′
w/cn ciphertexts at the end of block c then in

block d , S respectively conducts f ′hf
′
wcoc

′
o/cn multiplications and additions to get c′o cipher-

texts that have the partial share of the convolution (like [y′ 	 r′]C in Figure 29). These c′o

ciphertexts are sent back to C, which performs c′o decryptions and gets the share for the

linear computation in the next layer. In contrast, the corresponding computation of CrypT-

Flow2 requires (cn−1)c′o/cn+co(f
′
hf
′
w−1)/cn permutations. While converting CrypTFlow2’s

(cn − 1)c′o/cn permutations to an equal number of decryption results in WISE’s decryption

complexity, the other co(f
′
hf
′
w − 1)/cn permutations in CrypTFlow2 are replaced by WISE’s

2co/cn multiplications in block c . On the one hand, the permutation is more expensive

than decryption and multiplication. On the other hand, (f ′hf
′
w − 1) is larger than 2 as long

as the kernel size, i.e., the kernel width f ′w and height f ′h, is larger than 1, which usually

happens in many state-of-the-art DL networks such as AlexNet and VGG. As such, the overall

computation cost of WISE is systematically reduced.

The process repeats from block b to block d until the last layer. We will show experi-

mental data in Section 6.5 that WISE is able to speed up CrypTFlow2 over various practical

DL networks.

Communication Complexity

Since block a is for the first layer only where the communication is similar to block d ,

and block b involves the same communication cost, our analysis focuses on blocks c and d .

In block c , WISE has lower communication cost. It requires 0.5 communication round

while CrypTFlow2 needs 4.5 rounds. Overall, WISE transmits co/cn ciphertexts while

CrypTFlow2 needs to transmit not only co/cn ciphertexts but also extra plaintext data

of 2n(λ+ 2η) bits for the OT-based multiplication, where n is the number of elements in y

(e.g., 4 in our example DL model), λ is the security parameter, and η is the logarithm of

plaintext modulus.
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In block d , both WISE and CrypTFlow2 need 0.5 round to transmit data from S to C.

The amount of data transmitted in WISE is cn times larger than that of CrypTFlow2. Note

that, however, this overhead can be mitigated by adequate bandwidth, which is a relatively

low cost in today’s transmission link. As to be shown in Section 6.5, WISE has noticeable

overall performance gain (due to the reduced computation cost as analyzed above and the

lower communication cost in block c ) to offset the communication cost in block d .

6.4 SECURITY ANALYSIS

The proposed WISE protocol consists of four blocks, i.e., blocks a , b , c , and d , as

shown in Figure 31. We show the security of blocks a , b , and the pairing processing of

(block c , block d ) where the output of each block/processing is randomly shared between C

and S. As stated in Lemma 2 of [169], a protocol that ends with secure re-sharing of output

is universally composable. Thus, the overall WISE is secure after compositing blocks a , b ,

and the pairing processing of (block c , block d ).

Specifically, Our security proof follows the ideal-world/real-world paradigm [150]: in the

real world, both C and S interact with each other according to the protocol specification

while in the ideal world, parties have access to a Trusted Third Party (TTP) that implements

each block/processing. The executions in both worlds are coordinated by the environment ε

who chooses the inputs to the parties and plays the role of a distinguisher between the real

and ideal executions. We aim to show that the view of a semi-honest adversary in the real

wold is indistinguishable to that in the ideal world.

Theorem 1. The protocol in block a is secure in the presence of semi-honest adversaries,

if the underlying HE scheme is semantically secure.

Proof. We first prove the security against a semi-honest server by constructing an ideal-

world simulator Sim that performs as follows:

(1) receives k (model parameters) from ε, and sends it to TTP;
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(2) starts running S on input k;

(3) constructs [x̃′i]pk′ ← HE.Enc(pk′, 0) where pk′ is randomly generated by Sim via

HE.KeyGen;

(4) sends [x̃′i]pk′ to S;

(5) outputs whatever S outputs.

Here S’s view in real execution is [x′i]C (data encrypted by the client), which is computa-

tionally indistinguishable from its view in the the ideal execution i.e., [x̃′i]pk′ , due to the

semantic security of HE.Enc. Therefore, the output distribution of ε in the real world is

computationally indistinguishable from that in the ideal world.

Next, we prove security against a semi-honest client by constructing an ideal-world sim-

ulator Sim that works as follows:

(1) receives x (C’s private data) from ε; Sim sends it to TTP and gets the result (y	 r);

(2) starts running C on input x, and receives [x′i]C from C;

(3) randomly splits (y	r) into a vector ỹ such that it has the same dimension as (y′	r′),

and (y 	 r) can be obtained from ỹ by rotation and addition calculations (in plaintext),

which is similar to compute (y 	 r) from (y′ 	 r′) as explained in Section 6.3.1;

(4) encrypts ỹ into [ỹ]C using C’s public key and returns [ỹ]C to C;

(5) outputs whatever C outputs.

Here C’s view in the real execution is (y′	 r′) while its view in the ideal execution is ỹ. We

only need to show that any element in (y′ 	 r′) is indistinguishable from a random number

in ỹ. This is clearly true since (y 	 r) is randomly split to form ỹ. At the end of the

simulation, C outputs (y	 r), which is the same as real execution. Thus, we claim that the

output distribution of ε in the real world is computationally indistinguishable from that in

the ideal world, completing the proof.

Theorem 2. The protocol in block b is secure in the presence of semi-honest adversaries,
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if the underlying OT scheme is secure.

Proof. The security of block b has been proven in [7].

Theorem 3. The protocol in the pairing processing of (block c , block d ) is secure in the

presence of semi-honest adversaries, if the underlying HE scheme is secure.

Proof. We first prove security against a semi-honest server by constructing an ideal-world

simulator Sim that performs as follows:

(1) receives k, r and âS from ε, and sends it to TTP;

(2) starts running S on input k, r and âS ;

(3) constructs [g̃]pk′ ← HE.Enc(pk′, 0) where pk′ is randomly generated by Sim via

HE.KeyGen;

(4) randomly forms a vector ãC and encrypts it into [ãC]S using S’s public key;

(5) sends [ãC]S and [g̃]pk′ to S;

(6) outputs whatever S outputs.

Here S’s view in the real execution is aC and [g]C while its view in the ideal execution is ãC

and [g̃]pk′ . On the one hand, any element in aC is indistinguishable from a random number

in ãC. On the other hand, [g]C and [g̃]pk′ are indistinguishable due to the semantic security

of HE.Enc. Therefore, the output distribution of ε in the real world is computationally

indistinguishable from that in the ideal world.

Next, we prove security against a semi-honest client by constructing an ideal-world sim-

ulator Sim that works as follows:

(1) receives (y	 r) and âC from ε; Sim sends it to TTP and gets the result (y	 r), i.e.,

the share of linear transformation in the next layer;

(2) starts running C on input (y 	 r) and âC;

(3) constructs [r̃1]pk′ ← HE.Enc(pk′, 0) and [r̃2]pk′ ← HE.Enc(pk′, 0) where pk′ is ran-

domly generated by Sim via HE.KeyGen;

(4) sends [r̃1]pk′ and [r̃2]pk′ to C, and receives [aC]pk′ and [g]C from C;



130

Input Dimension Kernel Dimension Stride &
Framework

Time (ms) Speedup
Comm. (MB)

H ×W@ci fh × fw@co Padding LAN WAN LAN WAN

14× 14@6 5× 5@16 (1, 0)
WISE 82 353 5× 2× 4.39

CrypTFlow2 414 713 - - 2.2

2× 2@512 3× 3@512 (1, 1)
WISE 1990 2231 2.5× 2.4× 97

CrypTFlow2 5173 5367 - - 3

4× 4@256 3× 3@512 (2, 1)
WISE 1943 2173 13× 11× 98

CrypTFlow2 25566 25851 - - 5.52

2× 2@512 1× 1@512 (1, 0)
WISE 1886 2120 5.9× 5.3× 98

CrypTFlow2 11174 11385 - - 2.6

32× 32@3 11× 11@96 (4, 5)
WISE 635 899 12.3× 9.1× 24

CrypTFlow2 7866 8218 - - 16

Table 26. Running time and communication cost of convolution layers.

(5) randomly splits (y	r) into a vector ỹ such that it has the same dimension as (y′	r′)

(for the next layer), and (y	r) can be obtained from ỹ by rotation and addition calculations

(in plaintext), which is similar to compute (y	r) from (y′	r′) as explained in Section 6.3.1;

(6) encrypts ỹ into [ỹ]C using C’s public key and returns [ỹ]C to C;

(7) outputs whatever C outputs.

Here C’s view in the real execution is [âS ]S , [r 	 (2⊗ r ⊗ âS)]S and (y′ 	 r′) (for the next

layer) while its view in the ideal execution is [r̃1]pk′ , [r̃2]pk′ and ỹ. First, any element in

(y′ 	 r′) is indistinguishable from a random number in ỹ since (y 	 r) is randomly split to

form ỹ. Second, [âS ]S and [r 	 (2⊗ r ⊗ âS)]S are indistinguishable from [r̃1]pk′ and [r̃2]pk′

due to the semantic security of HE.Enc. At the end of the simulation, C outputs (y 	 r),

which is the same as real execution. Thus, we claim that the output distribution of ε in the

real world is computationally indistinguishable from that in the ideal world, completing the

proof.

6.5 PERFORMANCE EVALUATION

In this section, we present the performance evaluation and experimental results. We

first introduce the experimental setup in Section 6.5.1, and then discuss the following two

questions in Sections 6.5.2 and 6.5.3, respectively:

• How efficient is WISE to speed up the layer-wise computation?
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Dataset
DL Architecture Framework

Time (ms) Speedup Comm. (MB)
Input Dim. (H ×W@ci) LAN WAN LAN WAN Online Offline

MNIST
LeNet

WISE 977 1845.5 5.3× 3.3× 52.5 8
(28× 28@1) CrypTFlow2 5243 6221.4 - - 10.7 -

AlexNet
WISE 35921 37688 2× 2× 1827 41

CrypTFlow2 75196 76928 - - 44.2 -

VGG-11
WISE 44366 47129 1.97× 1.9× 2195.3 107.8

CrypTFlow2 87464 90359 - - 168.4 -

VGG-13
WISE 47518 50749 1.95× 1.89× 2310.2 157.3

CrypTFlow2 92429 95842 - - 269.5 -
CIFAR10

VGG-16
WISE 53499 57619 1.94× 1.88× 2571.9 171

(32× 32@3) CrypTFlow2 103577 107983 - - 299.3 -

VGG-19
WISE 59480 64489 1.93× 1.86× 2833.6 184.7

CrypTFlow2 114725 120124 - - 329.1 -

ResNet-18
WISE 26551 32896 3.63× 3.18× 1306.1 122.4

CrypTFlow2 96175.6 104308 - - 267.7 -

ResNet-34
WISE 50360 63146 2.94× 2.6× 2479.7 190.6

CrypTFlow2 147740.6 163527 - - 441.8 -

Table 27. Running time and communication cost on modern DL models.

• What is the prediction latency and communication cost on practical DL models using

WISE compared with the state-of-the-art frameworks such as CrypTFlow2 [7]16?

6.5.1 EXPERIMENTAL SETUP

We ran all experiments on two Amazon AWS c4.xlarge instances possessing the Intel(R)

Xeon(R) CPU E5-2666 v3 @ 2.90GHz, with 7.5GB of system memory. In the LAN setting,

the client C and server S were executed on such two instances both located in the us-east-1d

(Northern Virginia) availability zone. In the WAN setting, C and S were executed on such

two instances respectively located in the us-east-1d (Northern Virginia) and us-east-2c

(Ohio) availability zone. C and S each used an 4-thread execution. These experiential

settings are similar with those used for the evaluation of the state-of-the-art frameworks [64,

66]. Furthermore, the evaluation used the following datasets and architectures:

1. MNIST [140], a basic dataset for the image classification task. It contains a set of

28×28 grayscale images of handwritten digits from 0 to 9. Given such an image as

16CrypTFlow2 is currently one of the leading frameworks for privacy-preserving DL and it shows signifi-
cant speedup than other works such as GAZELLE [64] (USENIX Security’18) and DELPHI [66] (USENIX
Security’20).
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one input, we aim to correctly predict the handwritten digit it represents, in a privacy-

preserving manner. We evaluate this task using the classic LeNet network [167].

2. CIFAR10 [170], another commonly used dataset for image classification benchmark

that is substantially more complicated than the MNIST-based classification task. The

dataset includes a set of 32×32 RGB images for 10 classes such as automobiles, birds,

cats, etc. For the privacy-preserving classification task with CIFAR10 dataset, we

adopt various DL topologies that are used in practice: AlexNet [15], VGG-11 [16],

VGG-13 [16], VGG-16 [16], VGG-19 [16], ResNet-18 [26], and ResNet-34 [26].

When we compare WISE with CrypTFlow217, we estimate the cost of WISE’s and CrypT-

Flow2’s protocols by summing the costs of the relevant subprotocols for all linear and non-

linear transformations (including all computation and communication costs) as shown in all

blocks of Figure 31. We do this as a protocol decomposition with all costs counted, and this

methodology is also used in other privacy-preserving frameworks.

6.5.2 MICROBENCHMARKS

We first benchmark the performance of the convolution layer18, which is the basic build-

ing block in state-of-the-art DL architectures. Note that each convolution layer includes

both linear and nonlinear transformations. In Table 26, we evaluate the cost of various

convolution layers used in LeNet, AlexNet, VGG-11, VGG-13, VGG-16, VGG-19, ResNet-18,

and ResNet-34. If the convolution layer is the first layer of the relevant network, the cost

includes all computation and communication overhead from block a to block c of Figure 31,

which is the time duration starting from C transforms and encrypts its input, until S obtains

the input for linear computation of the next layer. If the convolution layer is not the first

layer, the cost includes all computation and communication overhead from block d back

17Code available at https://github.com/mpc-msri/EzPC.
18Note that the dense layer can also be transformed into convolution layer [94,168].
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to block c of Figure 31, which is the duration between the time when S performs the lin-

ear computation for the current layer to the time when S obtains the input for the linear

computation of the next layer.

The key takeaway from Table 26 is that our online time is about 2× to 13× smaller

than CrypTFlow2’s. Note that our online communication cost is higher than CrypTFlow2’s,

e.g, WISE needs 98MB while CrypTFlow2 involves 5.5MB. However, WISE has noticeable

overall performance gain (due to the reduced computation cost as analyzed in Section 6.3.3

and the lower communication cost in block c of Figure 31) to offset the communication cost.

6.5.3 PERFORMANCE ON MODERN DL MODELS

We test the performance of WISE on various DL models used in practice. The overall

evaluation is shown in Table 27. Specifically, in the LAN setting, WISE has a speedup of

5.3×, 2×, 1.97×, 1.95×, 1.94×, 1.93×, 3.63×, 2.94× over CrypTFlow2 on LeNet, AlexNet,

VGG-11, VGG-13, VGG-16, VGG-19, ResNet-18, and ResNet-34. The speedup is respectively

3.3×, 2×, 1.9×, 1.89×, 1.88×, 1.86×, 3.18×, 2.6× in the WAN setting. As for the commu-

nication cost, the online overhead includes all transmitted data in blocks a , b , c , and d

of Figure 31, while the offline overhead includes all transmitted data in the offline phase as

shown in Figure 31. Here we can see that WISE has a larger data load to be transmitted

in the online phase and the transmission overhead can be over 10× compared with CrypT-

Flow2. As the bandwidth is a relatively low cost in today’s transmission link, e.g., Amazon

AWS can easily keep a bandwidth around one Gigabit, the reduction of computation and

communication round in WISE brings an overall performance boost that offsets the trans-

mission overhead. Meanwhile, the communication overhead of WISE in the offline phase is

lighter and comparable to that of CrypTFlow2 (in the online phase), which has proved to

be communication-reduced for the involved parties [7]. Furthermore, it is worth reiterating

that WISE’s offline phase is totally non-interactive and does not need the involved parties to

synchronously exchange any calculated data. Therefore, it eliminates the interactive offline
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computation that is often used in the state-of-the-art frameworks such as DELPHI [66] and

MiniONN [65].

Next we test the runtime breakdown of each layer in our evaluated eight DL models as

shown in Fig. 32. It allows us to have detailed observations. Specifically, the runtime for

each layer includes all overhead for linear and nonlinear transformations, which is similar

to the one examined in Section 6.5.2. Meanwhile, the layer index also includes the pooling

layer, i.e., mean pooling. In LeNet, WISE has noticeable speedup in each convolution layer

and the speedup is larger at the last layer as WISE only needs one HE multiplication while

CrypTFlow2 involves a series of HE permutations. Similar observations are found in the

last layer of other networks. In AlexNet, the large kernel width and height in the first

layer, i.e., fh = fw = 11, result in more permutations needed in CrypTFlow2 while the

counterpart in WISE is the same amount of multiplications, which is more efficient (see

more details in Section 6.3.3). At the same time, the stride of 4 in the first layer involves 16

non-stride convolutions in CrypTFlow2 while WISE benefits from the decreased data size

to be transmitted and from the smaller computation overhead for strided convolution. As

such, WISE gains a larger speedup. In VGG-11, VGG-13, VGG-16 and VGG-19, the speedup

is larger in layers 11, 13, 15 and 17 (except the last layer) respectively. This is because

large co (c′o in block d of Figure 31 ), i.e., the number of output channels, makes the gap

between permutation and decryption more significant. As decryption is generally cheaper

than multiplication, the speedup correspondingly increases. In ResNet-18 and ResNet-34,

WISE’s speedup is lager in layers 9, 15, 21 (except the last layer) with strided convolution,

which is in line with the speedup for the first layer in AlexNet. Similar observations are

found in the WAN setting.

Finally, we show in Figure 33 the breakdown of communication overhead in each layer

in our evaluated eight DL models. Here the layer index doesn’t include the pooling layer

as no communication cost is involved in pooling. As demonstrated in Figure 31, the gap

in communication cost (i.e., the amount of data to be transmitted) between WISE and
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CrypTFlow2 is proportional to the number of output channels, i.e., co. As such, we can see

an increased difference between their communication costs as co increases along the layers in

all networks. As we discussed earlier, despite the larger amount of data for communication,

WISE has noticeable overall performance gain (due to the reduced computation cost as

analyzed in Section 6.3.3 and the lower communication cost in block c ) to offset the increased

communication costs.

6.6 CHAPTER SUMMARY

In this chapter, we have jointly considered the computation of two consecutive layers to

optimize system efficiency. Specifically, we have proposed WISE, a novel hybrid protocol

that features (1) a permutation-free scheme which completely eliminates the most expensive

ciphertext permutation operations in the linear transformation and (2) a joint permutation-

free computation between the nonlinear transformation in the current layer and the linear

transformation in the next layer, which reduces communication cost from 4.5 rounds to only

a half round. As such, WISE has achieved about 2× to 13× speedup over CrypTFlow2

(ACM CCS’20) for various neural layers used in the state-of-the-art DL architectures and

demonstrates a speedup up to 5.3× on practical DL models.
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Figure 32. Layer-wise accumulated running time and WISE speedup over CrypTFlow2 on
different networks: (a) and (b) LeNet; (c) and (d) AlexNet; (e) and (f) VGG-11; (g) and
(h) VGG-13; (i) and (j) VGG-16; (k) and (l) VGG-19; (m) and (n) ResNet-18; (o) and (p)
ResNet-34. The bar with values on the left y-axis indicates speedup in log scale, and the
curve with values on the right y-axis indicates the accumulated running time. The layers
with speedup of 1 are pooling layers.
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Figure 33. Layer-wise accumulated communication cost (in log scale) on different networks:
(a) LeNet; (b) AlexNet; (c) VGG-11; (d) VGG-13; (e) VGG-16; (f) VGG-19; (g) ResNet-18; (h)
ResNet-34.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORKS

In order to shorten the gap to practical usability and mitigate the efficiency-accuracy

tradeoff in PPDL, this dissertation has deeply optimized state-of-the-art frameworks and

designed efficient modules by joint linear and nonlinear computation, with data encryp-

tion, to boost the overall performance. The four contributions that have been made in the

dissertation are listed below.

• First, a deep optimization for the HE-based linear computation in HE-GC-based

privacy-preserving DL inference, GALA [102], has been presented that features a row-

wise weight matrix encoding, a combination of the share generation and a first-Add-

second-Perm approach to reduce the most expensive permutation operations. GALA

has demonstrated an inference runtime boost by 2.5× to 8.3× over state-of-the-art

frameworks.

• Second, the GC-based nonlinear calculation has been replaced with a newly-designed

joint linear and non-linear computation for each DL layer [103], in HE-GC-based

privacy-preserving DL inference, based on the Homomorphic Secret Sharing. This

construction has achieved an inference speedup as high as 48× compared with state-

of-the-art frameworks.

• Third, the nonlinear calculation of each layer has been completed for free by a carefully

partitioned DL framework, GELU-Net [90], where the server performs linear compu-

tation on encrypted data utilizing a less complex homomorphic cryptosystem, while

the client securely executes non-polynomial computation in plaintext without approxi-

mation. GELU-Net has demonstrated 14× to 35× inference speedup compared to the

classic systems.



139

• Finally, we have proposed the WISE framework to completely eliminate the most ex-

pensive HE permutation in HE-based linear calculation and reduce the communication

cost from 4.5 rounds to only a half round, by a joint permutation-free computation be-

tween the nonlinear transformation in the current layer and the linear transformation

in the next layer. WISE has achieved 2× to 13× speedup over one of the most recent

works through various widely-adopted neural layers, and demonstrates a speedup up

to 5.3× on practical DL models.

It is worth pointing out that even with significant progress toward privacy-preserving

machine learning in recent years (including the work in this dissertation), there still exists

a large performance gap between the plaintext system (generally below a second) and the

privacy-preserving system (ranging from seconds to hundreds of seconds). Nevertheless, it is

still promising to attain the long-term goal for practical implementation of privacy-preserving

machine learning. First, the privacy-preserving machine learning system is to be deployed

on clouds with abundant computation power. Hence, even though it takes significantly more

time than the plaintext system on the same local hardware, running it on clouds with parallel

computing infrastructure can significantly reduce the gap. Second, the research on the in-

depth optimization of the privacy-preserving computation further help to close the runtime

gap. Altogether, the combination of advanced algorithms and cloud computation resources

may enable the privacy-preserving system to achieve a response time well suited for some

practical applications in the near future.

Specifically, we suggest several promising directions to possibly shorten the gap.

1) Conversion among shares in hybrid-primitive schemes: Generally, different proper-

ties of linear and nonlinear computation make hybrid-primitive schemes outperform single-

primitive counterparts. In hybrid-primitive schemes, it is inevitable to conduct particular

conversion among different data types (e.g., arithmetic shares, Boolean shares and Yao’s GC

shares), which are resulted from different primitives. The conversion is an important factor
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that affects the overall system cost, especially for large-size input and models. While the

hybrid-primitive computation is involving and being optimized [162, 164], adopting single-

primitive methodology can circumvent the share conversion [91]. However, it may also incur

challenges for efficient and accurate computation, i.e., linear and nonlinear computation,

as linear functions are suitable for arithmetic values while the nonlinear functions are suit-

able for Boolean values. Thus, designing more efficient and accurate modules with a single

primitive for both linear and nonlinear functions may boost overall system performance.

2) Reconsidering the linear-and-nonlinear logic for privacy-preserving DL: The funda-

mental working flow in DL is the repetition of linear and nonlinear computation, which is

also a golden rule in privacy-preserving DL. Specifically, all privacy-preserving schemes come

up with designs to first tackle the linear computation, and then solve the computation of

nonlinear functions by taking the linear output as nonlinear input. As shown in [91], this

seemly logical rule may hinder improvement for the overall system. For example, given the

input to one layer in the DL model, the intermediate data (i.e., the output of linear func-

tion) is calculated for the final output (i.e., the nonlinear result). Obviously, each layer does

not necessarily need that specific intermediate data, i.e., the linear output, if the nonlinear

output can be obtained by efficiently calculating another intermediate data. While it is

interesting, the construction of that intermediate data remains challenging and needs more

insights.

3) Parallel computing based hardware-software codesign for larger and deeper networks:

State-of-the-art DL models have massive layers, e.g., over one hundred layers [26], and large-

size input, e.g., three-channel images with 2-D size of 227×227 [171]. Besides optimization

for computation algorithms, how to pipeline such large networks with large-volume input

remains another hurdle for privacy-preserving DL, as privacy-preserving primitives, e.g., HE

and GC, may process data by big modulus which are not efficiently fit for current parallel

computing techniques. The batching technique that computes privacy-preserving data, e.g.,

encrypted input, in parallel is mostly used, e.g., SIMD for HE [64, 153] and circuit pipeline
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for GC [76]. Meanwhile, several protocols for the linear and nonlinear functions are recently

proposed [68, 172] that involve a large amount of plaintext computation, e.g., computation

for arithmetic numbers to benefit more from the current parallel computing techniques.

On the other hand, there are some emerging schemes that involve specifically designed

hardware to accelerate the primitive, e.g., speed up the Number Theoretic Transform (NTT)

for HE, and thus improve system efficiency [173–176]. Overall, the designs for algorithmic

parallelism and hardware acceleration are still relatively disjoint, and the performance may

be further improved by hardware-software codesign towards better pipelining for encrypted

data.

4) Network architecture selection on primitive-integrated platform: As pointed out in

many works [142, 177–180], the DL models always contain redundancy. Therefore, lots of

networks are compressed to boost computation efficiency. Meanwhile, advanced computation

algebra [181–184] further speed ups the plaintext-level computation. However, how to apply

these optimizations into privacy-preserving computation remains challenging as plaintext-

level computation should be transformed into crypto arithmetic with big modulus, which

makes the plaintext-level acceleration infeasible.

In other words, there is a need to search crypto-friendly computation architecture that is

both efficient and accuracy-guaranteed. A few works have considered the network structure

search in privacy-preserving DL, i.e., nonlinear function selection [66] and BNN selection [74].

Searching for the network architecture includes finding 1) the fit kernel sizes for convolution,

2) the pooling methods, 3) the nonlinear activation functions, and 4) the connections for the

above three elements and all should consider the properties of the primitives, e.g., HE based

square is more efficient that GC based ReLU. Meanwhile, a recent work shows an efficient

Integer-Arithmetic-Only CNN structure [185], which may be used as a searching option for

the integer-in-nature primitives such as HE.

Furthermore, given the optimized and modularized DL platforms, e.g., tensorflow [137],

integrating the privacy-preserving primitives in those platforms can utilize the well developed
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computation advantage and thus help to improve the efficiency of model search. A few

works have embedded some primitives, e.g., HE, into tensorflow [133, 134, 186–189] while

the comprehensive integration into DL platforms needs more efforts to facilitate the network

search for optimal privacy-preserving DL architectures.
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APPENDIX A

SUPPLEMENTARY MATERIALS FOR SECURETRAIN

A.1 CONSTRUCTION OF (2,2)-THRESHOLD SCHEME

We tailor the Shamir threshold scheme [61,190] from Z to R by data splintering [152] to

enable secure and efficient training in SecureTrain. Formally, in a (t, w)-threshold scheme,

the message m is split among w parties such that t of them are needed to reconstruct m,

but no subset of smaller size than t can reconstruct m. The first thing is to randomly select

(t − 1) coefficients s1, s2, · · · , st−1 and form a polynomial s(x) = m+ s1x+ · · ·+ st−1x
t−1.

In order to recover m, s1, · · · , st−1, t pairs of (x, s(x)) are needed to solve the equation group.

The design of tuple (r1x1, r2x2) is derived from the (2, 2)-threshold scheme. Specifically,

the (2, 2)-threshold scheme forms a polynomial s(x) = m + s1x and in order to recover m

and s1, 2 pairs of (x, s(x)) are needed to solve the equation group. Then we construct

r2x2 = x+ (
(r2 − 1)x

r1x1

− r2

r1

)r1x1 (31)

which has a corresponding relation to s(x) = m+s1x that s(x) is r2x2, m is x, s1 is ( (r2−1)x
r1x1

−
r2
r1

) and x is r1x1. The randomness of x1, r1, r2 means the randomness of ( (r2−1)x
r1x1

− r2
r1

) thus

correspondingly resulting in the randomness of s1. In this way, S cannot obtain x by tuple

(r1x1, r2x2).

A.2 BACK PROPAGATION EXCEPT LAST LAYER

C obtains the S-encrypted ReLU derivative, i.e., [∂x
∂z

]S as discussed in 4.3.4. Recall that,

in forward propagation, C creates the tuple (r1x1, r2x2) and sends it to S for the calculation
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of weighted sum. To enable the backpropagation, C additionally generates two terms and

sends them along with the tuple (r1x1, r2x2) to S.

First, C generates its share of ReLU derivative pC randomly and encrypts it as [pC]C.

Second, it creates the share for S:

[pS ]S = [
∂x

∂z
]S − pC = [

∂x

∂z
− pC]S , (32)

where [∂x
∂z

]S is obtained by C using Eq. (25). Upon receiving [pS ]S and [pC]C, S decrypts

[pS ]S into pS and computes

(pS + [pC]C)� qS = [pS + pC]C � qS = [
∂x

∂z
]C � qS , (33)

where qS is a mask vector for protecting the elements in ∂x
∂z

.

Furthermore, S creates (r3δ
S
1 , r4δ

S
2 ), where r3 and r4 are two random numbers generated

by S while δS1 and δS2 are two random shares satisfying δS1 +δS2 = δ̊S . Note that δ̊S has been

obtained by S in the (k + 1)-th layer. The tuple along with the result of Eq. (33) are sent

to C. This transmission is piggybacked to the HSS based share set χ1 in back propagation

from S to C for (k + 1)-th layer.

C subsequently computes the following five ciphertexts and a plaintext tuple:



C1 = [̊δCẘC � ∂x
∂z
� qS ]C

C2 = [r3δ
S
1 ẘ

C � ∂x
∂z
� qS ]C

C3 = [r4δ
S
2 ẘ

C � ∂x
∂z
� qS ]C

C4 = [
∂x
∂z
�qS

r5
]C, C5 = [

∂x
∂z
�qS

r6
]C

(r5δ
C
1 , r6δ

C
2 ),

(34)

where δ̊C and ẘC are available to C as the share of δ and w in the (k + 1)-th layer. The

tuple (r5δ
C
1 , r6δ

C
2 ) is generated by C such that δC1 and δC2 are two random shares satisfying
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δC1 +δC2 = δ̊C while r5 and r6 are two random numbers. The results of Eq. (34) are piggybacked

to the message when C sends the ciphertext in Eq. (22) to S for (k + 1)-th layer. Then S

conducts: 
C1 � 1

qS
, C2 � 1

r3qS
, C3 � 1

r4qS

C4 � r5δC1 ẘ
S

qS
, C5 � r6δC2 ẘ

S

qS

δ̊SẘS � [∂x
∂z

]C,

(35)

and subsequently adds the six items in Eq. (35) to obtain the C-encrypted δ, i.e., [δ]C:

C1 � 1
qS

+ C2 � 1
r3qS

+ C3 � 1
r4qS

+ C4 � r5δC1 ẘ
S

qS

+C5 � r6δC2 ẘ
S

qS
+ δ̊SẘS � [∂x

∂z
]C

= [̊δCẘC � ∂x
∂z

]C + [δS1 ẘ
C � ∂x

∂z
]C + [δS2 ẘ

C � ∂x
∂z

]C

+[δC1 ẘ
S � ∂x

∂z
]C + [δC2 ẘ

S � ∂x
∂z

]C + [̊δSẘS � ∂x
∂z

]C

= [̊δẘ � ∂x
∂z

]C = [δ]C.

(36)

Since S now owns C-encrypted δ, C and S can continue the update of weight and bias in a

way similar to that in the last layer as introduced in 4.3.4.

A.3 COMPLEXITY ANALYSIS

This section analyzes the computation as well as communication complexity of Secure-

Train.

Computation Complexity. As for forward propagation in Section 4.3.21, C firstly conducts

one Add and one Mult to get r2x2 based on encrypted x = [a]S . Then, after S receives

the HSS based share set χ1, as shown in Figure 13, S conducts four Mult to respectively

obtain [r2x1w
S ]C, [r2b

S ]C, [r2x2w
C
1 ]C and [r2x2w

C
2 ]C. Then, five Add in Eq. (10) results in

the client-encrypted linear sum [r2z]C at S.

Next, the non-linear calculation starts from Eq. (5), which involves one Mult to scramble

the linear result into [r2z � vS ]C. Then, S sends C the HSS based share set χ2 (see Figure

1We analyze the situation except first layer as the complexity at the first layer is lighter.
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13) and C get server-encrypted non-linear result by Eq. (8), which needs two Mult and one

Add. Therefore, the total complexity for each layer in forward propagation is seven Add

(O(1)) and eight Mult (O(1)).

As for softmax calculation in Section 4.3.3, SecureTrain features with non-approximation

design within one-round communication. Specifically, one Mult and one Add are firstly

needed for S to disturb z by Eq. (11). Then, S sends C HSS based share set χ1 (see Figure

14). C accordingly calculates by Eq. (12) with one Mult and one Add. As the following

computation only involves plaintext, softmax needs two Mult (O(1)) and two Add (O(1)).

As for back propagation in Section 4.3.42, S firstly refreshes its bias share in plaintext by

b̂S . After that, S sends C HSS based share set χ1 (see Figure 15), which involves one Add

and one Mult.

After C receives χ1, it updates its bias share by Eq. (17). To update the weight, C

refreshes its weight share by Eq. (18). Then, C forms HSS based share set χ2 (see Figure

15). Specifically, nino

ns
Mult are needed to obtain Eq. (21). This is because the size of

−−−→
δ � lS

or −→x2 is nino, which needs nino

ns
ciphertexts. Then, another nino

ns
Add is needed to sum up

Eq. (19) and Eq. (21). After that, C gets the weight share for S with nino

ns
Mult and nino

ns

Add by Eq. (22). Upon receiving the set χ2, S updates its weight share by Eq. (23).

Moreover, specific computation is piggybacked in the previous process to enable the next

round of weight/bias update. In concrete terms, C firstly gets ReLU derivative by Eq. (25) in

forward propagation, with one Mult and one Add. Next, C forms the share of ReLU derivative

for S with another one Add by Eq. (32). S then gets the scrambled ReLU derivative by Eq.

(33) with one Add and one Mult. Finally, S conducts six Mult by Eq. (35) and five Add by

Eq. (36) to finally get the [δ]C.

Thus the computation complexity for backpropagation is (9+ 2nino

ns
) Mult (with complex-

ity of O(nino

ns
)) and (9 + 2nino

ns
) Add (with complexity of O(nino

ns
)).

Communication Complexity. Similar to the analysis for computation complexity, there

2We analyze the situation from (n− 1)-th layer as the complexity at the last layer is lighter.
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are three communication parts that are respectively involved in forward propagation, softmax

and back propagation.

As for forward propagation in Section 4.3.23 shown in Figure 13, to calculate the linear

weighted sum, C firstly sends S the HSS based share set χ1, including five ciphertexts ([r2]C,

[ r2
r1

]C, [r2(x1w
C+bC)]C, [ 1

h1
]C and [ 1

h2
]C), two plaintext vector (r1x1 and r2x2) with dimension

of ni, and two matrices (h1w
C
1 and h2w

C
2 ) with dimension of ni × no.

Then, S sends C the HSS based share set χ2 (see Figure 13), which contains three

ciphertexts ([r2z � vS ]C, [g1]S and [g2]S) for computation of non-linear ReLU activation.

Thus the total interactive data includes eight ciphertext with 8sc in bit, two plaintext vector

with 2nisp in bit, and two plaintext matrices with 2ninosp in bit. One communication round

is involved.

As for softmax shown in Figure 14, two ciphertexts ([r2(z+dS)]C and [e−dS ]S) are firstly

transmitted from S to C as the HSS based share set χ1 for the calculation of Eq. (12) and Eq.

(13). Then, one ciphertext ([rez+o]S) and one plaintext vector (dC�ez+dS ) with dimension

of no are sent from C to S as the HSS based share set χ2 to accurately get the share of

softmax function. Therefore, the total transmitted data during softmax calculation is three

ciphertexts (with 3sc in bit) and one plaintext vector (with nosp in bit). One communication

round is involved.

In back propagation4 shown in Figure 15, S begins the update of bias by b̂S , After

that, S sends C the HSS based share set χ1 for the update of weight and bias, including

two individual ciphertext, nino

ns
ciphertext for [−−→r2x2]S and nino

ns
ciphertext for [

−→
lS ]S . Then,

another nino

ns
ciphertext by Eq. (22) are transmitted from C to S as HSS based share set χ2

for the update of weight at S.

Similar to the analysis for computation complexity, specific communication is piggy-

backed in the previous layer to get the error [δ]C for the current layer and then enable the

3We also consider the layer except first layer, as the communication complexity for the first layer is lighter.
4We analyze the situation without last layer as the communication complexity at the last layer is lighter.
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next round of weight/bias update. Specifically, S firstly sends C one ciphertext, [g3]S , to get

server-encrypted ReLU derivative at C by Eq. (25). Then, two ciphertexts, [pC]C and [pS ]S ,

are sent from C to S for the calculation of scrambled ReLU derivative by Eq. (33). The scram-

bled ReLU derivative along with two plaintext vectors, r3δ
S
1 and r4δ

S
2 , with dimension of no,

are transmitted to C. C then forms five ciphertext (C1 to C5 in Eq. (34)) and two plaintext

vectors (r5δ
C
1 and r6δ

C
2 , with dimension of no) to enable S obtain the client-encrypted error

[δ]C by Eq. (36).

In all, back propagation involves (11 + 3nino

ns
) ciphertext (with (11 + 3nino

ns
)sc bit) and four

plaintext vectors (with 4nosp bit). As the calculation for error [δ]C involves no extra commu-

nication round (see 4.3.4), SecureTrain needs only one communication round for weight/bias

updata in each layer.

A.4 SECURITY AGAINST A SEMI-HONEST SERVER

We now prove the security against a semi-honest server. We define a simulator sim that

simulates an admissible adversary A which has compromised the server in the real world.

In forward propagation as shown in Figure 13, sim conducts the following: 1) abstracts the

randomness of server and forms a random vector bS and a random matrix wS ; 2) sends bS

and wS to F and gets HSS based share set χ1; 3) constructs a random vector b̃S and a

random matrix w̃S ; and 4) receives from C the HSS based share set χ̃1. Here χ1 and χ̃1 are

indistinguishable due to the randomness of the tuple in χ1 and the security of CKKS. Thus

the forward propagation is secure against a semi-honest server.

In softmax calculation as shown in Figure 14, sim conducts as follows: 1) abstracts the

randomness of the server and forms the HSS based share set χ1; 2) sends χ1 to F and gets

HSS based share set χ2 according to equations from Eq. (12); 3) constructs another HSS

based share set χ̃1, which have the same structure as χ1; and 4) sends χ̃1 to C and receives

from C the HSS based share set χ̃2 based on equations from Eq. (12). Here χ2 and χ̃2 are

indistinguishable due to the randomness of r, o and dC in Eqs. (12) and (13). Thus the
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softmax calculation is secure against a semi-honest server.

In back propagation as shown in Figure 15, sim conducts as follows: 1) abstracts the

randomness of server and forms the HSS based share set χ1; 2) sends χ1 to F and receives

the HSS based share set χ2; 3) constructs another HSS based share set χ̃1 which has the

same structure as χ1; and 4) sends χ̃1 to C and receives another HSS based share set χ̃2

according to Eq. (22). Here χ̃2 and χ2 are indistinguishable due to the randomness of ∆C

in Eq. (22).

Similar to the case under semi-honest client, the calculation of [δ]C for the current layer

is piggybacked in the weight/bias update for the previous layer to enable the next round

of weight/bias update. In such case, sim conducts as follows: 1) abstracts the randomness

of the server and forms a ciphertext [g3]S ; 2) sends [g3]S to F and receives two ciphertext

based on Eq. 32, and five ciphertext along with a plaintext tuple according to Eq. (34); 3)

constructs another ciphertext [g̃3]S ; 4) sends [g̃3]S to C and receives two ciphertext based on

Eq. (32); and 5) sends a ciphertext (see Eq. (33)) and a plaintext tuple (r3δ
S
1 , r4δ

S
2 ) to C

and receives another five ciphertexts and one plaintext tuple according to Eq. (34). Here

the six ciphertexts from step 2) are indistinguishable from these from step 5) due to the

security of CKKS. And the plaintext in step 2) is also indistinguishable from the one in step

5) due to the randomness of pC, δC1 , r5 and r6. Thus, the back propagation is secure against

a semi-honest server.
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