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ABSTRACT

EXPLAINABLE ARTIFICIAL INTELLIGENCE:
METHODS AND EVALUATION

Gayane Grigoryan
Old Dominion University, 2024
Director: Dr. Andrew J. Collins

A wide array of techniques within explainable artificial intelligence (XAI) have been

developed to measure the importance of features in machine learning models. A notable

portion of these methods draws upon principles of cooperative game theory (CGT), with the

Shapley value emerging as a widely used solution concept. Despite the rising prominence

of the Shapley value, other promising solutions from cooperative game theory—such as the

Nucleolus, Banzhaf power index, Shapley-Shubik power index, and solutions to conflicting

claims problems—have been comparatively overlooked, even though they hold significant

potential. In this dissertation, multiple XAI methods based on these other CGT solutions

are proposed. These methods were applied in both linear and classification scenarios, ad-

dressing datasets with both independent features and multicollinearity concerns. Prior work

considered the sensitivity of explanations through permutation tests or the accuracy of expla-

nations to evaluate XAI methods. However, these approaches do not address the uncertainty

or the consistency associated with the feature importance evaluations. In this dissertation, a

weighted Shannon entropy-based permutation relative importance evaluation (PRIME) met-

ric is proposed to assess the consistency of feature importance methods in determining the

relevance of the features. This metric integrates the established methods of permutation tests

and weighted Shannon entropy to conduct the evaluation. The novelty of this dissertation

lies in (1) demonstrating the applicability of numerous CGT solutions to measure feature

importance values, (2) showing the effectiveness of these techniques using permutation rel-

ative importance evaluation metric, and (3) employing these methods to investigate input

data that can be used for an agent-based model. The results show that the Shapley-Shubik,
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Banzhaf power index and conflicting claims problems-based feature importance methods offer

advantages over Shapley value-based methods due to their unique properties when explain-

ing feature importance values. The findings also demonstrate that PRIME can effectively

evaluate feature importance methods.
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CHAPTER 1

INTRODUCTION

This chapter presents the problem statement, objectives, research questions, contribu-

tions, the impact of the study, the publications, and the dissertation overview.

Machine learning (ML) techniques have become pervasive in the last decades. Ma-

chine learning models refer to computational systems designed to learn patterns and make

predictions or decisions based on data [2]. These models are trained on a dataset, using var-

ious algorithms to capture underlying patterns and relationships within the data. Different

features (input variables) contribute to the model’s overall performance, and assessing the

importance of these features becomes crucial for understanding model behavior [3].

However, grasping the behavior of the models — how they operate and explain the

rationale behind specific decisions— can be challenging. [4]. Explainability is the ability

to describe what happens in the model from input to output [5]. Explainable artificial

intelligence (XAI) is a more formal way to describe this within the artificial intelligence

domain. XAI helps to make the model transparent and addresses the black box problem [5].

The need for explainability is primarily motivated by the social dimension of expla-

nations [6]: improve trust towards the model-supplied outcome and avoid legal or ethical

issues and potential biases and discrimination. For example, XAI is necessary for reinforce-

ment learning as these models are considered black boxes due to the lack of transparency

in understanding the model’s inner workings and decision-making process [7]. Simple, ex-

plainable models, such as a regression model, can also be challenging to interpret. These

models do not automatically guarantee explainability due to issues such as multicollinearity.

Multicollinearity can result in different coefficients with equivalent accuracies. To avoid this

issue, the number of input features could be limited during model training using some reg-

ularization, such as Lasso [8], Ridge regression [9], or perform principle component analysis
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[10]. However, these techniques are limited in data interpretation [11, 12]. Instead, the use

of explainable artificial intelligence has been advocated to enhance the model’s explainability

[13, 14].

XAI provides techniques to improve the explainability of AI decisions and predictions.

XAI describes an AI model, its expected impact, and potential biases. It helps characterize

model accuracy, fairness, transparency regarding how the model reached a particular answer,

justification of why the output should be accepted, and the information to back decisions.

Numerous XAI techniques exist [15, 13, 14, 16, 17, 18, 19]. From these techniques, a subset

of techniques known as feature importance, also known as feature attribution or credit as-

signment techniques based on cooperative game theory, will be analyzed in this dissertation.

In more sophisticated machine learning models, hundreds of features could be used to

realistically describe the real-world system. Explaining which of these features is more im-

portant for the system representation and functionality is a significant aspect we will address

in the scope of this dissertation. Feature importance (FI), also called feature attribution [20]

and credit valuation [21], measures the contribution of the input variables, or features, to

the ML model functionality and its performance [22]. To determine the feature importance

values, the model performance, such as the increase of model error, is computed after re-

moving a particular feature. If removing the feature from the model does not affect the

model performance, then the feature is not important for the model. Feature importance

is part of the post-hoc explanation generation [23]. Post hoc explanations mean applying

an explainable model, such as a regression model, to a target model to extract explanations

and describe the predeveloped models [23]. Post-hoc explanations can be treated as proxy

or surrogate models to the original model.

There are many feature importance methods due to the benefits these methods intro-

duce for selecting essential features and model explanations. Shapley value, a cooperative

game-theory-based solution, has been prevalent in developing feature importance methods

[24]. The reason for this prominence is the robust mathematical framework Shapley values
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provide to explain the dynamics of a system. The objective of Shapley-value-based feature

importance measures is to identify features’ respective contributions to the model perfor-

mance to improve the system’s possible outcome. Generally, the cooperative game theory

seeks to determine what coalitions will form and how to divide the payoff (rewards) among

coalition members fairly [24]. In the model, features or agents are the coalition members, and

the payoff could be the model performance. This dissertation focuses on other cooperative

game theory solution concepts to measure feature importance values.

1.1 MOTIVATION/PROBLEM

This section outlines the motivation behind the dissertation and defines the problem

it seeks to address.

Shapley value suffers from several limitations related to its axioms that do not generally

guarantee that the Shapley value is suited to feature importance [25, 1]. Kumar et al.,

[26] describe mathematical and human-centric issues associated with Shapley-value-based

explanations as feature importance measures. Studying other cooperative-game theory-based

solutions could help address the challenges and limitations or provide new insights rather

than relying solely on the Shapley value to measure feature importance in machine learning

models. Other cooperative-game theory-based solutions could provide alternative ways of

modeling the interactions and dependencies among features and help identify potential biases

or limitations of machine learning models that may be missed by Shapley value. Often, these

solutions, such as Nucleolus, Shapley-Shubik, or Banzhaf power index, are chosen because

they may lead to various unique predictions and provide different explanations about the

problem of interest. For example, the core evaluates which coalitions will form by determining

the feasible payoff allocations that another subset of players cannot improve upon [27]. The

nucleolus of a model is a solution concept that minimizes the worst inequity of the coalition

[28]. Shapley-Shubik determines how likely it is for a feature to become pivotal [29]. Banzhaf

power index would be a numerical representation of how likely the feature is to be critical
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and substantially influence the final outcome [30]. Generally, solution concepts declare rules

for predicting how a game will be played, and these predictions are considered solutions. The

essence of these solution concepts is fairness and rationality. To determine which solution

concept is most appropriate to measure feature importance values for a particular prediction,

I experiment with different solution concepts and see which one provides the most human-

centric results. Human-centric refers to a focus on machine learning outcomes tailored to be

understandable, relevant, transparent, and beneficial from a human perspective, especially

in terms of interpretability, responsibility, and usability [31]. This involves designing and

selecting solution concepts that produce results that humans can easily interpret, relate to,

and apply in decision-making processes, ensuring that artificial intelligent system serves to

augment human capabilities and knowledge [32].

In essence, this dissertation aims to assess the applicability of various cooperative

game theory solutions to determine feature importance values using linear regression, logistic

regression, and input data that could be used to enhance agent-based models. A linear

regression model is a predictive model that describes the relationship between one or more

features and the target variable [33]. Logistic regression is a popular algorithm used for

binary classification, where the task involves predicting one of two classes [34, 35]. Agent-

based models are simulation models that replicate the behavior of individual entities, known

as agents, within a defined environment [36]. These models are designed to capture the

dynamic interactions and decision-making processes of agents, often reflecting the complexity

and emergence observed in real-world systems.

1.2 AIM AND OBJECTIVES

In this section, the objective of the dissertation is presented.

The objectives of this research are to develop new cooperative game theory-based ex-

plainable AI (CGTXAI) methods, apply these new methods to linear and logistic regressions

and agent-based models, and consider the Weighted Shannon entropy permutation-based
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evaluation approach (PRIME) to assess these methods’ performances. The objectives of this

dissertation are listed below:

1. Application of cooperative game theory-based XAI methods to the linear model. Re-

gression models are considered inherently explainable; however, it was observed that

the regression model explainability reduces when multicollinearity is present. Shapley

values have been applied to explain the feature importance values in regression models

with multicollinearity issues [37]. However, other cooperative game theory solutions

have not been used to evaluate the regression feature importance values. In the scope of

this dissertation, several cooperative game theory solution concepts will be considered

to evaluate the regression feature importance values.

2. Application of cooperative game theory-based XAI methods to the classification model.

Here, logistic regression is used as a surrogate model to explain more complex black-box

models [13]. Surrogate models are a concept in machine learning used to interpret and

explain the decisions made by more complex models—commonly referred to as black

box models [13]. Developing explainable AI techniques tailored for logistic regression is

crucial, particularly when faced with the challenge of elucidating the decision-making

processes involved in more intricate classification tasks.

3. Application of cooperative game theory-based XAI methods to study input data that

could be used when designing agent-based models. Agent-based models are used to study

complex systems where individual agents, each characterized by unique attributes,

governed by a set of rules and behaviors, interact within an environment to simulate

emergent phenomena [36, 38]. Agent-based models are known for their sensitivity to

input and parameter changes [39, 40]. Considering cooperative game theory-based ex-

plainable AI methods to explain the impact of parameter and input data variations in

agent-based models holds significant potential for providing a comprehensive under-

standing of the convoluted dynamics governing these systems.
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4. After exploring new explainable AI methods across diverse models, this dissertation

aims to provide a quantitative way to assess the performance of cooperative game

theory-based explainable artificial intelligence methods. Weighted Shannon entropy-

based permutation relative importance evaluation (PRIME) is developed to measure

the consistency of feature importance ranking. This allows for a systematic and ob-

jective evaluation, enabling comparisons between different methods and determining

which ones are more effective in providing meaningful explanations.

1.3 RESEARCH QUESTIONS

In this section, the research questions are outlined.

The main hypothesis is that various new cooperative game theory-based explainable

artificial intelligence techniques can be pertinent ways to explain feature importance values

for regression, logistic, and agent-based models. The following research questions will be

addressed in the scope of this dissertation:

1. To what extent are various cooperative game theory-based solutions (Shapley val-

ues, core, Nucleolus, Shapley-Shubik, Banzhaf power index, and conflicting claims

problem) useful to explain the feature importance values for a regression model with

multicollinearity issue?

2. To what extent various cooperative game theory-based solutions (Shapley values, core,

Nucleolus, Shapley-Shubik, Banzhaf power index, and conflicting claims problem) can

explain a logistic regression model with independent features?

3. To what extent various cooperative game theory-based solutions (core, Nucleolus,

Shapley-Shubik, Banzhaf power index, and conflicting claims problem) can explain

the changes in input data suitable for integration into agent-based models?

4. To what extent weighted Shanon entropy-based permutation importance evaluation
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(PRIME) can measure the performance of methods across diverse models, considering

factors such as consistency and uncertainty?

These questions aim to enhance the feature importance measures, provide additional

information to the target model, and improve the trust and understanding of the model

outcomes for stakeholders interested in the prediction.

1.4 RESEARCH CONTRIBUTIONS AND OUTCOMES

The research contributions are as follows:

• This is the first attempt to apply various cooperative game theory solutions, such as

Nucleolus, Shapley-Shubik power index, Banzhaf power index, and conflicting claims

solutions (conflicting claims proportional, constrained equal awards, constrained equal

losses, Talmud and constrained random arrival) to advance model explainability and

feature importance measures using linear and logistic regression models. The results

show that other solutions are as important as Shapley’s value, which has been usually

used.

• This is the first attempt to apply various cooperative game theory solutions, such as

Shapley values, to advance model explainability and feature importance measures to

study input data for agent-based models.

• Weighted Shannon entropy-based permutation relative importance evaluation metric

(PRIME) is the first attempt to measure the feature importance methods’ consistency

when evaluating the influences of the features on the prediction.

1.4.1 RESEARCH IMPACT

Nowadays, machine learning algorithms analyze user data and affect the decision-

making process in areas like medicine [41], employment [42], traffic control [43], education
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[44] and criminal justice [45]. These algorithms could have biases and result in discrimina-

tion and unfair decision-making [46, 47]. Even machine learning experts may have difficulty

fully comprehending the inner workings of the algorithm, and this complexity can hinder

debugging and, thereby, impeding their adoption [48]. However, it is vital to provide means

for communicating the algorithm’s findings with non-experts. Explainable Artificial Intel-

ligence (XAI) methods can be a solution to obtain a more complete understanding of the

prediction [15, 14]. New cooperative game theory explainable artificial intelligence methods

can be instrumental in enhancing the overall model understanding and transparency while

enabling the identification of important features.

1.4.2 PUBLICATIONS

Here are the published and work-in-progress papers developed in the scope of this

dissertation.

Published

• Grigoryan, G., and Collins, A. J. (2023, December). Feature Importance for Uncer-

tainty Quantification In Agent-Based Modeling. In 2023 Winter Simulation Conference

(WSC) (pp. 233-242). IEEE.

• Grigoryan, G., and Collins, A. J. (2021). Game theory for systems engineering: a

survey. International Journal of System of Systems Engineering, 11(2), 121-158.

• Grigoryan, G. (2022, June). Explainable Artificial Intelligence: Requirements for

Explainability. In Proceedings of the 2022 ACM SIGSIM Conference on Principles of

Advanced Discrete Simulation (pp. 27-28). (Extended Abstract)

• Grigoryan, G., Robaldo, L., Pinto, A., and Collins, A. J. (2023). Exploring the

explainability and legal implications of regression models in transportation domain. In

Juris-informatics (JURISIN). Workshop publication.
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• Grigoryan, G., and Collins, A. J. (2022). Is explainability always necessary? Discus-

sion on explainable AI. In Modeling, Simulation and Visualization student capstone

conference. Norfolk, VA.

1.5 DISSERTATION OVERVIEW

The outline of this proposal is as follows. Chapter 2 describes the background of

explainable artificial intelligence, its methods, and the need for explainability. Chapter 3

discusses the research methodology. Chapter 4 presents the results. Chapter 5 concludes the

dissertation.
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CHAPTER 2

RELATED WORK

The goal of this chapter is to provide the essential concepts on explainable artificial

intelligence (XAI), covering methods, game theory, various models including linear and lo-

gistic regression as well as agent-based models, and delving into the principles of systems

engineering.

Usually, people do not feel comfortable agreeing with a machine learning (ML) system’s

decision without a complete understanding of the decision-making rationale of the system

[49]. Extensive explanations of the machine learning model’s output may be necessary to

achieve its full credibility. An analyst or a machine learning expert may have good knowledge

about the inner workings of the algorithm. However, it is vital to communicate algorithm

findings with non-experts clearly by providing more information about the relationships

between the features. This includes providing a transparent explanation about how the

model reached a particular solution and a justification of why one should accept that result

[50]. The models that are hard to comprehend are usually described as ”black box” models,

referring to an increased level of uncertainty in understanding the algorithm outcomes [51].

Simpler machine learning models, also known as white box models, can be easily understood

by humans due to their lack of rules that design the model and generate the outcome [51].

An example of a less complicated white box machine learning model is the regression model,

and an example of a black box model is a convolutional neural network. Many analysts

blindly ‘accept’ the outcome of the black-box model, whether by necessity or by choice [52],

without fully understanding why certain decisions were made. A black box model in machine

learning refers to a type of computational model that makes decisions or predictions based

on input data without revealing its internal decision-making process [16].
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An example of an incorrect prediction of a machine learning algorithm is discussed by

Ribeiro, Singh, and Guestrin [13], who have conducted experiments to distinguish photos of

wolves and huskies (Figure 1). The machine learning model used was a logistic regression on

a set of 20 images, hand-selected such that all pictures of wolves had snow in the background,

while pictures of huskies did not. The classifier predicted “wolf” if there is snow (or a light

background at the bottom) and “husky” otherwise. This means the classification model

inadvertently learned to use the presence of snow in the background as a primary feature

for prediction rather than more relevant features related to the animals themselves. If snow

was in the image, the model predicted wolf; if not, it predicted husky. This reliance on an

irrelevant feature highlights the potential pitfalls of machine learning models that might not

make decisions based on the actual relevant features. Ribeiro, Singh, and Guestrin [13] have

further conducted human subject experiments to show the classification model with and

without explanation and emphasize the role of explanation in detecting incorrect prediction

of the model and improving the trust towards the model-supplied outcome.

FIG. 1: Husky vs. Wolf experiment, showing a prediction of a husky as a wolf when the
background has snow (in the left), and the snow (in gray) as the most important feature (in
the right)

The results of this experiment show that the machine learning model prioritizes spe-

cific features over others—such as animal color, position, and facial structure — deeming

them less important for classification. This experiment aimed to underscore the significant
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impact of the most important feature, namely snow, on the prediction outcome, using the

LIME approach for distinguishing between huskies and wolves. As shown in Figure 1, with

incorrect classification, the necessity to have a better understanding of the machine learn-

ing modeling decisions becomes imperative. This experiment showcases a critical aspect of

machine learning models — the importance of explainable and trustworthy predictions. The

experiment was designed to address the challenge of understanding and trusting the predic-

tions made by machine learning algorithms, especially when these algorithms act as black

boxes that are hard to interpret.

Explainable artificial intelligence (XAI), a subdomain of artificial intelligence, focuses

on solving black-box-related issues when explanations are crucial [15, 22]. The following

subsections elaborate on explainable artificial intelligence and the explainable artificial in-

telligence methods.

2.1 EXPLAINABLE ARTIFICIAL INTELLIGENCE

This section delves into the fundamental principles of explainable artificial intelligence.

Machine learning is an evolving branch of computational algorithms that are designed

to emulate human intelligence by learning from the surrounding environment [53, 54, 55].

Machine learning algorithms include our opinions embedded in code and sometimes reflect

human biases that lead to machine learning mistakes [56]. Explainable artificial intelligence

(XAI), sometimes also referred to as explainable machine learning (XML) interpretable AI or

interpretable machine learning (IML) has been extensively used to describe an ML model, its

expected impact, and potential biases in the model’s decision-making reasoning [57, 58, 59].

Explainability is generally described as the ability of the human user to understand the

model’s logic. Gregor and Benbasat [60] describe explainability as a declaration of the

meaning of words spoken and actions to adjust a misunderstanding or reconcile differences.

Explanations help to understand the system’s malfunctions or anomalies [61]. The explana-

tion is assumed to be provided by some source of information and that the explanation is
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geared to supply some data, knowledge, and evidence [50]. Gunning et al. [62] state that ex-

plainability reflects the objective to create more human-understandable ML models through

the use of effective explanations. XAI provides answers to how and why particular decisions

were made and if those decisions have been made for right or wrong reasons [63]. Rosenfeld

and Richardson [64] state that the explainable system is the most central and essential for

the systems’ functionality. Gilpin et al. [65] argue that interpretability alone is insufficient.

The field of XAI is not new and can be traced back to the origins of artificial intelligence

research and the development of expert systems [66]. Defence Advanced Research Projects

Agency (DARPA) launched the Explainable AI program in 2017 [62] to emphasize the need

for explainable models with high levels of learning performance (prediction accuracy); and to

enable human users to understand, appropriately, trust, and effectively manage the emerging

generation of artificially intelligent partners.

Three key stakeholder groups interested in XAI analysis are developers, end-users,

and regulators [67]. The first group is the engineers that build the ML models. Engineers

seek to gain a deeper understanding of the model and improve its performance. The second

group is the consumers or end users who may not have the technical knowledge and skills to

understand how the algorithm works. However, understanding the model outcome is vital

for the end users as it builds trust that model decisions are reliable and equitable. The final

group of stakeholders is the regulators who want to ensure model decisions comply with laws

and do not amplify undesirable bias from the underlying model specification and the data.

XAI can offer improved insights to regulators to trace unexpected predictions and identify

corrective actions.

Several explainability-related terms exist, such as interpretability, transparency, fair-

ness, explicitness, and faithfulness [68, 50]. XAI is a key part of broader human-centric

responsible artificial intelligence practices. Interpretability focuses on model understanding

techniques, while explainability focuses on model explanations and the interface for trans-

lating these explanations into human-understandable terms for different stakeholders. These
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methods bridge machine learning and human systems. For engineers, XAI is important for

the accurate design of ML models based on the system’s functionality.

For interpretability, the context and domain knowledge of the operator plays a crucial

role [57]. An interpretable model example is how sales improve or decline as a direct result

of the number of advertisements changing. Here is an example of explainability and inter-

pretability. Think of an instructor that explains the material to the students. The instructor

explains X, but a student may interpret the X as Y due to a lack of understanding of the

topic; either the explanation was not clear enough, or the student does not know enough

about the topic. For simplicity, I do not consider the case that the student may lack focus or

interest in the subject. Interpretation of the topic could be evaluated in various ways, such

as by getting feedback from the student. However, the goal of explainability is to deliver

the topic using methods that are clear for the student. To summarize, we can say that

explainability is generated following a sequence of interpretations of the content. These two

concepts, interpretability, and explainability in machine learning, are associated with some

level of risk due to a random algorithmic bias that may skew the result [57].

The biased predictions and misrepresentations could affect numerous aspects of our

lives, including algorithms used for hiring, medical or judicial predictions, traffic incidents,

and financial trading. For a specific example, consider a hiring algorithm that helps to

navigate the Curriculum Vitae of potential job candidates. This model could be fallible

and have discriminatory effects on hiring practices for women, ethnic minorities, and other

legally protected groups [69]. This discrimination is not usually observed in the model

outcome. The objective of these algorithms is to help reduce the time spent reading resumes

that do not match job requirements. Instead of searching through resumes by hand to

select candidates that meet certain professional requirements, hiring personnel can rely on

an algorithm designed to filter candidate resumes automatically. To trust the selection

results, the recruitment procedures based on these automatic algorithms should be clear

and fair regardless of gender, race, ethnicity, disability, economic status, and other diverse
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backgrounds. This is the reason we want the ML model outcome to be explainable so that

we understand that the candidate selection is predicted based on her professional ability

rather than other factors.

Therefore, the legal and ethical challenges of explainable artificial practices raise sig-

nificance for tackling discrimination and providing transparency in machine learning models

[70]. In the legal aspect, clarifying why a particular outcome was achieved is vital to confirm

that the hiring process was fair and that the selection or rejection was not based on bias [70].

Here, the legal issues are based on a set of rules and are punishable by law if those rules are

not observed [71]. Ethical issues are governed by some standards but are not punishable by

law [71]. Eliminating these challenges is essential to achieve fair decisions [70].

2.2 EXPLAINABLE ARTIFICIAL INTELLIGENCE METHODS

This section outlines the methods of explainable artificial intelligence.

Several explanation methods and strategies have been proposed to make AI systems

explainable. This section provides an overview of these methods. Adadi and Berrada [22]

classify XAI methods based on the following three criteria: (i) used model type or the level

of dependency from the used ML model (ii) the scope and (iii) the complexity . Figure 2

shows the categories of XAI methods.

Below, I describe the methods included in Figure 2.

Based on the used model, explainability is model-specific and model-agnostic. Model-

specific refers to the explainability techniques that are specifically designed for a particular

modeling paradigm. Model-specific techniques are wide-ranged. For example, the Shapley

net effects technique was developed by Lipovetsky and Conklin [37] discusses feature im-

portance in the context of a multiple regression model. The Shapley feature importance

algorithm developed in Section 3.4.1 is based on the Lipovetsky Shapley net effects. How-

ever, this algorithm is further extended to classification tasks by applying it to the logistic

regression model. Model-agnostic approaches do not require any information about how the
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FIG. 2: Categories of XAI techniques

model makes predictions. Model-agnostic algorithms claim that feature selection algorithms

could be applied to any model through the model’s input and output. Model-agnostic ap-

proaches do not require any information about how the model makes predictions. The great

benefit of model-agnostic interpretation methods over model-specific ones is model, expla-

nation, and representation flexibilities. Other model-agnostic feature importance methods

[72, 14] Shapley additive global importance (SAGE) and Relative Feature Importance (RFI)

seem to overcome the limitations of model-dependent algorithms. However, these algorithms

still need more tests and experiments to estimate the framework’s robustness in the context

of different datasets and researched problems.

Based on the scope, two types of explainability are categorized, i.e., global and local
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[22]. Global scope refers to the explainability of the whole logic of the model, while local

explainability tries to explain a specific instance or an individual prediction.

Based on the complexity models can be inherently explainable (regression model) or

black-box (neural networks). Complexity and explainability are inversely related; complex

the model is less explainable, the model outcomes are [73]. To have more explainable models,

inherently explainable models, such as Bayesian rule lists [74], are developed.

The cooperative game theory-based XAI (CGTXAI) methods developed in the scope

of this dissertation are model agnostic. Generally, these techniques are further classified into

four categories: (i) Visualization, (ii) Knowledge extraction, (iii) Influence methods and

(iv) Example-based explanation.

Visualization techniques help to reveal aspects that are difficult to observe from the

black-box. Popular visualization techniques are surrogate models, Partial Dependence Plot

(PDP), and Individual Conditional Expectation (ICE). A surrogate model is a simple ex-

plainable model used to explain a complex model [13]. The local interpretable model-agnostic

explanations (LIME) [13] approach is a method for building local surrogate models to ex-

plain individual predictions. A partial dependence plot (PDP) shows the marginal effect one

or two features have on the predicted outcome of a machine learning model [75]. Individual

conditional expectation (ICE) is an extension of PDP, which displays one line per instance

that shows the change of the instance prediction when the feature changes.

Knowledge extraction refers to generating understanding from structured or unstruc-

tured sources. Two main techniques for knowledge extraction are (a) rule extraction and (b)

model distillation. Rule extraction is based on a symbolic description of information learned

by the network during its training by obtaining rules that estimate the decision-making

process [76]. Model distillation is a model compression to transfer information from deep

networks to shallow networks [77].

Influence methods assess the importance of a feature by altering the input sequences

and recording how much these changes affect model performance. Three major influence
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methods are (i) Sensitivity analysis, (ii) Layer-wise relevance propagation, and (iii) Feature

importance. Sensitivity analysis refers to how model input or weight perturbations influence

its output [78]. Sensitivity analysis is used to verify whether model output stays stable with

purposefully perturbed data. Data perturbation and its respective visual demonstrations

will strengthen the trust in the model outcomes. Layer-wise relevance propagation (LRP)

is a technique that shows the explainability of highly complex deep neural networks by

using purposely designed propagation rules and propagating the prediction starting from

the output layer of the network and backpropagating up to the input layer [79]. Feature

importance, the main focus of this dissertation, measures the contribution of each feature to

the model performance when permuting the features. An example of a feature importance

method is Shapley random forest measure [80], and Shapley additive global importance [14].

Feature importance is the key focus of this dissertation, and a more detailed description is

presented in Subsection 2.2.1.

Each of these methods is better suited for certain problems and data. Sometimes,

several methods are used to gain deeper insights into the problem. While these approaches

are different and serve different purposes, a combination of these methods can be used to dive

deeper into the data and gain better explainability. The next subsection presents feature

importance methods, the main focus of this research.

2.2.1 FEATUE IMPORTANCE OVERVIEW

This section outlines the methods of explainable artificial intelligence.

Feature importance (FI), also called feature attribution [20] and credit valuation [21],

is a crucial aspect of explainable artificial intelligence and refers to techniques that measure

feature relevance values to better understand the data and the prediction [22]. Feature im-

portance was first introduced by Breiman in 2001 [81]. Feature importance is calculated by

removing the features and measuring the model’s prediction performance. A feature is con-

sidered important if removing a feature, the model performance reduces. Feature importance
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models are described as model-specific and model-agnostic. Model-specific refers to the fea-

ture importance approach that is specifically designed for a particular modeling paradigm,

such as random forest [81]. Model-agnostic algorithms claim the feature importance algo-

rithms could be applied to any model through the model’s input and output. Model-agnostic

approaches do not require any information about how the model makes predictions. The

great benefit of model-agnostic interpretation methods over model-specific ones is the model,

explanation, and representation flexibilities [14, 72]. Feature importance techniques are fur-

ther classified into two categories: local and global. Local techniques provide insights into

the importance of individual features for specific instances or predictions, offering a detailed

understanding of local model behavior. On the other hand, global techniques offer a broader

perspective by quantifying the overall impact of features across the entire dataset, revealing

their consistent influence on the model’s performance.

Widely used feature importance methods that I considered in this study are SHAP

(SHapley Additive exPlanations) [15], LIME (Local Interpretable Model-agnostic Explana-

tions) [13], and permutation importance [82]. Below, each of these techniques is presented

in detail.

SHAP (SHapley Additive exPlanations)

Shapley additive explanations (SHAP) [15] is a model-agnostic approach based on co-

operative game theory that delivers insights into the rationale behind a model’s predictions.

Lundberg and Lee [15] identify a new class of additive feature importance measures and

suggest new methods that show improved computational performance and/or better consis-

tency with human intuition than previous approaches. This methodology assigns importance

values to each feature, indicating their contribution to the prediction process. SHAP values

capture the average marginal contribution of a feature across all possible feature combina-

tions. By considering all possible feature subsets, Shapley additive explanations provides a

comprehensive understanding of feature importance and interactions. The foundational core
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of Shapley additive explanations lies within the Shapley value equation [83], presented as

follows: ϕi(f) =
∑

S⊆N\{i}
|S|!(|N|−|S|−1)!

|N|!
[f(S ∪ {i}) − f(S)]. Where, ϕi(f) represents the Shapley

value for feature i and model f. N is the set of all features. S is a subset of features excluding

i. |S| is the number of features in subset S. f(S∪ {i}) is the model prediction when including

feature i along with subset S. f(S) is the model prediction when considering only subset

S without feature i. More information on Shapley values and cooperative game theory is

presented in Section 2.3.

While SHAP stands as a pioneering technique, researchers have endeavored to enhance

certain facets of its functionality. One such advancement is KernelSHAP, which presents an

alternative approach inspired by local surrogate models [84]. KernelSHAP offers an innova-

tive kernel-based estimation of Shapley values, enhancing the precision of feature importance

attribution. In parallel, TreeSHAP was developed as an efficient estimation strategy tailored

specifically for tree-based models, further broadening the horizons of SHAP’s applicability

and usability [15].

Shapley additive explanations could be used in numerous ways to gain insights into

various facets of predictions, including explanations of individual instance effects, summaries

of overall feature contributions, analyses of dependencies, and detailed force plots of feature

impacts.

SHAP: Local explainability

In the following, Shapley additive explanations (SHAP) plots (waterfall, force plot)

are presented to provide localized explanations for feature importance values. SHAP plots

can be generated using the Python shap library. Gaining a thorough grasp of these visual

representations is crucial for effectively interpreting model behaviors.

SHAP waterfall plot offers a visual representation of how individual feature values con-

tribute to a model’s prediction for a specific instance. It generates a baseline value, which is

at the top of the plot. This represents the expected output of the model before considering
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any feature contributions. Generally, this baseline aligns with the model’s overall average

prediction. Every subsequent bar within the plot symbolizes the precise contribution of a

distinct feature to the model’s prediction. These features are arranged in descending order

based on their absolute Shapley values for that particular instance. Positive contributions,

depicted in red, indicate that the presence of a feature elevates the prediction. Conversely,

negative contributions, depicted in blue, signify a feature’s diminishing effect on the predic-

tion. The length of each consecutive bar corresponds to the extent of a feature’s impact on

the final prediction. The cumulative effect of all feature contributions equates to the dispar-

ity between the baseline value and the ultimate model prediction. At the plot’s lowermost

point, we encounter the model’s final prediction, a culmination of the baseline value and the

combined influence of individual feature contributions.

SHAP force plot are equivalent representations of waterfall plots that display the key

information in a more condensed format. This plot as well presents the magnitude and

direction of a feature’s influence on a particular prediction. Force plots are useful in si-

multaneously presenting explanations across numerous instances of the dataset, facilitating

straightforward comparisons.

SHAP: Global explainability

In this section, a range of Shapley additive explanations (SHAP) global explainability

plots are presented. This includes a bar plot illustrating the mean absolute SHAP values,

beeswarm plots, a SHAP heatmap, SHAP dependence plots, and SHAP partial dependence

plots.

SHAP bar plot of Mean absolute SHAP values are commonly used to visualize bar plots

that arrange features based on their significance. The mean absolute SHAP values are, on

average, how much each variable impacts the prediction. This estimate helps to understand

both the sequence of features and the proportional intensities of the mean absolute SHAP

values.
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SHAP beeswarm plots present a sophisticated and information-rich representation of

SHAP values, unveiling not only the relative importance of features but also their actual

interactions with the predicted outcomes. In a beeswarm plot, each feature corresponds to

a unique point for every instance in the dataset, distributed horizontally along the X-axis

based on their SHAP values. When high SHAP value densities occur, the points vertically

stack, conveying the concentration. The color bar represents the variable’s row values for

each instance on the graph, distinct from the SHAP values themselves. Elevated feature

values for a particular instance manifest as red dots, while lower values are depicted as blue

dots. By examining the color distribution horizontally along the x-axis for each feature,

insights into the intrinsic relationship between data and their corresponding SHAP values

could be obtained.

SHAP heatmap provides a visual summary of the impact of different features on the

predictions made by a machine learning model. Each row in the heatmap corresponds to

an instance, and each column represents a specific feature. The cells of the heatmap are

colored based on the corresponding SHAP values, often using a color scale to indicate the

magnitude and direction of the impact. Positioned above the heatmap matrix is the model’s

output, while on the right-hand side, a bar plot illustrates the overall significance of each

model input in a global context.

SHAP dependence plots help to better understand the relationship between a feature’s

values and the model’s predicted outcomes. In the SHAP dependence plot, instances are

presented as a scatter plot. The horizontal axis represents the feature’s value, while the

vertical axis displays the SHAP value assigned to that feature. This SHAP value indicates

the extent to which the model’s prediction for a specific sample is influenced by the feature’s

value. The color variation is linked to a different feature, potentially showcasing an interac-

tion effect with the main feature being plotted. The SHAP dependence algorithm inherently

selects this secondary feature. If an interaction effect exists between the primary feature and

the second feature, an observable color pattern emerges.
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SHAP partial dependence plots (PDP) illustrate the marginal influence that one or

two features exert on the predicted outcome of a machine learning model, as highlighted by

Friedman [75]. The partial dependence plot explains the connection between the selected

feature and the target variable, enabling the identification of linearity, monotonicity, or any

associations [57].

In summation, SHAP is a dynamic methodological framework, unraveling the intricate

nature of machine learning models through its cooperative game-theoretic foundations. It

bestows interpretability and transparency, empowering practitioners to decipher the nuanced

contributions of features and interactions within their models, thereby fostering a deeper

understanding of complex predictions.

Alternative to SHAP is SAGE (Shapley additive global importance) which is an ap-

proximation algorithm that handles the NP problem of subset generation with Shapley value

[14]. To evaluate the cooperative game with sampling, the method suggests sampling the

removed features from their joint marginal (rather than conditional distribution) and then

averaging the model output. The method suggests random sampling permutations of the

features and measuring each feature’s marginal contribution to that ordering to determine

the Shapley value. Similar to SHAP, SAGE is a model-agnostic approach and could be

applied to any dataset and problem.

LIME

LIME (Local Interpretable Model-Agnostic Explanations) [13] is a model-agnostic

method that explains the predictions of black-box models by approximating its behavior

locally. It creates surrogate interpretable models around individual instances to estimate

their feature importance. LIME generates locally weighted explanations by perturbing the

features and measuring the impact on the model’s predictions. This enables an understand-

ing of the model’s decision-making process at a local level.
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Explanation(x) = argmin
g∈G

L(f, g, πx) +Ω(g) (1)

Where f is the black-box model being explained, g is the surrogate model, L(f, g, πx)

is a loss function that quantifies the difference between f(x) and g(x) for perturbed in-

stances sampled from a distribution πx. Ω(g) is a regularization term that encourages the

surrogate model g to be simple. G is the set of possible surrogate models. By construct-

ing interpretable surrogate models proximate to specific instances, LIME offers insights into

feature importance. These surrogate models, often simpler linear regressions or decision

trees, approximate the complex black-box model behavior, enhancing human comprehensi-

bility. Leveraging perturbation and sampling, LIME measures feature impact by observing

prediction variations when features are perturbed.

Permutation importance

Permutation importance (PIMP) [82] is a feature importance technique that measures

the impact of shuffling a feature’s values on the model’s performance. Permutation impor-

tance employs repeated shuffling of the outcome vector to estimate the importance distribu-

tion for each feature in the dataset. Then the P-values from this distribution are computed,

which offers an adjusted evaluation of feature significance. Permutation importance shows

that features lacking informative values do not obtain significant P-values. Therefore this

method helps to distinguish informative from non-informative features. Machine learning

models are constructed using features identified as statistically significant, and their perfor-

mance is evaluated by comparing models that utilize statistically significant features against

those incorporating original features. Here, original features refer to all features prior to

undergoing permutations and the assessment of their importance, values, and significance.

Permutation importance evaluates the decrease in model performance (e.g., accuracy

or error) when a feature’s values are randomly permuted. The larger the decrease, the more

important the feature is considered. Permutation importance provides a simple yet effective
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way to assess the relative importance of features in a model. Mathematically, permutation

importance can be expressed as follows:

Permutation importance quantifies the change in model performance due to the per-

mutation of a feature, thereby revealing the feature’s contribution to the model’s predictive

power.

2.3 GAME THEORY

This section briefly describes what game theory is, focusing on cooperative game theory

and its solution concepts. This section was developed based on a Grigoryan and Collins [85]

paper written during this dissertation.

Game theory is the process of modeling strategic interactions between two or more

players in a situation where competition and conflict prevail. Games are based on a set

of rules, and the players’ preferences over their possible strategies lead to the outcomes of

the game. Game theory was first introduced by Antoine Cournot in 1838, but the modern

study came after 1944 when Von Neumann’s and Morgenstern published their famous book:

the theory of games and economic behaviour [86]. Classic examples of where game theory

can be used in real-life situations include chess, wargaming, auction design, and business

negotiations [87, 88]. Games are made up of players who wish to choose a strategy to

maximize their payoff. The players are strategic decision-makers within the context of the

game. Players can be human and non-human (e.g., organization, vehicle, mobile nodes)

members of the game. A strategy is a complete plan of action a player may take, given

the set of circumstances within the game. Even though game theory is primarily used in

mathematics and economics [89], it has made a significant impact on a large number of

disciplines ranging from politics, science, biology, psychology, sociology, computer science,

and engineering [90]. Robert Aumann and Oliver Hart explain the interdisciplinary use of

game theory in the following way: “Game Theory may be viewed as a sort of umbrella

or ‘unified field’ theory for the rational side of social science, where ‘social’ is interpreted
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broadly, to include human as well as non-human players (computers, animals, plants) . . . It

does not use different ad hoc constructs . . . It develops methodologies that apply in principle

to all interactive situations” [91]. This statement illustrates the interdisciplinary and broad

nature of game theory to model, predict and explain different phenomena and situations of

interest that involve multiple decision-makers.

According to the constraints and situations of the games, game-theoretic models can

be grouped into several categories. To study conflict resolution and strategic cooperation

from a Systems Engineering perspective, Hipel and Obeidi [92] suggest a classification of the

game theory as a non-quantitative and a quantitative approach.

Non-quantitative approaches assume relative preference information, such as one action

being more preferred or equally preferred to another. In this case, a player does not have to

know precisely how much one action is preferred over another. Hipel and Obeidi [92] brought

the following example to describe a non-quantitative approach: a marketing agent has to

suggest whether a car having a sleeker aerodynamic design would be preferable to young

people than another model with functional “square” design. The agent may reply that a

more elegant design would be preferred but will not be able to specify cardinal numbers to

represent preferences. Based on Figure 1, metagame analysis is a subdivision of the non-

quantitative approach [93], which later was expanded into conflict analysis. This expansion

had a significant contribution to the development of the Graph Model for Conflict Resolution.

Drama theory, developed by Bryant [94], is considered another non-quantitative technique.

It describes situations in terms of subjective frames: games that can change as a result of

the internal pressure created by the interaction of characters, i.e., players.

Hipel and Obeidi [92] state that quantitative methods assume cardinal preference in-

formation, such as cardinal utility values. By this, they suggest that decision-makers use real

numbers to model preferences. Quantitative games are, by far, the most common game the-

ory approach; many popular textbooks on game theory do not even mention non-quantitative

approaches [95]. The quantitative approach is further classified into non-cooperative, i.e.,
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normal-form, extensive-form, etc., and cooperative games. Non-cooperative game-theoretic

method refers to games with competition between individual players and tries to predict the

player’s individual strategies and payoffs.

The second classification of games is cooperative (coalitional) games, presented in more

detail in section 2.3.1. They study the behavior of a rational player when they cooperate

to form coalitions [90]. As such, cooperative games consider three or more players. This

approach mainly focuses on predicting which alliances will form. Cooperative games can

be subdivided into games with transferable utility games and games with non-transferable

utility. Despite the differentiation between nonquantitative and quantitative approaches,

Hipel and Obeidi [92] emphasize that both these approaches constitute mathematical models.

A non-cooperative game specifies all the possible actions for each player, and their

main goal is to maximize their payoffs [96]; solution mechanism focus on strategies of each

player that satisfy some solution criteria. A well-known solution concept in non-cooperative

game theory is the Nash Equilibrium. Other examples of solution concepts are sub-game

perfect equilibrium and correlated equilibrium introduced by Bielefeld [97] and Aumann

[98], respectively. In non-cooperative game theory, strategies can be defined as either pure or

mixed. A pure strategy is when a deterministic action is chosen, whereas, a mixed strategy is

when the action is randomly selected using a probability distribution over the pure strategies.

The payoff is the payout a player receives after reaching a particular outcome. The outcome

of the game-theoretical model is that all players have made their decisions. A solution is an

outcome that satisfies some criteria. A basic solution concept in game theory is the Nash

Equilibrium in which where each player maximizes his payoff with respect to his own strategy

choice, given the current strategy choices of other players [99].

2.3.1 COOPERATIVE GAME THEORY

This section delves into the principles of cooperative game theory.

A cooperative (coalitional) game theory helps to study the behavior of rational players
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when they cooperate to form coalitions [90]. This approach mainly focuses on predicting

which alliances will form. This is the main approach to situations with three or more

players. The cooperation can be explained by the rational choice of self-interested players

rather than by altruism [83, 85, 100, 101]. In cooperative games, the players can form

coalitions to achieve a better payoff. Bargaining games and coalition formation games are

considered subcategories of cooperative games [102]. Note that bargaining games have been

discussed from both non-cooperative and cooperative game theory perspectives [103]. In a

non-cooperative bargaining game, players individually try to maximize their utility without

regard to the utility achieved by other players. In contrast, in a cooperative bargaining

game, players bargain and coordinate their actions before the game is played. Consequently,

players act according to the agreement reached. The agreements reached must be binding, so

players are not permitted to deviate from their agreement. Players act in a non-cooperative

way if they cannot reach an agreement. Saad et al. [104] classify coalitional games into three

categories: canonical coalitional games, coalition formation games, and coalitional graph

games. There are subtle differences between the different forms, which we will not discuss

in this paper.

An essential concept in cooperative game theory is a coalition, which refers to the

formation of sub-sets of players. The value, v, of a coalition is the total payoff that the

coalition members can guarantee themselves collectively. In some cooperative games, players

can transfer utilities they get to other members of their coalition (transferable utility games).

In others, this transfer is impossible (non-transferable utility games) [105].

Cooperative games can be subdivided into games with transferable utility (TU) games

and games with non-transferable utility (NTU). A particular case of coalitional games is

conflicting claims problems [106].

Cooperative game theory answers the following two questions:

1. Which coalitions will form?

2. How to divide the coalitions’ payoff among the players?
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Answering two questions at once can be problematic, so many games developed put some

restrictions to reduce this down to one question.

An example of cooperative game theory in academia is the collaboration between a

Ph.D. student and an advisor. Both parties aim to form a coalition that maximizes their

respective outcomes. For the student, the ideal outcome might be gaining knowledge, skills,

and a path to successful completion of their dissertation. For the advisor, the outcome

might be advancing their research agenda, enhancing their reputation, or contributing to the

academic community. Once the coalition is formed, the coalition members, i.e., the advisor

and the student, allocate efforts (research tasks, teaching, academic writing) and rewards

(authorship on papers, presentations at conferences, academic and professional recognition).

The value (or utility) generated by their collaboration is measured in terms of ”impact

points” that represent academic recognition, future funding potential, and contribution to

the academic community. Assume the following:

• Alone, the student can generate 10 impact points through their independent research

efforts.

• Alone, the advisor, given their experience and network, can generate 20 impact points

by guiding other projects or their own research.

• Together, through combined efforts, they can generate 40 impact points due to the

advisor’s guidance and the student’s work.

By considering cooperative game theory, the objective is to determine how to fairly

divide the 40 impact points between the student and advisor using a cooperative game theory

called Shapley value (described in detail in Section 2.3.2). Shapley values [24] suggests that

members should receive payments or shares proportional to their marginal contributions.

The steps to compute the Shapley value-based distribution of the 40 impact points for this

example are as follows:
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1. List all permutations of the coalition (in this case, there are only two members, so

there are two permutations):

• Student first, then advisor.

• Advisor first, then student.

2. Calculate the marginal contributions:

• When the student comes first, their contribution is 10 (since they can generate

10 points alone). The advisor’s marginal contribution is 30 (a total of 40 minus

the 10 points the student could achieve alone).

• When the advisor comes first, their contribution is 20. The student’s marginal

contribution is 20 (the total of 40 minus the 20 points the advisor could achieve

alone).

3. Compute the Shapley value for each coalition member

• Student’s Shapley value = [(Marginal contribution when a student comes first) +

(Marginal contribution when coming after the advisor)] / 2 = (10+20)
2

= 15 impact

points

• Advisor’s Shapley value = [(Marginal contribution when advisor comes first) +

(Marginal contribution when coming after the student)] / 2 = (20+30)
2

= 25 impact

points

According to the Shapley value, the fair division of the 40 impact points for the com-

bined research efforts would allocate 15 impact points to the student and 25 impact points to

the advisor. This reflects a fair allocation based on each party’s contribution to the collective

outcome.

In a cooperative game theory, if superadditivity is assumed, that is S, T ⊂ N, if S∩T =

then v(S∪T) ≥ v(S)+v(T), then it can be shown that the grand coalition will form (i.e., the
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coalition containing all players) and, hence, the only concern is how to split the payoff among

the players. A non-transferable utility game called a hedonic game assumes that each player

will receive a single fixed payoff from any coalition they are a member [107, 108]. Hence,

hedonic games only need to consider the second question. Hedonic games are a specific class

of cooperative games [109]. These games are used to model situations where the primary

concern is the individual preferences or happiness of players when forming coalitions. Collins

et al. [100] have developed a repeated generation of a random hedonic game and determined

the core set. The experiment was repeated for a different number of players in a game,

ranging from three to seven. The results from games of one or two players can easily be

solved analytically and have been included in the results for completeness. It was found that

having a single core (solution) was the most common result for a game.

Shapley [24] stated that members should receive payments or shares proportional to

their marginal contributions. Stable outcomes, or the core of a game, are the outcomes that

no new coalition could form where all its members do better than their current coalitions

[110]. However, the core is not the only solution mechanism of a cooperative game. Over the

years, researchers have proposed different solution concepts, such as the Shapley value, the

core, the kernel, and the nucleolus [111]; they are all based on different notions of fairness

and stability.

In the machine learning context, the cooperative game embodies the ML model, and the

game participants represent the feature space. Subsets of participants are called coalitions,

and the setting where the utilities (payoffs) are given to these coalition members is known

as transferable utility games (TU). Games where the transfer of utilities is impossible are

non-transferable utility (NTU). Coalitional games are further categorized into canonical

coalitional games, coalition formation games, and coalitional graph games [104]. In canonical

games, no group of players can do worse by joining a coalition than acting non-cooperatively.

In coalition formation games, forming a coalition brings advantages to its members, but the

cost of forming the coalition limits the gains. Coalitional graph games are presented in a
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graph form, and the interconnection between the players significantly affects the outcome of

the game.

Notation

A cooperative game in characteristic function form is defined as a 2−tuple (N, v), N

being the set of players N = {1, 2, 3, ..., n}. The players form coalitions, which refers to

the formation of sub-sets of players C, S, X ⊆ N. For a set A : CA denotes the subsets of

A, i.e., C ⊆ A, and PA denotes the partitions of A. For a set of players N, a coalition is

any subset of N, and N is the grand coalition, which contains all players. A partition of

N is the splitting of all the players into disjoint coalitions. The value v : CN → R of a

coalition is the characteristic function, and for each coalition of players C ⊆ N, v(C) is the

total payoff that the coalition members can guarantee themselves, collectively, and it satisfies

the v(∅) = 0. Also v is assumed non-negative v(C) ≥ 0, for any C ⊆ N, and monotone:

v(C) ≤ v(D), for any C,D such that C ⊆ D. An outcome of a game Γ = (N, v) is a pair

(P, x), where: P = (C1, C2, ..., Ck) ∈ PN is a coalition structure (CS), and x = (x1, ..., xn) is a

payoff vector, which distributes the value of each coalition in P. Another important concept

in CGT is imputation. An efficient payoff vector is called pre-imputation, and an individual

rational pre-imputation is called imputation. Imputation is a vector that assigns how much

payoff goes to each of the players [112]. Imputation is defined as a vector of a = (a1, ..., an)

satisfying the following conditions:

1. Individual rationality, which indicates that player i should receive no less than it re-

ceives alone: a1 ≥ v({i}), i ∈ N

2. Group rationality indicates that the whole payoff that the grand coalition earns should

be allocated among the players:
∑n

i=1 ai = v(N).

A subclass of games in the characteristic form consists of superadditive games, that is S, T ⊂

N, if S ∩ T = ∅ then v(S ∪ T) ≥ v(S) + v(T), then it can be shown that the grand coalition
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will form (i.e., the coalition containing all players). An important subclass of superadditive

games is the convex game. The convexity is a stronger condition than superadditivity, and

the game is convex if for all S, T ⊂ N, v(S ∪ T) ≥ v(S) + v(T) − v(S ∩ T)

Technically, a cooperative game can be represented as a non-cooperative game in cer-

tain circumstances [113]. With this representation, the Nash Equilibrium could be found as a

solution concept. However, in practice, this approach becomes computationally intractable.

Next, the cooperative game theory solution concepts and some of their properties are

described. The methodology section (Section 3) illustrates the use of these solutions to

measure feature importance methods considering linear and logistic regression models.

Transferable utility (TU) games, Shapley values, core, and Nucleolus are presented

first (Subsection 2.3.2), followed by voting games (Subsection 2.3.3), and finally, conflicting

claims solutions are presented in Subsection 2.3.4.

2.3.2 TRANSFERABLE UTILITY GAMES

Transferable Utility (TU) game theory is a branch of cooperative game theory where it

is assumed that utility (payoff value) can be transferred between players without loss [114].

Under TU, the primary focus becomes identifying the total value a coalition can generate

and determining ways to distribute this value among its members. These ways refer to the

established solution concepts, such as Shapley values, core, or Nucleolus, that divide the

total value or utility generated by a coalition among its members in a cooperative game

setting under the assumption of transferable utility [115, 90].

For an example of transferable utility cooperative game theory, imagine a software

development company that has decided to undertake a new project to develop a new product.

The product development requires a combination of skills: coding, design, and sales. The

company needs to form a team that includes an Engineer (E), a Designer (D), and a Sales

Representative (S). Each of these professionals can contribute to the project’s performance,

but their full potential is realized when they work together due to the complementary nature
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of their skills. Engineer (E) can contribute $40,000 worth of value to the project. Designer

(D) can contribute $30,000 worth of value. Sales representative (S) can contribute $20,000

worth of value. Working independently, they contribute their respective values, but when

they collaborate, they enhance the project’s total value due to their complementary efforts.

When working together E and D together generate $100,000, E and S together generate

$80,000, D and S together generate $70,000. E, D, and S together (grand coalition, i.e., the

full team) generate $150,000. The total value generated by the full team (E, D, S) working

together is greater than the sum of their individual contributions due to the synergistic effect

of their collaboration. This reflects the group rationality discussed above. With transferable

utility cooperative game theory, the goal is to determine how to divide (allocate) the $150,000

in a way that fairly compensates each coalition member for their contribution, including the

added value from their cooperation. The ability to allocate the $150,000 among the coalition

members, despite their individual capabilities to earn individually, demonstrates transferable

utility.

The counterpart to a transferable utility game is a non-transferable utility game, where

the utility or benefits generated by the coalition cannot be easily divided or allocated among

its members. For instance, when the utility derived from cooperation is intangible or in-

divisible, such as the reputation gained by coalition members, dividing this benefit fairly

poses a significant challenge. Unlike monetary rewards that can be distributed in precise

proportions, reputation enhancement lacks a straightforward method for division. This dis-

crepancy highlights the complexity inherent in non-transferable utility scenarios, where the

benefits of collaboration extend beyond quantifiable gains, requiring nuanced approaches to

ensure fair recognition and reward within the coalition. Non-transferable utility games are

not considered in the scope of this dissertation.

The following section presents three key solution concepts within the framework of

transferable utility that could be used to solve transferable utility games: the Shapley Value,

the Core, and the Nucleolus.
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Shapley value

First, the solution of the Shapley value is presented.

Shapley suggested that members should receive payments or shares proportional to

their marginal contributions by considering arbitrary permutations of the set N [116].

ϕi(v) =
∑

S⊆N\{i}

|S|!(|N|− |S|− 1)!

|N|!
(v(S ∪ {i}) − v(S)) (2)

Shapley value states we shall consider an arbitrary permutation P of the ordered

set of the players. The formula permits the presentation of Shapley axiomatics. First,

we set up a correspondence between every cooperative game N, v and the vector ϕ(i) =

(ϕ(1)[i], ..., ϕ(n)[i]), whose components are interpreted to mean the payoffs received by play-

ers under an agreement. |N| is the total number of players. Here, this correspondence is

taken to satisfy the following axioms [117].

1. Efficiency: The sum of the cost or values of all agents equals the value of the grand

coalition so that all the gain is distributed among the agents, i.e.,
∑

i∈Nϕ(i) = v(N).

This assumes superadditivity within the game and indicates that what each player

receives must be equal to what the grand coalition has produced.

2. Symmetry: If i and j contribute the same to all coalition subsets S, they should receive

the same share, represented as v(S ∪ {i}) = v(S ∪ {j}) ∀S ⊂ N; i, j ̸∈ S, such that

ϕ(i) = ϕ(j), and i, j are symmetric with respect to each other.

This axiom implies that if features X1 and X2 consistently make equal contributions to

all sub-coalitions, then both features should receive an equal share of the performance

or the output from the model.

3. Dummy player: If the cost of the i-th player does not contribute to the total cost of

the coalition in a cooperative game, i.e., if v(S ∪ {i}) − v(S) = 0, ∀S ⊂ N, then such
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players are called a dummy or null players, and ϕ(i) = 0. This implies that the absence

of contribution leads to receiving nothing.

4. Linearity: If vk and v′k are two characteristics functions of a coalition game, then

ϕv+v′(i) = ϕv(i) + ϕ′
v(i), where ∀S(v + v′)(S) = v(S) + v′(S). This axiom states that

the values from the games can be combined in an additive way.

These axioms suffice to define unique values for coalitional games.

Example: Suppose that there are only three players in the dataset and the char-

acteristic functions for the three players are as follows: v({0}) = 0, v({1}) = 0.15, v({2}) =

0.3, v({3}) = 0.04, v({12}) = 0.5, v({13}) = 0.6, v({23}) = 0.62, v({123}) = 0.88. For a three-

player scenario, there will be 8 permutations.

TABLE 1: Shapley Value computation example with 3 features

Permutations Variable 1 Variable 2 Variable 3
123 v({1}) = 0.15 v({1, 2}) − v({1}) = 0.35 v({1, 2, 3}) − v({1, 2}) = 0.38

132 v({1}) = 0.15 v({1, 2, 3}) − v({1, 3}) = 0.28 v({1, 3}) − v({1}) = 0.45

213 v({1, 2}) − v({2}) = 0.2 v({2}) = 0.3 v({1, 2, 3}) − v({1, 2}) = 0.38

231 v({1, 2, 3}) − v({2, 3}) = 0.26 v({2}) = 0.3 v({2, 3}) − v({2}) = 0.32

312 v({1, 3}) − v({3}) = 0.56 v({1, 2, 3}) − v({1, 3}) = 0.28 v({3}) = 0.04

321 v({1, 2, 3}) − v({2, 3}) = 0.26 v({2, 3}) − v({3}) = 0.58 v({3}) = 0.04

Shapley Values 0.263 0.348 0.268333

The Shapley value calculation suggests the following allocation for players 1, 2, and 3

ϕ(i) = (0.263, 0.3483, 0.2683). These values indicate that player 2, an equivalent of 0.348,

has the highest marginal contribution. player 1 and player 2 respectively equal 0.263 and

0.268, which suggests that players 1 and 3 share almost equal contributions.

Core

The next solution concept presented is the core. This is tightly related to the imputa-

tion concept introduced in Section 2. Specifically, imputation dominance is essential when

determining the core of the game. Imputation α dominates the imputation β by coalition S

(notion α ≻S β), if α > βi, i ∈ S,
∑

i∈S αi ≤ v(S). Let’s consider two example imputations:
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α = (40, 35, 40), β = (50, 30, 35). From this imputation, there exists coalition {2, 3}, where

α is dominated, i.e., α ≻2,3 β. This could be verified with the following computation:

α2 = 35 > 30 = β2

α3 = 40 > 35 = β3

α2 + α3 = 75 ≤ 75 = v(S)

The set of all nondominated imputations of a cooperative game is called the Core [110].

Imputation α belongs to the core, if and only if: (N, v)

∑
i∈S

αi ≥ v(S), S ⊂ N,and
∑
i∈S

αi = v(N) (3)

A stable outcome, or the core of a game, is the outcome that no new coalition could

form where all its members do better than their current coalitions [110]. In other words, the

core refers to the set of efficient payoff vectors such that no coalition can achieve a better

payoff by itself.

Mathematically, the core is computed as a set that satisfies a system of weak linear

inequalities. The core is closed and convex, characterized by increasing marginal utility for

coalition members as coalitions grow larger. It is possible a situation where the core of the

game is empty, meaning no stable coalition exists. For example, if one unit of a good should

be shared among a coalition having at least (n+1)
2

members, where n is an odd number that

has an empty core. The Bondareva–Shapley theorem states the core of v is nonempty if and

only if v is balanced [118, 119]. For the sake of brevity, the balanced condition of the game is

not presented; instead, the original paper is referred to for its detailed description [118, 119].
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Nucleolus

The nucleolus is another efficient method to determine a fair division of the payoff

among coalition members [111, 112]. The nucleolus is the set of efficient and individually

rational vectors, that is, the gain that players in coalition S can obtain if they leave the grand

coalition N under the imputation x and instead take the payoff v(S). The nucleolus satisfies

the first three axioms of the Shapley value and has some advantages over it. The objective

function of the nucleolus solution is to make the coalitions’ excess (the largest unhappiness)

as small as possible or, equivalently, minimize the worst inequity. Schmeidler [120] defines

“unhappiness” or excess of a coalition as the difference between what the members of the

coalition could get by themselves and what they are actually getting if they accept the

allocations suggested by a solution. Excess, an inequity measure of an imputation (allocated

payoff) x for a coalition S, is defined as:

e(x, S) = v(S) −
∑
j∈S

xj (4)

Excess e(x, S) measures the amount or the size of the inequity by which coalition S

falls short of its potential v(S) in the allocation x. During the distribution of worth, the

coalition that ”complains” that it is not getting its proper share efforts will be made to give

it a fair share.

The steps of finding the nucleolus are to find a vector x = (x1, x2, ..., xn) that mini-

mizes the maximum of Z the excesses e(x, S) over all S subject to xi = v(N) The process

of minimizing the maximum (min-max) of a collection of linear functions subject to a linear

constraint is converted to a linear programming problem. Second and more linear program-

ming problems may be used to minimize the next largest excess until n-tuple imputation x

is found.

min Z subject to:



39

Z+
∑
i∈S

xi ≥ v(S) ∀S ⊆ N (5)

∑
i∈S

xi = v(N)

The linear programming problem is optimized based on the Equation 5.

2.3.3 VOTING GAME

This section explores the core concepts of voting games, with a particular focus on the

Shapley-Shubik and Banzhaf power indices.

Voting games represent another configuration within the realm of coalition games, often

featuring the presence of a pivotal or veto player. These games are mathematical models for

exploring scenarios in which participants collaborate to form coalitions with the objective

of reaching or surpassing a specific threshold, often called a quota (denoted as q)[121]. The

specific value of the quota can vary depending on the voting system in use. The success

or the winning of the coalition is determined based on the preferences and influence of a

subset of players whose combined weights meet or exceed the quota. This is obtained and

measured by their respective weights [121]. A well-designed voting system should be fair

and transparent, described with a player set that includes all the parties participating in the

voting game [121].

Voting games (N,wi∈N, q), noted as [q;w1, ..., wn] takes the following form:

v(S) =


1, when

∑
i∈Swi ≥ q

0, otherwise

(6)

Here, wi is the number of votes of player i, i ∈ N, in other words, it shows the weight of

the player i in the system. q is the threshold of votes. The decision is considered affirmative

if the number of votes for this particular decision is more than the threshold. Equation 6

describes two cases. First, the characteristic function of coalition S is 1, or coalition S is
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winning if the sum of weights in coalition S is more or equal to the value of the threshold.

The characteristic function of coalition S is zero or losing, so it cannot make the affirmative

decision in the system if the number of votes from coalition S is strictly less than the threshold

q. When v(S) = 1 and v(S − i) = 0, the player i is considered critical with respect to S

in characteristic function v, and S is a pivot for i in v(). Pi(v) can be used to denote the

collection of pivots for i in v().

In the next subsections, I will present two weighted voting games: the Shapley-Shubik

power index and the Banzhaf power index.

Shapley-Shubik index

Shapley-Shubik analyzes situations where the power of the coalition might not be pro-

portional to the size of the coalition, but it could be measured by the fraction of the possible

voting sequences [122]. This refers to situations where the order in which participants join

the coalition is crucial, and we are interested in determining the power of the participants

in the system.

The Shapley-Shubik power index can be expressed as:

ϕi =
∑

S∈Pi(v)

(s− 1)!(n− s)!

n!

(
with

∑
i∈N

ϕi = 1)

)
(7)

where s = |S| is the number of voters in set S. The summation is taken over all

winning coalitions S for which S without i, S− {i} is losing. The Shapley-Shubik determines

the number of sequences in which player i is pivotal over all possible orderings of n players.

A player i is pivotal or swing for a coalition S if the player i turns S from losing v(S) = 0 to

a winning coalition v(S) = 1 by joining that coalition.

The Shapley-Shubik power index is based on the Shapley value and satisfies many of

its properties, such as efficiency, linearity, dummy, and symmetry. The difference is that it

is defined using the characteristic function described in Equation 6 for the voting games so
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that it can be only zero or one. The sum here is taken by the coalition S, which do not

include player i; without the player i are losing, and with player i are winning coalitions.

In a nutshell, the Shapley-Shubik power index can be conceptualized as the probability

that a player is pivotal, given the assumption that all permutations are equally likely to occur.

Banzhaf Power index

Banzhaf power index (BPI) focuses on evaluating the power or importance of each

player in a weighted voting system. BPI was first discussed by Lionel Penrose in 1946

[123] but was reintroduced by John Banzhaf in 1965 [124]. The BPI would be a numerical

representation of how likely the player is to be critical, substantially influence the final

decision, and control the outcome.

Banzhaf power index βi(Γ) originally was used to assess the power of players in a simple

game [124]. The simple game Γ = (N,γ) is a cooperative game such that v(S) = 1 or 0 for all

S, and v(N) = 1 due to satisfying the superadditivity. BPI is similar to the Shapley-Shubik

index and shares the same characteristics as weighted voting games. However, unlike the

Shapley-Shubik index, BPI assumes that all player combinations are equally likely.

Banzhaf power index βi(Γ) is specified as

βi(Γ) =
1

2n−1

∑
S⊆N\{i}

∆i(S), (8)

where, 2n−1 refers to the total number of player subsets S ⊆ N\{i} and ∆i(S) is the

marginal contribution of player i, ∆i(S) = v(S ∪ {i}) − v(S)

2.3.4 CONFLICTING CLAIMS PROBLEM

In this section, solutions to conflicting claims are presented.

Game theory bargaining solutions to conflicting claims problems (also known as a

bankruptcy problem) is a particular case of the distribution problem, in which the amount
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to be distributed, the endowment E is not enough to satisfy the players’ claims on it [125].

A classic scenario involves allocating funds from a bankrupt company to its creditors, where

conflicting claims solutions tackle dilemmas such as determining the equitable distribution

of a bankrupt firm’s liquidation assets among its creditors [126, 127]. The applications of

conflicting claims theory extend across various domains. This includes allocating medical

resources, determining budget allocations in educational institutions [128], or distribution of

global emission budget [129] and allocation of fishing quotas[130].

A vast number of solutions [115] have been developed for solving conflicting claims

problems, being proportional, constrained equal awards (CEA), constrained equal losses

(CEL), Talmud (T), and random arrival (RA).

Conflicting claims problem consists of players N = 1, 2, ..., n and amount E ∈ R+ of

an infinite divisible resource, the endowment, that has to be allocated among them. Each

player has a claim, ci ∈ R+ on it. The c = (ci)i∈N is the claims vector.

A conflicting claims problem is (E, c) with
∑n

i=1 ci > E. The players are ordered

according to their claims, c1 ≤ c2 ≤ · · · ≤ cn, and the set of all conflicting claims is denoted

as B. For each conflicting claim, a rule assigns a distribution of the endowment among

the players within that problem. A rule is a single-valued function φ : B → Rn
+ such that

0 ≤ φi(E, c) ≤ ci, ∀i ∈ N (non-negativity and claim-boundedness); and
∑n

i=1φi(E, c) = E

(efficiency). Those rules used throughout various approaches are introduced below.

The proportional (P) rule suggests a distribution of the endowment proportional to

the claims: for each (E, c) ∈ B and each i ∈ N,Pi(E, c) ≡ λci, where λ = E∑
i∈N ci

The constrained equal awards (CEA) rule recommends equal awards to all players, and

this recommendation is subject to no one receiving more than his claim: for each (E, c) ∈ B

and each i ∈ N, CEAi(E, c) ≡ min{ci, µ}, where µ is such that
∑

i∈Nmin{ci, µ} = E

The constrained equal losses (CEL) rule results in an awards vector in which all players

distribute the losses evenly, subject to no one receiving a negative amount: for each (E, c) ∈ B

and each i ∈ N, CELi(E, c) ≡ max{0, ci −µ}, where µ is such that
∑

i∈N max{0, ci −µ} = E
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The Talmud (T) combines the features of CEA and CEL and uses the aggregate claims’

midpoint as its benchmark. Talmud suggests using the constrained equal awards rule when

the available resources fall short of meeting the half-sum of the claims [115]. Otherwise, each

player receives half of the claim, and the constrained equal losses rule is applied to distribute

the remaining endowment: for each (E, c) ∈ B, and each i ∈ N, Ti(E, c) ≡ CEAi(E, c/2) if

E ≤
∑

i∈N ci/2, or Ti(E, c) ≡ ci/2+ CELi(E−
∑

i∈N ci/2, c/2), otherwise.

The random arrival (RA) rule also called contested garment [125] considers the case

that each claim is fully satisfied until the endowment runs out following the order of the

claimants’ arrival. In order to eliminate the unfairness of the first-come-first-served scheme

associated with any particular order of arrival, the rule proposes to take the average of

the awards vectors calculated in this way when all orders are equally probable: for each

(E, c) ∈ B, and each i ∈ N,RAi(E, c) ≡ 1
|N|!

∑
i∈RN min{ci,max{E−

∑
j∈N,j≺i cj, 0}}.

The concepts from cooperative game theory—such as the core, Shapley value, and nu-

cleolus—differ significantly in their mathematical formulations, assumptions, and outcomes

for allocating payoffs among coalition members. Each technique offers a unique perspective

on how to distribute these payoffs, which can be critical for managing diverse and complex

cooperative situations. For example, Shapley value is designed to measure the marginal con-

tribution of each player to the coalition. Shapley-Shubik is similar to Shapley values, but it

is particularly useful when it’s important to assess how critical each member’s participation

is to the overall success of the coalition. The calculation considers all possible orders in

which members can join, reflecting the added value each member brings when they enter

the coalition. Shapley values and Shapley-Shubik solutions are ideal when the sequence of

joining impacts the coalition’s value, such as in sequential investment decisions or collabo-

rative research where early contributors might bear more risk or cost. Nucleolus solution

concept is particularly valuable when the objective is to minimize the disparity in allocations

among coalition members. It seeks to find an allocation that minimizes the greatest dissat-

isfaction among all possible coalitions, thus ensuring a form of equity and stability that can
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prevent any group from feeling disproportionately disadvantaged. The nucleolus is beneficial

in scenarios where fairness and the minimization of unhappiness are crucial, such as in joint

ventures or collaborative projects with uneven benefits or costs. Core of a game includes all

possible distributions of total gains among the players such that no subgroup would be better

off by breaking away and forming their own coalition. This solution concept is fundamental

when the focus is on ensuring that no subset of players has an incentive to defect, even if

it might not address issues of equitable distribution as directly as the nucleolus. The core

is particularly relevant in cooperative arrangements where the stability of the entire group

is essential, like in alliances or large-scale collaborative agreements. Banzhaf power index

does not consider the order of coalition formation, making it suitable for scenarios where the

sequence of joining does not affect the coalition’s value. This index is often used in voting

systems to measure the power of a voter without considering the order in which votes are

cast, making it applicable in settings where decisions are made simultaneously or the impact

of the order is negligible. Finally, Conflicting claims are crucial in scenarios where mem-

bers have predefined claims, and the available resources are insufficient to fully satisfy these

claims. This method helps allocate limited resources in a way that attempts to consider the

legitimacy of each claim as much as possible.

Each of these solution concepts can be strategically employed based on the specific

needs and goals of the coalition, highlighting the versatility and depth of cooperative game

theory in resolving complex allocation problems.

2.3.5 COOPERATIVE GAME THEORY EXAMPLE

This section presents a cooperative game theory example based on the Shapley value

solution.

Some well-known cooperative game theory examples are matching problems, such as

stable marriage [131], stable roommates [132], and the National Resident Matching Program
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(NRMP) [133]. Engineering publications have widely discussed cost allocation problems,

and Shapley Value was a common solution concept employed [85]. Therefore, the numeric

example demonstrated below presents some of the concepts, such as characteristic function in

a cost allocation problem. This example will be in the context of a jazz band game described

by Malawski, Wieczorek, and Sosnowska [134].

The problem is described as follows. The club owner promises $150 to the singer,

pianist, and drummer for a joint performance. N= 1, 2, 3 = singer, drummer, pianist. The

characteristic function is as follows: v(1, 2, 3) =150, v (1, 2) = 60, v (1, 3) = 100, v (2,

3) = 50, v(1) = 40, v(2) = 0, v(3) = 35. For this game, we can check the superadditivity

condition:

v({1, 2, 3}) = 150 ≥ 75 = v({1}) + v({2}) + v({3})

v({1, 2, 3}) = 150 ≥ 95 = v({1, 2}) + v({3})

v({1, 2, 3}) = 150 ≥ 100 = v({1, 3}) + v({2})

v({1, 2, 3}) = 150 ≥ 90 = v({2, 3}) + v({1})

v({1, 2}) = 60 ≥ 40 = v({1}) + v({2})

v({1, 3}) = 100 ≥ 75 = v({1}) + v({3})

v({2, 3}) = 50 ≥ 35 = v({2}) + v({3})

Assume the following imputations for the singer (a1), drummer (a2), and the pianist

(a3), respectively:

a1 ≥ 40, a2 ≥ 0, a3 ≥ 35, a1+a2 ≥ 60, a1+a3 ≥ 100, a2+a3 ≥ 50, a1+a2+a3 = 150.

Given this information, we can calculate the Shapley Value. The calculation suggests

the following allocation for the singer, drummer, and pianist: ϕ(i) = (67.5, 22.5, 60). Note
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that the proportional solution calculated as propi = v(i)∑3
i=1 v(i)

· v(N), i ∈ N will suggest

following allocation to the singer, drummer, and the pianist propi = (80, 0, 70). We can also

calculate the core and look if the Shapley value belongs to the core. We get the following

results for the core 40 ≤ a1 ≤ 100, 0 ≤ a2 ≤ 50, 35 ≤ a3 ≤ 90. We can see that the

Shapley value belongs to the core.

2.3.6 ASSUMPTIONS AND CONCERNS REGARDING GAME THEORY

Here, the concerns and assumptions regarding game theory are explored.

Game theory is a powerful technique to determine solutions for problems that are

difficult to study due to the conflicting interests and strategies of the players. However, it

also has some limitations.

One of the game theory-related issues discussed by many researchers is that game

theory requires the assumption of rationality [135]. The concept of rationality is quite

familiar to economists, but what does this mean for engineers?

In engineering, the rational choice models attempt to capture critical facets of a sit-

uation and examine engineers’ decisions due to their preferences in conjunction with the

constraints of a situation. The rationality of the engineers does not show their preferences

over outcomes, but it describes the choices given ordinal preferences and the situation that

confronts it. The rationality of the engineers does not mean that engineers will reach the

same decision even when faced with the same situation. Engineers can differ not only in their

choice-making process but also in their preferences over the outcomes. Rationality does not

guarantee error-free decisions [136]. The reasons for undesirable consequences can be asso-

ciated with information scarcity, risk, and uncertainty related to the system. The concept

of rationality is essential for the decision-making process and building game-theoretic sce-

narios. Some researchers consider the assumption of rationality in game-theoretical models

as a weakness or a limitation because people do not always act rationally. This weakness is

alleviated when considering behavioral game theory. Behavioral game theory describes and
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analyzes decision-making using experimental data [137, 138]. It describes what people actu-

ally do. Camerer [137] states that behavioral game theory expands analytical game theory by

adding emotion, mistakes, limited foresight, and learning to analytical game theory. Hence,

behavioral game theory weakens the rationality assumption by employing experimental and

psychological regularity.

Another limitation is related to determining the payoffs for the game, which can be

challenging. For each choice of the strategies, each player receives some payoff. Quantifying

the payoffs given different strategies can be complicated as well. Kreps [139] states that

the payoffs are usually associated with the “pecuniary” incentives of the players. Large

pecuniary payoffs are related to risk aversion, and when the outcomes are monetary, we

typically assume players prefer more financial gain. Assessing the probability that the rival

player will accept or reject the particular offer also requires further attention. Note that,

in reality, financial gain is not the only incentive that drives people’s choices and decisions.

An altruistic player may care about his or her as well as other players’ benefits. Hence, the

payoff should represent a complete description of each player’s happiness with each of the

possible outcomes of the game to have a more accurate prediction of the behavior and the

situation.

Other limitations of game theory are the need for precise protocols, the existence of

many equilibria and no way to choose one, and even specifying the rules of the game [139].

2.4 LINEAR REGRESSION MODEL

Here, the concept of the linear regression model is described.

A linear regression model is a method used to model the relationship between a depen-

dent variable and one or more independent variables by fitting a linear equation to observed

data [140]. A linear regression model is used with cooperative game theory feature impor-

tance methods for two reasons. First, linear regression is the simplest modeling approach
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considered intrinsically explainable. However, some common problems in regression analysis,

such as high multicollinearity, nonconstant error variance, and autocorrelated errors, affect

the model prediction results. Some of these issues can be fixed by simply removing the

redundant feature. In other cases, removing the feature will not be the right action. This

is when explainable artificial intelligence is used to learn more about the AI system. Also,

the simultaneous multiple linear regression model includes all the specified features without

considering their importance values [141], and the statistical significance of these values may

fail if any common problem prevails. Mathematically, the regression model is defined as

follows:

yi = β0 + β1x1 + ...+ βnxn + ε (9)

Where yi are the observations of the target variable, x1, x2, . . . , xn are the features, ε

is the regression error term, that is assumed to be normally distributed, ε ∼ N (0, σ2).

A regression model is usually evaluated based on how much error the prediction makes.

Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Er-

ror (MAE) are example matrices used to characterize the regression model performance.

Regression outputs β0 intercept, and β1, β2, . . . , βn are regression coefficients computed

through the Ordinary Least Square (OLS) approach. Regression coefficients are regarded as

unstandardized effect sizes as they suggest the intensity of the relationship between features

and describe how important the findings are in a practical setting. For example, if the effect

size is negligible, then we interpret that the variation to the feature has almost no effect on

the target variable. The objective of the OLS estimator (linear regression line) is to mini-

mize the difference between actual and fitted data points, i.e., error sum of squares (ESS).

Statistically, a model fits the data well if the differences between the observed values (actual

observations) and the model’s predicted values are small and unbiased.

The performance of the regression model is evaluated by multiple determination R2

coefficient. R2 coefficient demonstrates how well the model replicates the observed outcomes.
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FIG. 3: Linear regression model with dots representing the observed values and linear re-
gression line evaluated with OLS estimator

The sum of squares values is used as an indicator to present the dispersion of data and

suggest how well the data fits the regression model. The three sums of squared indicators to

determine the R2 value are the total sum of squares (TSS), regression sum of squares (RSS),

and error sum of squares (ESS). The formula for multiple determination R2 coefficient is as

follows:

R2 =
RSS

TSS
= 1−

ESS

TSS
= 1−

∑
(yi − ŷi)

2∑
(yi − ȳi)2

(10)

Where, yi are the actual values, ŷi denote the predicted values, and ȳi is the mean of

the y values.

Regression also supplies statistical significance p-values. A low p-value (< 0.05) in-

dicates that the feature is perhaps a meaningful addition to the model. Larger p-values

suggest that the feature is not appropriate for predicting the target. Regression output may

be statistically insignificant with high p-values, implying some features are irrelevant to the

model. However, this insignificance could be an inaccurate prediction of the system. With

multiple linear regression, cooperative game theory has been employed (popular) to develop

and extract new insights about the prediction that was not able to be achieved based on



50

the regression model alone. To generate accurate predictions, the regression model follows

certain assumptions, which are linearity, normality, homoscedasticity, independence, and

absence of multicollinearity [142].

Linearity means that the target’s mean value is a linear combination of the regression

coefficients and the features.

Normality assumes that the target outcome given the features follows a normal distri-

bution. When this assumption is violated, the estimated confidence intervals of the feature

weights are invalid.

Homoscedasticity assumes that different values of the target have the same variance in

their errors, regardless of the values of the features.

Independence suggests that the errors of the target variables are not correlated with

each other.

Absence of multicollinearity Having strongly correlated features is problematic because

it becomes hard to estimate the weights. A more detailed description of multicollinearity is

described below.

2.4.1 MULTICOLLINEARITY IN REGRESSION MODELS

Multicollinearity occurs when features in a regression model are highly correlated.

This violates one of the assumptions in a regression model, i.e., the features should be

independent. Violating multicollinearity may not impact the prediction but can impact

inference. P-values typically become statistically insignificant even though the feature may

be essential for the prediction. Variance Inflation Factor (VIF) is used to measure the

severity of multicollinearity in regression analysis. VIF shows the increase in the variance

of a regression coefficient as a result of collinearity [143]. Computationally, it is defined as

the reciprocal of tolerance: 1
1−R2 . Lower levels of VIF are desired, as higher levels of VIF

are known to affect adversely the results associated with a multiple regression analysis. The

correlation matrix is another way to show the correlations between the features. One way to
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deal with multicollinearity is by using principal components analysis (PCA) [144], or partial

least square regression (PLS) instead of OLS regression [145]. PLS regression can reduce the

features to a smaller set with no correlation among them. In PCA, new uncorrelated variables

are created. It minimizes information loss and improves the predictability of a model. These

solutions to address the multicollinearity issue suffer from limitations, including a major

limitation for PLS to overlook, including real correlations and sensitivity to the relative

scaling of the descriptor variables. A major disadvantage to using PCA is the difficulty in

interpreting the data and identifying which are the most important features in the model

after computing principal components. I believe explainable artificial intelligence can be

useful in addressing the multicollinearity issue and provide the needed clarification about

the regression model predictions.

2.4.2 LINEAR REGRESSION MODEL AND EXPLAINABLE ARTIFICIAL INTELLI-

GENCE

Letzgus [146] discuss XAI with the regression model, suggesting that little attention

has been devoted to XAI for regression models (XAIR). The work presents the conceptual

differences of XAI for regression and classification tasks and establishes novel theoretical

insights and analysis for XAIR. Explanation methods that are based on Shapley values are

particularly favorable in the regression scenario. This is because Shapley values allow for a

decomposition of the predicted quantity on the input features that saves the explanation in

the same measurement units as the prediction tasks.

Lipovetskey and Conklin [37] present the Shapley net effect technique that uses Shapley

values for the regression model to measure the feature importance values [37]. The method is

a supervised learning approach designed to estimate the marginal contributions and relative

importance of the highly correlated features in regression models. Feature importance eval-

uation consists of comparing the model performance, measuring the multiple determination

R2 value, with and without particular feature i using Shapley value We will get Eq. 5 to
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measure the features’ relative importance for the estimated model:

Ui = R2 − R2
i (11)

Subsection 3.4.1 presents a detailed description of the algorithm and the analysis nec-

essary to measure the feature importance values using Shapley values.

2.5 LOGISTIC REGRESSION MODEL

Here, the concept of the logistic regression model is described.

Logistic regression is a statistical method used for binary classification, which involves

predicting the probability of an observation belonging to one of two classes [34]. Logistic

regression is widely employed in various fields, such as medicine [147] and finance [148].

The primary purpose of logistic regression is to model the relationship between a binary

dependent variable and one or more independent features, providing a probabilistic estimate

of the likelihood of an event occurring [34].

The logistic regression equation is derived from the logistic function, also known as

the sigmoid function. The logistic regression model transforms a linear combination of input

features using the sigmoid function, constraining the output to a range between 0 and 1.

The equation can be expressed as:

P(Y = 1|x) =
1

1+ e−(β0+β1x1+β2x2+...+βpxp)
(12)

Here, P(Y = 1) is the probability of the dependent variable Y being equal to 1, e

is the base of the natural logarithm, β0 is the intercept, β1, β2, . . . , βn are the coefficients

associated with the independent variables X1, X2, . . . , Xn. The output of logistic regression

provides predicted probabilities, and a decision threshold is chosen to classify instances into

the two categories.
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FIG. 4: Logistic regression

The model estimates the odds of the event occurring, and the log-odds ratio is used to

make predictions. The coefficients β indicate the direction and strength of the relationship

between each independent variable and the log odds of the event. Logistic regression assumes

a linear relationship between the log odds and the features.

Properties of the logistic regression equation include:

• Target y obeys Bernoulli distribution,

• Prediction is based on the maximum likelihood estimator.

Logistic regression is not only valuable for classification but also for understanding the

influence of features on the target outcome, making it a versatile tool in the realm of machine

learning modeling [59].

Assumptions for implementing logistic regression are [149]:

1. Target is binary or dichotomous.

2. Little or no multicollinearity between features and target.

3. Linear relationship of features to log odds.
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4. Large sample size.

5. No extreme outliers.

6. Independent observations.

As indicated in Section 2.4, linear regression often relies on R2 to gauge the goodness of

fit, and logistic regression uses alternative metrics like concordance to evaluate the model’s

performance in capturing the underlying patterns in binary classification problems. However,

logistic regression can provide pseudo R2 values, such as McFadden’s R2, which offer a similar

concept as R2 in linear regression, but adapted for classification tasks [150, 151]. McFadden’s

R2 is defined as:

R2
McFadden = 1−

Log-Likelihood of the Null Model

Log-Likelihood of the Model

The Log-Likelihood of the Model is the logarithm of the likelihood function for the

logistic regression model, and the Log-Likelihood of the Null Model is the logarithm of the

likelihood function for a model with no predictors (i.e., only the intercept). R2
McFadden ranges

from 0 to 1, and a higher value indicates a better fit. Values close to 0 suggest that the

model doesn’t improve much over a null model (a model with no predictors). In addition,

other performance evaluation metrics, such as F1 score, precision, recall, and accuracy, could

be applied to assess the effectiveness of the model in classification tasks.

2.5.1 LOGISTIC REGRESSION MODEL AND EXPLAINABLE ARTIFICIAL INTELLI-

GENCE

Logistic regression is widely used with explainable AI techniques to enhance the trans-

parency and interpretability of its predictions [13, 152]. When combined with XAI, it be-

comes easier to understand how specific features contribute to the model’s decision-making

process for classification tasks. Logistic regression coefficients indicate the contribution of

each feature to the prediction. These coefficients can be interpreted directly, providing a
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clear understanding of the role of each feature in the model [153]. Features with larger

coefficients have a more significant impact on the predicted outcome [153]. Logistic regres-

sion is usually considered a simple interpretable model [22, 5]. However, this model may

struggle to capture complex interactions between features, impacting its ability to provide

accurate explanations for certain predictions [154]. LIME presented in Subsection 2.2.1 is

an example of a widely used explainable AI technique that uses logistic regression to provide

explanations to classification tasks. A specific example of a logistic regression model could

involve predicting the probability of a customer making a purchase, considering variables

such as age, income, and browsing history. When applying LIME, a local explanation may

be generated for a specific customer, highlighting the significance of their recent browsing

history in shaping the purchase decision.

2.6 AGENT-BASED MODELING

An agent-based model (ABM) is a type of computational model that simulates the

behavior of individual agents and their interactions with each other and their environment

[38]. These agents may either be identical or possess distinct characteristics [155]. The

number of agents can vary from just one to potentially reaching into the millions. Since

these models operate based on computations, the behavior of the agents is governed by rules

[156]. Rules can range from being simple, like employing backward induction on an extensive

game form, to being more intricate, such as being derived from heuristics rooted in cognitive

psychology or neuroscience. The model is designed to track the interactions between agents’

behavior over time.

In an ABM, agents interact with their environment by receiving inputs and responding

with actions. Consequently, numerous ABMs incorporate elements like social networks or

spatial relationships to influence decision-making. When the ABM software simulates the

collective behaviors of these individual agents, it gives rise to system-level outcomes such as

cooperation and fluctuations. These outcomes are often described as emergent, generative
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[156], or originating from the bottom-up [157].

The outcomes in ABMs can be temporal [158], stochastic [159], and static equilibria,

such as in Schelling’s racial segregation model [160] or Axelrod’s culture model [161]. In

contrast to many modeling approaches commonly employed in the social sciences, ABMs

frequently place their emphasis on understanding the dynamic aspects of the behavior being

studied. In these models, finding equilibria can often prove challenging or may not even be

feasible due to the complex and non-linear nature of the systems under investigation [162].

Nevertheless, even in situations where traditional equilibria are elusive, discernible patterns

of behavior can still emerge within ABMs [163]. This adds a layer of complexity to ABMs

[163]. Complexity refers to systems and processes that are difficult to explain, predict, or

engineer [164, 165, 166, 167].

ABMs are used in a variety of fields, including economics and finance [168], ecology

[169], sociology [170], and epidemiology [171], to study complex systems and understand

the emergent behaviors that arise from interactions between individual components. The

study of an agent’s cooperative behavior explores how individual agents decide to collab-

orate, form partnerships, or engage in collective actions to achieve shared objectives. Co-

operative behavior involves agents working together in a way that is mutually beneficial.

Modeling cooperative behavior among agents can be complex, as it involves considering fac-

tors like trust, information sharing, negotiation, and the division of benefits. Researchers

may consider human subject experiments and use mathematical models, simulation tools,

and computational experiments to explore the outcomes of cooperative interactions, such

as the allocation of resources, collective decision-making, and the emergence of cooperative

equilibria [100, 172, 101].

Note that cooperative game theory has previously been applied to agent-based mod-

eling to study coalition formation behavior [101, 172, 100].

A classic example of an ABM is the predator-prey model, which simulates the interac-

tions between populations of predators and prey in an ecosystem. In this model, agents are
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divided into two categories: predators and prey [173]. Each predator agent is programmed

to seek out and consume prey agents, while each prey agent is programmed to avoid preda-

tors and reproduce. The Lotka-Volterra equations, also referred to as the predator-prey

equations, are a pair of differential equations that capture the dynamics of interacting pop-

ulations [174]. These equations enable the model to track the populations of predators and

prey over time, unveiling emergent behaviors such as population cycles and extinction events

as a result of the interactions between agents. Specifically, the equations are given by:

The Lotka-Volterra equations, also known as the predator-prey equations, can be rep-

resented as a single equation:

dx

dt
= αx− βxy,

dy

dt
= δxy− γy.

(13)

In Equation 13, x represents the population of the prey species, y represents the

population of the predator species, and α, β, γ, and δ are positive constants representing

the growth rates and interaction strengths between the populations. A predator-prey model

is a useful model for studying the dynamics of ecosystems and understanding the impacts of

environmental factors on populations of animals.

An example of a predator-prey model from agent-based modeling is the ”wolf-sheep

predation model,” which simulates the interactions between wolves and sheep in a given

ecosystem [175]. In this model, agents representing wolves and sheep move around the en-

vironment and interact based on specific rules, such as the wolves hunting the sheep and

the sheep trying to avoid them. Another example that I have considered in this study is

the rotifer-algae predator-prey model [176]. Rotifers and algae are common microorganisms

found in aquatic environments. Rotifers typically have a transparent, elongated body with a

distinctive head crowned by cilia. In Figure 5, the rotifer is described with yellowish/orange

pigment. The cilia create a rotating motion, resembling a spinning wheel, as they move

through water. Algae, on the other hand, encompass a diverse group of photosynthetic or-
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ganisms ranging from microscopic single-celled forms to large, multicellular seaweeds. Algae

can exhibit a wide array of colors, including green, red, and brown. They play a critical

role as primary producers, converting sunlight, water, and carbon dioxide into organic com-

pounds through photosynthesis. Furthermore, algae serve as a fundamental food source for

numerous aquatic organisms. In Figure 5, the depicted algae are prominently green in color.

The interaction between these two species is of ecological importance, as it affects the

balance of the ecosystem. In the rotifer-algae model, the agents are assumed to interact

with each other based on simple conditions such as feeding and reproducing, and their

individual behaviors can lead to the emergence of complex patterns at the system level. In the

rotifer-algae model, each rotifer and algae agent has its own set of attributes and behaviors,

such as movement, feeding, and reproduction. Rotifer-algae system incorporates various

environmental factors such as light, temperature, and nutrient availability. By simulating

the behavior of individual agents, the model can predict the emergent effects of adaptive

behavior and the impact of different conditions on the system as a whole.

FIG. 5: Rotifer-algae predator-prey system. Image used with permission from SciencePhoto
- Image ID C025/3764, Request ID 904451.

The agents interact with each other based on their proximity and the conditions gov-

erning their behavior (Figure 5). For example, a rotifer may move towards an algae if it
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is hungry and within a certain distance and then feed on the algae if it is close enough.

Similarly, algae may reproduce when it has enough nutrients and space.

2.6.1 AGENT-BASED MODELING AND EXPLAINABLE ARTIFICIAL INTELLIGENCE

This section is adapted from a paper developed in the scope of this dissertation and

published in Winter Simulation Conference [177].

A single simulation run can provide valuable insights but cannot account for all the

sources of uncertainty and variability in the modeled system [178]. Therefore, multiple sim-

ulation runs with varying input parameters, initial conditions, or model assumptions are

necessary to explore a wide range of possible outcomes, especially for agent-based models

that simulate individual agent behavior and interactions within a larger system. However,

multiple simulation runs can also introduce uncertainty when different results are observed,

making it difficult to discern the significance of each input variable in the agent-based model.

Given that agent-based models are inherently stochastic and sensitive to small changes, mul-

tiple simulation runs are crucial to fully explore the range of possible outcomes and evaluate

the uncertainty associated with the model results [179, 101]. Although running multiple sim-

ulations can help identify aggregate patterns and emergent behaviors not apparent in single

simulations, it can be computationally expensive and time-consuming. The sheer volume of

data generated from multiple simulation runs can also make it challenging to identify and

interpret the most significant results [180, 181, 182, 183, 184, 185].

Running multiple simulations or experiments with varying conditions or parameters

can produce different results, making it challenging to determine the most accurate result

[186]. Uncertainty quantification (UQ) plays a significant role in addressing this challenge by

identifying, quantifying, and reducing uncertainties associated with models, algorithms, and

predicted quantities of interest [187]. UQ is particularly important when accurate predictions

or decisions are required, but underlying models or data are incomplete, imperfect, or subject

to variability. As Begoli et al. [188] note, predictions without UQ are neither predictions
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nor actionable.

Addressing uncertainty in agent-based models poses several challenges. One of the

main obstacles is the complexity of these models, which often have high-dimensional feature

spaces with numerous parameters, initial conditions, and rules governing agent behavior.

This complexity makes it challenging to identify the sources of uncertainty and the impact

of each parameter on the model output. Furthermore, the stochastic nature of ABMs can

pose another challenge by leading to high variability in the model output. Running multiple

simulations considering different conditions can help capture the collective trends and novel

phenomena that arise from agent interactions and are not observable in single simulations

[189, 190]. ABMs often rely on incomplete or imperfect empirical data, leading to addi-

tional uncertainty [191]. The model’s assumptions about the behavior and interactions of

agents may also not accurately reflect the real-world system being modeled, adding to the

uncertainty.

Sensitivity analysis has been widely used to address the challenges associated with

uncertainty in ABMs [192]. However, the objective of sensitivity analysis is to improve

the robustness of a model by examining how changes in the inputs of a model affect its

outputs [40]. While sensitivity analysis can identify the most influential parameters and

assumptions, it may not provide additional insights into the underlying mechanisms driving

the model output [39].

Feature importance techniques from explainable artificial intelligence (XAI), on the

other hand, could be useful in addressing these limitations. By providing additional in-

sights into the relative importance of model features, XAI methods can enhance the initial

information and help clarify and better explain the model [50]. This can lead to a more com-

prehensive understanding of the model’s behavior and improve the accuracy and reliability

of its predictions.

A paper [177] developed in the scope of this dissertation demonstrates the use of fea-

ture importance measures from explainable AI as a means for uncertainty quantification of
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input data that can be used when ABM simulations are designed. To achieve this, a classical

predator-prey model involving two interacting species was considered: a predator (rotifer)

and a prey (unicellular algae). When features are uncertain or poorly characterized, the

output of the model may also be uncertain or unreliable. By quantifying the impact of

these important features on the output, we can better understand the sources of uncer-

tainty and develop strategies to reduce it. Therefore, feature importance analysis could be

an essential tool in the UQ process, allowing for a more comprehensive assessment of the

reliability, accuracy, and explainability of agent-based models. Measuring the importance of

features in a model can be accomplished using various approaches, including permutation

feature importance [82], and cooperative game theory-based solutions [193]. Cooperative

game theory-based approaches are known for their ability to yield fair assessments of feature

importance values [15]. By ranking the features by importance, we can focus on the most

important features when making decisions about how to reduce uncertainty and improve the

model’s reliability and accuracy.
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CHAPTER 3

METHODOLOGY

This chapter describes the methodology and experimental design of this dissertation.

It outlines the components involved, such as data, models, the new explainable artificial intel-

ligence methods derived from cooperative game theory solutions, and the weighted Shannon

entropy-based permutation importance evaluation (PRIME) metric, another contribution

of this dissertation. Emphasis is placed on the feature importance methods’ algorithmic

foundations and the execution of the PRIME metric.

Three experiments were conducted to assess these feature importance methods. The

first experiment employs a linear regression model using the Searpos dataset [194] charac-

terized by significant multicollinearity among its features. It includes conducting 30 permu-

tations as part of the application of the PRIME metric. The second experiment applies a

logistic regression model to the Adult Income dataset [195], which contains independent fea-

tures. This second experiment includes 60 permutations for the PRIME evaluation. Lastly,

the third experiment employs empirical data describing the predator-prey scenario [176]

to measure the feature importance values and analyze the effects of input and parameter

modifications for agent-based models.

For each experiment conducted, the weighted Shannon entropy-based permutation

importance evaluation (PRIME) metric was applied to assess the consistency associated

with the importance values of the features identified by various methods. PRIME in-

volves two existing methods - permutation tests [82, 196] and weighted Shannon entropy

[197, 198, 199, 200, 201]. In the scope of the PRIME, different number permutations (p)

were evaluated: p ∈ {10, 20, 30, 50, 60, 100}. These permutations involve random shuffling

observations within the dataset and assessing the variation in feature importance values,

along with their respective rankings [82, 196]. The results indicated that even a limited
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number of permutations (e.g., 20) produce feature importance rankings closely resembling

those generated with a larger number of permutations. Feature importance ranking refers

to the process of ordering features according to their importance values [202, 203]. These

rankings list the features based on how they contribute to the model’s ability to make pre-

dictions. Rankings could help in identifying the most influential factors [204], simplifying

model interpretation, and guiding the selection of important features [205].

In PRIME, Weighted Shannon Entropy, an advanced concept derived from information

theory [198, 200, 201], has been used with permutation importance tests. This integration is

designed to quantify the uncertainties associated with feature importance values generated

by various feature importance methods following permutations. PRIME’s objective is to

observe the permutations’ impact on the method’s consistency in measuring the importance

values of the features. Overall, PRIME is designed to better understand the stability and

sensitivity of feature importance scores assigned by the feature importance methods. Also,

PRIME could be used to compare various feature importance methods. Additionally, PRIME

enables the direct comparison of different feature importance methods, enhancing the ability

to discern the most effective methods for identifying the most important features in the

machine learning model.

The experiments have been executed using R version 4.1.2 on a Microsoft Windows

10 Pro, version 10.0.19043. To measure the feature importance values with game theory

solutions, the GameTheory package was used, available in Comprehensive R Archive Net-

work at http://CRAN.R-project.org/package=GameTheory. The GameTheory package

depends on lpSolveAPI to perform linear programming optimization. Data and the anal-

ysis are available as a Python Jupyter Notebook file online from https://github.com/

grigoryangayane/XAI_CGT_Methods. Together, these experiments are intended to gain in-

sights into the application of different feature importance methods developed in the scope

of this dissertation.

Figure 6 outlines the methodology overview, describing the general procedure and steps

http://CRAN.R-project.org/package=GameTheory
https://github.com/grigoryangayane/XAI_CGT_Methods
https://github.com/grigoryangayane/XAI_CGT_Methods
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this dissertation follows to address the research questions described in the Introduction. The

methodology consists of a review of the methods, data, and models, method development,

and evaluation.

FIG. 6: Research methodology overview

1. Review of methods: The methodology begins with a review of existing methods, and

three widely used methods (Shapley additive explanations (SHAP), local interpretable

model agnostic explanations (LIME), and permutation importance) are presented in

Section 3.1. SHAP leverages the Shapley value from cooperative game theory to fairly

assign importance values to features according to their contribution to model predic-
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tions [15]. LIME proposes employing surrogate models (more explainable models) to

simplify and explain complex model predictions [13]. Permutation importance meth-

ods assess feature significance by observing changes in model performance when feature

values are randomly shuffled, providing a direct empirical evaluation of each feature’s

impact [82].

2. Data and models: Following this review of the existing methods, in Section 3.2 and

3.3, the methodology progresses to the selection and preparation of the data, detailing

the sources and description of the data for the analysis. This data refers to the initial

datasets Seatpos, Adult Income, and Predator-prey, which are used for the first phase of

the feature importance methods to develop the explainable models. In this dissertation,

linear and logistic regression models were developed. These models were used due to

their transparency and straightforward interpretation [206, 22]. Afterward, from these

developed models, performance metrics such as the R-squared value are extracted.

These R-squared values then form a second set of input data, which is employed in the

final phase of feature importance methods to assess the impact of each feature.

3. Develop methods: Building on this foundation, the methodology introduces the devel-

opment of new feature importance methods in Section 3.4. This phase describes the

algorithms and the steps of the new methods, designed to extract explanations about

the feature importance values. While the discussion of algorithms references regression

models, it is important to note that any model capable of generating performance met-

rics could be applicable. In the algorithms, the model type and performance metrics

can be updated to facilitate feature importance analysis with a different model.

Figure 7 presents the sequence of steps based on the data, models, and the feature

importance method development discussed above.

Figure 7 illustrates the development process of feature importance methods, beginning

with data and model construction using this data. Subsequently, performance indica-
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FIG. 7: Process diagram of feature importance method execution

tors are extracted from these models. These performance indicators then serve as the

new input for the feature importance methods. The description and the algorithmic

steps of the feature importance methods are presented in Section 3.4.

4. Evaluate methods: Finally, the methodology culminates in the evaluation of these

newly developed methods. This evaluation is conducted through the Weighted Shan-

non entropy-based permutation importance evaluation (PRIME) metric, which is an

integration of two existing methods, weighted Shannon entropy [198, 200, 201] and per-

mutation test [82, 196], along with a series of experiments designed to test the methods’

consistency and uncertainty in feature importance rankings. Section 3.5 describes the

PRIME evaluation method.

Below, each component of this methodology is presented in detail, as well as the

experimental design describing the methodology implementation.

3.1 REVIEW METHODS

The first step of the methodology consists of reviewing the literature on the state-of-

the-art features importance and feature selection methods, to understand the landscape of

existing methods, their applications, and objectives. The review aimed to encompass widely

used approaches covering various domains. The search strategy involved accessing academic

databases such as IEEE Xplore, and Google Scholar, utilizing relevant keywords such as

”feature importance,” ”feature selection,” and ”variable importance.”

The selected studies were analyzed to extract information regarding the methodologies
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employed. Special attention was given to recent advancements and emerging trends in feature

importance, ensuring a comprehensive understanding of the current state of the art. The

state-of-the-art methods that were reviewed are:

1. Shapley additive explanations (SHAP)

2. Local interpretable model-agnostic explanations (LIME)

3. Permutation importance

Detailed descriptions of these methods are presented in Chapter 2 Section 2.2. These

reviewed methods represent widely adopted and established approaches across diverse fields.

Additionally, these methods were implemented on a selected dataset to evaluate the impor-

tance and impact of different features in the prediction.

Simultaneously, the analyzed feature importance methods play a pivotal role in assess-

ing the significance and impact of individual features on the prediction. By quantifying the

contribution of each feature to the overall model performance, they offer valuable insights

into the factors driving predictive outcomes. These methods (SHAP, LIME, and permu-

tation importance) often adapt to various machine learning algorithms and dataset types,

enhancing their applicability across various research domains [207, 208, 203]. These meth-

ods are applied to one of the datasets (Seatops), and the results are presented in Chapter 4,

Section 4.1.

3.2 DATA

This section describes the datasets used for the development of feature importance

methods. To evaluate the explainable artificial intelligence (XAI) techniques developed

in this dissertation, a diverse set of datasets was selected, encompassing continuous data

(Seatpos), categorical data (Adult), and time series data (Predator-prey). These datasets

were chosen to provide a comprehensive assessment across various domains, including trans-

portation (Seatpos), socio-economics (Adult), and biology (Predator-prey), ensuring wide
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applicability of the feature importance methods developed. The selection was made to cover

different data types (continuous, categorical, time-series), models (linear, logistic, and agent-

based models), and domain challenges, illustrating the versatility and effectiveness of the

XAI techniques in addressing diverse feature importance needs. Each dataset is described

in detail below.

Seatpos dataset [194] is employed to evaluate the XAI methods based on a regression

model. This data was collected by HuMoSim laboratory researchers at the University of

Michigan. The dataset is designed to analyze car seat positions based on the demographic

attributes of 38 drivers, encompassing a total of 38 observations (rows). The features included

in the dataset are numeric and are used to model the car seat position. The dataset includes

features for demographic and physical measurements: Age (age in years), Weight (weight in

lbs), HtShoes (height with shoes in cm), Ht (height barefoot in cm), Seated (seated height

in cm), Arm (lower arm length in cm), Thigh (thigh length in cm), Leg (lower leg length

in cm), and hipcenter (horizontal distance of the hips’ midpoint from a fixed car location

in mm). This data is important as interior design has been linked to traffic accidents in

previous studies [209]. To address this issue, various measures have been taken to establish

better car designs. Knowing the dimensions of the driver helps the manufacturer in designing

a car seat that provides the maximum possible safety. A regression model is used for the

prediction, and the hipcenter is the target variable and proxy measurement for a car seat,

and the rest of the variables are the features to explain the hipcenter.

This dataset was chosen specifically because of its significant multicollinearity among

the features. The goal was to assess how effectively the newly developed feature importance

methods can predict the importance values of features in an interconnected setting.

Adult Income dataset from the 1994 US Census Bureau database is considered [195]

and applied to a logistic regression model. The dataset analyzed contains 48,842 observations

(rows) in total, and the data type is categorical and integer. This dataset analyzed contains

11 features (columns); however, nine features were used for the analysis after removing cer-
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tain features that are not very informative, such as an individual’s identification number (ID)

and reference numbers. The Adult dataset pertains to socioeconomic classification based on

demographic and socioeconomic information, and the prediction task is to determine whether

a person makes over $50, 000 a year. The features within the dataset describe factors as-

sociated with individuals’ annual income, such as the individuals’ education level, age, sex,

occupation, marital status, work class, race, hours worked per week (hours per week), and

native country. Categorical variables include workclass (types of employment with some

missing values), education (levels of education), marital-status (marital conditions), occu-

pation (job types), relationship (family relations), and race (racial categories), and native

country (country of origin), all without missing values except for workclass and occupation.

Additionally, there’s a binary variable for sex (Female, Male). Age is a numerical variable.

These are the features used in the logistic regression model to estimate the individual’s

income level: high if it exceeded 50, 000$ and low otherwise.

Predator-prey dataset collected by Blasius et al., [176] was used to analyze agent-based

modeling system. The dataset comprises time series data from ten physical experiments

involving a planktonic predator-prey system, with measured population densities of the

prey (unicellular algae), predator (rotifer), and predator life stage characteristics recorded

over approximately 2,000 measurement days (rows, observations) and 6 features (columns).

These features include the total number of rotifers, unicellular green algae, produced eggs,

dead animals, egg ratio, and external factors, such as spatial structure, immigration, or

environmental perturbations, to investigate the potential for persistent cycles. The dataset

demonstrates predator-prey cycles of unparalleled length, making it a valuable resource for

investigating the dynamics of predator-prey systems.

Overall, the data can encompass continuous values, temporal data, or text-based in-

formation depending on the specific context and application.
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3.3 MODEL

This section outlines the models employed in the development of the new feature

importance methods, specifically highlighting the inclusion of linear regression and logis-

tic regression models. Linear regression is crucial for understanding relationships between

continuous variables, allowing us to quantify the impact of each variable on a continuous

outcome. On the other hand, logistic regression is essential for analyzing binary outcomes,

providing insights into how different variables influence the probability of a particular event

or classification.

Linear regression: For the regression model, data is necessary to predict the relation-

ship between features and the target [210]. The output for a regression model that will be

extracted is the regression R2 coefficient. R2 coefficient demonstrates how well the model

replicates the observed outcomes. The sum of squares values is used as an indicator to mea-

sure the dispersion of data and suggest how well the data fits the regression model. The

three sums of squared indicators to determine the R2 value are the total sum of squares

(TSS), regression sum of squares (RSS), and error sum of squares (ESS). Equation 10 is

used to measure the R2 values. A more detailed description of the linear regression model is

described in Section 2.4.

Logistic regression, described in Section 2.5, is used for modeling the probability of a

binary outcome. In other words, it predicts the probability that an instance belongs to a

particular category [34]. Despite the name ”regression,” logistic regression is a classification

algorithm. It is widely used when the dependent variable is categorical and binary, meaning it

has only two possible outcomes (e.g., 0 or 1, Yes or No, True or False). The logistic regression

model is based on the logistic function (also known as the sigmoid function), which transforms

any real-valued number into a value between 0 and 1. The model calculates the odds of

the event happening and then transforms these odds using the logistic function to provide a

probability. The McFadden R-squared is a metric used to assess the goodness of fit in logistic

regression models [150, 151]. McFadden R-squared is mainly used for comparing model
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performances. The description of the logistic regression model, as well as the McFadden

R-squared value, is provided in Chapter 2, Section 2.5.

3.4 EXPLAINABLE ARTIFICIAL INTELLIGENCE METHODS

This section describes various cooperative game theory-based feature importance meth-

ods developed in the scope of this dissertation.

To develop feature importance methods using game theory, it is essential to conceptu-

alize the problem as a cooperative game. Defining feature importance as a cooperative game

implies that features can collectively influence the model’s predictive power. Each feature

can be seen as a ”player” in the cooperative game, and the interactions between features are

considered cooperative rather than competitive. Features may have dependencies, and their

combined impact on the model’s performance can be greater than the sum of individual con-

tributions. By approaching feature importance through the lens of a cooperative game, the

method recognizes the potential for collaborative influence and importance beyond individ-

ual feature effects. This involves understanding how features jointly contribute to achieving

the final outcomes.

Before delving deeper into the cooperative game theory-based feature importance so-

lutions, let’s understand what a feature contribution is. Non-mathematically, the feature

contribution can be described as the difference that a particular feature brings to the final

performance of the prediction. For example, the Shapley value considers the difference when

having a particular feature in the prediction analysis compared to when it is not included.

Note that the feature can be used alone to conduct the prediction analysis (univariate analy-

sis) or in combination with other features (multivariate analysis). Thus, intuitively, the final

contribution of the feature should be a form of the average of all the possible combinations

of models.

The goal of integrating cooperative game theory solutions into explainable artificial
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TABLE 2: Game theory solution categorization

Game class Game theory solution
Transferable utility games Shapley value

Core
Nucleolus

Voting games Shapley-Shubik index
Banzhaf power index

Conflicting claims games Proportional
Constrained equal awards (CEA)
Constrained equal losses (CEL)
Talmud (T)
Random arrival (RA)

intelligence for measuring feature importance is to achieve a fair distribution of these values,

reflecting the unique impact of each feature. Cooperative game theory has been instrumental

within the field of XAI, providing insights into the opaque mechanisms of black-box machine

learning models [15, 14, 211, 37]. Particularly, the concept of Shapley values, a solution

from cooperative game theory, has gained widespread adoption. The objective of Shapley

value based explainable artificial intelligence methods is to provide a more transparent and

understandable explanation of how different features impact the model’s output [15, 14,

211, 37]. However, the Shapley value-based feature importance methods suffer with several

limitations which are discussed in Section 3.4.1.

Table 2 describes the game theory methods used to compute the feature importance

values. The description of these methods is presented in Subsections 2.3.2 (transferable

utility games), and 2.3.3 (voting games), 2.3.4 (conflicting claims). The next subsection

presents an overview of these methods that are used for assessing the importance values

of the features in machine learning models. These methods utilize explainable techniques,

such as linear or logistic regression, as surrogate methods to explain black box machine

learning models. Surrogate models refer to simplified models that are used to approximate

the behavior of a more complex, black-box model [13]. The primary purpose of surrogate

models is to provide a more interpretable understanding of the complex model’s decision-
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making process.

Figure 8 shows the connection between the black box and explainable surrogate models

(Defined in Chapter 2). Black box models are more complex and may lack interpretability

[212, 4]. Examples include deep neural networks and ensemble models [4]. The explainable

surrogate model is a simplified and interpretable model created to approximate the behav-

ior of the black-box model [13]. Common explainable models include linear and logistic

regression and decision trees [22]. Empirical data or data generated by a black box model is

used as input data for the explainable surrogate model. This surrogate model is trained to

explain the prediction of the black-box model [13]. Training refers to the process of devel-

oping the explainable surrogate model to approximate or explain the predictions made by

the black box model [13]. This involves using the input data that was fed into the black box

model, along with its predictions, and developing a surrogate model to explain the model

predictions in a more interpretable manner. The agent-based model experiment outlined

in Section 4.4 adheres to the same rationale, treating empirical data as input to describe

the black-box agent-based model. Subsequently, it constructs an explainable model utilizing

linear regression to generate insights into the workings of the agent-based model.

Black Box Model Explainable
Surrogate Model

Output

Training

Explanation

Input

FIG. 8: Connection between a black-box model and an explainable surrogate model

The surrogate model serves as a tool for understanding and explaining the relationships

between inputs and outputs in a more transparent manner by conducting some training or

analysis [213]. The methods developed in the scope of this dissertation are presented in

Table 3.

Subsequent subsections discuss each method in detail, considering regression models
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TABLE 3: Cooperative game theory based feature importance methods developed in the
scope of this dissertation

Method Acronym
Shapley feature importance SFI
Core Feature Importance CorFI
NuCleolus Feature Importance NcFI
SHapley-SHubik Feature Importance SH2FI
Banzhaf-power Feature Importance BFI
Constrained Proportional feature importance CPI
Constrained EQual Awards feature importance CEqA
Constrained EQual Losses feature importance CEqL
Conflicting Claims Talmud Valuation CCTV
Conflicting Claims Random Arrival CCRA

and their corresponding R-squared values. These methods are designed to be model-agnostic,

implying that they are compatible with any model. The algorithms outlined in these methods

reference regression models for ease of explanation. However, the regression models can

be substituted with other explainable models that suit the data and the specific problem

of interest. The cooperative game theory-based feature importance methods using linear

regression as a surrogate model are further examined in the context of an agent-based model

(Section 3.4.4). The feature importance method based on linear regression was employed

to gain insights into the empirical data describing the predator-prey agent-based model.

This method, utilizing a linear regression model as a surrogate, is aimed to facilitate an

understanding of the impact of input and parameter changes on the feature importance

values that could be used in the simulation design and development process.

3.4.1 TRANSFERABLE UTILITY-BASED FEATURE IMPORTANCE

This section presents transferable utility (TU) methods, such as the Shapley Value, the

Core, and the Nucleolus. These methods could be used in machine learning to understand

and interpret the contribution of each feature in a model. The description of these methods

is presented in Section 2.3.2. These methods are grounded in the concept of transferable util-

ity, where the value generated by a coalition of players (or features in the context of machine

learning) can be distributed among these coalition members. The aim is to quantify how
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much each feature contributes to the predictive power or the performance of the model. For

instance, the Shapley Value feature importance (SFI), with its emphasis on an individual’s

marginal contribution to a coalition, can be adapted to measure the incremental impact of

each feature on the model’s performance, thereby offering a fair and comprehensive assess-

ment of feature importance. The core feature importance (CorFI) can be used to identify

sets of features that collectively contribute to model robustness, ensuring that no subset of

features would provide a better prediction if used alone. The Nucleolus (NcFI), focusing on

minimizing dissatisfaction (or prediction error in this context), can help in optimizing the

combination of variables to achieve the most stable and accurate model outcomes. These TU

solution concepts thus could help better understand the relevance of features in black-box

machine learning models, enhancing the explainability of these models.

Notice that Shapley values have been extensively used to measure feature importance

values [15, 14, 37]; however, it has been criticized due to many limitations, such as mathemat-

ical and human-centric issues, the additivity constraint associated with Shapley-value-based

explanations [26, 25, 1] or the challenge to accurately identify feature importance values

when features are highly correlated [1]. Core and Nucleolus have been considered in the

following study by Yan and Procaccia [21]. This study considers Monte Carlo sampling and

a logistic regression model to conduct feature importance analysis and shows that achiev-

ing results for the nucleolus is practically impossible due to its complexity, suggesting that

the least core (approximation to the core) is a more computationally accessible method for

analyzing feature importance or value allocation in cooperative settings. This work also

suggests there may be limitations in generalizing these findings across different types of data

or models, given the specific nature of the computational improvements and the contexts in

which they were tested. In this dissertation, I extend the Core and Nucleolus feature impor-

tance methods by applying these methodologies to linear models (considering Seatpos and

Predator-prey datasets). I have also employed logistic regression models feature importance

assessment by considering the entire dataset. The following sections describe these methods.
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Shapley feature importance (SFI)

This section presents the Shapley value feature importance method (SFI).

Shapley value has been a popular solution concept for interpreting ML models. Shap-

ley net effects developed by Lipovetsky [37] is a pioneer work that estimates the marginal

contribution of the features considering the linear regression model. SHAP (SHapley Addi-

tive exPlanations) by Lundberg and Lee [15] is a method to explain individual predictions.

Faith-Shap extends the concept of Shapley values specifically for attributing importance to

both individual features and their interactions within black-box models [214]. This approach

uses higher-order polynomial approximations to faithfully represent the value function of a

model, leading to a unique and computationally efficient way to understand and explain the

contributions of both individual features and their interactions to the model’s predictions.

IME (Interactions-based Method for Explanation) provides explanations for individual pre-

dictions of classification models [193]. Causal QII [211] measure accounts for correlated

inputs or joint influences while measuring the feature influence. Shapley net effects [37] is

the base model used in the scope of this dissertation. Shapley net effects consider R-squared

values from a linear regression model with multicollinearity issues to measure the feature

importance values. The following Shapley feature importance algorithm (Algorithm 1) is

derived from Shapley net effects, which was originally applied within the framework of linear

regression models. SFI extends the application of the Shapley value to the logistic regres-

sion model. SFI serves as a basis to compare the remaining feature-importance methods

developed in the scope of this dissertation.

The SFI algorithm starts by determining different combinations of features and running

models for each combination of the features. The run ends by returning the model summaries

and extracting model performance values, such as Rsquared values. The newly obtained

Rsquared values are used as the new data to define the game in characteristic form. For

example v({1}) is assigned the Rsquared value of feature 1, v{12} = Rsquared of feature 1 and

feature 2 and so forth. The next step of the algorithm defines the game for n features
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Algorithm 1: Shapley value feature importance values (SFI)

Data: D(X1, X2, ..., Xn)
1 Rsquared ← [];
2 combinations C← [];
3 for Xi in range (1 : n) do

determine combinations of features;
for a combination C in the list of combinations do

run regression models;
get model summaries to extract rsquared values

end

end
Data: (v{1}, v{2}, ..., v{allfeatures})

4 define the game (n,V) in characteristic form;
5 calculate Shapley regression values using Eq [4];
end when all permutations of coalitions are evaluated;
Return Shapley feature importance values.

given the respective characteristic values, i.e., coalition values v in lexicographic order. This

is the second set of data used to compute the Shapley feature importance values. The

algorithm ends when all permutations are evaluated, and the data about features’ marginal

contributions is obtained.

Core feature importance - CorFI

In this section, the concept of stability and the link between the core and the feature

importance measure is explored. Kalousis et al. [215] describe the stability of feature as a

quantification of how different training sets affect feature preferences, which take the form

of a subset of selected features or alternatively of a weighting-scoring or a ranking of the

features. In other words, the stability helps to determine how sensitive the model outcome

will be to variations in the training set. A major challenge in ML is that no single agreed

measure is used to quantify stability [216]. Many important features could be selected for the

model. How stable would this selection be? For example, in a regression model, including

a large number of features will artificially increase the R2 value of the model. Does this

increase in the R2 value mean the model with all features, i.e., the grand coalition, should
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form, and this is the stable solution, or would some subset models be more accurate and

reliable for the prediction?

To address these questions, the core concept could come in handy. Value stability in

ML implies a model or an outcome with a robust prediction of stochastic changes. This

refers to if varying the feature subset varies the model recommendations and suggestions.

The stability concept is vital to answer if and how much we can trust the model outcomes.

If including a new feature in the model drastically changes the prediction, perhaps we will

not be able to trust the initial output of the model as a true representation of the problem.

Prior work suggests several approaches to measure the stability of feature selections

[215, 217, 21]. The goal of these approaches is to enhance the statistical feature selection

methods with concurrent analysis on stability to improve the quality of the selected features

[218].

The core of cooperative game theory could be a way to analyze the stability of the

feature importance values and select the most reliable set of features for the prediction.

Yan and Procaccia [21] consider core for a credit assignment problem (feature and data

valuation) and show that the least core - relaxation of the core that is always feasible, can be

useful and sometimes preferable alternative feature importance measure over Shapley values.

Unfortunately, it is possible that the core does not exist, meaning there are some models

in which there aren’t any stable payment allocation profiles that can be allocated to the

features. This could be why the core has not been widely considered to determine the stability

of feature importance. The possibility of an empty core could mean ”competition” and a

conflict of interest between the features, indicating that the features have a high substitution

rate. Therefore, forming a stable coalition between highly interchangeable features would

be challenging. Yan and Procaccia [21] provide a way to tackle this limitation by using the

least core.

The algorithm below presents the steps to compute the core:

The necessary conditions for the core are:
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Algorithm 2: Core feature importance (CorFI) values

Data: D(X1, X2, ..., Xn)
1 A characteristic function v : 2N− > R, where N is the set of features.;
2 Initialize the set of features P = N and the core C = {};
3 while P is not empty do

Remove a player i from P ;
4 Compute the worth without i, Wi =

∑
S⊆N i v(S);

5 If Wi ≥ V(N), add i to C ;
6 Otherwise, continue with the next feature in P ;
7 Update P to be the set of the remaining features after removing all coalitions

that contain i ;
8 Update P to be the intersection of P and the remaining feature in N after

removing all coalitions that contain i ;

end
Return Return C as the core feature importance values.

1. Efficiency: The total reward is fully distributed with no waste.

2. Pareto Optimality: There is no other allocation that could make at least one player

better off without making at least one other player worse off.

3. Stability (No blocking coalitions): There is no subset of players (coalition) that can

break away and secure themselves a better outcome by redistributing the reward among

themselves according to their own coalition’s value, leaving the rest of the players with

less than they would receive in the proposed allocation.

Emptiness of the CorFI

The core emptiness in feature importance may stem from a lack of diversity or impor-

tance in the considered features. Some features may be redundant, highly substitutable, or

insufficiently informative to contribute to the model’s performance, making it challenging

to identify a stable set of features. The following points offer insights into why machine

learning models might encounter situations with an empty core:

Lack of synergistic effect: The empty core can indicate that the features do not have

a synergistic effect on the model’s performance. In other words, no combination of features

leads to a better outcome for all players. This may occur if the features do not provide
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complementary information or utility. When the core is empty, it implies that there is no

set of features that is both efficient (i.e., each feature contributes to the outcome) and fair

(i.e., each feature receives a fair share of the outcome).

Non-cooperative setting: In some settings, the core may be empty because features

act independently, without necessarily collaborating to achieve a common goal. This could

occur when each feature represents a different aspect of the problem and does not depend

on or interact with other features. Cooperative game theory assumes that features can

form coalitions and work together to achieve a common goal, but this may not hold in a

non-cooperative setting. In this case, the empty core may reflect the absence of a stable

solution that satisfies fairness properties. For instance, in a dataset where each feature

captures a different characteristic of a customer’s purchase history, such as the amount spent,

the number of purchases made, and the time of purchase, each feature may be important

independently of the others.

Noise or variability in data: If there is a significant amount of noise or variability in

the data, it may be difficult to identify a stable set of features that lead to a fair allocation

of payoffs. In this case, the empty core may suggest that the data is too noisy or variable to

allow for a stable solution.

Biased or incomplete data: If the data used to train the machine learning model is

biased or incomplete, it may be impossible to identify a stable set of features that lead to

a fair allocation of payoffs. In this case, the empty core may suggest that the data used to

train the model is not representative enough to allow for a stable solution. For example, in a

healthcare setting, suppose that a hospital wants to allocate medical resources fairly among

different patient groups. However, certain patient groups may be underrepresented in the

available data, leading to a lack of information about their needs and characteristics. In

this case, the resulting resource allocation model may not be able to allocate resources fairly

to all patient groups, and the core may be empty. If the data mainly includes information

about the needs of younger patients, the resulting model may be biased towards allocating
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more resources to that group, even if older patients require more urgent medical attention.

This highlights the importance of ensuring that the available data is representative of all

patient groups to ensure a fair and stable allocation of medical resources.

Finally, it is also possible that the empty core is a consequence of the particular dataset

and that a different data or machine learning algorithm would yield a non-empty core.

Some approaches could be employed to turn the empty core into a non-blocking coalition,

such as endogenously by forming new beliefs and attitudes or exogenously from an external

intervention [219].

Nucleolus feature importance - NcFI

In this section, the Nucleolus feature importance (NcFI) method is presented.

The Nucleolus, as described in Section 2.3.2, is the set of efficient and individually

rational vectors, that is, the gain that players in coalition S can obtain if they leave the grand

coalitionN under the imputation x and instead take the payoff v(S) [111, 112]. The properties

of the Nucleolus, based on min-max fairness and stability, could be suitable to determine

models with the essential features. The min-max notions of fairness offer an alternative

approach by ”leveling-up,” i.e., prioritizing improving the model’s performance on the group

for which performance is the worst [111]. Such optimizations reduce the performance of

a model if it improves the performance of another model that is worse off [220]. A more

detailed description of the Nucleolus can be found in Subsection 2.3.2.

The steps of finding the Nucleolus are to find a vector x = (x1, x2, ..., xn) that minimizes

the maximum of the excesses e(x, S) over all S subject to xj = v(N). The process of

minimizing the maximum of a collection of linear functions subject to a linear constraint

is converted to a linear programming problem [220]. Second and more linear programming

problems may be used to minimize the next largest excess until n-tuple imputation x is

found.

The Nucleolus could be a useful measure of feature importance by identifying which
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groups contribute the most to the overall loss or dissatisfaction in the game. It evaluates the

degree of dissatisfaction or excess (also known as ”loss”) for each coalition and determines

a fair distribution of the payoff based on these values. In other words, it seeks to minimize

the maximum loss among all coalitions. This can be achieved by following the steps outlined

in Algorithm 3, which involves computing the pro-rata imputations (proportional allocation

based on the contributions), assigning joint worth to coalitions, calculating excess values,

and iteratively adjusting the imputations until the excess is minimized. Pro rata allocations

are computed as follows: pro − ratai =
v(i)∑n
i=1 v(i)

v(N), i ∈ N. The nucleolus is attractive as

it is unique and always exists.

Algorithm 3: The Nucleolus allocation of feature importance values (NcFI)

Data: D(X1, X2, ..., Xn)
Data: A characteristic function v : 2N− > R, where N is the set of features

1 for S be the set of all non-empty coalitions do
2 compute the pro-rata imputation xS using the formula: xS = v(S)/|S|;

end
3 for each feature i do
4 Assign their worth to all coalitions that include i to obtain the joint worth for

each coalition;

end
5 for coalition S in S do
6 Calculate the excess e(x, S) using the formula: e(x, S) = max{v(T) − x(T)|T is

a subset of S};

end
7 Initialize x to any feasible imputation ;
8 while there exists a feature i and a coalition S in S such that i is in S and

e(x, S) > v({i} ⊂ S)/(|S|+ 1) do
9 Increase xi by (v(iUS) − x(S))/(|S|+ 1);

10 For each coalition T in S that contains i, Recalculate the xT pro-rata
imputation and the excess e(x, T);

end
Return x as the Nucleolus imputation vector.

For the feature importance, the Nucleolus evaluates which group has the highest un-

happiness or excess, i.e., the loss, and based on this, determines the respective payoff dis-

tribution. What does unhappiness or excess translate in Nucleolus for feature importance
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problem? Think of a model where the value of the model v(x1) is 0.5, the value of another

model with v(x2) is 0, while the value with these two features v(x1, x2) is 0.9. Looking at

this, the v(x2) has no importance for the prediction, while it adds some value when used with

another feature v(x1). In this way, it helps the other feature to provide more explanation

about the target. This could be due to some apparent, confounding, or latent associations

between the features and the target; therefore, distributing the excess of the performance

in a way that reflects the x2’s contribution is essential. For example, it is possible x2 is

significantly associated with the omitted feature x1 and reflects the effect of the omitted

feature in addition to its effect. When the omitted feature x1 is included in the model, the

originally non-significant feature no longer captures the partial effect of the omitted feature.

However, it now reflects the ”true” effect of that feature, which is significantly associated

with the target. According to the Nucleolus solution, the feature will be ”unhappy” if it gets

an importance score of 0 by reflecting the prediction between itself and the target alone.

A criticism of Nucleolus and general min-max approaches is that they may excessively

focus on improving the performance of a specific model j, sacrificing another model [221, 222].

This criticism is reasonable, and numerous approaches were proposed to deal with this

limitation [223, 224, 225]. Improving this limitation is not within the scope of this research

effort; instead, our goal is to estimate the nucleolus feature importance results obtained from

a generic nucleolus solution.

3.4.2 VOTING GAMES BASED FEATURE IMPORTANCE

This section explores methods for assessing feature importance derived from voting

game theory.

Voting games-based feature importance, a concept explored in Section 2.3.3, could be

used to assess the importance of individual features within machine learning models. The

objective of these games is to quantify feature importance values by leveraging the mechanics

of voting systems where each feature is assigned a weight representing its influence, and
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there is a threshold value (model performance) that can be reached. This threshold signifies

a specific level of model performance (such as R-squared values, accuracy, precision, recall,

or any other relevant metric) that the combination of features must achieve or exceed for

the outcome to be considered successful. This threshold may also serve as an indicator of

the point at which the features fail to achieve the desired outcome. The following sections

delve into two distinct types of voting games—the Shapley-Shubik and the Banzhaf power

index—which were explored to measure the importance of features.

Shapley-Shubik Feature Importance - SH2FI

This section introduces the feature importance method based on the Shapley-Shubik

power index (SH2FI).

As a feature importance method, the Shapley-Shubik index can be used to determine

winning and losing models, thereby distinguishing between models that exhibit good or bad

performance. Good performance refers to models that are effective, accurate, or successful

in their predictions or classifications. In contrast, bad performance refers to models that

are ineffective and inaccurate in predicting the relationship between the target and the

interest variables. SH2FI can be used to evaluate the power of features given these model

performances when these features are added following some sequence of order and threshold

value (quota). The threshold value can be interpreted as the level of importance required

for a feature to be considered relevant or significant. The order of features considered in a

model plays an essential role in its contribution when there are overlaps among the features.

This is the same logic as the hierarchical models, i.e., hierarchical regression.

Consider the following coalitions with features {x1, x2} and {x2, x1}. These coalitions

may be equivalent in some scenarios as they contain the same element. In other cases,

when the players join sequentially, the order of joining may significantly affect the outcome.

< P2, P1, P3 > is an example of a sequential coalition, where the player joins the coalition

in the following order: P2 joins the coalition first, P1 joins the second, and finally, P3
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joins. <> notation is used instead of {} to distinguish sequential coalitions. This solution

setup is known as the Shapley-Shubik index [122], which can be applied to general-purpose

estimations, where the estimates are interpreted directly in terms of the a priori ability of

the participants to affect the result. The a priori ability of the player defines the pivotal

player that helps the sequential coalition to change from a losing coalition to a winning one.

The losing or winning coalition is determined based on some threshold value or quota, which

can be interpreted as the level of importance required for a feature to be considered relevant

or significant.

To compute the SH2FI, One can proceed by following the steps outlined in the Algo-

rithm 4.

Algorithm 4: Shapley-Shubik feature importance - SH2FI

Input: List of all sequential coalitions: < P1, P2, ..., Pn >

Initialize pivotal counts = {}, total coalitions to 0;
for each coalition in < P1, P2, ..., Pn > do

Determine the pivotal feature in the coalition;
if pivotal feature not in pivotal counts then

pivotal counts[pivotal feature] = 1;
end
else

Increment the count for the pivotal feature in pivotal counts;
end

end
for each feature in pivotal counts do

Count how many times the feature is pivotal, and add this to total coalitions;
end
for each feature in pivotal counts do

importance value = count of pivotal / total coalitions;
end
return SH2FI importance values for each feature;

SH2FI algorithm begins with a predefined list of all possible sequential coalitions, where

each coalition represents a subset of features. The algorithm identifies the pivotal feature for

each sequential coalition in the list. The pivotal feature is the one whose presence or absence

affects the model’s performance. SH2FI assesses how often each feature is identified as pivotal
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across all sequential coalitions. This involves counting the occurrences of each feature being

pivotal. The counts obtained in the previous step are then converted into fractions by

dividing each count by the total number of sequential coalitions. The final output measures

each feature’s importance based on its influence in different coalition settings.

Banzhaf power index feature importance (BFI)

Here, the Banzhaf power index is considered to measure feature importance values.

Machine learning models could have high or low performances; with the Banzhaf power in-

dex, we begin listing all the coalitions of the models and then finding which coalitions are

winning. Banzhaf power index has found substantial application in assessing feature impor-

tance, especially within the context of tree-based models [226, 227, 228, 229]. The work by

Karczmarz [226] has demonstrated that the Banzhaf power-based feature importance method

has a more intuitive interpretation, allows for more efficient algorithms, and is much more

numerically robust. Banzhaf power index was also applied to explain feature importance

methods for neural networks [230]. Banzhaf power index-based feature importance meth-

ods outperform current consistent random forests in terms of classification accuracy and are

superior to, or at least on par with, Breiman’s random forests, support vector machines

(SVMs), and k-nearest neighbors (KNNs) classifiers [227]. Another study explores the appli-

cation of voting games to random forest models and recommends extending this approach to

linear regression models as a potential avenue for future research [231]. However, to the best

of my knowledge, neither the Shapley-Shubik Power Index nor the Banzhaf Power Index has

yet been applied to linear or logistic regression models, nor have been explored within the

realm of agent-based models or in scenarios. The steps to compute the Banzhaf power index

are presented in the Algorithm 5.

The BFI algorithm, as described in Algorithm 5, specifies the identification of all

winning coalitions in a game, followed by counting how many times each feature is crucial

to the formation of a successful coalition. The algorithm then converts these counts into
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Algorithm 5: The Banzhaf-power index feature importance values (BFI)

Data: D(X1, X2, ..., Xn)
1 Construct models with single features using the data D;
2 Record model performances using the chosen metric;
3 List models with high performance (winning coalitions);
4 Initialize an empty dictionary D to store the BFI for each feature;
5 for Each feature i in the list of features P, do
6 Initialize a counter variable count to 0;
7 for each coalition c in the list of winning coalitions C do
8 If removing feature i from coalition c would cause it to become a losing

coalition, increment count by 1;
9 Compute the Banzhaf power index for feature i by dividing the count by

the total number of winning coalitions ;
10 Add the Banzhaf power index for feature i to the dictionary D with the

feature’s name as the key ;

end

end
Return the dictionary D with Banzhaf feature importance for each feature.

fractions or decimals, which represent the power of each feature in the game. In essence, the

algorithm provides a way to measure the influence of each feature in the game by analyzing

its contribution to the formation of winning coalitions.

Even though the features in the ML do not directly ”vote” for a candidate, the intu-

ition and the objective of using the Banzhaf power index with ML models are to identify

which coalitions (models) are capable of ”winning” by having a relatively better performance

compared to the other models. Also, this measure helps determine the probability of the

feature’s ability to change the outcome with its influence. The features attempt to predict

the target with combined powers, and when removing a feature from the model, shows the

role of its direct vote, i.e., the influence on the model to be categorized as a winning one.

The Banzhaf power index feature importance could be particularly appropriate to

measure the fairness of the distribution gains by determining the likelihood that (1) feature

xk is part of the winning coalition and that (2) xk’s contribution is necessary to achieve

a certain level of performance. This certain level of performance is the quota or threshold

necessary to determine if the feature yields a good (winning state) or bad (losing state) effect
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on the model’s performance. This threshold τ can be chosen randomly.

3.4.3 CONFLICTING CLAIMS FEATURE IMPORTANCE

In this section, conflicting claims solution to measure feature importance values is

discussed. Conflicting claims solutions, also called rules, are not as widely used, and to

demonstrate their computations, examples are presented along with their algorithms.

Conflicting claims problems are used in situations that are described with claims, but

there are not enough resources to distribute among all the claims due to resource constraints.

These claims represent contributions towards the model’s performance in a machine learning

model. In such a scenario, a conflicting claim “rule” specifies how to divide the available

resources, known as the endowment, which characterizes the model’s performance. In the

subsequent chapter 4 detailing the experiments, I tried different endowment values to observe

their effects on the feature importance values.

In the following subsections, conflicting claims feature importance methods are dis-

cussed. These encompass Constrained Proportional feature Importance (CPI), Constrained

EQual Awards feature importance (CEqA), Constrained EQual Losses feature importance

(CEqL), Conflicting Claims Talmud Valuation (CCTV), Conflicting Claims Random Arrival

(CCRA).

Constrained Proportional feature Importance (CPI)

Here, the Constrained Proportional feature Importance (CPI) method is discussed.

In the context of feature importance values, the Proportional (P) rule from conflicting

claims could be used to determine how much weight each feature should be given in a pre-

dictive model. For instance, if there are three features with equal strength in predicting the

outcome, the P rule would recommend that each feature be given equal importance. How-

ever, if one feature is judged twice as important as the others, the P rule would recommend

that this feature be given twice the weight of the other features. In short, the P rule suggests
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that the importance or weight given to each feature should be proportional to its relative

strength in predicting the outcome.

Algorithm 6: Conflicting claims proportional feature importance (CPI)

Data: E - total endowment; ci, claim of each feature i; N, the set of all features
with claims

1 Construct models with single features using the data D(X1, X2, ..., Xn);
2 Record model performances using the chosen metric as claims ci;
3 Calculate the total sum of claims Σ =

∑
i∈N ci;

4 Calculate the proportionality factor λ = E
Σ
;

5 for each feature i ∈ N do
6 Calculate proportional distribution Pi(E, c) = λ · ci;
end
Return the set of CPI Pi(E, c) for all features.

Algorithm 6 presents the steps to compute conflicting claims proportional feature im-

portance values. The total sum of claims called Sigma Σ is calculated by summing up the

claims of all features ci within the set of features N. The proportionality factor λ is deter-

mined by dividing the total endowment E by the total sum of claims Σ. This factor ensures

that the distribution is adjusted in proportion to the total endowment available. For each

feature in the set N, the algorithm calculates the CPI - proportional feature importance

values Pi(E, c) by multiplying the claim of feature i (ci) by the proportionality factor λ.

Example: Consider the following example. The initial claim of Feature 1 is 0.3.

This claim represents the performance of the model given the feature’s contribution used in

the model independently without any other feature. Similarly, Feature 2 exhibits a model

performance of 0.5, while Feature 3’s performance claim reaches 0.8. For endowment E = 1

the claims are [0.3,0.5,0.8],

Step 1: Calculate total sum of claims

First, sum the claims of all features:

Σ =
∑
i∈N

ci = 0.3+ 0.5+ 0.8 = 1.6
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Step 2: Calculate proportionality factor

Next, calculate the proportionality factor λ:

λ =
E

Σ
=

1

1.6
= 0.625

Step 3: Calculate proportional distribution for each feature

Now, for each feature, calculate the proportional distribution Pi(E, c):

For c1 = 0.3:

P1(E, c) = λ · c1 = 0.625 · 0.3 = 0.1875

For c2 = 0.5:

P2(E, c) = λ · c2 = 0.625 · 0.5 = 0.3125

For c3 = 0.8:

P3(E, c) = λ · c3 = 0.625 · 0.8 = 0.5

CPI values

The constrained equal proportional feature importance values given the endowment

E = 1 among the features based on their claims are:

• P1(E, c) = 0.1875 for the first feature,

• P2(E, c) = 0.3125 for the second feature,

• P3(E, c) = 0.5 for the third feature.

These results show how the total endowment of 1 is distributed among the features

according to their claims, ensuring each feature receives a portion of the endowment pro-

portional to its claim. This way, the feature with the highest claim (c3 = 0.8) receives the

largest share of the endowment (0.5), while the feature with the lowest claim (c1 = 0.3)

receives the smallest share (0.1875). The distribution reflects the relative magnitude of each

feature’s claim to the total available endowment.
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Constrained EQual Awards feature importance (CEqA)

In this section, the Constrained EQual Awards feature importance (CEqA) method is

presented.

The constrained equal awards (CEA) rule distributes the importance score equally

among features, considering their claims based on their contribution to the model perfor-

mance. The method is based on principles of equity and fairness, with constraints ensuring

that the allocation does not exceed available resources. The overall ”resource” in the con-

strained equal awards can be conceptualized as the importance score that must be distributed

across the various features. Each feature ”claims” a certain amount of importance based on

its contribution to the overall model performance. The CEA rule then suggests that we dis-

tribute the importance score equally among all the features but not exceeding each feature’s

claim. The main limitation of the CEA technique is that it assumes that all features have

an equal claim to the target variable, which may not be the case in reality. Below, the steps

for Constrained EQual Awards feature importance (CEqA) are presented.

Algorithm 7: Constrained Equal Awards feature importance (CEqA)

Data: E - total endowment; ci, claim of each feature i; N, the set of all features
with claims

1 Construct models with single features using the data D(X1, X2, ..., Xn);
2 Record model performances using the chosen metric as claims ci;
3 Initialize µ with an estimated value, e.g., µ = E/|N|;
4 while the sum of min{ci, µ} for all i ∈ N does not equal E do
5 Adjust µ to ensure

∑
i∈Nmin{ci, µ} = E;

end
6 for each claimant i ∈ N do
7 Calculate CEAi(E, c) = min{ci, µ};

end
Return the set of CEAi for all claimants.

The total endowment, as outlined in Algorithm 7, is allocated randomly, serving as

a rational representation of the model performance metric. For instance, if the R-squared

value is selected as the performance metric for the model, then the endowment E would

range between 0 and 1. This range would capture the extent of variance explained by the
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model. The performance of the model when utilizing only a single feature constitutes the

claim of that feature.

Example: Consider the following example. The initial claim of Feature 1 is 0.3.

This claim represents the performance of the model given the feature’s contribution used in

the model independently without any other feature. Similarly, Feature 2 exhibits a model

performance of 0.5, while Feature 3’s performance claim reaches 0.8. For endowment E = 1

and the claims [0.3,0.5,0.8], the following CEqA feature importance values will be allocated

[0.3,0.35,0.35]. The first feature receives its full claim of 0.3 since it is less than the adjusted

µ, which is approximately 0.333. The second and third features each receive an award of

approximately 0.35, which is the adjusted µ value, ensuring the total awards do not exceed

the endowment and respect each feature’s maximum claim.

Constrained EQual Losses feature importance (CEqL)

Here constrained equal losses feature importance (CEqL) method is described.

CEqL allocates losses equally among features, identifying the set of features that con-

tribute equally to the model performance or the error metric. In the context of feature

importance, the CEL rule can be used to identify the set of features that contribute equally

to a loss function or performance metric. These features can then be considered equally

important in terms of their contribution to the error.

Algorithm 8: Constrained equal losses feature importance (CEqL)

Data: E - total endowment; ci - claim of each feature i; N, the set of all features
with claims

1 Build models with the initial data D(X1, X2, ..., Xn) ;
2 Extract performance metrics (ci) claim of each feature;
3 Initialize r such that

∑n
i=1 max(0, ci − r) = E;

for i = 1 to n do
4 Allocate to feature i: max(0, ci − r);

end
Return the set of CEqLi(E, c) for all features.

Algorithm 8 presents the steps to compute the constrained equal losses feature impor-
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tance values, where E presents the estate or endowment, which is to be distributed among n

features. For each feature labeled i, their respective claim is indicated by ci. It is commonly

the case that
∑n

i=1 ci > E, signifying that the total of all claims exceeds the available estate,

thereby rendering it inadequate to fulfill every claim fully.

Example: Consider the same example discussed for CPI and CEqA. The initial claim

of Feature 1 is 0.3. This claim represents the performance of the model given the feature’s

contribution used in the model independently without any other feature. Similarly, Feature

2 exhibits a model performance of 0.5, while Feature 3’s performance claim reaches 0.8.

For endowment E = 1 and the claims [0.3,0.5,0.8], the CEqL feature importance values for

this problem will be [0.1, 0.2, 0.6]. The computation of CEqL values is as follows: first, the

total claim is determined Sum = 0.3 + 0.5 + 0.8 = 1.6. Next, this is deducted from the

endowment E, 1.6−1 = 0.6, which represents the loss. This loss is equally divided among the

N (number of features) 0.6/3 = 0.2. Finally, the average loss is subtracted from the initial

claims to determine the final allocation for each feature, i.e., (0.3− 0.2 = 0.1), (0.5− 0.2) =

0.3, (0.8− 0.2 = 0.6).

Conflicting Claims Talmud Values (CCTV)

This section presents conflicting claims Talmud valuation (CCTV), which allocates

the feature importance values by evaluating if the sum of all claimed feature importance

values exceeds the total importance score available, then, the CEqA computation is applied

to allocate the importance score proportionally to the claims of each feature. On the other

hand, if the endowment is sufficient to satisfy the half-sum of the claims, then each fea-

ture is assigned an importance value equal to half of its claimed importance value. The

remaining importance score is then allocated among the features using the constrained equal

losses (CEqL) feature importance computation, which ensures that all features incur equal

losses subject to no feature receiving a negative amount. Algorithm 9 presents the steps to

computate CCTV.
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Algorithm 9: Conflicting claims Talmud valuation (CCTV)

Data: E - Endowment; ci - claim of each feature i; N, the set of features with
claims

1 Calculate the half-sum of claims H =
∑

i∈N ci/2;
if E ≤ H then

2 Apply the Constrained Equal Awards (CEqA) rule;
for each i ∈ N do

3 Ti(E, c)← CEqAi(E, c/2)

end
else

Each player receives half of her claim;
for each i ∈ N do

4 Ti(E, c)← ci/2

end

end
5 Apply the CEqL for the remaining endowment;

for each i ∈ N do
6 Ti(E, c)← ci/2+ CEqLi(E−H, c/2)

end

end

Example: Consider the same example discussed for CPI and CEqA. The initial claim

of Feature 1 is 0.3. This claim represents the performance of the model given the feature’s

contribution used in the model independently without any other feature. Similarly, Feature

2 exhibits a model performance of 0.5, while Feature 3’s performance claim reaches 0.8. For

endowment, E = 1 and the claims [0.3,0.5,0.8], the CCTV allocation initially amounts to

0.15, 0.25, and 0.4, respectively, because the half sum of the claims of 0.8 is less than the

total endowment of 1. Consequently, a surplus of 0.2 remains. This remaining endowment

is then distributed in accordance with the CEqL discussed above, and the final allocation

will be [0.15, 0.35, 0.5].

Conflicting Claims Random Arrival (CCRA)

This section presents conflicting claims random arrival feature importance (CCRA)

method. The concept of random arrival (RA) is similar to the Shapley value, Shapley-
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Shubik, and Banzhaf power index, where the order of adding or removing features from

the model can be crucial. Like these methods, the random arrival considers the order in

which the features are added or removed from the model and how their contributions affect

the model’s performance. However, the RA rule differs in that it accounts for the order of

arrival of the features rather than their coalition values or marginal contributions. Also, this

method distinguishes itself primarily through the inclusion of an endowment.

Algorithm 10: Conflicting claims random arrival (CCRA)

Data: E - Endowment; ci - claim of feature i; N - set of features
Result: RA allocation vector where RAi is the allocation for feature i

1 Initialize an empty vector V to store the sum of awards for each feature;
2 Initialize Vi = 0 for each i ∈ N;
foreach permutation π of N do

3 Etemp ← E ; // Temporary endowment for each permutation

foreach feature i in π do
4 award← min{ci, Etemp};
5 Vi ← Vi + award;
6 Etemp ← Etemp − award;

end

end
foreach claimant i in N do

7 RAi ← Vi

|N|!
; // Average award for each feature

end
8 Return the set of CCRAi for all features.

Consider an example where the endowment, E = 1, and the claims of the features

are [0.3, 0.5, 0.8]. To determine the conflicting claims random arrival feature importance

(CCRA) values first, the permutations and their corresponding allocations are detailed as

follows:

Permutation: 0.3, 0.5, 0.8

• 0.3 receives: 0.3 (full claim, endowment remaining = 0.7)

• 0.5 receives: 0.5 (full claim, endowment remaining = 0.2)

• 0.8 receives: 0.2 (partial claim, endowment depleted)
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Permutation: 0.3, 0.8, 0.5

• 0.3 receives: 0.3 (full claim, endowment remaining = 0.7)

• 0.8 receives: 0.7 (partial claim, endowment depleted)

• 0.5 receives: 0 (no endowment remaining)

Permutation: 0.5, 0.3, 0.8

• 0.5 receives: 0.5 (full claim, endowment remaining = 0.5)

• 0.3 receives: 0.3 (full claim, endowment remaining = 0.2)

• 0.8 receives: 0.2 (partial claim, endowment depleted)

Permutation: 0.5, 0.8, 0.3

• 0.5 receives: 0.5 (full claim, endowment remaining = 0.5)

• 0.8 receives: 0.5 (partial claim, endowment depleted)

• 0.3 receives: 0 (no endowment remaining)

Permutation: 0.8, 0.3, 0.5

• 0.8 receives: 0.8 (full claim, endowment remaining = 0.2)

• 0.3 receives: 0.2 (partial claim, endowment depleted)

• 0.5 receives: 0 (no endowment remaining)

Permutation: 0.8, 0.5, 0.3

• 0.8 receives: 0.8 (full claim, endowment remaining = 0.2)

• 0.5 receives: 0.2 (partial claim, endowment depleted)

• 0.3 receives: 0 (no endowment remaining)
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Given the permutations and the allocation for the feature with a claim of 0.3 across

all permutations, we have:

1. Permutation 0.3, 0.5, 0.8: Allocation is 0.3

2. Permutation 0.3, 0.8, 0.5: Allocation is 0.3

3. Permutation 0.5, 0.3, 0.8: Allocation is 0.3

4. Permutation 0.5, 0.8, 0.3: Allocation is 0

5. Permutation 0.8, 0.3, 0.5: Allocation is 0.2

6. Permutation 0.8, 0.5, 0.3: Allocation is 0

The average allocation for the claimant with a claim of 0.3 is computed as follows:

Average Allocation =

∑
Allocations

Number of Permutations
=

0.3+ 0.3+ 0.3+ 0+ 0.2+ 0

6
= 0.1833

Thus, the average allocation for the feature with a claim of 0.3, computed step by step

across all permutations, is approximately 0.183.

Similarly, for the feature with a claim of 0.5, the average allocation is approximately

0.283. For the feature with a claim of 0.8, the average allocation is approximately 0.533.

3.4.4 FEATURE IMPORTANCE FOR AGENT-BASED MODELING

This section presents the method to address one of the research questions introduced

earlier (Section 1.3), focusing on the use of cooperative game theory-based methods for

feature importance in analyzing empirical data collected about the simuland (system under

study) as an input for agent-based modeling. This work described in this section and the
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respective results have been published in Winter Simulation Conference [177]. A detailed

description of this approach is presented below.

Evaluating feature importance in empirical data for agent-based models is crucial for

refining the development of simulation models. This process identifies key features to prior-

itize during the simulation design phase, guiding developers on where to focus their efforts

for maximum impact and efficiency.

Feature importance evaluation of empirical data for the agent-based model could be

useful knowledge in the development of the simulation model, i.e., which features they should

focus their attention on during the simulation design, as well as the sensitivity analysis stage

of a simulation project. This is important because developing targeted sensitivity analysis

methods has been identified as a key challenge for agent-based modeling [40]. Moreover, the

feature importance method can also assist in identifying and eliminating irrelevant features,

which could lead to model complexity and reduced simulation performance. This method

employs a feature importance evaluation algorithm to calculate the importance values of

features from the behavioral space, resulting in a list of the most significant features that

impact the system behavior. By focusing on important features, simulation designers can

create more efficient models and avoid wasting resources on simulating irrelevant features,

which could result in longer simulation run times and higher computational costs [177].

Additionally, the knowledge gained from identifying important features can also facilitate

the parameterization of the simulation model, which is crucial for model calibration and

validation. With this information, simulation designers can more accurately set and test

the parameters of the model, leading to improved confidence in the model’s results and

predictions. Overall, this approach can help streamline the simulation design process and

lead to more explainable and accurate simulation models.

Algorithm 11 presents the sequential steps for agent-based model feature importance

values. Initially, it acquires data from either simulation model outputs or empirical datasets.

Following this, the algorithm applies specific methods to compute the feature importance
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Algorithm 11: ABM: Shapley value feature importance explanations

1 Input: Collect data about the simuland (in this study, Predator-prey dataset was
used collected by Blasius et al., [176]);

2 Apply and compute feature importance methods (SFI, NcFI, SH2FI, etc.);
3 Return: Feature importance values;
4 Design or adjust the ABM simulation model based on the feature importance

observations;
Output: Optimized ABM simulation model.

values, ultimately generating and returning these calculated values for further analysis and

application. This process facilitates the understanding of the significance of different fea-

tures within the model. The data and the R code can be accessed https://github.com/

grigoryangayane/Predator-prey-model-feature-importance.

TABLE 4: Single observation instances extracted from datasets

Exp/features rotifers algae egg-ratio eggs dead animals external
Exp1 5.42 0.83 0 0 0.4 NA
Exp5 9.83 0.73 0.27 2.61 0.4 NA
Exp8 11.04 2.83 0.67 7.42 0.4 160
Exp10 6.82 2.03 0.06 0.4 0.2 NA

Simulation models and various applications, such as cybersecurity [232], healthcare

[233], and coalition formation [172, 234] that can generate a feature space are suitable for

analysis. Table 4 presents single-sample observations captured from distinct experiments.

Within the framework of this dissertation, the initial three steps have been executed,

and the results are presented in Section 4.4. The methods considered are Shapley feature

importance, Nucleolus feature importance, Shapley-Shubik feature importance, Banzhaf fea-

ture importance, and conflicting claims future importance methods.

3.5 SHANNON ENTROPY-BASED PERMUTATION RELATIVE

IMPORTANCE EVALUATION (PRIME)

In this section, the Permutation Relative IMportance Evaluation (PRIME) metric

is explored, another contribution of this dissertation. PRIME combines two established

https://github.com/grigoryangayane/Predator-prey-model-feature-importance
https://github.com/grigoryangayane/Predator-prey-model-feature-importance
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methods: permutation tests [82, 196] and weighted Shannon entropy [197, 198, 199, 200, 201].

This hybrid metric, combining permutation tests and weighted Shannon Entropy, assesses

feature importance by analyzing how features influence outcomes when their values are

shuffled. PRIME metric measures the consistency and uncertainty of feature importance

rankings (when feature importance values are arranged in descending order) across different

data permutations. Essentially, PRIME uses permutation testing to evaluate the impact of

features under random rearrangements and applies weighted Shannon Entropy to measure

the consistency of a feature’s importance rankings. Also, PRIME aims to establish a metric

that enables the comparison of various feature importance methods.

This need arises from the observation that the results of other existing approaches,

such as Permutation Importance (PIMP) [82], a prevalent metric for evaluating feature

importance methods, have not been consistently effective. With Permutation Importance, I

have observed that a single feature’s statistical significance can vary across different methods,

leading to interpretative challenges. For instance, applying the Permutation Importance

evaluation analysis to the experiments within this dissertation has revealed that while one

feature importance method deems feature X to be statistically significant, another feature

importance method regards it as insignificant.

Note that human-subject experiments were conducted to assess the effectiveness of the

explainable artificial intelligence methods [31, 32]. However, the complexity and fluctuations

in human cognition and interpretation posed challenges in quantifying the direct impact

of these methods on user trust and comprehension. Adopting a quantitative approach for

assessing the effectiveness of feature importance methods in XAI offers multiple benefits over

exclusively depending on human-subject experiments. Notably, it facilitates the generation of

measurable, objective, and reproducible findings, providing a solid foundation for evaluating

and comparing the impact of XAI strategies [235, 236]. Consequently, these advantages

underscore the importance and need for the development of the PRIME metric.

I have tested PRIME on the feature importance methods developed during this disser-
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tation, examining datasets characterized by independent features and features with a high

degree of multicollinearity. The results are presented in Chapter 4. The findings demon-

strate that PRIME can effectively quantify the permutation-based uncertainties inherent

in feature importance assessments. The subsequent sections delve into the methodologies

and applications of permutation tests, Shannon entropy, weighted Shannon entropy, and the

combinations of these methods.

Generally, the prior studies on assessing feature importance methods can be broadly

categorized into four groups: 1) evaluating the (in)sensitivity of explanations to changes in

the model or input [237, 238], 2) deducing the accuracy of explanations based on the decrease

in model performance after removing features [196, 239], 3) assessing explanations within a

controlled environment where the importance of features is partially known [240, 241, 13],

and 4) analyzing explanations through the lens of human interpretation.

Weighted Shannon entropy permutation importance evaluation metric aligns with the

first categories, leveraging known data on feature importance to determine the permutations

under which feature importance scores remain stable or vary in response to modifications in

inputs when data is randomly shuffled (permuted). Unlike the fourth category, my focus is

solely on the precision of feature importance evaluation after the permutations without con-

sidering the comprehensibility of explanations to humans. Weighted Shannon entropy-based

PRIME can be regarded as a way to verify the reliability of feature importance evaluations,

acting as a preliminary step before engaging in more resource-intensive studies involving

human participants.

3.5.1 PERMUTATION TESTS

This section explores the concept of permutation tests.

Permutations involve altering the values of a feature in the dataset and observing the

resultant change in the model’s performance. The permutation tests aim to assess how

robust the original feature importance rankings are to changes in the data. These tests are
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used to highlight the impact of individual features on the model’s predictions.

To assess the significance of features in machine learning models different permutation-

based methods have been proposed [82, 196, 242, 243, 244, 245]. The Permutation Impor-

tance Method (PIMP) a widely used technique that was developed to address biases linked

to permutation in assessing feature importance values [82]. PIMP employs multiple permu-

tations of the outcome vector to determine the distribution of importance scores for each

variable under conditions that are not informative. The observed importance’s P-value is

then used to improve the feature importance evaluation by constructing models that in-

corporate features deemed statistically significant. Kaneko [196] has introduced a cross-

validation-based approach to permutation feature importance (PFI), which involves several

steps. Initially, a model is constructed using training data. Subsequently, the algorithm cal-

culates the reference score (rs) of the model on a designated validation dataset (VD), where

the score could represent accuracy for a classifier or the determination coefficient (r2) for a

regressor. The essence of the PFI process lies in permutation iterations. For each feature

i in the dataset and each repetition j, the algorithm randomly shuffles the values in the

i−th column to create a corrupted version of VD (CVDi,j). The model’s score (si,j) on this

corrupted dataset is then computed. The Permutation Feature Importance (PFIi) for each

feature is subsequently determined based on the change in performance caused by these per-

mutations. PFI quantifies the impact of permuting individual features on the model’s overall

performance. Additionally, permutation tests have been applied to evaluate the confidence

intervals and variance estimation of importance values [245, 246].

One of the challenges with permutation tests is their potential failure to capture the

uncertainty in feature importance rankings [82]. When features are permuted, and the

model’s performance is evaluated, the results have inherent variability due to randomness.

This variability can lead to uncertainty in determining the true importance of each feature.

However, many implementations of permutation tests might not account for this uncertainty

adequately. Another issue is that the rankings of feature importance derived from permu-



103

tation tests may significantly vary or closely resemble the initial, unpermuted rankings, as

observed from the experiments conducted in the scope of this dissertation. This can happen

if the model is overly dependent on certain features or if there are correlations among the

features. To the best of my knowledge, the issues pertaining to the uncertainty and consis-

tency of feature importance rankings resulting from randomized permutations have not been

addressed yet.

3.5.2 SHANNON ENTROPY

This section explores Shannon entropy, which is a concept from information theory

introduced by Claude Shannon. Shannon entropy measures the average amount of uncer-

tainty or disorder associated with a random variable [247]. Shannon entropy is measured as

follows:

H(X) = −

n∑
i=1

P(xi) · log2(P(xi)) (14)

In this equation, P(xi) represents the probability of occurrence of the specific event

xi, and n denotes the total number of events. The sum extends over all possible events

i from 1 to n, where logb indicates the logarithm to the base b. This base is typically

set to 2 for entropy measured in bits but can also be e for natural units (nats) or 10 for

hartleys. Shannon entropy is described with additivity property [248, 249] which asserts that

for two independent systems or random variables X and Y, with entropies H(X) and H(Y),

the entropy of the combined system X+Y is the sum of their individual entropies, expressed

as H(X+ Y) = H(X) +H(Y).



104

Proof

H(X) = −
∑
x

p(x) log p(x)

H(Y) = −
∑
y

p(y) log p(y)

p(x, y) = p(x)p(y) (independent)

H(X, Y) = −
∑
x,y

p(x, y) log p(x, y)

= −
∑
x,y

p(x)p(y) log[p(x)p(y)]

= −
∑
x,y

p(x)p(y)(log p(x) + log p(y))

=

(
−
∑
x

p(x) log p(x)

)(∑
y

p(y)

)

+

(
−
∑
y

p(y) log p(y)

)(∑
x

p(x)

)

= H(X) +H(Y)

3.5.3 WEIGHTED SHANNON ENTROPY

This section explores weighted Shannon entropy, an extension of the classic Shannon

entropy.

Weighted Shannon Entropy, an advanced concept derived from information theory,

extends the foundational principle of Shannon entropy by incorporating weights for each

possible outcome [197, 198]. This adaptation allows it to more accurately quantify the

uncertainty inherent in the value of a random variable or the result of a random process.

By adjusting for the varying significance or relevance of each outcome, Weighted Shannon

Entropy offers enhanced utility in situations where not all outcomes are equally important

or occur in equal frequency, thereby providing a more nuanced understanding of uncertainty
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in diverse scenarios [198, 199, 200, 201].

Weighted Shannon entropy has been used in various fields, including medical imaging

[197, 198, 199, 200, 201]. For example, weighted Shannon entropy was proposed to enhance

the detection of scatterer concentrations in tissues using ultrasound [198]. This approach

involves assigning weights to different parts of the signal based on their contribution to the

overall information content. By applying a weighted Shannon entropy approach, the au-

thors have demonstrated improved sensitivity in characterizing scatterer variations, offering

a more effective means of analyzing tissue microstructures compared to conventional entropy

methods [198].

Another work [200] studies ultrasound entropy imaging for detecting and monitor-

ing thermal lesions, different forms of Shannon entropy, including typical Shannon entropy

(TSE), weighted Shannon entropy (WSE), and horizontally normalized Shannon entropy

(hNSE), were explored. The WSE estimation utilizes the same probability distributions as

TSE but applies w as the weight to enhance its sensitivity to changes in disorder. The

estimation of weighted entropy is defined as follows:

HW = −

ymax∑
y=ymin

w(y) · log2[w(y)] (15)

Where the parameters are interpreted similarly as in equation 14. HW corresponds to

weighted Shannon entropy, and w(y) is the weighted probability distribution of the specific

events. The sum extends over all possible events i from 1 to n, where logb indicates the

logarithm to the base 2.

This study [200] found that WSE, which incorporates signal amplitudes as weights,

offered improvements over TSE by achieving better detection performance in some areas.

THE hNSE provided superior lesion detection accuracy and contrast, indicating the use-

fulness of frequency and normalization adjustments in weighted entropy applications for

medical imaging.

Another study [201] has employed the Entropy Weight Method (EWM) to integrate
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different prediction models by assigning weights based on the dispersion of prediction errors.

The methodology determines the importance of each model in improving prediction accuracy

by evaluating the entropy value of model prediction errors. This approach has been applied

to traffic flow prediction, illustrating its utility in combining models to achieve more accurate

forecasts.

In various studies, weighted Shannon entropy calculations are refined through the

application of weights, which are determined by several factors. These factors include the

relevance of specific data points [199], the magnitude of prediction errors [201], and at

times, subjective criteria reflecting expert judgment [198, 197]. For example, Qu et al., [201]

suggest assigning weights to different models in a way that the smaller the entropy value

of the prediction error of an individual model, the greater the weight should be assigned.

Assigning different weights allows for a tailored analysis that prioritizes certain aspects of

the data. These weights are crucial for emphasizing certain elements over others, thereby

adjusting the entropy calculation to reflect the importance of specific aspects of the data

being analyzed. Overall, the review of the prior work has shown that the exact method of

determining weights can vary significantly between applications [199, 201, 198, 197].

After determining weighted Shannon entropy HW, the average weighted Shannon en-

tropy ⟨HW⟩ [250] can be computed using Equation 11. This computation is instrumental in

evaluating and comparing datasets and methods in terms of their average uncertainty and

ability to produce consistent results.

⟨HW⟩ = 1

N

N∑
j=1

HWj (16)

Where N represents the number of events or features being assessed for their sig-

nificance in prediction. It is assumed that the probability distributions correspond to an

equal number of features, and these distributions measure the same type of information. A

higher entropy signifies increased uncertainty, randomness, or inconsistency in the feature

importance ranking.
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Weighted Shannon entropy has been previously discussed with permutations [251].

However, permutation in the discussed context refers to analyzing time series data by com-

paring neighboring values of each point (subsets of time series) to determine their ordinal

patterns. This method, known as Permutation Entropy (PE), evaluates the complexity of

signals by mapping them to sequences that reflect their underlying order. This approach is

notable for its ability to remain robust against artifacts that occur at low frequencies, making

it versatile for analyzing a wide range of time series data. While PE [251] was effective in

identifying patterns within the time-series data, offering insights into its complexity without

being heavily influenced by noise or linear distortions, it is important to note that PE is not

related and does not measure feature importance values.

3.5.4 WEIGHTED SHANNON ENTROPY BASED PERMUTATION IMPORTANCE EVAL-

UATION (PRIME)

This section describes the Permutation Relative IMportance Evaluation (PRIME) met-

ric, which combines the concepts of permutation tests and weighted Shannon entropy, pre-

viously detailed in Sections 3.5.1 and 3.5.3.

I have followed the subsequent steps described in Figure 9 to formulate the permutation

relative importance evaluation with weighted Shannon entropies (PRIME).

Figure 9 provides a comprehensive overview of the weighted Shannon entropy-based

PRIME metric, detailing its essential elements.

1. Actual data refers to the initial or original data collected directly from real-world

sources or derived from simulation models. Section 3.2 presents the data used in this

dissertation.

2. Permuted data refers to the process of randomly shuffling the values within each fea-

ture across the dataset. This data refers to the permutations applied to the original
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FIG. 9: Weighted Shanon entropy-based PRIME overview

(raw) dataset outlined in Section 3.2. The objective of this step is to break any true

relationship between the feature and the target variable. This step is similar to the

PFI approach [196]. Figure 10 presents the data permutation example.

FIG. 10: Data permutation example

3. Construct models and extract their performance values using the actual and permuted

data. As outlined in Section 3.3, the models used in the scope of this dissertation are

linear and logistic regression models.

4. Compute the feature importance values for all permuted features using the feature

importance methods outlined in Section 3.4. For the Seatpos dataset, comprising 8

features, 30 permutations were evaluated, resulting in the evaluation of 240 models

and the derivation of 240 feature importance scores. Each set of 30 scores corresponds
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to the permutations of a single feature. For the Adult dataset, which comprises 9

features, 60 permutations were conducted. This process resulted in the assessment

of 540 models and the generation of 540 importance scores. Each batch of 60 scores

is associated with the permutations of a single feature. Finally, the Predator-prey

dataset, containing 4 features, underwent 60 permutations, leading to the evaluation

of 240 models. Correspondingly, 240 feature importance scores were generated. Each

batch of 60 scores is associated with the permutations of a single feature.

5. Record the feature importance values for each permuted dataset and corresponding

feature importance method. This data is subsequently used to create distributions of

feature importance values.

6. Generate a distribution of importance values. In this step of the PRIME evaluation,

the distribution of feature importance scores for each feature is generated based on

each permutation by counting how many times each outcome occurs. The outcome

here refers to the feature importance ranking that is obtained by ordering the feature

importance values in descending order. These distributions present the overall vari-

ability of how each feature contributes to the model’s predictions when it undergoes

permutations.

7. Computed weighted Shannon entropy described in Algorithm 12 to measure the con-

sistency of the feature importance ranking generated by various methods. This also

facilitates the comparison of how well different feature importance methods can rank

features as they undergo permutations. It underscores the methods’ capacity to main-

tain accurate feature prioritization amidst the variability introduced by permutations.

Algorithm 12 comprises the following steps: Firstly, data collected from the permuta-

tions is used to calculate weighted probabilities by multiplying each rank’s probability by

its frequency. Feature importance ranks are obtained by ordering the feature importance

values in descending order. Then, these values are normalized by dividing each weighted
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Algorithm 12: Weighted Shannon entropy permutation relative importance
evaluation (PRIME)

Data: List of probability distribution rankings from the permutations with
(probability(p), frequency(freq))

Result: Total Weighted Entropy
1 WeightedProbabilities← [];
2 WeightedEntropies← [];

3 for each (p, freq) in Rankings do
4 wp← p× freq;
5 Append wp to WeightedProbabilities;

end

6 TotalWeighted← sum(WeightedProbabilities);
7 Normalize WeightedProbabilities by TotalWeighted;

8 for each wp in normalized WeightedProbabilities do
9 H← −wp× log2(wp);

10 Append H to WeightedEntropies;

end
11 TotalWeightedEntropy← sum(WeightedEntropies);

Return TotalWeightedEntropy for feature importance permutations;

probability by the sum of these weighted probabilities to ensure that the total sums up to 1.

Finally, the total weighted Shannon entropy for each normalized probability is computed by

summing the individual entropies. The weighted Shannon entropy approach calculates the

entropy for each individual feature and then sums these entropies to get a total measure of

uncertainty across all rankings.

A higher Shannon entropy value indicates higher uncertainty or a more evenly dis-

tributed importance across features rather than a prediction of a more certain and consistent

feature importance ranking.

Example 1 presents the process of computing the total weighted Shannon entropy

method across all permutations. Assume the following feature importance values are ob-

served for feature X1: Ranked 1 with 100%, which will be represented with the following

notation (1,1), ranked 2nd with 100%, noted as (1,1), and ranked 3rd with 100%, noted as

(1,1). Here in (1,1), the first 1 is the probability distribution, and the second 1 shows the
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frequency of observing that particular feature importance ranking (i.e., 1st importance, 2nd

importance, 3rd importance).

1. Compute weighted probabilities (wp) = probability x frequency

• (1, 1), (1, 1), (1, 1) = 1, 1, 1

2. Compute total weighted probability = sum(weighted probabilities)

• 1+ 1+ 1 = 3

3. Normalize weighted probabilities = wp / total weighted

• 1/3 = 0.33,

• 1/3 = 0.33,

• 1/3 = 0.33

4. Compute weighted Shannon entropies (WSE) = -wp * log2(wp). Here the weights are

considered as outlined in steps 1 to 3.

• (−0.33) ∗ log2(−0.33) = 0.52,

• (−0.33) ∗ log2(−0.33) = 0.52,

• (−0.33) ∗ log2(−0.33) = 0.52

5. Compute total weighted entropy = sum(weighted entropies)

• 0.52+ 0.52+ 0.52 = 1.58

Example 2 presents the following probability distribution and frequency information

(0.9, 2), (0.9, 1). This presents that the feature was ranked with the same ranking twice with

a 90% probability distribution, and it was ranked with another ranking once with a 90%

probability distribution.
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1. Compute weighted probabilities (wp) = probability x frequency

• (0.9, 2), (0.9, 1) = 1.8, 0.9

2. Compute total weighted probability = sum(weighted probabilities)

• 1.8+ 0.9 = 2.7

3. Normalize weighted probabilities = wp / total weighted

• 1.8/2.7 = 0.66,

• 0.9/2.7 = 0.33,

4. Compute weighted Shannon entropies (WSE) = -p * log2(p)

• (−0.66) ∗ log2(−0.66) = 0.38,

• (−0.33) ∗ log2(−0.33) = 0.52,

5. Compute total weighted entropy = sum(weighted entropies)

• 0.38+ 0.52 = 0.91

These examples demonstrate the calculation of Weighted Shannon entropy values de-

rived from the permutation importance evaluation. The Weighted Shannon entropy for

Example 1 exceeds that of Example 2, despite the fact that in Example 1, all the rankings

were observed with 100% probability distribution. This discrepancy arises because Example

1 presents three distinct feature importance rankings (first, second, and third most impor-

tant), introducing greater uncertainty regarding the feature’s importance ranking compared

to Example 2. In Example 2, the feature is predicted as the most important with a 90%

probability twice and as the second most important with a 90% probability once. This con-

sistency results in a lower level of uncertainty and, consequently, a lower Weighted Shannon

entropy value for Example 2 compared to Example 1, illustrating the rationale behind the

differing entropy values.
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The average weighted Shannon entropy values for the discussed examples will be:

⟨HW⟩ = 1.58+ 0.91

2
= 1.24

The average weighted Shannon entropy quantifies the overall uncertainty by reflecting

the mean information level or predictability associated with determining feature importance

values following permutations.

Finally, I have tested other weights as discussed in previous studies [197, 198, 199,

200, 201]. Specifically, I introduced a penalty mechanism for instances where the proba-

bility distribution was less than 1. This mechanism involved cases where the probability

distribution fell below 1, indicating increased uncertainty about feature importance ranking

consistency, the probability distribution was adjusted by multiplying it with a constant fac-

tor (e.g., 0.95). This adjustment slightly decreased the value of the probability distribution,

consequently elevating the entropy of the ranking system. Despite conducting a wide range

of experiments with varying penalty values and weights, I noticed that altering these weights

or implementing the penalty-based Weighted Shannon entropy in the permutation relative

importance evaluation had no significant difference.

3.5.5 SPEARMAN’S RANK CORRELATION COEFFICIENT

This section presents Spearman’s rank correlation coefficient, the final evaluation anal-

ysis conducted in the scope of this dissertation.

To measure the closeness between the initial feature importance rankings and the per-

mutation rankings, considering the shift in feature importance values following permutations,

I used Spearman’s rank correlation. It assesses how well the ranking order in two different

lists aligns [252]. The Equation for Spearman’s rank correlation coefficient is as follows:

ρ = 1−
6
∑

d2
i

n(n2 − 1)
(17)
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Where di is the difference between the ranks of corresponding values in the two vari-

ables, n is the number of observations. The denominator n(n2 − 1) adjusts for ties and

provides a normalization factor. 6
∑

d2
i represents the sum of the squared differences be-

tween the ranks of corresponding values. ρ value ranges from -1 to 1. ρ = 1 indicates a

perfect positive monotonic relationship. ρ = 0 indicates no monotonic relationship. ρ = −1

indicates a perfect negative monotonic relationship. A monotonic relationship refers to the

consistent trend in the ranks of two features. Specifically, it means that as the values of one

variable increase, the ranks of the corresponding values of the other variable consistently

either increase or decrease. However, it does not necessarily imply a linear relationship.

In Chapter 4, the results of this dissertation are presented, applying the methodology

outlined in the current chapter.

3.6 METHOD SUMMARY

This section presents the summary of the research method followed in this dissertation,

detailing the work undertaken and the approach used.

This dissertation proposes the consideration of cooperative game theory (CGT) solu-

tions to develop feature importance methods and enhance explainable artificial intelligence

techniques, with a focus on explaining the contributions of individual features to model pre-

dictions. The motivation to develop these methods arises from the shortcomings of widely

utilized techniques, such as Shapley additive explanations (SHAP), which face limitations in

addressing specific challenges in explainable AI [26, 25, 1], necessitating advancements for

better interpretation of complex models and their decision-making processes.

While some of the CGT solutions have been previously used to assess feature impor-

tance, the current work predominantly extends their applicability to different models and

data types. Specifically, the enhancement and extension of the Shapley net effects approach

[37] now include categorical data and classification models, thus expanding the scope of these

techniques beyond their traditional confines.
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Of particular novelty are the methods of Nucleolus, Shapley-Shubik, and conflicting

claims (conflicting claims proportional, constrained equal awards, constrained equal losses,

Talmud, and random arrival) based feature importance methods that are based on linear and

logistic regression models. These approaches, despite their potential relevance and utility,

have remained unexplored in the context of feature importance. By incorporating such

novel methods, this dissertation not only extends the utility of CGT in machine learning but

also opens new avenues for research into understanding and quantifying the significance of

features in complex machine learning models.

Three experiments were conducted to test the feature importance methods, and it

was observed that the performance of these methods varies depending on whether the data

are independent or exhibit dependencies. All the feature importance methods tested in this

study were effective when applied to data where the features were independent of one another.

However, the methods that were specifically developed using CGT to reduce discrepancies in

how rewards (or performance) are distributed among features faced challenges when dealing

with data that had high multicollinearity. Multicollinearity refers to a situation where several

features in the dataset are highly correlated with each other, making it difficult to distinguish

their individual effects on the outcome. This situation highlighted the difficulties in applying

several CGT solutions (e.g., Nucleolus, constrained equal awards, constrained equal losses) to

determine the importance of features in machine learning models when the features influence

each other significantly.

These feature importance methods that were developed have their strengths and weak-

nesses, make certain assumptions, and arrive at their conclusions differently. Which method

is better and which one to choose? To evaluate the feature importance methods performance,

some existing methods were considered. Model performance was evaluated using key fea-

tures identified by explainable AI methods, following the approaches proposed by previous

evaluation methodologies [196, 239]. However, the observed performances were very similar

and, therefore, not helpful in evaluating the methods. The next evaluation approach con-
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sidered was based on assessing the sensitivity (or lack thereof) of explanations to changes in

the model or inputs when some data are permuted [237, 238]. Specifically, the permutation

importance (PIMP) method [82] was used to compare and assess the explanation sensitivity

of feature importance methods to permutations (when the data is randomly shuffled). The

PIMP method involves shuffling the values within a single feature across different observa-

tions in the dataset to assess and analyze the statistical significance of the feature importance

values after the permutations. Features that are determined to be statistically significant

through this process are recommended for inclusion during the model-building phase, as they

are likely to have a meaningful impact on the model’s predictive performance. However, the

effectiveness of PIMP in assessing feature significance proved to be inconsistent, as it labeled

the same feature as statistically significant under some methods while deeming it insignifi-

cant in others. This inconsistency in evaluations introduced complexity in determining the

real influence of features on a model’s performance and in measuring the capability of fea-

ture importance methods to accurately identify critical features. This variation significantly

undermines the transparency and reliability of methods designed to identify key predictors

in complex models, affecting our ability to confidently understand and trust the methods’

efficiency in identifying important features.

To address this issue and compare the feature importance methods, a novel evaluation

metric called weighted Shannon entropy permutation importance evaluation (PRIME) that

combines permutation tests and weighted Shannon entropy is introduced. Specifically, it

measures how consistent feature importance methods are in predicting the feature impor-

tance values after data permutation. This approach is designed to compare the consistency

of feature importance methods in predicting importance scores post-permutation. PRIME

not only clarifies the influence of specific features on model outcomes but also establishes a

quantifiable way of assessing the reliability of explainability techniques within the context

of data permutations. The introduction of this metric aims to deepen the comprehension

of feature importance and bolster the transparency and interpretability of machine learning
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models.

Overall, the aim of this methodology is to develop human-centric and efficient methods

for explaining the significance of features in machine learning models. The objective of

the Weighted Shannon Entropy-based permutation importance evaluation (PRIME) metric,

specifically, is to assess the effectiveness of these methods.
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CHAPTER 4

RESULTS

This chapter presents the experimental results of cooperative game theory-based fea-

ture importance methods described in Section 3.4 considering Seatpos [194], Adult Income

[195], and Predator-prey dataset [176].

This chapter consists of the following sections:

1. Section 4.1 presents Shapley additive explanations (SHAP) and Local interpretable

model agnostic explanations (LIME), widely used feature importance methods. The

aim of this section is to outline the current landscape of widely used techniques for

evaluating feature importance.

2. Section 4.2 introduces (Experiment 1) novel cooperative game theory-based feature im-

portance methods within multiple regression modeling when data has interdependence

and correlations, as demonstrated with the Seatpos dataset. This section presents the

findings related to Research Question 1, as outlined in Section 1.3.

3. Section 4.3 introduces Experiment 2, which applies novel cooperative game theory-

based feature importance methods to a logistic regression model using the Adult

dataset. This section presents the findings related to Research Question 2, as out-

lined in Section 1.3.

4. Section 4.4 introduces Experiment 3 and illustrates the application of the cooperative

game theory-based feature importance methods to study input variations that can be

used to improve the design of an agent-based simulation model. This analysis addresses

the Research Question 3, as outlined in Section 1.3.
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5. Sections 4.2, 4.3 and 4.4 apply weighted Shannon entropy-based permutation impor-

tance evaluation (PRIME) metric to measure the consistency and uncertainty associ-

ated with the feature importance rankings. This addresses the Research Question

4 outlined in Section 1.3.

6. Section 4.5 presents the core feature importance method, which failed to produce fea-

ture importance values for the three experiments analyzed.

4.1 REVIEW

This section explores the existing feature importance methods, considering the Seatpos

dataset [194]. Widely used methods are presented, Shapley additive explanations (SHAP), lo-

cal interpretable model agnostic explanations (LIME), and Permutation importance (PIMP),

and a detailed description of these methods is presented in Section 2.2.1 of this dissertation.

Recall that SHAP uses a cooperative game theory-based solution called Shapley values to

measure the feature’s contributions to the model performance from local and global scopes

[15]. A local scope (local explanations) focuses on the contribution of features to individual

predictions (single observation), offering detailed insights into how each feature affects a spe-

cific outcome within the model. A global scope (global explanations) evaluates the overall

importance of features across all predictions made by the model, providing a comprehensive

view of how each feature influences the model’s performance on a broader scale. The permu-

tation importance (PIMP), as outlined in Section 2.2.1, leverages numerous permutations

of the outcome vector to ascertain the distribution of importance scores for each feature.

Subsequently, PIMP utilizes the observed importance’s P-value to refine the assessment of

feature importance. This is achieved by constructing models that include only those features

identified as statistically significant. Models with higher performance metrics underscore the

ability of the feature importance method to accurately assess the significance of features.

The analysis and the results of these reviewed methods (SHAP, LIME, PIMP) are

presented in the sections below using the Seatpos dataset. Extending these reviewed methods
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to the other datasets was deemed not necessary for achieving the research objectives.

4.1.1 SHAP: LOCAL EXPLAINABILITY

In this section, I introduce the results derived from employing SHAP local explanations

on the Seatops dataset. The Seatpos dataset is subsequently used in Experiment 1, wherein

the feature importance methodologies developed within the framework of this dissertation

are applied.

First, I have used the Seatpos dataset to evaluate the features’ individual contributions

(local explanations) to a model’s prediction for specific instances (Figure 11). I have looked

at the outcomes of neighboring instances (instances 2, 5, and 6) to highlight the dynamic

variations in feature contributions across these instances. To illustrate, consider instance

2: the most important contributor is the Arm feature, underscoring its pivotal role. Re-

markably, the scenario alters, for instance, 6, where the Arm emerges as a lesser influencer.

Furthermore, examining instance 2, the Ht feature is the second most influential, positively

impacting the contribution. In contrast, instances 5 and 6 emphasize the significance of Ht

as the primary influencer, yet with a contrary, negative effect on the prediction.

This analysis aids in explaining the dynamics that underlie the model’s predictions.

By dissecting the varying roles that individual features play across diverse instances, we

gain deeper insights into the patterns and interplays within data. This holds particular

significance in elucidating the reasoning behind individual predictions, detecting anomalies,

and tackling issues tied to model fairness and bias.

Moving forward, the SHAP force plots are presented, drawing a parallel to the SHAP

waterfall plots (Figure 12). Like the waterfall plots, the SHAP force plot showcases identical

instances, resulting in analogous outcomes as observed in the Waterfall plots. However,

this offers an alternative avenue to communicate the same insightful explanation to the user

effectively.

In the force plot, features associated with SHAP values that push the model toward
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(a) Instance 2 (b) Instance 5

(c) Instance 6

FIG. 11: SHAP waterfall plot: local explanations for various instances

increased hipcenter values are displayed in red on the left side, while those driving the model

toward lower hipcenter values are depicted in blue on the right side (Figure 12). Alongside

the feature names, the specific feature values are presented. Features with more significant

SHAP values are depicted with longer arrow lengths.

4.1.2 SHAP: GLOBAL EXPLAINABILITY

This section presents the results obtained from the SHAP global explainability analysis.

To obtain the global explainability based on the entire dataset using the SHAP ap-

proach, I looked at the bar plot of mean absolute SHAP values for each feature. Figure 13-a

presents that Ht is the most influential variable. By contrast, the least informative vari-

able is Weight. This outcome is intuitive, as the height (Ht) can directly impact hip center

positioning in car seats, as individuals with varying heights might require adjustments to
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(a) Instance 2

(b) Instance 5

(c) Instance 6

FIG. 12: SHAP force plot: explanations for various instances

ensure proper alignment and comfort. Taller individuals might need different seat contours

or adjustments to accommodate their hip center, potentially making Ht a crucial factor. On

the other hand, Weight might have a lesser impact on hip center positioning. While weight

distribution can influence seating comfort, it might not play as significant a role as height

when determining the optimal position for the hip center in car seats.

Next, I look at the besswarm plot where the feature ranking is exactly the same as for

the bar plot (Figure 13-b). With a beeswarm plot, the underlying values of each feature can

be observed related to the model’s predictions. For example, we can notice that the lower

values of HtShoes correspond with positive SHAP values, while Ht, which has a perfect

correlation with HtShoes (with correlation coefficient = 1), its lower values correspond to

negative SHAP values. This indicates that while these two features move together in lockstep,
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(a) Bar plot of Mean absolute SHAP values
for each feature

(b) Beeswarm plot, ranked by mean absolute
SHAP value

FIG. 13: SHAP global explanations of feature importance value

additional factors beyond their correlation influence their individual impacts on the model’s

output. These factors might include interactions with other features or the inherent non-

linearity of the model. Consequently, even though features may exhibit high correlation,

their unique contributions to the model’s predictions can be drastically different, leading to

divergent effects on the model’s overall performance and behavior. The feature Leg wields

significant influence, displaying negative to nearly negligible SHAP values when values are

high while exhibiting relatively higher SHAP values for low values. This underscores the

impact of outliers and extreme data points on the model’s predictions, emphasizing the need

for more samples to enhance prediction accuracy and generalizability.

Further, the SHAP heatmap is analyzed. This provides insight into the collective

influence of features on model predictions across varied instances, each accompanied by

their respective SHAP values (Figure 14). My prior analysis underscored feature Ht as

the paramount contributor, exerting a pronounced negative effect on the model’s output,

substantiated by its substantial SHAP value. Additionally, instances 0, 1 and 2 exhibited a

robust positive impact on the model’s prediction with features HtShoes and Leg.

Finally, I have examined the SHAP dependence plots (Figure 15). These plots reveal

a consistent linear relationship across the entire range of features. Notably, the Ht feature

exhibits a positive correlation with its corresponding SHAP values. The highest SHAP value
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FIG. 14: SHAP heatmap

is obtained when the driver’s height (Ht) measures around 175cm and their age falls within

the 20-30 range. Additionally, when the age is approximately 35 and the height is below 155,

a SHAP value of -100 is observed, indicating a significant negative influence on the model’s

prediction.

The second most important feature suggested by SHAP analysis, where Figure 15-b

unveils a negative association between the height of a driver in shoes (HtShoes) and its

SHAP values. Individuals with a height of approximately 155cm and an age range of 35-40

exhibit the highest SHAP values.

Next, Figure 15-c demonstrates an inverse relationship between Weight and its SHAP

values, and further, it presents that the highest SHAP value is evident when the age falls

within the 35-40 range, and the weight remains below 120. Conversely, the lowest SHAP

value corresponds to instances where the weight is approximately 160, and the age hovers

around 25 years old.

In summary, the SHAP analysis yields the following conclusion. Local explanations

vary, and different sets of important features are selected for the prediction; this suggests a

nuanced and context-dependent relationship between the model’s output and specific input
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(a) Ht dependence (b) HtShoes dependence (c) Weight dependence

(d) Ht partial dependence
(e) HtShoes partial depen-
dence (f) Weight partial dependence

FIG. 15: SHAP dependence and partial dependence plots for the top 2 most important and
the least important features, determined by mean absolute SHAP value

characteristics (Figures 11 and 12). The global explanations show that the height of an

individual is an important factor respectively for predicting the hipcenter and the car seat

design. The feature Weight has the least importance for the prediction. Dependence plots

specifically have shown that individuals with substantially varying height values (155cm and

175cm) exhibit the highest SHAP values, exerting a substantial influence on the prediction.

4.1.3 LIME: LOCAL EXPLAINABILITY

In this section, I explored another prominent technique in explainable artificial intel-

ligence, known as Local Interpretable Model-Agnostic Explanations (LIME), with its back-

ground detailed in Section 2.2.1). LIME focuses on explaining individual predictions (single

observations or instances) around the vicinity of the specific instance being explained.
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The LIME analysis presents the feature contributions of a random instance prediction

(Figure 16). Figure 16-a outlines the feature contributions, while Figure 16-b illustrates the

dataset’s instance values. Here, Ht is the most influential feature in the prediction of this

particular instance. This observation has also been corroborated by the SHAP analysis.

LIME attributes the length of the leg (Leg) as the second most influential feature for the

prediction, followed by HtShoes as the third significant factor. LIME designates Weight as

the least influential contributor to the prediction.

(a) LIME values for a random instance
(b) Random in-
stance

FIG. 16: LIME: local explanations of feature importance value

LIME can also be used to show the feature importance values for ranges, as shown

in the following bar plot (Figure 18). This plot presents the span of local interpretability

predictions for a specified instance where the height (ht) is less than or equal to 164.7cm,

height in shoes (HtShoes) is less than or equal to 167.35cm, and Age is greater than 47

and varying ranges of values for the remaining features. In this plot, the length of each

bar corresponds to the importance of the respective features, offering insights into their

impact on the prediction. In line with the SHAP analysis, Ht and HtShoes emerge as the

most significant features for the prediction. Age emerges as the third significant feature,

positively influencing the prediction.

This comprehensive analysis highlights the significance of specific features in influenc-

ing the predictions made by the model. The analysis emphasizes the observed variations in
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FIG. 17: LIME: range of local interpretability prediction

feature importance across different instances, unveiling the complexity and sensitivity of the

model’s predictive performance.

In the following sections, I delve into the application of cooperative game theory-based

feature importance within the contexts of linear regression, logistic regression models, and

agent-based modeling. Specifically, Experiment 1 examines the novel methods introduced in

this dissertation, focusing on the use of the linear regression model with the Seatpos dataset.

Permutation importance

This section discusses the results of the permutation importance (PIMP) analysis,

utilizing the methodology developed by Altmann et al. [82]. PIMP provides additional

confirmation that the features HtShoes and Ht exert the most substantial influence on the

prediction, while the feature Arm demonstrates the most pronounced negative impact on

the prediction. Interestingly, the feature Thigh is considered the least important feature for

the prediction.

TABLE 5: Sample permutation importance results for feature significance

Permuted Age Weight HtShoes Ht Seated Arm Thigh Leg
Age Not Significant Significant Significant Significant Significant Significant Not Significant Significant
Arm Not Significant Significant Significant Significant Significant Significant Significant Significant
Leg Significant Significant Significant Significant Significant Significant Significant Significant
HtShoes Significant Significant Significant Significant Significant Significant Not Significant Significant
Thigh Not Significant Not Significant Not Significant Not Significant Not Significant Not Significant Significant Not Significant
Weight Significant Not Significant Significant Significant Significant Significant Significant Significant
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FIG. 18: Feature permutation importance

Additionally, I have documented the statistical significance of various features following

the application of the PIMP method. By permuting the outcome vector, my analysis reveals

that all features—with the exceptions of Weight and Thigh—hold statistical significance.

Upon permuting the individual features, however, a diverse array of statistical outcomes

emerged, as presented in Table 5. These outcomes showed particularly pronounced variations

when examined through the different cooperative game theory-based feature importance

methods. This variation posed a challenge in inclusively determining which features are

truly important for the machine learning model. Further analysis of permutation importance

values for different methods yields varying significance for the same feature. This underscores

the necessity for a solution that can capture the performance of feature-importance methods

and facilitate their comparison. The solution proposed in this dissertation is the weighted

Shannon entropy-based feature importance method, which is detailed in Chapter 3, Section

3.5.

The next section presents Experiment 1, which presents various feature-importance

methods applied to a linear regression model. The experiment concludes with an evaluation

of these methods using the weighted Shannon entropy approach.
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4.2 EXPERIMENT 1: LINEAR REGRESSION MODEL

This section discusses the cooperative-game theory-based feature importance methods

in the context of a linear regression model where the features are highly correlated. This ex-

periment considers the Seatpos dataset, where Pearson’s correlation values between features

range from 0.9 to 0.99. These results indicate a problem with multicollinearity, which causes

inaccurate predictions and unreliable results (Table 6). Recall that Pearson’s correlation is

a statistic that measures the linear associations between two features [253]. The Pearson’s

correlation coefficient between two variables X and Y is given by rXY =
∑

(Xi−X̄)(Yi−Ȳ)√∑
(Xi−X̄)2

∑
(Yi−Ȳ)2

.

Where rXY is the Pearson’s correlation coefficient between features, X and Y. Xi and Yi are

individual data points for X and Y respectively. X̄ and Ȳ are the mean values of X and Y,

respectively. The outcome of Person’s correlation ranges between (-1, 1), where -1 indicates

a perfect negative correlation, 1 is a perfect positive correlation, and close to 0 shows no

association between the features.

TABLE 6: Matrix of correlation coefficients and significance levels

Age Weight HtShoes Ht Seated Arm Thigh Leg
Age
Weight 0.08
HtShoes -0.08 0.83***
Ht -0.09 0.83*** 1.00***
Seated -0.17 0.78*** 0.93*** 0.93***
Arm 0.36* 0.70*** 0.75*** 0.75*** 0.63***
Thigh 0.09 0.57*** 0.72**** 0.73*** 0.61*** 0.67***
Leg -0.04 0.78*** 0.91*** 0.91*** 0.81*** 0.75*** 0.65***
hipcenter 0.21 -0.64*** -0.80*** -0.80*** -0.73*** -0.59*** -0.59*** -0.79***

TABLE 7: Initial results of the regression model

Features Age Weight HtShoes Ht Seated Arm Thigh Leg
Estimate 0.77 0.02 -2.69 0.6 0.53 -1.32 -1.14 -6.43
P-values 0.18 0.93 0.78 0.95 0.88 0.73 0.67 0.18

Table 6 presents that feature Age is not closely associated with the rest of the fea-

tures. Hipcenter seems to have a negative correlation with most of the variables, except
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Age. The negative relationship is especially strong with HtShoes, Ht, and Leg. The remain-

ing features mostly have positive associations with one another. Overall, the results show

multicollinearity concerns.

Table 7 shows regression model results, which are statistical insignificance with p-

values greater than 0.1. The regression coefficient for Age is 0.77, with a p-value 0.18, the

coefficient for weight is 0.02, with a p-value of 0.93, HtShoes is -2.69, with a p-value of

0.78, etc. The model seems to be unsatisfactory. However, the practice and the experiments

suggest that the characteristic factors of the drivers have a substantial role in predicting the

drivers’ car seat position [254]. The R2 value of the model is 0.68. From these results, it is

difficult to determine whether the prediction is reliable; therefore, further investigations are

needed.

Next, the variance inflation factor (VIF) values were estimated to identify which fea-

tures are affected by multicollinearity and the strength of the correlation. The VIF is a

metric used to identify the degree of multicollinearity in a set of predictor variables within

a multiple regression model [255]. VIFs start at 1 and have no upper limit. A VIF value of

1 indicates no correlation between the kth features and the remaining features and, hence,

no multicollinearity. As VIF increases, it indicates greater multicollinearity. Values of VIF

exceeding 5 or 10 suggest a problematic amount of multicollinearity that may need to be

addressed, often leading to unstable parameter estimates, increased standard errors, and an

inflated overall significance of the model [255]. Figure 19 shows the VIF for each feature.

The VIF values for Age, Weight, Arm, and Thigh are less than 5. The minimum VIF

value is equal to 1.99 for Age. VIFs between 1 and 5 indicate that there is a moderate corre-

lation. VIFs greater than 5 represent critical levels of multicollinearity where the coefficients

are poorly estimated and the p-values are questionable. Features Ht and HtShoes have very

large VIF values, 333 and 307, respectively. These indicators warrant corrective measures

are necessary.

To address the challenges posed by multicollinearity, as indicated by elevated VIF
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FIG. 19: Variance inflation factor (VIF) values

values, researchers might explore several strategies, such as removing features, merging vari-

ables, or applying dimensionality reduction techniques like Principal Component Analysis

(PCA). However, these methods may not explain the relationship between the features and

the target variable. For example, PCA is often used in the feature selection (FS) process to

identify patterns in data and reduce the dimensionality [256, 257]. Feature selection refers to

techniques where the objective of the algorithm is to automatically select the least subset of

features that contribute the most to the model performance, manage bias-variance tradeoffs,

and facilitate the model design more efficiently [258]. FS methods are broadly into three

categories: filter [259], wrapper [260, 261], and embedded methods [262]. However, when it

comes to the specific task of feature importance, PCA may not be the most suitable tool due

to several inherent characteristics, such as loss of original feature interpretability. This is

because principal components are combinations of original features, and these combinations

do not directly correspond to any single feature in the dataset. This complicates the process

of identifying which specific features are most important for the model’s predictions, which

is a key aspect of explainable AI [22]. PCA could be used as a feature reduction technique

rather than a feature importance technique. This goal diverges from the aim of explainable

AI, which is to understand the role and impact of individual features within the original

dataset.
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Feature importance methods grounded in cooperative game theory could offer deeper

insights into how each feature contributes to the prediction of the model. Below, the appli-

cation of various cooperative game theory-based feature importance techniques developed in

this dissertation is explored. The entire dataset is used to evaluate the feature importance

values, meaning that the generated insights represent the global explanations of the feature

importance values.

Below, the feature importance methods are presented, followed by the Shannon entropy

evaluation of these methods. One of the methods, core feature importance, which failed to

produce any feature importance results, is presented in Section 4.5.

4.2.1 SHAPLEY FEATURE IMPORTANCE (SFI)

This section outlines the use of the Shapley feature importance method (SFI) to analyze

the importance of feature contributions within the Seatpos dataset.

Figure 20-(a) displays the Shapley feature importance values derived from the base

model for the Seatpos dataset. The base model refers to the initial model configuration

before any alterations or permutations are applied to its features. SFI suggests that the

feature Leg holds the top rank of importance (1), followed by height in the shoes (HtShoes),

height (Ht), seated height (Seated), weight of the driver (Weight), arm length (Arm), Thigh

(distance from the hip to the knee). The age of the driver is demonstrated to have minimal

significance in the design of the car seat.

4.2.2 NUCLEOLUS FEATURE IMPORTANCE (NCFI)

Next, feature importance values are obtained considering Nucleolus solutions (Figure

20-(b)). Nucleolus feature importance results present that feature Leg is ranked 1st, and

feature Age is ranked as the lowest important feature. The remaining features are all ranked

2nd. Nucleolus feature importance assigns the same rank to multiple features. The next rank

is then adjusted accordingly. The results exhibit a reduction in specificity, stemming from the
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(a) Shapley feature importance (b) Nucleolus feature importance

FIG. 20: Shapley and Nucleolus feature importance values

tied rankings in feature importance. This lack of detail in conveying the relative significance

of each variable can be disadvantageous, especially in scenarios where clear distinctions are

crucial.

Adjusted Shapley and Nucleolus feature importance

It is important to note that there are several methods developed specifically to over-

come the challenges associated with Shapley values, including the issue of multicollinearity

among features. Basu and Maji [1] introduce an approach to tackle multicollinearity and

the combined effect of features in datasets during the computation of Shapley values. The

method suggests adjusting the features that are highly correlated to nullify the correlation

between the feature of interest (for which the Shapley value is being calculated) and other

features in the dataset. By adjusting the values of other features using these factors, the

method aims to simulate a scenario where each feature is independent, thereby allowing for

a more accurate computation of individual feature contributions.

The calculation of Adjustment Factors (AFs) involves several steps:

1. Identify Correlations: For each feature Xk not of interest (Xj), calculate the corre-

lation between Xj and Xk.
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2. Compute Adjustment Factors: Adjustment factors are derived such that when

added to Xk, the correlation between the adjusted Xk and Xj becomes zero. This is

achieved by setting:

AFk = −
cov(Xj, Xk)

var(Xj)
Xj

effectively adjusting Xk based on the covariance between Xj and Xk, normalized by the

variance of Xj.

After calculating the adjustment factors, the computation of feature importance values

employs the adjusted feature values rather than the original ones.
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FIG. 21: Shapley and Nucleolus feature importance values with adjusted factors based on
Basu and Maji approach [1]

Figure 21 displays the feature importance values derived from the Shapley values and

Nucleolus methods when applied to adjusted data. This adjustment effectively neutralizes

the correlation among features within the Seatpos dataset.

According to these results, the two most important features for the prediction are

HtShoes (Height in the shoes) and the Weight of the driver. This methodology enabled the

Nucleolus feature importance to distinguish the importance of various features in contrast

to scenarios involving multicollinear features. Nonetheless, this approach with adjusted

factors harbors the risk of excessive adjustment, which could significantly distort the true
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values, potentially introducing bias. Moreover, there is a chance that these adjustments fail

to accurately represent the dynamics of the relationships among features, thereby possibly

injecting new biases into the calculation of feature importance values. Especially if all

features are highly correlated and adjustments are made to all features to mitigate their

correlations. This entails computing an adjustment factor for each feature, which could

significantly deviate from the original values. However, additional experiments are necessary

to fully understand how closely the feature importance values of adjusted features mirror

the actual importance values.

Addressing the limitations of the Shapley value-based feature importance methods

exceeds the boundaries of this dissertation’s focus. Instead, I continue exploring various

cooperative game theory-based techniques for feature importance evaluation that could serve

as alternatives to the Shapley value method.

4.2.3 SHAPLEY-SHUBIK FEATURE IMPORTANCE (SH2FI)

This section describes the Shapley-Shubik feature importance values for the Seatpos

dataset. Specifically, the figure 22-(a-c) illustrates the Shapley-Shubik values for various

threshold values. The threshold value is crucial when utilizing the Shapley-Shubik index

as a feature importance measure. In the Seatpos dataset, I have observed distinct feature

importance values when the threshold is set high compared to when it is set low. This could

occur when the features interact with each other in a complex way, and their importance

values change depending on the relative weight given to each feature in the model. When

the threshold is high, the contribution of each feature to the final prediction is higher, and

this can affect the relative importance of the features. In this case, some features may have

a higher importance value when the threshold is high compared to when it is low. However,

when the threshold is low, each feature may have less impact on the final prediction, and

their relative importance values may converge to a similar value. This can result in the same

feature importance values being observed when the quota is small.
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(a) q = 0.7 (b) q = 0.8

(c) q = 0.9

FIG. 22: Shapley-Shubik feature importance values across various thresholds

4.2.4 BANZHAF POWER INDEX FEATURE IMPORTANCE (BFI)

Several experiments were tested, altering the threshold τ value to see how the Banzhaf

power feature importance values perform (see Figure 23).

Banzhaf power index calculation shows when a feature has a ”swing” vote, i.e., the

power to change the model with better performance into a model with decreased performance.

Figure 29 shows that the lower the threshold value, e.g., τ = 0.7, there will be more critical

features to achieve regression model performance equivalent to 0.7. When the threshold

value increases (τ = 0.9), critical features reduce. This is intuitive; however, an interesting

observation can be made: one of the features (Seated) that was identified as of utmost

importance for threshold values of τ = 0.7 and τ = 0.8 became the 4th critical important

when the threshold value increased to τ = 0.9. Another thing was observed is that when the

threshold value is low, such as τ = 0.3 or lower, the feature Age scores an importance value

of 0, and the remaining features have equal critical importance (see Figure 23).
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(a) τ = 0.7 (b) τ = 0.8 (c) τ = 0.9

(d) τ = 0.95 (e) τ ≤ 0.3

FIG. 23: Banzhaf power index feature importance values across various thresholds

4.2.5 CONFLICTING CLAIMS FEATURE IMPORTANCE VALUES

This section presents the final experiments, which analyzed the feature importance

values considering conflicting claims solutions when the endowment (the desired model per-

formance) is set to 0.7. Figures 24 presents the feature importance values for proportional

(CPI), constrained equal awards (CEqA), constrained equal losses (CEqL), conflicting claims

Talmud valuation (CCTV), and conflicting claims random arrival (CCRA). I tested thresh-

old values of 0.8, 0.9, and 0.95 and found similar results to those obtained with a threshold

value of 0.7.

Figure 24-(a) presents constrained proportional importance (CPI) results, where fea-

ture Ht (Height) has the highest important value. Overall, these importance values are

very close to the Shapley values. The simplicity of the proportional rule further enhances

its appeal, making it a valuable and practical approach for feature importance assessment.

Figure 24-(b) presents that the constrained equal awards feature importance (CEqA) did

not provide unique feature importance values and ranking by itself. The CEqA technique
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(a) CPI (b) CEqA (c) CEqL

(d) CCTV (e) CCRA

FIG. 24: Feature importance values based on conflicting claims solutions

assumes that all features have an equal claim to the target variable, which may not be the

case in reality. For instance, in the Seatopos dataset, most features have equal importance

values except for the age feature. However, this result could be due to multicollinearity

among the features, leading to similar importance values. In such cases, the CEA technique

may not accurately capture the relative importance of the features. Figure 24-(c) highlights

that several features have an importance value of 0, indicating that these features do not

contribute to the prediction of the target variable. This may be due to several reasons, such

as high correlation with other features, lack of variation within the feature, or not being

relevant to the target variable. In other words, removing this feature would not impact the

model’s performance. The insights derived from the CCTV analysis were not particularly

useful in this case, as they indicated nearly equal feature importance values for all features,

except for Age (Figure 24-(d)). This lack of differentiation among the features limits the
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ability to identify distinct contributions or prioritize specific factors within the context of

the study. Consequently, the CCTV approach may not provide the desired granularity or

discernment necessary for comprehensive feature importance analysis in this scenario. The

feature importance values derived from the Random Arrival (CCRA) method demonstrate

their utility by exhibiting a consistent ranking pattern, mirroring the outcomes of Shapley

values, the Shapley-Shubik index, and the Banzhaf power index. This alignment suggests

that the Random Arrival approach holds promise as a reliable method for measuring feature

importance. Consequently, it can be considered a strong contender for assessing the relative

significance of features for this problem.

4.2.6 PRIME WITH WEIGHTED SHANNON ENTROPY

This section presents the outcomes of applying the Weighted Shannon Entropies Per-

mutation Importance Evaluation (PRIME) metric to assess the feature importance methods

discussed in the scope of this experiment.

To evaluate the uncertainty of each feature’s importance ranking, each feature is per-

muted 30 times. In total, 240 datasets were evaluated. I have also experimented with

different permutation numbers (20, 50, 60); however, they all converged to the same result.

The feature importance method was applied to each permutated data, and the importance

values were obtained (Table 8, 9, 10, 11, 12, 13).

TABLE 8: Seatpos data: Shapley feature importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8

Leg 1 1 (93.3%) 1 (96.6%) 2 (50%) 2 (50%) 8 (93.3%) 1 (90%) 1 (90%) 1 (100%)
Ht 2 2 (93.3%) 2 (93.3%) 1 (50%) 1 (50%) 1 (96.6%) 2 (83.3%) 2 (90%) 2 (93.3%)
HtShoes 3 3 (96.6%) 3 (100%) 8 (90%) 8 (90%) 2 (96.6%) 3 (90%) 3 (93.3%) 3 (93.3%)
Seated 4 4 (96.6%) 4 (100%) 3 (93.3%) 3 (93.3%) 3 (100%) 8 (93.3%) 4 (96.6%) 4 (100%)
Weight 5 5 (90%) 5 (100%) 4 (93.3%) 4 (93.3%) 4 (100%) 4 (100%) 5 (96.6%) 8 (96.6%)
Arm 6 7 (86.6%) 8 (90%) 5 (83.3%) 5 (86.6%) 5 (96.6%) 5 (93.3%) 6 (96.6%) 5 (96.6%)
Thigh 7 6 (86.6%) 6 (100%) 6 (83.3%) 6 (83.3%) 6 (96.6%) 6 (93.3%) 8 (93.3%) 6 (96.6%)
Age 8 8 (86.6%) 7 (90%) 7 (90%) 7 (90%) 7 (93.3 %) 7 (93.3%) 7 (96.6%) 7 (96.6%)

Rank 0 refers to the model feature importance ranking generated by the base model,

where features were not permuted. Ranks 1 through 8 describe the feature importance
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TABLE 9: Seatpos data: Nucleolus feature importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8

Leg 1 2 (60.0%) 4 (80.0%) 4 (70%) 4 (73.3%) 4 (40%) 4 (40%) 4 (73.3%) 3 (60%)
Thigh 2 4 (26.6%) 7 (33.3%) 6 (43.3%) 7 (30%) 8 (50%) 8 (40%) 5 (40%) 6 (26.6%)
Arm 2 5 (40.0%) 5 (46.6%) 7 (33.3%) 6 (53.3%) 4 (50%) 4 (50%) 5 (50%) 5 (40%)
HtShoes 2 1 (100%) 2 (96.6%) 2 (100%) 5 (53.3%) 2 (100%) 2 (100%) 2 (96.6%) 1 (100%)
Seated 2 8 (36.6%) 5 (46.6%) 8 (40.0%) 8 (46.6%) 6 (50%) 6 (50%) 7 (46.6%) 6 (36.6%)
Weight 2 7 (33.3%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (96.6%) 4 (33.3%)
Ht 2 6 (43%) 8 (83.3%) 5 (53.3%) 2 (100%) 8 (50%) 8 (50%) 8 (66.6%) 8 (43.3%)
Age 8 3 (60%) 3 (76.6%) 3 (73.3%) 3 (76.6%) 3 (86.6 %) 3 (86.6%) 3 (76.6%) 2 (60%)

TABLE 10: Seatpos data: SH2FI rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8

Leg 1 3 (76.6%) 3 (100%) 2 (100%) 2 (100%) 8 (96.6%) 3 (100%) 3 (100%) 3 (100%)
Ht 2 1 (76.6%) 2 (100%) 8 (100%) 1 (100%) 2 (96.6%) 2 (100%) 2 (100%) 2 (100%)
HtShoes 3 2 (76.6%) 1 (100%) 1 (100%) 8 (100%) 1 (96.6%) 1 (100%) 1 (100%) 1 (100%)
Seated 4 5 (80%) 4 (100%) 3 (100%) 3 (100%) 3 (100%) 8 (100%) 4 (100%) 4 (100%)
Weight 5 4 (56.6%) 5 (100%) 4 (100%) 4 (100%) 4 (100%) 4 (100%) 5 (100%) 8 (100%)
Arm 6 6 (63.3%) 8 (100%) 5 (93.3%) 5 (100%) 5 (83.3%) 5 (100%) 6 (100%) 5 (96.6%)
Thigh 7 7 (86.6%) 6 (100%) 6 (93.3%) 6 (100%) 6 (83.3%) 6 (100%) 8 (83.3 %) 6 (96.6%)
Age 8 8 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (83.3%) 7 (100%)

TABLE 11: Seatpos data: BFI rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8

Leg 1 3 (76.6%) 3 (100%) 2 (100%) 2 (100%) 8 (96.6%) 3 (100%) 3 (100%) 3 (100%)
Ht 2 1 (76.6%) 2 (100%) 8 (100%) 1 (100%) 2 (96.6%) 2 (100%) 2 (100%) 2 (100%)
HtShoes 3 2 (76.6%) 1 (100%) 1 (100%) 8 (100%) 1 (96.6%) 1 (100%) 1 (100%) 1 (100%)
Seated 4 5 (80%) 4 (100%) 3 (100%) 3 (100%) 3 (100%) 8 (100%) 4 (100%) 4 (100%)
Weight 5 4 (56.6%) 5 (100%) 4 (100%) 4 (100%) 4 (100%) 4 (100%) 5 (100%) 8 (100%)
Arm 6 6 (63.3%) 8 (100%) 5 (93.3%) 5 (100%) 5 (83.3%) 5 (100%) 6 (100%) 5 (96.6%)
Thigh 7 7 (86.6%) 6 (100%) 6 (93.3%) 6 (100%) 6 (83.3%) 6 (100%) 8 (83.3 %) 6 (96.6%)
Age 8 8 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (83.3%) 7 (100%)

TABLE 12: Seatpos data: CPI rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8

Ht 1 3 (60%) 2 (56.6%) 8 (55%) 2 (65%) 2 (95%) 2 (95%) 2 (85%) 3 (70%)
Leg 2 1 (60%) 3 (56.6%) 1 (100%) 1 (65%) 8 (65%) 3 (95%) 3 (85%) 1 (70%)
HtShoes 3 2 (60%) 1 (56.6%) 2 (100%) 7 (60%) 1 (95%) 1 (95%) 1 (85%) 2 (70%)
Seated 4 4 (100%) 4 (63.3%) 3 (100%) 3 (100%) 3 (95%) 8 (65%) 4 (100%) 4 (95%)
Weight 5 5 (100%) 5 (63.3%) 4 (100%) 4 (100%) 4 (95%) 4 (100%) 5 (100%) 8 (60%)
Thigh 6 7 (93.3%) 6 (63.3%) 5 (75%) 5 (100%) 5 (75%) 6 (100%) 8 (70%) 6 (95%)
Arm 7 6 (93.3%) 8 (63.3%) 6 (75%) 6 (100%) 6 (75%) 5 (100%) 6 (100%) 5 (95%)
Age 8 8 (100%) 7 (63.3%) 6 (55%) 8 (60%) 7 (65%) 7 (65%) 7 (70%) 7 (60%)

rankings when the following features are permuted respectively: Age, Arm, Ht, HtShoes,

Leg, Seated, Thigh, and Weight. Weighted Shannon entropies were evaluated using the

probability distributions derived from permutation-based feature importance data. These

distributions, noted in Tables 8, 9, 10, 11, 12, 13, were obtained after each permutation by
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TABLE 13: Seatpos data: CCRA rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8

Leg 1 1 (70%) 1 (95%) 1 (50%) 2 (50%) 8 (70%) 1 (95%) 1 (95%) 1 (65%)
Ht 1 1 (70%) 1 (95%) 8 (60%) 1 (50%) 2 (90%) 1 (95%) 1 (95%) 1 (65%)
HtShoes 1 1 (70%) 1 (95%) 1 (50%) 7 (55%) 1 (90%) 1 (95%) 1 (95%) 1 (65%)
Seated 4 4 (100%) 4 (100%) 3 (100%) 3 (95%) 3 (100%) 8 (70%) 4 (100%) 4(100%)
Weight 5 5 (100%) 5 (100%) 4 (100%) 4 (95%) 4 (100%) 4 (100%) 5 (100%) 7 (50%)
Thigh 6 6 (70%) 6 (100%) 6 (100%) 6 (95%) 6 (100%) 6 (100%) 8 (80%) 5 (55%)
Arm 6 7 (70%) 7 (85%) 5 (100%) 5 (95%) 5 (100%) 5 (100%) 6 (100%) 6 (55%)
Age 8 8 (100%) 8 (85%) 7 (60%) 8 (55%) 7 (70%) 7 (70%) 7 (80%) 8 (55%)

observing the frequencies of the feature having a particular importance value. For example,

after permutation x1 was observed the most important feature 25 times out of 30, so its

probability distribution ranked 1 (the most important feature) is (25/30) ∗ 100% = 83.3%.

This is represented in the distribution tables as 1(83.3%). Next, x2 was ranked as the 2nd

most important feature 30 times out of 30 permutations, so it will be represented as 2(100%).

In the probability distributions, majority ranks are presented, where the rank of a feature is

determined by the most frequent ranking positions across different permutation importance

evaluations [263]. For example, when a feature receives the same ranking position (e.g., 8th)

from multiple assessments but with varying levels of agreement (65% in one case and 35% in

another), the approach defaults to the ranking that has the majority level of agreement; in

this case, 65%. This means that despite the differing levels of consensus, the feature’s final

reported ranking is 8th, reflecting the highest percentage of agreement among the evaluations

considered. This approach assumes that the most frequent or majority ranking provides a

reliable estimate of a feature’s relative importance under the premise that the ranking most

models agree upon is likely the most accurate reflection of the feature’s value. Limitations

of this ranking approach are discussed in Chapter 5, Section 5.2.

Subsequently, weighted Shannon entropy values are calculated based on these feature

importance ranking distributions, serving to quantify the consistency and uncertainty inher-

ent in the feature importance rankings across various cooperative game theory-based methods

developed in this dissertation. This process of computing weighted Shannon entropy-based

permutation relative importance is described in Section 3.5.
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I have calculated Weighted Shannon entropies for each feature within every permuta-

tion and method. Figure 25 presents PRIME weighted Shannon entropy values for Shapley

feature importance, Nucleolus feature importance, Shapley-Shubik, Banzhaf power index,

constrained proportional, and conflicting claims random arrival feature importance. Lower

weighted Shannon entropy values suggest more consistency in the ranking of feature im-

portance by the method. In contrast, a higher weighted Shannon entropy value indicates

greater variability and more uncertainty in the method’s feature importance ranking. Note

that in the computation of weighted Shannon entropy permutation feature importance val-

ues, Conflicting Claims Equal Awards (CEqA), Conflicting Claims Equal Losses (CEqL),

and Conflicting Claims Talmud Valuation (CCTV) were excluded from consideration. The

reason for their exclusion is twofold: First, these methods displayed a lack of efficacy in

predicting feature importance values within the dataset, even when permutations were ap-

plied. Second, these methods consistently predicted uniform feature importance values and

corresponding rankings across all features, regardless of the permutation applied. Table 14

presents a sample example of feature importance values observed from CEqA.

TABLE 14: CEqA values when feature age is permuted

Arm - 0.12 Thigh - 0.12 Weight - 0.12 Seated - 0.12 Leg - 0.12 HtShoes - 0.12 Ht - 0.12 Age - 0.06
Arm - 0.13 Thigh - 0.13 Weight - 0.13 Seated - 0.13 Leg - 0.13 HtShoes - 0.13 Ht - 0.13 Age - 0.0
Arm - 0.1 Thigh - 0.1 Weight - 0.1 Seated - 0.1 Leg - 0.1 HtShoes - 0.1 Ht - 0.1 Age - 0.01
Arm - 0.1 Thigh - 0.1 Weight - 0.1 Seated - 0.1 Leg - 0.1 HtShoes - 0.1 Ht - 0.1 Age - 0.02

Figure 25 presents relative inconsistency and uncertainty associated with the CCRA

method. Also, for some features, some methods are performing better in the feature impor-

tance ranking compared to other features. For example, SH2FI and FBI perform relatively

well for the Age however, they become more inconsistent for feature Arm. For some features,

the weighted Shannon entropies are low (e.g., for feature Weight, SFI, and NcFI), suggesting

some level of agreement between the two methods in terms of feature importance. However,

this is not consistently observed across all features. Note that the Weighted Shannon entropy

values are ordered in SFI ascending order. To enhance the comparison of these methods’

performances, I calculated the average Weighted Shannon entropies for each feature ranking
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FIG. 25: Seatpos data: Weighted Shannon entropy PRIME results based on cooperative-
game theory feature importance permutation methods.

provided by the methods. An example of this will be assuming WSE1 is the Weighted Shan-

non entropy value for X1, WSE2 is the Weighted Shannon entropy value for X2, and WSEn

is the Weighted Shannon entropy value for Xn, then the average Weighted Shannon entropy

will be WSE1+WSE2+WSEn

n
. Figure 26 presents these average Weighted Shannon entropy values

obtained from the Seatpos dataset feature importance permutation evaluations.

Figure 26 indicates that Shapley-Shubik and Banzhaf power feature importance meth-

ods have the lowest average weighted Shannon entropy values while conflicting claims random

arrival exhibits the most inconsistency in feature importance ranking. These results imply

that the Shapley-Shubik and Banzhaf power feature importance methods are more reliable

and consistent in identifying and ranking the importance of features across various permuta-

tions. Their lower average weighted Shannon entropy values, even after data permutations,

indicate that these methods more consistently agree on which features are most important,

making their evaluations more reliable. On the other hand, the higher variability observed in

the feature importance method based on Random Arrival (CCRA) rankings suggests it may
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FIG. 26: Average weighted Shannon entropy PRIME results for Seatpos dataset based on
cooperative game theory feature importance permutation methods.

not consistently identify the same features as important across different analyses. This in-

consistency can make it less reliable for applications where consistent identification of feature

importance is critical for decision-making and model interpretation.

Spearman rank correlation: Finally, the Spearman rank correlation between the

original ranking and permuted feature importance ranks is measured using the data observed

in Table 8, 9, 10, 11, 12, 13.

TABLE 15: Seatops data: Spearman’s rank correlation coefficient between original Shapley
feature importance ranking and permuted ranks

Permuted rankings SFI NcFI Sh2FI BFI CPI CCRA
Rank 1 0.97 0.10 0.9 0.90 0.90 0.99
Rank 2 0.92 - 0.10 0.83 0.82 0.90 0.99
Rank 3 0.61 -0.10 0.45 0.45 0.32 0.48
Rank 4 0.61 -0.10 0.61 0.61 0.73 0.62
Rank 5 0.33 -0.16 0.3 0.3 0.45 0.47
Rank 6 0.76 -0.16 0.66 0.60 0.6 0.74
Rank 7 0.97 -0.10 0.88 0.88 0.85 0.95
Rank 8 0.85 -0.10 0.76 0.76 0.76 0.91

Most of the feature importance permutation rankings generally exhibit a positive cor-
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relation with the original rankings. However, in Rank 5, when the most important feature

(Leg) is permuted, the order of feature importance ranking drastically changes, resulting in

the lowest correlation coefficient (0.33). Nucleolus feature importance rankings after permu-

tations significantly differ from the original ranking, as indicated by the Spearman correlation

coefficients.

In conclusion, employing permutation tests, specifically through weighted Shannon

entropy, could be useful to assess the feature importance method’s reliability in consistently

ranking features. These metrics offer insights into the stability and robustness of the feature

importance values, shedding light on the method’s ability to maintain consistent rankings

across different permutations.

4.3 EXPERIMENT 2: LOGISTIC REGRESSION MODEL

This section describes the experimental analysis of the application of cooperative game

theory-based methods for determining feature importance, specifically within the framework

of a logistic regression model utilizing the Adult dataset. From the initial dataset, which

contained 11 features, only 9 informative features were used for the analysis, and the features

that were not informative, such as ID, were removed. The features used to build models

are marital status (MaritStat), education, occupation, age, hours per week (hours/week),

sex, native country (NatCount), work class, and race. The dataset contains missing values

included as ? or NaN, which I have removed prior to executing any analysis or predictive

modeling. The initial data contained 48,842 observations (rows) in total, and the dataset

without missing values contained 45,222 observations. Although 7.4% of the data was re-

moved, the remaining sample size is large enough to maintain the statistical power and

representativeness of the study. The minimal reduction in data does not introduce bias or

adversely affect the validity of the results, providing confidence in the reliability and gener-

alizability of the findings. This level of data retention ensures that the conclusions drawn

from the analysis remain accurate and applicable to the larger population under study. The



146

logistic regression model is used with this dataset to predict the income levels. The features

within this dataset are independent and identically distributed (IID), and the data analysis

shows that features do not have any correlations. The descriptions of these features and the

respective categories are presented in Table 16.

TABLE 16: Description of features

Feature Description

Age The age of an individual in years

Workclass The employment sector:

* Private: Private sector employment

* Local-gov: Local government employment

* Self-emp-inc: Incorporated self-employment

* Self-emp-not-inc: Unincorporated self-employment

* State-gov: State government employment

* Without-pay: No paid employment

Education The highest level of education completed:

* Education 11th: Completed up to 11th grade

* Education 12th: Completed up to 12th grade

* Education 7th-8th: Completed up to 7th or 8th grade

* Education 9th: Completed up to 9th grade

* Education Assoc-acdm: Earned an academic associate degree

* Education Assoc-voc: Earned a vocational associate degree

* Education Bachelors: Earned a bachelor’s degree

* Education Doctorate: Earned a doctoral degree

* Education HS-grad: Graduated from high school

* Education Masters: Earned a master’s degree

Continued on next page
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TABLE 16 – continued from previous page

Feature Description

* Education Preschool: Completed preschool education

* Education Prof-school: Completed a professional school degree

* Education Some-college: Completed some college-level education

Marital Status The marital status of an individual:

* Married-civ-spouse: Married to a civilian spouse

* Married-AF-spouse: Married to an armed forces spouse

* Married-spouse-absent: Married but currently living apart from spouse

* Separated: Legally separated

* Widowed: Spouse has died

* Never-married: Never married

Occupation The primary job or occupation of an individual:

* Armed-Forces: Military roles

* Craft-repair: Craftsperson and repair roles

* Exec-managerial: Executive and managerial roles

* Farming-fishing: Agricultural and fishing roles

* Handlers-cleaners: Material handling and cleaning roles

* Machine-op-inspct: Machine operation and inspection

* Other-service: Miscellaneous service roles

* Priv-house-serv: Private household service roles

* Prof-specialty: Professional specialty roles

* Protective-serv: Protective service roles, including law enforcement

* Sales: Sales and customer service roles

* Tech-support: Technical support roles

Continued on next page
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TABLE 16 – continued from previous page

Feature Description

Race The ethnicity or race of an individual:

* White, * Black, * Asian-Pac-Islander, * Other

Sex The gender of an individual (Male/Female)

Hours per Week The average number of work hours per week

Native Country The country of origin of an individual

* United-States, * Canada, * Mexico, * Other countries

Notice that this dataset is mostly described with categorical data, which often requires

additional context to interpret accurately. For instance, labels like ”Group A” and ”Group

B” are arbitrary and don’t inherently convey meaning, and features with many unique cat-

egories (high cardinality) can lead to sparse data, making statistical analysis and machine

learning modeling more challenging due to a lack of sufficient observations in each category.

Grouping categories can sometimes lead to aggregation bias, where significant differences be-

tween subgroups within a category are overlooked, potentially obscuring important insights.

For example, if a person’s multiracial identity (e.g., White and Black) is not accurately

reflected in the data and analysis, it can introduce biases. If individuals who identify as

both White and Black can only select one option, the data misrepresents their true identity,

leading to inaccurate classification and analysis. Furthermore, treating race as a single-

choice attribute can result in a loss of information, masking the cultural, socioeconomic, or

healthcare differences associated with a multiracial identity.

Logistic regression model results are presented in Table 17.
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TABLE 17: Logistic regression model results

Features Estimate Std. Error z value Pr(> |z|)

(Intercept) -5.261e+00 6.816e-01 -7.718 1.18e-14 ***

age 2.899e-02 1.596e-03 18.159 2e− 16 ***

workclass Local-gov -6.669e-01 1.069e-01 -6.236 4.48e-10 ***

workclass Private -4.379e-01 8.884e-02 -4.929 8.26e-07 ***

workclass Self-emp-inc -1.888e-01 1.174e-01 -1.609 0.107627

workclass Self-emp-not-inc -8.807e-01 1.044e-01 -8.439 2e-16 ***

workclass State-gov -8.406e-01 1.194e-01 -7.038 1.95e-12 ***

workclass Without-pay -1.329e+01 1.970e+02 -0.067 0.946223

education 11th 1.256e-01 2.056e-01 0.611 0.541147

education 12th 4.990e-01 2.615e-01 1.908 0.056356 .

education 7th-8th -5.603e-01 2.353e-01 -2.381 0.017250 *

education 9th -2.879e-01 2.620e-01 -1.099 0.271819

education Assoc-acdm 1.365e+00 1.713e-01 7.966 1.63e-15 ***

education Assoc-voc 1.346e+00 1.643e-01 8.188 2.65e-16 ***

education Bachelors 2.008e+00 1.533e-01 13.102 2e-16 ***

education Doctorate 3.095e+00 2.103e-01 14.714 2e-16 ***

education HS-grad 8.253e-01 1.492e-01 5.533 3.15e-08 ***

education Masters 2.424e+00 1.634e-01 14.839 2e-16 ***

education Preschool -1.099e+01 1.115e+02 -0.099 0.921438

education Prof-school 3.119e+00 1.951e-01 15.989 2e-16 ***

education Some-college 1.148e+00 1.513e-01 7.586 3.30e-14 ***

marital status Married-AF-spouse 2.805e+00 4.982e-01 5.631 1.79e-08 ***

marital status Married-civ-spouse 2.076e+00 6.250e-02 33.212 2e-16 ***

marital status Married-spouse-absent 9.657e-03 2.167e-01 0.045 0.964454

marital status Never-married -4.774e-01 7.682e-02 -6.214 5.15e-10 ***

marital status Separated -6.828e-02 1.479e-01 -0.462 0.644287

marital status Widowed 2.191e-02 1.407e-01 0.156 0.876251

occupation Armed-Forces -9.353e-01 1.300e+00 -0.720 0.471752

Continued on next page
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TABLE 17 – continued from previous page

Variable Estimate Std. Error z value Pr(z)

occupation Craft-repair -4.432e-04 7.535e-02 -0.006 0.995307

occupation Exec-managerial 7.865e-01 7.175e-02 10.961 2e-16 ***

occupation Farming-fishing -1.048e+00 1.316e-01 -7.965 1.65e-15 ***

occupation Handlers-cleaners -7.839e-01 1.378e-01 -5.687 1.29e-08 ***

occupation Machine-op-inspct -3.509e-01 9.746e-02 -3.600 0.000318 ***

occupation Other-service -9.204e-01 1.126e-01 -8.172 3.03e-16 ***

occupation Priv-house-serv -2.885e+00 1.155e+00 -2.497 0.012525 *

occupation Prof-specialty 5.063e-01 7.623e-02 6.642 3.09e-11 ***

occupation Protective-serv 5.170e-01 1.205e-01 4.290 1.79e-05 ***

occupation Sales 2.538e-01 7.685e-02 3.303 0.000958 ***

occupation Tech-support 5.853e-01 1.053e-01 5.557 2.74e-08 ***

occupation Transport-moving -1.691e-01 9.436e-02 -1.793 0.073051 .

race Asian-Pac-Islander 6.289e-01 2.643e-01 2.379 0.017350 *

race Black 4.256e-01 2.214e-01 1.922 0.054564 .

race Other -4.804e-03 3.536e-01 -0.014 0.989159

race White 5.082e-01 2.111e-01 2.407 0.016077 *

sex Male 1.819e-01 5.049e-02 3.602 0.000316 ***

hours per week 2.965e-02 1.604e-03 18.484 2e-16 ***

native country Canada -9.534e-01 6.682e-01 -1.427 0.153607

native country China -1.933e+00 6.868e-01 -2.814 0.004889 **

native country Columbia -3.649e+00 1.040e+00 -3.509 0.000449 ***

native country Cuba -1.009e+00 6.803e-01 -1.484 0.137871

native country Dominican-Republic -2.376e+00 9.856e-01 -2.410 0.015934 *

native country Ecuador -1.629e+00 9.098e-01 -1.791 0.073366 .

native country El-Salvador -1.581e+00 7.628e-01 -2.073 0.038201 *

native country England -9.208e-01 6.824e-01 -1.349 0.177227

native country France -6.878e-01 8.053e-01 -0.854 0.392996

native country Germany -8.636e-01 6.568e-01 -1.315 0.188559

Continued on next page
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TABLE 17 – continued from previous page

Variable Estimate Std. Error z value Pr(z)

native country Greece -2.000e+00 8.009e-01 -2.497 0.012528 *

native country Guatemala -1.386e+00 9.089e-01 -1.525 0.127180

native country Haiti -1.508e+00 8.884e-01 -1.697 0.089701 .

native country Honduras -2.020e+00 1.938e+00 -1.042 0.297233

native country Hong -1.502e+00 8.860e-01 -1.695 0.090116 .

native country Hungary -1.329e+00 9.529e-01 -1.395 0.163016

native country India -1.785e+00 6.510e-01 -2.741 0.006117 **

native country Iran -1.169e+00 7.257e-01 -1.610 0.107323

native country Ireland -8.133e-01 8.750e-01 -0.930 0.352604

native country Italy -5.395e-01 6.891e-01 -0.783 0.433675

native country Jamaica -1.416e+00 7.417e-01 -1.910 0.056191 .

native country Japan -1.035e+00 7.042e-01 -1.470 0.141500

native country Laos -2.003e+00 1.061e+00 -1.888 0.059066 .

native country Mexico -1.760e+00 6.464e-01 -2.722 0.006483 **

native country Nicaragua -1.918e+00 1.008e+00 -1.904 0.056951 .

native country Outlying-US(Guam-USVI-etc) -1.366e+01 2.125e+02 -0.064 0.948727

native country Peru -2.099e+00 1.007e+00 -2.085 0.037063 *

native country Philippines -1.069e+00 6.265e-01 -1.707 0.087825 .

native country Poland -1.390e+00 7.311e-01 -1.901 0.057244 .

native country Portugal -1.281e+00 8.779e-01 -1.459 0.144485

native country Puerto-Rico -1.500e+00 7.135e-01 -2.102 0.035529 *

native country Scotland -1.664e+00 1.108e+00 -1.502 0.133132

native country South -2.353e+00 6.984e-01 -3.369 0.000755 ***

native country Taiwan -1.610e+00 7.266e-01 -2.216 0.026668 *

native country Thailand -2.136e+00 9.831e-01 -2.173 0.029783 *

native country Trinadad&Tobago -1.659e+00 1.013e+00 -1.638 0.101512

native country United-States -1.092e+00 6.138e-01 -1.779 0.075172 .

native country Vietnam -2.306e+00 8.101e-01 -2.847 0.004419 **

Continued on next page
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TABLE 17 – continued from previous page

Variable Estimate Std. Error z value Pr(z)

native country Yugoslavia -7.512e-01 8.957e-01 -0.839 0.401616

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Null deviance: 33833 on 30138 degrees of freedom

Residual deviance: 21750 on 30051 degrees of freedom

AIC: 21926

Table 17 presents the residual deviance, which drops from 33,833 (null) to 21,750 on

slightly fewer degrees of freedom (from 30,138 to 30,051), which suggests that the logistic

regression model with features provides a better fit than the null model. Each coefficient

represents the change in the log odds of the outcome for a one-unit increase in the feature,

holding all other features constant. For example, the coefficient for age (0.02899) suggests

that holding all else constant, a one-year increase in age is associated with an increase in

the log odds of the income being above a certain level by 0.02899. For categorical variables

like workclass or education, each coefficient (e.g., workclass Local-gov = -0.6669) compares

the log odds of being in that category relative to the reference category, holding other

features constant. The reference feature is automatically selected by the R software based

on alphabetical order or the order in which the categories appear in the dataset. For example,

the coefficient (3.095, p < 2e−16) for holding a Doctorate is not only positive but also highly

significant, indicating a strong association with higher odds of crossing the income threshold

compared to the reference category. The very small p-value signals a high degree of confidence

in this association. While the negative coefficient for ”7th-8th grade” education suggests a

detrimental effect on achieving the income threshold, showing that lower education levels are

associated with lower odds of high income. Overall, features like education play a critical

role in income prediction. However, the degree of impact varies by education level, with

higher education generally providing better odds of achieving higher income.
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Overall, in predicting income levels, age emerges as a positive predictor, indicating that

as individuals age, they are more likely to surpass the income threshold, possibly reflecting

accumulated experience and career advancement. Marital status, particularly being married

to a civilian spouse, significantly increases the likelihood of higher income, suggesting that

marital stability may be associated with economic advantages. Education plays a critical role,

with higher educational attainments, such as having a Bachelor’s, Master’s, or Doctorate

degree, being strongly associated with crossing the income threshold. This underscores

the value of advanced education in securing higher-paying jobs. On the other hand, lower

levels of education or having no significant difference from the reference education category

do not markedly increase the chances of high income, highlighting the critical threshold

effect of education on earnings. Certain occupations, longer working hours, being male, and

belonging to some racial backgrounds are positively associated with higher income levels.

Conversely, specific occupations and being an immigrant from certain countries are negatively

associated with surpassing the income threshold, highlighting the multifaceted nature of

income dynamics.

In sum, the model presents how various socio-economic features intertwine to influence

income, with age, certain marital statuses, higher education, specific occupations, longer

work hours, gender, race, and even native country playing significant roles in determining

the likelihood of achieving higher income levels.

Below, the cooperative game theory-based explainable artificial intelligence methods

are presented, followed by the Shannon entropy evaluation of these methods. One of the

methods, core feature importance, which failed to produce any feature importance results,

is presented in Section 4.5.

4.3.1 SHAPLEY FEATURE IMPORTANCE (SFI)

Figure 27 -(a) presents the Shapley feature importance scores of the base model. Recall

the base model refers to the initial model configuration before any alterations or permutations
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are applied to its features. According to the Shapley feature importance, the feature Marital

status held the top rank of importance (1), followed by education, occupation age, hours per

week, sex, native country, work-class, and race.

(a) Shapley feature importance (b) Nucleolus feature importance

FIG. 27: Adult data: Shapley and Nucleolus feature importance values

4.3.2 NUCLEOLUS FEATURE IMPORTANCE (NCFI)

The Nucleolus feature importance rankings (NcFI) for predicting income level indi-

cate that marital status and education are the most significant factors, followed by age,

occupation, hours per week, work class, native country, sex, and race in descending order

of importance (Figure 27 -(b)). This implies that a person’s marital status and education

exhibit the most significant influence in categorizing them into higher or lower income levels.

While other factors such as age, occupation, and hours worked per week also play roles,

albeit to a lesser extent. Factors like native country, sex, and race are less influential in

predicting income level within the dataset.

Figure 27 (a) and (b) show that Shapley and Nucleolus feature importance methods

select the same set of highly important features (Marital status and Education), while the

importance of the remaining features varies. The feature of least importance for predicting

the income level, Race, remains the same.
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4.3.3 SHAPLEY-SHUBIK FEATURE IMPORTANCE (SH2FI)

Figure 28-(a-c) shows Shapley-Shubik feature importance values. Here, as well we have

observed that the feature importance values can differ depending on the threshold set. When

the threshold is low, each feature may have a smaller share of the total output, leading to a

more significant marginal contribution and potentially resulting in higher importance values

for some features.

(a) q = 0.45 (b) q = 0.5

(c) q = 0.6

FIG. 28: Adult data: Shapley-Shubik feature importance values across various thresholds

In contrast, when the threshold is high, each feature may have a larger share of the

total output, leading to less significant marginal contributions and potentially resulting in

the same importance values for some features. When a threshold is set so high that even

joint efforts cannot overcome it, it suggests that the feature(s) associated with that threshold

are critical for the studied outcome. Despite combining the contributions of all features, they
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are still insufficient to reach the threshold. In this particular dataset, setting the threshold

parameter (q) to 0.61 results in feature importance values of 0.11 for all features. Any

value of q greater than 0.61 fails to generate feature importance values, indicating that

the features, whether independently or jointly, cannot reach the threshold. This highlights

the importance of the threshold value, which represents a critical point beyond which the

outcome changes significantly and the associated feature(s) have a substantial impact on the

outcome.

4.3.4 BANZHAF POWER INDEX FEATURE IMPORTANCE (BFI)

Similar to SH2FI, Banzhaf-power feature importance (BFI) values demonstrate their

dependence on the threshold τ. A small threshold yields varying importance levels, while a

high threshold requires a larger number of features to achieve it, indicating a broader set of

important features. However, it is important to highlight that in the Adult dataset, both

Shapley-Shubik and Banzhaf power indices fail to accurately describe feature importance

values when the threshold exceeds 0.6.

(a) τ = 0.45 (b) τ = 0.5

(c) τ = 0.6

FIG. 29: Adult data: BFI values across various thresholds
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4.3.5 CONFLICTING CLAIMS FEATURE IMPORTANCE VALUES

Finally, I have examined the feature importance values with bargaining solutions when

the endowment (the desired model performance) is set to 0.7, presented in Figures 30. I

tested threshold values of 0.8, 0.9, and 0.95, and found similar results to those obtained with

a threshold value of 0.7.

(a) CPI (b) CEqA (c) CEqL

(d) CCTV (e) CCRA

FIG. 30: Feature importance values based on bargaining solutions to conflicting claims

Figure 30-(a) presents the constrained proportional solution (CPI) results. According

to these results, Marital status is the most important feature to predict income, followed

by Occupation and Education features. Note that these features also have high correlation

values with the target Figure 30. Almost identical feature importance values were observed

by CEqA, CEqL, CCTV, and CCRA feature importance methods. Despite the features

having equivalent claims to the resources, these features were assigned varying levels of im-

portance rankings. Different methods uniformly concurred on this classification, suggesting
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a consensus across methodologies in identifying the importance values.

4.3.6 PRIME WITH WEIGHTED SHANNON ENTROPY

This section assesses the methods of feature importance by examining the consistency

in the ranking of each feature’s importance across the conducted permutations. A total of

60 permutations were analyzed for this evaluation. Permutation involves randomly shuffling

the values of the selected feature while maintaining the values of other features. Following

each permutation, the resulting feature importance values were evaluated. In total, 540

datasets were evaluated. The feature importance method was applied to each dataset, and

respectively, the importance values were obtained. Table 18 presents a sample from the

Shapley feature importance values after permuting feature age 60 times. Notice that the

feature importance values exhibit significant changes, particularly for the permuted feature

Age, while the importance values of the remaining features remain relatively consistent across

permutations.

TABLE 18: Feature importance values after permuting feature Age 60 times

Age Workclass Education Marital Status Occupation Race Sex Hours per Week Native Country

1 0.0005 0.011 0.07 0.16 0.06 0.003 0.019 0.02 0.014
2 0.0005 0.011 0.08 0.16 0.06 0.003 0.019 0.02 0.014
3 0.0008 0.011 0.08 0.16 0.06 0.003 0.019 0.02 0.014
4 0.001 0.011 0.08 0.16 0.06 0.003 0.019 0.02 0.014
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
59 0.00004 0.011 0.08 0.16 0.06 0.003 0.019 0.02 0.014
60 0.0003 0.011 0.08 0.16 0.06 0.003 0.019 0.02 0.014

TABLE 19: Feature importance values after permuting feature Marital status 60 times

Age Workclass Education Marital Status Occupation Race Sex Hours per Week Native Country

1 0.05 0.01 0.07 0.001 0.07 0.003 0.071 0.02 0.015
2 0.05 0.01 0.07 0.002 0.07 0.003 0.071 0.02 0.015
3 0.054 0.01 0.07 0.001 0.07 0.003 0.071 0.02 0.015
4 0.054 0.01 0.07 0.002 0.07 0.003 0.019 0.02 0.015
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
59 0.054 0.01 0.07 0.001 0.07 0.003 0.032 0.02 0.015
60 0.054 0.01 0.07 0.002 0.07 0.003 0.032 0.02 0.015

Consider another sample of Shapley feature importance values obtained through the

permutation of the feature Marital status (Table 19). Here again, the feature importance
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values demonstrate substantial variations for the permuted feature Marital status, while

the importance values of the remaining features maintain a consistent trend throughout

permutations.

The probability distributions were generated based on the observed feature importance

rankings (feature importance values arranged in descending order), as described in Section

3.5.4. The consistency and the uncertainty of the cooperative game theory-based feature im-

portance rankings for all the permuted features and corresponding probability distributions

are presented using the data from Tables 20, 21, 22, 23, 24, 25, 26, 27, 28.

TABLE 20: Adult data: Shapley feature importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9

MaritStat 1 1 (100%) 1 (100%) 1 (100%) 9 (96.6%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%)
Education 2 2 (100%) 8 (80.0%) 2 (100%) 1 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%)
Occupation 3 3 (100%) 2 (100%) 3 (100%) 2 (100%) 3 (100%) 8 (56.6%) 3 (100%) 3 (100%) 3 (100%)
Age 4 9 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 4 (100%) 4 (100%)
Hours/week 5 4 (100%) 4 (100%) 9 (100%) 5 (100%) 5 (100%) 4 (100%) 5 (100%) 5 (100%) 5 (100%)
Sex 6 5 (100%) 5 (100%) 5 (100%) 4 (100%) 6 (100%) 5 (100%) 6 (100%) 9 (100%) 6 (100%)
NatCount 7 6 (100%) 6 (100%) 6 (100%) 6 (100%) 7 (71.6%) 6 (100%) 7 (100%) 6 (100%) 7 (100%)
Workclass 8 7 (100%) 7 (100%) 7 (100%) 7 (100%) 8 (100 %) 7 (100%) 8 (100%) 7 (100%) 9 (95%)
Race 9 8 (100%) 9 (80.0%) 8 (100%) 8 (96.6%) 9 (100%) 9 (56.6%) 9 (100%) 8 (100%) 8 (95%)

TABLE 21: Adult data Nucleolus feature importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9

MaritStat 1 1 (100%) 1 (100%) 1 (100%) 9 (73.3%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%)
Education 2 2 (100%) 7 (100%) 2 (100%) 1 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%)
Age 3 9 (100%) 3 (100%) 3 (100%) 2 (100%) 3 (100%) 3 (56.6%) 3 (100%) 3 (100%) 3 (100%)
Occupation 4 3 (100%) 2 (100%) 3 (100%) 3 (100%) 4 (100%) 7 (95%) 4 (98.3%) 4 (100%) 4 (100%)
Hours/week 5 6 (100%) 5 (60%) 9 (85%) 7 (50%) 7 (68.3%) 6 (93.3%) 7 (100%) 7 (100%) 6 (100%)
Workclass 6 4 (100%) 4 (90%) 6 (98.3%) 5 (100%) 5 (83.3%) 5 (63.3%) 6 (51.6%) 5 (90%) 9 (85%)
NatCount 7 5 (100%) 6 (61.6%) 5 (98.3%) 6 (50%) 6 (51.6%) 4 (65%) 5 (51.6%) 6 (90%) 5 (100%)
Gender 8 8 (100%) 8 (71.6%) 8 (85%) 4 (100%) 9 (100 %) 9 (100%) 9 (85%) 9 (98.3%) 8 (85%)
Race 9 7 (100%) 9 (71.6%) 7 (96.6%) 8 (73.3%) 8 (100%) 8 (95%) 8 (85%) 8 (98.3%) 7 (90%)

TABLE 22: Adult data: SH2FI feature importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9

MaritStat 1 1 (100%) 1 (100%) 1 (100%) 9 (96.6%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%)
Education 2 2 (100%) 8 (80.0%) 2 (100%) 1 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%)
Occupation 3 3 (100%) 2 (100%) 3 (100%) 2 (100%) 3 (100%) 8 (56.6%) 3 (100%) 3 (100%) 3 (100%)
Age 4 9 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 4 (100%) 4 (100%)
Hours/week 5 4 (100%) 4 (100%) 9 (100%) 5 (100%) 5 (100%) 4 (100%) 5 (100%) 5 (100%) 5 (100%)
Sex 6 5 (100%) 5 (100%) 5 (100%) 4 (100%) 6 (100%) 5 (100%) 6 (100%) 9 (100%) 6 (100%)
NatCount 7 6 (100%) 6 (100%) 6 (100%) 6 (100%) 7 (71.6%) 6 (100%) 7 (100%) 6 (100%) 7 (100%)
Workclass 8 7 (100%) 7 (100%) 7 (100%) 7 (100%) 8 (100 %) 7 (100%) 8 (100%) 7 (100%) 9 (95%)
Race 9 8 (100%) 9 (80.0%) 8 (100%) 8 (96.6%) 9 (100%) 9 (56.6%) 9 (100%) 8 (100%) 8 (95%)

These probability distributions describe the consistency of each feature achieving spe-

cific ranks ( See for an example Table 20). The initial rankings are labeled under the ”Rank
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TABLE 23: Adult data: BFI feature importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9

Education 1 1 (100%) 7 (80.0%) 1 (100%) 1 (100%) 2 (100%) 1 (100%) 2 (100%) 1 (100%) 1 (100%)
Workclass 2 2 (100%) 9 (100%) 2 (100%) 2 (100%) 3 (100 %) 2 (100%) 3 (100%) 3 (100%) 9 (100%)
MaritStat 3 3 (90%) 1 (100%) 3 (100%) 9 (96.6%) 1 (100%) 4 (100%) 1 (100%) 2 (100%) 2 (100%)
Age 4 9 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 4 (100%) 4 (100%)
Race 5 4 (90%) 8 (80.0%) 8 (100%) 8 (96.6%) 9 (100%) 9 (56.6%) 9 (100%) 8 (100%) 8 (95%)
Occupation 6 5 (100%) 2 (100%) 7 (100%) 7 (100%) 8 (100%) 8 (56.6%) 6 (100%) 7 (100%) 3 (100%)
Sex 7 6 (100%) 5 (100%) 5 (100%) 4 (100%) 6 (100%) 5 (100%) 8 (100%) 9 (100%) 6 (100%)
NatCount 8 7 (100%) 6 (100%) 6 (100%) 6 (100%) 7 (71.6%) 6 (100%) 7 (100%) 6 (100%) 7 (100%)
Hours/week 9 8 (100%) 4 (100%) 9 (100%) 5 (100%) 5 (100%) 7 (100%) 5 (100%) 5 (100%) 5 (100%)

TABLE 24: Adult data: CPI feature importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9

MaritStat 1 1 (100%) 1 (100%) 1 (100%) 9 (96.6%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%)
Occupation 2 3 (100%) 3 (100%) 5 (100%) 1 (100%) 3 (100%) 8 (56.6%) 3 (100%) 3 (100%) 3 (100%)
Education 3 2 (100%) 8 (90.0%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%)
Age 4 9 (100%) 2 (100%) 4 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 4 (100%) 4 (100%)
Hours/week 5 4 (100%) 4 (100%) 9 (100%) 5 (100%) 5 (100%) 4 (100%) 5 (100%) 5 (100%) 5 (100%)
Sex 6 5 (100%) 5 (100%) 3 (100%) 4 (100%) 6 (100%) 5 (100%) 6 (100%) 9 (100%) 6 (100%)
Workclass 7 6 (100%) 6 (100%) 6 (100%) 6 (100%) 8 (100 %) 6 (100%) 6 (100%) 6 (100%) 9 (100%)
NatCount 8 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%)
Race 9 8 (100%) 9 (80.0%) 8 (100%) 8 (96.6%) 9 (100%) 9 (90%) 9 (100%) 8 (100%) 8 (95%)

TABLE 25: Adult data: CEqA feature importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9

MaritStat 1 1 (100%) 1 (100%) 1 (100%) 9 (96.6%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%)
Occupation 2 2 (100%) 2 (100%) 3 (100%) 2 (100%) 3 (100%) 8 (100%) 3 (100%) 3 (100%) 3 (100%)
Education 3 3 (100%) 8 (90.0%) 2 (100%) 1 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%)
Age 4 9 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 4 (100%) 4 (100%)
Hours/week 5 4 (100%) 4 (100%) 9 (100%) 5 (100%) 5 (100%) 4 (100%) 5 (100%) 5 (100%) 5 (100%)
Sex 6 5 (100%) 5 (100%) 5 (100%) 4 (100%) 6 (100%) 5 (100%) 6 (100%) 9 (100%) 6 (100%)
Workclass 7 6 (100%) 6 (100%) 6 (100%) 6 (100%) 8 (100 %) 6 (100%) 6 (100%) 6 (100%) 9 (100%)
NatCount 8 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%)
Race 9 8 (100%) 9 (70.0%) 8 (100%) 8 (70%) 9 (100%) 9 (90%) 9 (100%) 8 (100%) 8 (95%)

TABLE 26: Adult data: CEqL feature importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9

MaritStat 1 1 (100%) 1 (100%) 1 (100%) 9 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%)
Occupation 2 2 (100%) 2 (100%) 3 (100%) 2 (100%) 3 (100%) 8 (100%) 3 (100%) 3 (100%) 3 (100%)
Education 3 3 (100%) 8 (90.0%) 2 (100%) 1 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%)
Age 4 9 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 4 (100%) 4 (100%)
Hours/week 5 4 (100%) 4 (100%) 9 (100%) 5 (100%) 5 (100%) 4 (100%) 5 (100%) 5 (100%) 5 (100%)
Sex 6 5 (100%) 5 (100%) 5 (100%) 4 (100%) 6 (100%) 5 (100%) 6 (100%) 9 (100%) 6 (100%)
Workclass 7 6 (100%) 6 (100%) 6 (100%) 6 (100%) 8 (100 %) 6 (100%) 8 (100%) 6 (100%) 9 (100%)
NatCount 8 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%)
Race 9 8 (100%) 9 (50.0%) 8 (100%) 8 (90%) 9 (100%) 9 (90%) 9 (100%) 8 (100%) 8 (100%)

0” column in these tables. Rank 1 presents the feature importance rankings when the fea-

ture Age is permuted. Rank 2 presents the feature importance rankings when the feature

Education is permuted. Rank 3 presents the feature importance rankings when the feature

Hours per Week is permuted. Rank 4 presents the feature importance rankings when the
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TABLE 27: Adult data: CCTV feature importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9

MaritStat 1 1 (100%) 1 (100%) 1 (100%) 9 (85%) 1 (100%) 2 (100%) 1 (100%) 1 (100%) 1 (100%)
Occupation 2 2 (100%) 2 (100%) 3 (100%) 2 (100%) 3 (100%) 8 (85%) 3 (100%) 3 (100%) 3 (100%)
Education 3 3 (100%) 8 (100%) 2 (100%) 1 (100%) 2 (100%) 1 (100%) 2 (100%) 2 (100%) 2 (100%)
Age 4 9 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 4 (100%) 8 (100%)
Hours/week 5 4 (100%) 4 (100%) 9 (100%) 5 (100%) 5 (100%) 4 (100%) 5 (100%) 5 (100%) 5 (100%)
Sex 6 5 (100%) 5 (100%) 5 (100%) 4 (100%) 6 (100%) 5 (100%) 6 (100%) 9 (100%) 6 (100%)
Workclass 7 8 (100%) 6 (100%) 6 (100%) 6 (100%) 8 (100 %) 6 (100%) 8 (100%) 8 (100%) 9 (100%)
NatCount 8 6 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%)
Race 9 7 (100%) 9 (80.0%) 8 (100%) 8 (85%) 9 (100%) 9 (90%) 9 (100%) 6 (100%) 4 (95%)

TABLE 28: Adult data: CCRA feature importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9

MaritStat 1 1 (100%) 1 (100%) 1 (100%) 9 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%) 1 (100%)
Occupation 2 2 (100%) 2 (100%) 3 (100%) 2 (100%) 3 (100%) 8 (100%) 3 (100%) 3 (100%) 3 (100%)
Education 3 3 (100%) 8 (90.0%) 2 (100%) 1 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%)
Age 4 9 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 3 (100%) 4 (100%) 4 (100%) 4 (100%)
Hours/week 5 4 (100%) 4 (100%) 9 (100%) 5 (100%) 5 (100%) 4 (100%) 5 (100%) 5 (100%) 5 (100%)
Sex 6 5 (100%) 5 (100%) 5 (100%) 4 (100%) 6 (100%) 5 (100%) 6 (100%) 9 (100%) 6 (100%)
Workclass 7 6 (100%) 6 (100%) 6 (100%) 6 (100%) 8 (100 %) 6 (100%) 8 (100%) 6 (100%) 9 (100%)
NatCount 8 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (100%) 7 (85%) 7 (100%) 7 (100%)
Race 9 8 (100%) 9 (90.0%) 8 (100%) 8 (100%) 9 (100%) 9 (100%) 9 (85%) 8 (100%) 8 (100%)

feature Marital Status is permuted. Rank 5 presents the feature importance rankings when

the feature Native Country is permuted. Rank 6 presents the feature importance rankings

when the feature Occupation is permuted. Rank 7 presents the feature importance rankings

when the feature Race is permuted. Rank 8 presents the feature importance rankings when

the feature Sex is permuted. Rank 9 presents the feature importance rankings when the

feature Workclass is permuted.

The feature importance rankings shift after permutation, but the overall order remains

the same, which refers to the hierarchy of features based on their importance values. This

can be attributed to the impact of random noise introduced by the permutation process.

For example, assume feature x1 is initially ranked the highest, followed by x2, x3, x4, and x5.

After permuting x1, x1 appears to have the lowest importance ranking. The same happens

when permuting x2, and so on. The other features’ rankings remain relatively stable. For

instance, consider the original order of importance as x1 > x2 > x3 > x4 > x5. After

permuting x1, it is observed x1 < x2 > x3 > x4 > x5. While x1 now has a lower importance

score, the relative order of x2, x3, x4, and x5 remains the same. The outcome that the overall
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order of feature importance remains the same suggests that the model consistently identifies

the relative importance of features.

Given these probability distributions, weighted Shannon entropy is computed for each

feature importance ranking using Algorithm 12. An example computation is included in

Section 4.2.6. Figure 31 presents the weighted Shannon entropies values across different

methods.

FIG. 31: Weighted Shannon entropy PRIME results based on cooperative-game theory fea-
ture importance permutation methods.

Similar to Experiment 1, certain features have relatively lower weighted Shannon en-

tropy values, such as Marital Status, while others, such as Race, exhibit more uncertainty in

feature importance ranking. This indicates that for some features, the methods easily iden-

tify their respective importance values, whereas for other features, determining these values

proves to be more challenging. This could be due to more complex interactions of some

features with others, making it harder to isolate their individual impact on the model’s out-

come. Further, in this experiment, more uniform agreement about the feature importance

rankings is reached. There are some exceptions, mostly exhibited by the FBI and NcFI.

These exceptions suggest moments where FBI and NcFI methods assess the importance of
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features differently, potentially due to their unique approach to valuing the contribution of

each feature within the context of all possible feature combinations. Higher Shannon entropy

values for the NcFI method further highlight the complexity and sensitivity of this approach

in evaluating feature importance values. Overall, this implies that the importance assigned

to each feature fluctuates more across different evaluations or data subsets, indicating a less

consistent ranking of features compared to methods yielding lower entropy values.

FIG. 32: Average weighted Shannon entropy PRIME results for Adult dataset based on
cooperative-game theory feature importance permutation methods.

Finally, the average weighted Shannon entropy values were analyzed (Figure 32). The

results show very close average Weighted Shannon entropy values across many feature impor-

tance methods, including CEqL, CCRA, CEqA, CPI, CCTV, SH2FI, and SFI. Methods of

determining feature importance that utilize the Banzhaf power index and Nucleolus exhibit

increased average weighted Shannon entropy PRIME values. This implies that the feature

importance rankings derived from the Banzhaf power index and Nucleolus methods exhibit

greater variability and unpredictability. The higher Shannon entropy PRIME values suggest

that these methods may not consistently agree on the importance of features across different

permuted datasets. This variability could indicate a more nuanced or sensitive approach to

ranking feature importance, potentially capturing complex interactions or dependencies not

as readily identified by methods with lower entropy values.

Overall, from this experiment, the weighted Shannon entropy values associated with
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this dataset are lower than those observed in the previous experiment with Seatpos dataset.

Higher entropy values in Experiment 1 imply a greater degree of uncertainty or variability in

the feature importance rankings. This could be related to the close linkage between feature

importance rankings within this dataset. This interconnectedness can be traced back to

the high degree of correlation among the features. When features are strongly correlated,

their individual impacts on the model exhibit similarity, leading to a closely aligned ranking

of importance. The correlation observed among features enhances their substitutability,

enabling a scenario where multiple features can be selected for distinct rankings or several

features share equal importance in prediction. Consequently, this dynamic introduces a

heightened level of uncertainty into the feature importance ranking.

Spearman rank correlation: Finally, the Spearman rank correlation between the

original ranking and permuted feature importance ranks is measured using the data observed

in Tables 20, 21, 22, 23, 24, 25, 26, 27, 28.

TABLE 29: Adult data: Spearman’s rank correlation coefficient between original and per-
muted ranks

Permuted rankings SFI NcFI Sh2FI BFI CPI CEqA CEqL CCTV CCRA
Rank 1 0.73 0.58 0.75 0.75 0.73 0.75 0.75 0.70 0.75
Rank 2 0.65 0.71 0.61 - 0.23 0.71 0.75 0.70 0.70 0.75
Rank 3 0.83 0.79 0.83 0.84 0.68 0.81 0.81 0.81 0.81
Rank 4 0.38 0.25 0.38 0.36 0.38 0.36 0.36 0.36 0.36
Rank 5 1 0.93 1 0.63 0.96 0.96 0.96 0.96 0.96
Rank 6 0.75 0.81 0.75 0.71 0.65 0.65 0.65 0.61 0.65
Rank 7 1 0.91 1 0.66 0.93 0.96 0.97 0.97 0.96
Rank 8 0.9 0.93 0.9 0.7 0.88 0.88 0.88 0.88 0.88
Rank 9 0.98 0.84 0.98 0.28 0.93 0.93 0.93 0.60 0.93

Table 29 reveals the following pattern: most permutation ranks exhibit a strong corre-

lation with the original feature importance ranking. However, an exception arises in the case

where the most important feature (Marital Status) undergoes permutation. This specific

permutation distorts the entire feature importance hierarchy, resulting in a comparatively

low Spearman correlation coefficient. In other words, the original order of feature impor-

tance is not preserved after this particular permutation, emphasizing the model’s reliance
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on Marital Status is not replicated by other features when Marital Status is permuted. This

highlights the specific contribution of Marital Status to the model’s predictive performance.

In Rank 5 and 7, the permutation of two relatively less important features (Native

country and Race) produces perfect (1) and near perfect (0.93 and 0.91) feature importance

ranking correlation with the initial feature importance ranking. The perfect correlation

implies that the model’s performance is not altered when these features are permuted, rein-

forcing their lower impact on the overall predictive outcome.

Furthermore, the SFI and SH2FI methods display similar correlation coefficients, in-

dicating a strong alignment in their assessments of feature importance. Similarly, methods

that are grounded in resolving conflicting claims also demonstrate correlation coefficients

that are similar to one another. This pattern suggests that methods sharing a theoretical

basis or approach to evaluating feature importance tend to produce similar results, under-

scoring the influence of the underlying principles on the outcomes of feature importance

assessments. This consistency across these methods provides insights into the reliability and

comparability of different feature importance evaluation strategies.

4.4 EXPERIMENT 3: INPUT DATA ANALYSIS FOR AGENT-BASED

MODELING

This section discusses the third experiment, which involves applying cooperative game

theory-based feature importance methods to study input data describing a predator-prey

scenario, and this data was collected by Blasius et al., [176]. This application of feature

importance methods with empirical input data has the potential to be useful when actual

agent-based simulation models are developed. The results discussed in this section have

been published in Winter Simulation Conference [177]. The description of this problem is

presented in Sections 2.6 (ABM), 3.2 (data), and 3.4.4 (ABM and feature importance).

The goal of this third experiment is to illustrate the variability in feature importance

values as a result of changes in inputs and parameters across 10 different experiments that

were collected by Blasius et al., [176]. I have used the data from these experiments that
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(a) Experiment 1 (b) Experiment 5

(c) Experiment 8 (d) Experiment 10

FIG. 33: Shapley feature importance analysis results from different experiments

describe the predator-prey scenario in my study. This data consists of time series data

from ten physical experiments involving a planktonic predator-prey system, with measured

population densities of the prey (unicellular algae), predator (rotifer), and predator life

stage characteristics recorded over approximately 2,000 measurement days. Each experiment

represented a time series that differed based on specific changes in inputs and outputs.

Figure 33 presents the importance of various features in predicting rotifer numbers. In

Experiment 1, the number of eggs was the most crucial feature for predicting rotifer numbers,

followed by the egg ratio. Surprisingly, the number of algae and dead animals was found to

play the least important roles.

Similar results were obtained in Experiments 2, 3, 4, 6, 7, and 9, and therefore, the

figures for these experiments are not included. In Experiment 5, the same feature importance

pattern was observed, but the egg ratio had a slightly smaller importance value. In Experi-
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(a) Feature: algae (b) Feature: dead animals

(c) Feature: egg ratio (d) Feature: eggs

FIG. 34: Comparing Shapley feature importance values for each feature across multiple
experiments.

ment 8, the feature external was identified as the third most important feature, whereas in

the other experiments, it had an importance value of 0. In Experiment 8, the number of

eggs was the most crucial feature for predicting rotifer numbers, followed by egg ratio and

external factors. The number of algae and dead animals was again found to play the least

important role. In Experiment 10, the egg ratio was found to be relatively more important

than the feature eggs. This was followed by dead animals and then the number of algae.

Next, I looked at the feature importance values for selected features across different

experiments that were conducted by Blasius et al., [176], to see if the same feature impor-

tance values were observed across different experiments. Notice that the features are given

different feature importance values throughout different experiments. The variability in the

feature importance results across different experiments suggests that the importance of dif-
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ferent features in predicting rotifer numbers can depend on the specific conditions of each

simulation. For example, factors such as the type and quantity of food provided to the ro-

tifers, the temperature and lighting conditions, the length of the experiment, or the presence

of predators can all affect the growth and reproduction of rotifers and, consequently, the

importance of different features in predicting their numbers.

(a) Nucleolus: Experiment 1 (b) Nucleolus: Experiment 10

FIG. 35: Nucleolus feature importance values for Experiment 1 and Experiment 10

Subsequent to the Shapley feature importance analysis, Nucleolus future importance

values were evaluated. As depicted in Figure 35, the results obtained from the NcFI method

closely mirror those of the SFI values, demonstrating a high degree of similarity. Moreover,

consistent with the findings from Experiment 1, the NcFI demonstrated analogous outcomes

across all experiments, with Experiment 10 being the sole exception.

Next, Shapley-Shubik (SH2FI) and Banzhaf (BFI) power feature importance values

were computed. Figure 36 illustrates the findings from this analysis. The data indicate that

three particular features—eggs, egg ratio, and dead animals—exhibit equivalent influence

on rotifer populations. In contrast, the presence of algae appears to be inconsequential for

determining rotifer numbers. Additionally, it is important to note that the SH2FI and BFI

indices produced identical outcomes. It is important to mention that neither SH2FI nor

BFI will assign importance values when a predetermined threshold is set at a level that the

features cannot attain. For instance, in a non-technical analogy, if an item is priced at $100

and there are three individuals whose combined financial contribution is $9, the importance
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FIG. 36: Shapley-Shubik and Banzhaf power index feature importance values

value, as calculated by SH2FI and BFI, would be undefined or zero. This is because neither

individually nor collectively can they meet the purchase threshold.

FIG. 37: Conflicting claim solution for the predator-prey experiment

Finally, feature importance methods based on conflicting claims problems were evalu-

ated. Figure 37 suggests the same result that the reproductive status of the rotifer popula-

tion, as measured by the number of eggs and the egg ratio, has the most significant impact

on the population dynamics. Additionally, external factors such as the amount of algae and

dead animals can also have an impact on shaping the predator-prey cycles.
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Overall, the findings of this study offer preliminary insights into the predator-prey

model, which could be used when designing the actual agent-based simulation models.

4.4.1 PRIME WITH WEIGHTED SHANNON ENTROPY

This section evaluates the reliability of feature importance methods by analyzing how

consistently each feature importance ranking is maintained across multiple permutations.

For this assessment, 60 permutations were executed. Each permutation involved randomly

shuffling the values of the feature while the values of all other features were kept unchanged.

After each permutation, I assessed the impact on feature importance values. In total, 240

datasets underwent this evaluation process. The feature importance method was applied

to each dataset to derive the corresponding probability distributions of importance values.

Tables present these probability distributions 30, 31, 32, 33, 34. In these tables, Rank

0 corresponds to the baseline ranking of feature importance values, established when no

features have undergone permutation. Rank 1 is assigned following the permutation of

the Eggs feature, Rank 2 after the Egg Ratio feature has been permuted, Rank 3 upon

the permutation of the Dead Animals feature, and Rank 4 after altering the Algae feature

through permutation.

Table 30 displays the Shapley feature importance values obtained after performing 30

permutations on the feature Eggs. Similar to the previous experiments, here as well, the

feature importance values undergo significant fluctuations when that particular feature is

permuted, indicating its sensitivity to the order of data. While the importance values for

other features demonstrate stability across the different permutations, underscoring their

consistency in contributing to the model’s predictions.

TABLE 30: Predator-prey data: SFI feature importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4

Eggs 1 3 (90%) 1 (100%) 1 (100%) 1 (100%)
Egg ratio 2 1 (100%) 3 (90%) 2 (100%) 2 (100%)
Dead animals 3 2 (100%) 2 (100%) 4 (100%) 3 (100%)
Algae 4 4 (90%) 4 (100%) 3 (100%) 4 (100%)
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TABLE 31: Predator-prey data: NcFI feature importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4

Eggs 1 3 (90%) 1 (100%) 1 (100%) 1 (100%)
Egg ratio 2 1 (100%) 3 (100%) 2 (100%) 2 (100%)
Dead animals 3 2 (90%) 2 (100%) 4 (100%) 3 (100%)
Algae 4 4 (100%) 4 (100%) 3 (100%) 4 (100%)

TABLE 32: Predator-prey: SH2FI and BFI importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4

Eggs 1 4 (100%) 1 (100%) 1 (100%) 1 (100%)
Egg ratio 1 1 (100%) 3 (100%) 2 (100%) 2 (100%)
Dead animals 1 2 (100%) 2 (100%) 4 (100%) 3 (100%)
Algae 4 3 (100%) 4 (100%) 3 (100%) 4 (100%)

TABLE 33: Predator-prey data: CPI, CEqA, CEqL, CCTV feature importance rankings
after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4

Eggs 1 3 (100%) 1 (100%) 1 (100%) 1 (100%)
Egg ratio 2 1 (100%) 3 (90%) 2 (100%) 2 (100%)
Dead animals 3 2 (95%) 2 (100%) 4 (100%) 3 (100%)
Algae 4 4 (95%) 4 (100%) 3 (100%) 4 (100%)

TABLE 34: Predator-prey data: CCRA feature importance rankings after permutations

Feature Rank 0 Rank 1 Rank 2 Rank 3 Rank 4

Eggs 1 3 (75%) 1 (100%) 1 (100%) 1 (100%)
Egg ratio 2 1 (100%) 3 (100%) 2 (100%) 2 (100%)
Dead animals 3 2 (75%) 2 (100%) 4 (100%) 3 (100%)
Algae 4 4 (100%) 4 (100%) 3 (100%) 4 (100%)

In the evaluation of permutation importance, it was observed that several methods

produced similar outcomes. For instance, SFI and NcFI methods yielded nearly identical

rankings of feature importance across the permutations. Similar patterns of resemblance

were also observed between SH2FI and BFI. Furthermore, a close resemblance was noted

among feature importance methods designed to address issues related to conflicting claims,

with the exception of the CCRA. CCRA exhibited the lowest probability distribution in

ranking the importance values of the feature Eggs upon its permutation.

Using the data of these probability distributions, Weighted Shannon entropy values

are measured. Figure 38 presents the results of the weighted Shannon entropy permutation

importance evaluation for different feature importance methods applied to Predator-prey
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FIG. 38: Weighted Shannon entropy PRIME results based on cooperative-game theory fea-
ture importance permutation methods

data. The outcomes highlight a relatively consistent ranking of features, especially for the

Egg ratio, which shows a stable importance across methods. In contrast, the ranking of Algae

exhibits more variability in the permutation importance. Nonetheless, Figure 39 illustrates

that, when considering the average Shannon entropy across all features and models, the

results are closely aligned. A marginally lower average weighted Shannon entropy value

was noted for SH2FI and BFI, with SFI registering the highest average value. Overall, this

experiment recorded the lowest weighted Shannon entropy values in comparison to prior

experiments.

Future work for this research is to repeat the feature importance approach but on

the simulation output data. Comparing the rankings of the features (real-world data vs

simulation data) might provide insight into the limitations of the simulation and/or add to

the validation process of the simulation. Thus, feature importance might be able to aid the

validation process beyond informing the features to focus on.

Spearman rank correlation: Finally, the Spearman rank correlation between the

original ranking and permuted feature importance ranks is measured using the data observed
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FIG. 39: Average weighted Shannon entropy PRIME results based on cooperative-game
theory feature importance permutation methods

in Tables 30, 31, 32, 33, 34.

TABLE 35: Predator-prey: Spearman’s rank correlation coefficient between original and
permuted ranks

Permuted rankings SFI NcFI Sh2FI BFI CPI CEqA CEqL CCTV CCRA
Rank 1 0.39 0.39 0.25 0.25 0.39 0.39 0.39 0.39 0.39
Rank 2 0.79 0.79 0.77 0.77 0.79 0.79 0.79 0.79 0.79
Rank 3 0.79 0.79 0.25 0.25 0.79 0.79 0.79 0.79 0.79
Rank 4 1 1 0.77 0.77 1 1 1 1 1

Table 35 reveals the following pattern: most permutation ranks exhibit a strong corre-

lation with the original feature importance ranking. However, similar to the previous exper-

iments, an exception arises in the case where the most important feature (Eggs) undergoes

permutation. This specific permutation distorts the entire feature importance hierarchy, re-

sulting in a comparatively low Spearman correlation coefficient. In other words, the original

order of feature importance is not preserved after this particular permutation, emphasizing

the model’s reliance on feature Eggs is not replicated by other features when Eggs is per-

muted. This highlights the specific contribution of feature Eggs to the model’s predictive

performance.

In Rank 4, the permutation of the least important features (Algae) produces perfect

(1) feature importance ranking correlation with the initial feature importance ranking and
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rankings of other feature importance methods except for SH2FI and BFI. The perfect cor-

relation implies that the model’s performance is not altered when this feature is permuted,

reinforcing its lower impact on the overall predictive outcome.

Furthermore, identical correlation coefficients are observed between SFI and NcFi, SFI

and SH2FI, and all the methods are based on conflicting claims solutions. This again re-

inforces the observations from the previous experiments that methods sharing a theoretical

basis or approach to evaluating feature importance tend to produce similar results, under-

scoring the influence of the underlying principles on the outcomes of feature importance

assessments.

4.5 CORE FEATURE IMPORTANCE

This section presents the core feature importance method, which failed to produce any

results for the Seatpos, Adult, and predator-prey data, as an empty core was observed for

these cases. This could be because of the features with multicollinearity that are highly sub-

stitutable, and forming a stable set with these features will be challenging. Some approaches

could be employed to turn the empty core into a non-blocking coalition, such as endogenously

by forming new beliefs and attitudes or exogenously from an external intervention [219].

Non-empty core: Below, an example is presented to determine the core of feature

importance values where the core exists. The following is assumed: R2 values for the features

f1 ≥ 0.2, f2 ≥ 0, f3 ≥ 0.3, f1 + f2 ≥ 0.5, f1 + f3 ≥ 0.8, f2 + f3 ≥ 0.65, f1 + f2 + f3 = 1 The

region of the payoff vector is represented by the smaller triangle in blue within the larger

triangle in Figure 40.

Each point in Figure 40 represents an efficient payoff vector. The larger triangle shows

all the possible imputations, even not satisfying the individual rationality or group rationality

properties. From this set, we would like to have one imputation allocation that satisfies the

individual and group rational properties. The small triangle in red is the core. In cases when

the core isn’t empty, it may not be unique (has multiple cores), or it may become unbounded
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FIG. 40: Example of a core that is not empty

and have no vertices [264]. Alternative to the core is the approximate least core approach

proposed by Yan and Procaccia [21]. One disadvantage of using the approximate least core

approach is that it relies on random sampling. The specific allocation obtained will depend

on the random subset of coalitions chosen. Therefore, the quality of the approximation

depends on the number of samples taken and the randomness of the sampling. If too few

samples are taken or the sampling is not random enough, the approximation may not be

accurate. On the other hand, taking too many samples can be computationally expensive.

In the scope of this dissertation, I do not discuss this approach nor address the empty core

or multi-core problem and leave it for future studies.

4.6 RESULTS SUMMARY

This section provides a comprehensive summary of the findings from all three experi-

ments conducted.

In summary, it becomes clear that cooperative game theory-based feature importance

methods, except for the core feature importance, offer varied perspectives on the importance

of features within the model. These methods illustrate how each feature contributes to the
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overall performance, providing explanations of their importance. The effectiveness of these

methods in accurately measuring feature importance values was significantly influenced by

the data, specifically whether features were correlated or independent. Tables 36, 37, 38

display the summarized rankings of feature importance values.

TABLE 36: Seatpos data: Summary of feature importance ranking generated by various
methods

Model Arm Ht Age HtShoes Seated Leg Thigh Weight
SFI 6 2 8 3 4 1 6 5
NcFI 2 2 8 1 2 2 2 2
SH2FI 7 2 8 3 4 1 6 5
BFI 7 2 8 3 4 1 6 5
CPI 7 2 8 3 4 1 6 5
CEqA 1 1 1 1 1 1 1 1
CEqL - 1 - 2 4 3 - -
CCTV 1 1 8 1 1 1 1 1
CCRA 6 2 8 3 4 1 6 5

TABLE 37: Adult data: Summary of feature importance ranking generated by various
methods

Methods Marital status Education Occupation Age Hours per week Sex Native country Work class Race
SFI 1 2 3 4 5 6 7 8 9
NcFI 1 2 4 3 5 8 7 6 9
SH2FI 1 2 3 4 5 6 8 7 9
BFI 3 1 6 4 9 7 8 2 5
CPI 1 3 2 4 5 6 8 7 9
CEqA 1 3 2 6 4 5 8 7 9
CEqL 1 3 2 6 4 5 8 7 9
CCTV 1 3 2 6 4 5 8 7 9
CCRA 1 3 2 6 4 5 8 7 9

TABLE 38: Predator prey data: Summary of feature importance ranking generated by
various methods

Methods Eggs Eggs ratio Dead animals Algae
SFI 1 2 3 4
NcFI 1 2 3 4
SH2FI 1 2 - -
BFI 1 2 - -
CPI 1 2 3 4
CEqA 1 2 3 -
CEqL 1 2 3 4
CCTV 1 2 3 4
CCRA 1 2 3 -

Transferable utility-based feature importance methods, such as Shapley and

Nucleolus feature importance methods (SFI and NcFI), assess the contribution of each fea-

ture to the model’s overall performance. Essentially, the objective of these methods is to
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quantify how much each feature contributes to the predictive accuracy, reduction in error, or

explanatory power of the model. These methods help understand how much each variable

’adds’ to the model’s performance, taking into account interactions with other variables and

their standalone impact. Features that contribute more to the model’s performance receive

a larger share of the total gains, while those with minimal impact receive smaller shares.

This ensures the fair allocation of feature importance values. The SFI method has proven

effective in ensuring a fair allocation of predictive power across features. It is capable of

differentiating between the importance values of features, whether they are collinear or in-

dependent. The Nucleolus feature importance method was not very effective in determining

the feature importance values when the features were correlated, as the features were given

the same importance values across the features, this reduces the discriminatory power gener-

ated by the feature importance meth as shown in Experiment 1 (Table 36). The core feature

importance method failed to generate any importance values for all the experiments that

were conducted.

Voting feature importance methods are designed to assess a feature’s capability

to influence a specific outcome through the collective contributions of multiple features. The

primary objective is to identify winning coalitions, which are combinations of features that

contribute to the most effective models based on their performance capabilities. Voting

feature importance methods Shapley-Shubik and Banzhaf power index feature importance

methods are human-centric due to the flexibility to adjust threshold values and directly

observe the changes of feature importance values.

Also, Shapley-Shubik and Banzhaf power feature importance methods are effective in

addressing datasets with interdependent features. These methods exhibit a high level of

discriminatory capability, distinguishing the importance of different features, in contrast to

approaches like the Nucleolus method, which tends to assign equal importance to features

in cases of high correlation. The term discriminatory power refers to the ability to rec-

ognize varying degrees of importance across features. The term low discriminatory power
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implies that all features are of equivalent importance, which might be true in certain sce-

narios. However, more often, features exert varying degrees of influence. When a feature

importance method successfully identifies these variances, it significantly enhances the in-

terpretability and utility of the machine learning model. Furthermore, the SH2FI and BFI

methods demonstrated consistency in ranking the importance of features after the permuta-

tions, reinforcing their reliability in determining the impact of individual features.

Conflicting claims feature importance methods focus on fair allocation of the

feature importance values when resources are insufficient to satisfy all claims fully. Here the

resources refer to the ”capacity” of the model to incorporate and give importance weight

to various features effectively. An insufficient resource means not having enough data to

accurately estimate the importance of all features, limitations in computational capabilities

to perform exhaustive feature importance calculations, or a model that cannot integrate all

potentially informative features due to complexity or overfitting concerns. Conflicting claims

problems, particularly the Constrained Equal Awards (CEqA) and Constrained Equal Losses

(CEqL) feature importance methods, can sometimes fall short in efficiently determining

feature importance values. This limitation stems from the fact that these methods might

not fully consider the inherent predictive value or relevance of the features to the target

variable, leading to allocations of importance that might be viewed as unjust in evaluating

feature significance.
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TABLE 39: Comparision of cooperative game theory feature importance methods developed
in the scope of this dissertation: strengths and limitations

Methods Strengths Limitation

Shapley fea-

ture impor-

tance (SFI)

SFI method has been useful in measuring

the fair distribution of the prediction ”pay-

out” among the features, considering all

possible combinations of feature presence.

Discriminatory power is high. SFI can

distinguish various feature importance val-

ues with colinear and independent data as

shown in experiments 1 to 3.

Data dependency: SFI could

be sensitive to multicollinearity.

Consistency relatively consis-

tent over the permutations. It is

computationally intensive, espe-

cially as the number of features

grows.

Nucleolus

feature im-

portance

(NcFI)

NcFI method was useful in measuring the

fair distribution of the prediction ”payout”

among the features when the features were

independent (Exp 1 and 2).

NcFI was not able to distinguish

the feature importance values

with data dependencies (Exp.

1) Discriminatory power is

low when the data has corre-

lations. Consistency in rank-

ing the feature importance val-

ues was not stable, as evidenced

by the average weighted Shannon

entropy results of Experiments 1

and 2.

Continued on the next page
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TABLE 39 – continued from previous page

Methods Strengths Limitation

Shapley-

Shubik

feature im-

portance

(SH2FI)

SH2FI method was useful for assessing

the power dynamics and the ability to

form successful coalitions. Implementation

of threshold values enhances transparency

and intuitiveness in examining how vari-

ations in feature contributions can sig-

nificantly influence model success/failure.

Exp. 1, 2, and 3 demonstrate that this

method is highly human-centric due to

the flexibility to adjust threshold values

and directly observe the changes of fea-

ture importance values. SH2FI was use-

ful to address data with dependencies,

it had high discriminatory power, and

relatively consistent in the feature impor-

tance ranking in all the experiments.

Similar to the SFI, this approach

can be computationally inten-

sive.

Continued on the next page
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TABLE 39 – continued from previous page

Methods Strengths Limitation

Banzhaf

power fea-

ture im-

portance

(BFI)

The BFI proved to be an effective tool

for assessing feature importance in scenar-

ios characterized by multicollinearity, as

demonstrated in Exp. 1. This method

exhibited consistent rankings of feature

importance across various permutations,

maintaining reliability in its evaluations as

observed in Exp. 1 through 3. Similar

to SH2FI, this method is highly human-

centric due to the flexibility to adjust

threshold values and directly observe the

changes of feature importance values.

Discriminatory power was

high for Exp. 1 and 2. How-

ever, it was low for Exp. 3. In

Exp. 3, a different set of features

emerged as important, diverg-

ing from the consensus typically

observed. While this variation

can provide unique insights, it

complicates the decision-making

process for the final feature se-

lection in the model, especially

when most methods converge on

a similar set of features, yet the

BFI highlights an entirely differ-

ent subset.

CPI CPI method was effective in measuring the

feature importance values across all the

experiments, including when the features

were highly correlated. Discriminatory

power was high for all the experiments.

CPI demonstrated a consistent

selection of feature importance

values in Exp. 2 and 3, where the

features are independent. How-

ever, in Exp. 1, the consistency

of the method’s feature impor-

tance rankings diminished.

Continued on the next page
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TABLE 39 – continued from previous page

Methods Strengths Limitation

CEqA CEqA method was effective in explaining

the feature importance values for experi-

ments where data did not have any depen-

dencies (Exp. 2 and 3).

Explanations of the feature

importance values significantly

struggled for Experiment 1 and

generated all equal importance

values. This method is sensitive

to data dependencies and has

low discriminatory power

and consistency in feature

importance ranking.

CEqL CEqL method was relatively effective in

identifying the feature importance values

for the experiments when the data was not

correlated.

This approach may not ef-

fectively manage multicollinear

features, affecting the model’s

performance and explainability.

This limits the insights that can

be gained from all the futures,

and it may introduce a bias to-

wards top features. Also, with

multicollinear features, the con-

sistency of ranking was relatively

unstable, and the discrimina-

tory power was very low.

CCTV CCTV method was relatively effective in

identifying the feature importance values

for the experiments when the data was not

correlated.

Similar to CEqL, this approach

may not effectively manage mul-

ticollinear features, affecting the

model’s performance and ex-

plainability. Also, the discrimi-

natory power was very low for

Exp. 1, where features had high

multicollinearity.

Continued on the next page
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TABLE 39 – continued from previous page

Methods Strengths Limitation

CCRA CCRA method was relatively effective in

identifying the feature importance values

for the experiments when the data was

not correlated. This method effectively

manages multicollinear features, affecting

the model’s performance and explainabil-

ity with high discriminatory power.

The method was not so consis-

tent in feature importance rank-

ing after permutations.

Overall, the SFI, SH2FI, BFI, and CPI methods demonstrated strong performance

across all experiments. This involves disentangling the intertwined effects of variables, espe-

cially in cases where there are correlations or interactions between them, to identify how much

each feature independently contributes to the total gains. In contrast, the NcFI method,

CEqA, and CEqL faced challenges in pinpointing the individual contributions and distinct

impacts of each feature under conditions of high correlation among features.

4.7 RESEARCH SUMMARY

The summary of this dissertation is presented here.

The goal of this study was to develop cooperative game theory (CGT) based explain-

able artificial intelligence (XAI) methods and address the research questions outlined in

Chapter 1.

Chapter 2 delves into the foundational concepts of CGT and XAI, with a particu-

lar emphasis on the feature importance method utilized in XAI to determine the relevance

of features within a machine learning model. This chapter aims to provide a comprehen-

sive background, setting the stage for understanding how CGT principles can be applied

to enhance interpretability in machine learning through attribution (measure) of feature

importance values.
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Chapter 3 presents the CGT-based feature importance methods alongside their under-

lying algorithms. This chapter focuses on how CGT principles are applied to identify and

evaluate the relevance of individual features in enhancing the interpretability of machine

learning models. Further, the chapter presents a weighted Shannon entropy-based permuta-

tion relative importance evaluation (PRIME) metric that is used to evaluate the effectiveness

of feature importance methods developed in this dissertation. This discussion is anchored

around two pivotal elements of the metric: weighted Shannon entropy and permutation tests,

offering a detailed examination of their roles in evaluating feature importance methods.

Chapter 4 provides the study results and demonstrates that the methodology described

in Chapter 3. Three different experiments are conducted with different data types and mod-

els. Experiment 1 evaluates feature importance methods utilizing linear regression models,

particularly focusing on data with dependency among features. Experiment 2 investigates

the application of feature importance methods within the framework of logistic regression

models, where features are independent. Lastly, Experiment 3 revisits the linear regres-

sion model to explore input data that could potentially inform the design of agent-based

simulation models, emphasizing practical applicability in more complex modeling scenarios.

This structured approach allows for a nuanced examination of feature importance methods

across different model types and data conditions, providing insights into their effectiveness

and adaptability. The findings of this study reveal that a number of feature importance

methodologies grounded in cooperative game theory—specifically the Shapley-Shubik index,

the Banzhaf power index, and approaches based on conflicting claims—prove effective for

quantifying the significance of features. These methods stand out for their user-centered

design, offering the flexibility to modify threshold values and directly monitor the impact

on feature importance evaluations. This adaptability enhances their applicability in real-

world scenarios, allowing for more tailored analyses in understanding the contributions of

individual features within machine learning models.
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CHAPTER 5

CONCLUSION

This chapter concludes the work presented in this dissertation and outlines the limi-

tations and future directions for cooperative game theory-based explainable artificial intelli-

gence methods.

5.1 CONCLUSION

Machine learning (ML) models are used to make highly crucial decisions, varying from

medical diagnosis to cyber-physical systems analysis. Understanding the decision-making

process of these models will provide more knowledge and confidence about our conclusions.

However, when we are dealing with some data that is twisted, such as having some multi-

collinearity issue, or when we are using black-box models, the explanation of the model’s

output may get biased and altered. Having a trustworthy and transparent model that we

can rely on is crucial. Explainable artificial intelligence (XAI) has been useful in addressing

these issues. XAI provides different methods to better describe the inner workings of the

models as well as the model outcomes.

This dissertation develops XAI methods using cooperative game theory-based solutions

with linear regression and logistic regression models. The regression model is discussed

because these models become dubious when highly correlated features are present. The

logistic regression model is considered to show that these methods can also be appropriate for

classification tasks. Further, these methods for assessing feature importance are employed

to explore the changes in input data that could enhance the predator-prey model within

agent-based simulations. This approach could lead to the development of more accurate and

reliable ABM simulation models.
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Considering different cooperative game theory-based feature importance methods can

help uncover new insights about the predictions. The choice of techniques depends on the

data specifications, as some techniques may offer clear explanations for certain data while

being less effective for others (e.g., Nucleolus). Incorporating approaches such as Shapley-

Shubik and Banzhaf’s power index can make the model more explainable and transparent,

as they allow for experimentation with different threshold values to observe how feature im-

portance values vary with adjustments. The proportional rule, constrained equal awards and

losses and random arrival-based feature importance methods appear to be more consistent

even in the presence of data dependencies, making them valuable approaches for measuring

feature importance values.

Evaluating different feature importance methods requires considering their perfor-

mance compared to other methods, their applicability to various datasets, and their ability

to handle specific challenges such as multicollinearity among features. This study presents a

permutation relative importance evaluation (PRIME) metric using a weighted Shannon en-

tropy to measure the uncertainty and overall consistency associated with feature importance

rankings. Higher weighted Shannon entropy values were observed for the Nucleolus feature

importance method, highlighting the sensitivity of this approach in evaluating feature im-

portance. In the dataset where the features were highly correlated, some of the methods

were not very efficient, such as constrained equal awards, constrained equal losses, and con-

flicting claims Talmud valuation, while they were useful for the dataset where there was no

dependency between the features.

5.2 LIMITATIONS AND FUTURE WORK

Employing cooperative game theory in explainable artificial intelligence (XAI) offers

new insights into machine learning models and their predictions. However, these methods

are contingent upon certain assumptions, and deviations from these assumptions could pose

challenges that need to be addressed. The explanations generated by these methods can
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differ significantly from one another. The task of selecting the most appropriate method and

the specific type of explanation it yields remains an open area for further investigation.

Also, the selection of the method depends on the problem of interest and the data

type. For example, logistic regression-based feature importance methods performed well

when the experiment was conducted, however, its performance indicator of McFadden’s R-

squared has limitations compared to other measures. One key limitation is that McFadden’s

R-squared can be relatively small even when the model has strong predictors [265]. This

is because it measures the improvement of the model over a null model rather than the

variance explained by the model. For example, even with strong effects on the probability

of the outcome, McFadden’s R-squared may not approach near 1, indicating that it might

be challenging to achieve high values for this measure in practice, reflecting the inherent

difficulty in predicting a binary event with certainty. In the future, other measures like Cox

and Snell’s R-squared and Tjur’s R-squared could be explored [151].

Additionally, assessing the effectiveness of feature-importance methods continues to

pose significant challenges. In this work, I took a step toward a quantitative evaluation of

methods of future importance using permutation tests and the Shannon entropy approach.

This work is only a starting point; one can also develop other measures of performance using

the Weighted Shannon Entropy-based Permutation Importance Evaluation (PRIME) metric.

Developing ways to quantitatively evaluate feature importance methods could aid in select-

ing the most effective method for identifying essential features. The Weighted Shannon

Entropy-based PRIME metric compares various feature importance methods by evaluat-

ing feature importance rankings on an individual basis. One of the limitations associated

with PRIME is that it employs a majority ranking system for the feature importance dis-

tributions. This means the rank of a feature is determined by the most frequent ranking

positions across different permutation importance evaluations [263]. By focusing solely on

the majority ranking, this metric might disregard important insights from models that have

identified different feature importance rankings, especially when the majority consensus is
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not overwhelming. Incorporating the feature importance rankings from minority rankings

could ensure that less common but potentially insightful rankings are not overlooked. Note

that close rankings, where the difference in agreement levels is minimal (e.g., 55% vs. 45%),

are relatively rare. In most cases, the majority ranking method yields clear and decisive

outcomes, with feature rankings often selected with high levels of confidence. This is an

essential aspect of the method’s reliability, as it implies that in the vast majority of cases,

there is a significant consensus among feature importance methods regarding the importance

of features. Also, tied rankings can arise when two or more features exhibit identical levels

of importance across various models or evaluations. This phenomenon has been noted in

scenarios where features show a high correlation and in certain methodologies, including

Nucleolus Feature Importance (NcFI). However, this could be due to the objective of NcFI,

which is to minimize ’unhappiness’ among models that receive the least benefit [28]. The

term ’model unhappiness’ refers to the gap between the highest outcomes and the actual

results received, indicating underperformance. Addressing these limitations could further

improve the reliability of evaluations of feature importance methods.

In the future, this metric could accommodate various ranking methods. Also, normal-

izing the weighted probabilities may lead to some information loss, particularly if there are

extreme differences in the frequencies of rankings. This normalization may not fully capture

the nuances of the feature importance values, potentially resulting in oversimplified entropy

calculations. Also, some of these methods may be sensitive to outliers in the feature impor-

tance ranking, potentially skewing the entropy calculations. Robustness measures may need

to be implemented to mitigate the impact of outliers on the results.

Finally, these feature importance methods developed in this dissertation could be ap-

plied to more complex models such as computer vision, large-scale language models, and

non-linear problems. For computer vision, this could mean identifying which pixels or pat-

terns are most influential in image recognition tasks, leading to better model interpretability

and enhanced training strategies. In the realm of large-scale language models, feature im-
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portance can reveal which words or phrases carry the most weight in determining the context

or sentiment of text, facilitating the refinement of models for greater accuracy and efficiency.

These feature importance methods could open avenues for optimizing model performance

and reliability.
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