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We calculate the reproducibility scores of the Hi-C data obtained
by all enhancement methods for the actual low-resolution Hi-C data
and the high-resolution Hi-C data on the entire chromosomes 18–
22, which can be seen inSupplementary Table S17for details.

3.6 Resolution enhancement between different cell
types and different species
We conduct experiments to verify whether the training model can
enhance the low-resolution Hi-C data of different cell types (K562,
IMR90, NHEK) of the same species. In addition, we use low-
resolution mouse cell types (CH12-LX) to verify whether the trained
model can enhance Hi-C data of different species. In this experi-
ment, K562, NHEK, IMR90, and CH12-LX have a resolution of
10 kb. They all have a down-sampling rate of 1/16. We use the
model trained on GM12878 to directly enhance the low-resolution
Hi-C data of other human cell types (K562, IMR90, NHEK) and
mouse cell types (CH12-LX). The low-resolution Hi-C data of dif-
ferent cell types are also obtained through random down-sampling.
For the testing on human cell types, we use Hi-C data from chromo-
somes 18–22; for the testing on mouse cell types, we use Hi-C data
from chromosomes 16–19. Then, we evaluate all enhancement
methods in terms of the MSE, PSNR, and SSIM scores. Finally, we
report the results on K562 and IMR90 in Table 4, and on other dif-
ferent cell types inSupplementary Table S18.

In these three metrics, DFHiC achieves significantly better scores
than the compared methods, which yields better generalization in
different cell types or species. Furthermore, this indicates that
DFHiC can effectively learn the mapping relationship from low-
resolution Hi-C data to high-resolution ones.

To evaluate DFHiC contribution to the recognition of chromatin
contacts and chromatin loops in different cell types, we use the Fit-Hi-C
tool to evaluate chromosome 19 enhanced by all methods in different
cell types. Again, the threshold for significant interactions is set here to
q-value < 1e� 6 to preserve significant interactions. Then, we only
retained significant interactions with genomic distances in the range of

Figure 3. Visualization of Hi-C data and detected TAD on chr20 (14–17 Mb) by HiCPlotter. LR is low-resolution Hi-C data and HR is high-resolution Hi-C data. The
14–17 Mb region on chromosome 20 and the TAD corresponding to this region are visualized. “Domain” is the visualization of the detected TAD. The green box marks the
part where the TAD detection result deviates from the high-resolution Hi-C matrix.

Table 3. The biological reproducibility scores of all enhanced Hi-C
matrices and high-resolution Hi-C matrices on chromosomes
18Ð22 in GM12878.

Method Chr18 Chr19 Chr20 Chr21 Chr22 Avg

Genome DISCO HiCPlus 0.802 0.837 0.819 0.832 0.861 0.83
SRHiC 0.479 0.767 0.677 0.507 0.511 0.588
HiCNN 0.749 0.805 0.772 0.794 0.847 0.793
DeepHiC 0.438 0.43 0.418 0.124 0.108 0.304
HiCARN 0.708 0.826 0.814 0.787 0.788 0.785
DFHiC 0.835 0.906 0.888 0.888 0.923 0.888

QuASAR-Rep HiCPlus 0.899 0.95 0.928 0.917 0.95 0.929
HiCNN 0.936 0.969 0.959 0.942 0.97 0.955
SRHiC 0.921 0.962 0.951 0.924 0.96 0.944
DeepHiC 0.939 0.954 0.952 0.945 0.957 0.949
HiCARN 0.939 0.958 0.952 0.944 0.96 0.95
DFHiC 0.934 0.97 0.96 0.94 0.972 0.955

Note: The top scores and methods are indicated by bolded.

Figure 4. The number of signi�cant interactions detected by Fit-Hi-C on chromo-
some 20 recovered by different methods for actual low-resolution Hi-C data.
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30–300 kb. We evaluated the performance using the F1 score as shown
in Table 5. Significant interactions recovered on different cell types by
DFHiC outperformed other approaches. Supplementary Fig. S10 shows
the number of significant interactions detected by Fit-Hi-C, and the
intersection parts represent the same number of reused significant inter-
actions. Here, we also calculated the false positive rate of all methods
on chromosome 19 for different cell types, and the results are presented
in Supplementary Table S19. DFHiC obtains lower false positive rate
on different cell types, and its false positive rate ranges from 20.4% to
23.1%, with less volatility than other methods. The average false posi-
tive rate of DFHiC in different cell types is only 21.3%, which is much
better than the average false positive rate of other methods.

For TAD boundary detection, we also calculate Jaccard index met-
rics for different cell types (K562, IMR90, NHEK, CH12-LX). Here,
we compare different cell types and report the results in Supplementary
Table S20 (K562), Supplementary Table S21 (IMR90), Supplementary
Table S22 (NHEK) and Supplementary Table S23 (CH12-LX). We ob-
serve that the TAD boundaries detected by DFHiC-enhanced Hi-C
data in different cell types are closer to the TAD boundaries detected
by high-resolution Hi-C. We use the HiCPlotter tool to visualize results
for different cell types, as seen in Supplementary Fig. S11 (K562),
Supplementary Fig. S12 (IMR90), Supplementary Fig. S13 (NHEK),
and Supplementary Fig. S14 (CH12-LX).

We calculate the reproducibility scores of the Hi-C data obtained by
all methods for different cell types and the high-resolution Hi-C data on
the entire chromosome 18–22, which can be seen in Supplementary Table
S24 (K562), Supplementary Table S25 (IMR90), Supplementary Table
S26 (NHEK) and Supplementary Table S27 (CH12-LX) for detail.

3.7 Enhancement effect in the cases of different down-

sampling ratios
We randomly down-sample the high-resolution Hi-C data of
GM12878 at different down-sampling rates (1/8, 1/25, 1/50, 1/100)

to obtain different low-resolution data. Taking the Hi-C data with a
resolution of 10 kb as an example, the data obtained by random
sampling at a down-sampling rate of 1/16 theoretically generates the
Hi-C data with a resolution of 160 kb, the data obtained by random
down-sampling at a sampling rate of 1/25 theoretically produces the
Hi-C data with a resolution of 250 kb, and the data obtained by ran-
dom sampling at a down-sampling rate of 1/100 theoretically gener-
ates the Hi-C data with a resolution of 1 Mb. We retrain all methods
on the down-sampled datasets. Similarly, we use chromosomes 18–
22 as the test set for evaluation and comparison. Here, we calculate
three metrics for all methods at different resolutions: MSE, PSNR,
and SSIM. Table 6 shows that DFHiC performs much better than
the compared methods on different resolution Hi-C data in the cases
of 1/8 and 1/25. Furthermore, Supplementary Table S28 show the
results in other cases of the down-sampling ratios.

One can observe that, as the down-sampling ratio increases, the
enhancement effect of all methods tends to be downward. This is
due to the fact that more information is lost in the cases of the higher
down-sampling ratio of low-resolution Hi-C data. Consequently,
the information loss prevents the machine learning model from ef-
fectively enhancing the matrix. The SSIM score decreases most sig-
nificantly, indicating that it is difficult for the model to learn
effective structural information when critical information is lost in
the low-resolution Hi-C data.

To further analyze the model to be able to enhance the Hi-C ma-
trix with higher resolution, we train DFHiC on the Hi-C data with a
resolution of 50 kb. Then we use DFHiC to enhance the Hi-C data
with a 50 kb resolution to Hi-C data with a 5 kb resolution. We use
HiCPlotter to visualize the results on chromosome 20 (14–
15.5 Mb), as seen in Supplementary Fig. S15. We observe that the
Hi-C data enhanced by DFHiC is closer to the high-resolution Hi-C
data in terms of boundary detection of TAD.

4 Conclusion

In this paper, we develop a dilated full convolution model to effect-
ively and conveniently enhance the resolution of Hi-C data. We ver-
ify the quality of the Hi-C matrix reconstructed by DFHiC in some
scenarios. The extensive experimental results show that DFHiC is
superior to other methods under different measures. The Hi-C ma-
trix reconstructed by DFHiC is highly similar to the high-resolution
Hi-C matrix, which allows meaningful interactions to be detected
from the low-resolution Hi-C matrix at a low cost. This also enables
the finer structure (e.g. TADs, loop) in the chromosome to be
detected.

We also observe that there are some commonalities in the local
patterns between different cell types of the same species. As a result,
DFHiC can still achieve better scores when trained in other cell
types. However, due to the differences among species, local

Table 5. The comparison results of F1 scores recovered by all

methods for significant interactions of chromosome 19 on different

cell types.

Method K562 IMR90 NHEK CH12-LX

LR 0.001 0.001 0.001 0.004

HiCPlus 0.643 0.66 0.253 0.576

SRHiC 0.567 0.593 0.299 0.508

HiCNN 0.713 0.722 0.388 0.683

DeepHiC 0.653 0.684 0.297 0.611

HiCARN 0.659 0.692 0.346 0.637

DFHiC 0.754 0.754 0.419 0.678

Note: The top scores and methods are indicated by bolded.

Table 6. The comparison results of all enhancement methods on

the test set of low-resolution Hi-C samples down-sampled in the

cases of different ratios.

Method MSE PSNR SSIM

Ratio 1:8 HiCPlus 20.246 16.958 0.396

HiCNN 9.624 20.218 0.405

SRHiC 63.13 12.816 0.348

DeepHiC 9.756 19.762 0.457

HiCARN 8.796 20.092 0.459

DFHiC 8.701 20.61 0.514

Ratio 1:25 HiCPlus 50.463 13.068 0.198

HiCNN 12.776 19.04 0.213

SRHiC 25.937 16.298 0.143

DeepHiC 13.509 18.767 0.274

HiCARN 11.685 19.213 0.271

DFHiC 11.59 19.454 0.319

Note: The top scores and methods are indicated in bolded.

Table 4. The comparison results of the enhancement methods on

the test set from different cell types and different species.

Method MSE PSNR SSIM

K562 HiCPlus 10.568 12.959 0.208

HiCNN 3.604 17.406 0.184

SRHiC 3.973 16.85 0.11

DeepHiC 4.018 17.025 0.189

HiCARN 3.539 17.739 0.199

DFHiC 3.254 17.933 0.237

IMR90 HiCPlus 10.144 13.406 0.212

HiCNN 3.565 17.626 0.19

SRHiC 3.95 17.1 0.133

DeepHiC 3.964 17.257 0.188

HiCARN 3.485 18.047 0.2

DFHiC 3.274 18.171 0.261

Note: The top scores and methods are indicated by bolded.

DFHiC to enhance the resolution of Hi-C data 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/5/btad211/7135829 by O
ld D

om
inion U

niversity user on 07 June 2023

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad211#supplementary-data


characteristic information cannot be used to better enhance the Hi-
C data across different species.

Supplementary data

Supplementary data are available at Bioinformatics online.
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