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COVID-19. The pattern can be associated to the Governor's executive orders (EO), as shown in the 
graph of the Moran values (Figure 10).  

 

Figure 8. COVID-19 total case count networks �± Dec 15, 2020, to Dec 21, 2020 (left) 
and Jan 7, 2021, to Jan 14, 2021 (right). 

 

Figure 9. Maps depicting the pattern of COVID-19 over time in 93 counties at the six 
selected times: January 22, 2020 (1st day), April 30, 2020 (100th day), August 8, 2020 
(200th day), November 16, 2020 (300th day), February 24, 2021 (400th day) and May 25, 
2021 (490th day). 
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Figure 10. Moran values over time and state decisions. EO 55, March 30, 2020: 

Temporary stay at home order due to novel coronavirus. EO 62, May 14, 2020: Amended 

order of public health emergency four; jurisdictions temporarily delayed from entering 

phase one. EO-65: June 9, 2020: Phase two easing of certain temporary restrictions due to 

novel coronavirus; EO 67, Nov 13, 2020: Phase three easing of certain temporary 

restrictions due to COVID-19. 

The values of Moran’s statistic that are significantly below, equal to or above −
 

 𝐾−  
 −

 

  
 

 −   1    imply that there is a negative, zero or positive spatial autocorrelation, respectively [43].  

Almost all our computed Moran values are greater than –0.01087 (Figure 10). This shows that 

there is a positive spatial correlation. There is an inherent relationship between total cases and the 

predictive variables (day and area). Geographical distance plays a main factor in the COVID-19 

cases in short time periods, as mentioned in [44]. We can also see that the Moran values closely 

connect with the EOs and “end of year effects.” 

7. Conclusions 

This paper models the progression of the coronavirus (COVID-19) pandemic in 93 counties in 

the state of Virginia. The daily count data related to the total cases of COVID-19 in these 93 counties 

are analyzed. The statistical framework of spatio-temporal context with conditional autoregressive 

(CAR) modeling has been used from the R package CARBayesST for the descriptive and inferential 

statistical analysis. The Moran statistic values have also been computed to compare spatial properties 

of the total cases of COVID-19. The results confirm the relationship of the total cases of COVID-19 

in space and time. The total cases at a specific time point are impacted by and linked to the 

Governor’s executive orders. We show the connection of the Moran values in state decisions via the 

plot of the Moran values. With our proposed outlook, we have shown that the Bayesian approach is a 

solid approach for the modeling of the total cases of COVID-19 in space and time. This is quite 

novel in the literature of COVID-19 data. 

The research literature and applications for spatio-temporal modeling of total cases of 
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COVID-19 are expanding. As new statistical techniques for spatio-temporal modeling develop, the 

properties of such geostatistical models will be tested and validated. Future work will include 

conditional and multivariate space-time models that have efficient and tractable computational 

capabilities. 

We have considered two covariates (time and location) in our research. Adding more covariates, 

such as the number of hospitalizations each day for each county or the intensive or critical care units 

availability related to COVID-19 in the respective counties, may be useful to understand the disease 

progression. Also, changing the covariance structure may be considered in future studies. 
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