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ABSTRACT 

 
A PREVENTIVE MEDICINE FRAMEWORK FOR WEARABLE ABIOTIC GLUCOSE 

DETECTION SYSTEM 

 

Saikat Banerjee 

Old Dominion University, 2022 

Director: Dr. Gymama Slaughter 

 

 

 

In this work, we present a novel abiotic glucose fuel cell with battery-less remote 

access. In the presence of a glucose analyte, we characterized the power generation and 

biosensing capabilities. This system is developed on a flexible substrate in bacterial 

nanocellulose with gold nanoparticles used as a conductive ink for piezoelectric deposition-

based printing. The abiotic glucose fuel cell is constructed using colloidal platinum on gold 

(Au-co-Pt) and a composite of silver oxide nanoparticles and carbon nanotubes as the anodic 

and cathodic materials. At a concentration of 20 mM glucose, the glucose fuel cell produced 

a maximum open circuit voltage of 0.57 V and supplied a maximum short circuit current 

density of 0.581 mA/cm2 with a peak power density of 0.087 mW/cm2. The system was 

characterized by testing its performance using electrochemical techniques like linear sweep 

voltammetry, cyclic voltammetry, chronoamperometry in the presence of various glucose 

level at the physiological temperatures. An open circuit voltage (Voc) of 0.43 V, short circuit 

current density (Isc) of 0.405 mA/cm2, and maximum power density (Pmax) of 0.055 

mW/cm2 at 0.23 V were achieved in the presence of 5 mM physiologic glucose. The results 

indicate that glucose fuel cells can be employed for the development of a self-powered 

glucose sensor. The glucose monitoring device demonstrated sensitivity of 1.87 uA/mM-

cm2 and a linear dynamic range of 1 mM to 45 mM with a correlation coefficient of 0.989 

when utilized as a self-powered glucose sensor. For wireless communication, the incoming 

voltage from the abiotic fuel cell was fed to a low power microcontroller that enables battery-

less communication using NFC technology. The voltage translates to the NFC module as the 
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digital signals, which are displayed on a custom-built android application. The digital signals 

are converted to respective glucose concentration using a correlation algorithm that allows 

data to be processed and recorded for further analysis. The android application is designed 

to record the time, date stamp, and other independent features (e.g. age, height, weight) with 

the glucose measurement to allow the end-user to keep track of their glucose levels regularly. 

Analytics based on in-vitro testing were conducted to build a machine learning model that 

enables future glucose prediction for 15, 30 or 60 minutes. 
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CHAPTER I 

INTRODUCTION 

 

Background 

 

 Diabetes is a dangerous disorder caused by the body's inability to manage the amount 

of sugar in the bloodstream. The human body's tissues and cells require sustenance to survive. 

The nourishment that cells consume is a form of sugar known as glucose. Without sufficient 

glucose, the body's cells would eventually perish. Humans consume food, and as part of the 

natural digestive process, the food is converted into glucose [1].  

 Glucose enters the bloodstream, thereby raising the quantity of dissolved glucose in the 

blood. The dissolved glucose is subsequently carried by the bloodstream to the body's 

numerous tissues and cells. The amount and kind of meals consumed influence the levels of 

glucose in the bloodstream at any given time. Refined carbs, candies, and sweets are simple to 

convert to glucose [2]. As a result, blood glucose levels rise fast after eating such items. In 

contrast, blood sugar levels increase gradually and steadily after consuming more complex, 

unprocessed carbs (oatmeal, apples, baked potatoes, etc.) that need more digestive processes 

before glucose can be produced. When blood glucose levels get too high, diabetes or 

prediabetes can develop [3]. Having too much glucose in the blood might lead to health 

concerns over time. 

 According to the WHO's 10 November 2021 report, diabetes mellitus was the cause of 

1.5 million fatalities in 2019. Before the age of 70, the existence of high blood sugar was 

responsible for about half of all fatalities. According to the WHO, diabetes was the tenth 

biggest cause of death in 2019 [4].  In the United States, 34.2 million individuals of all ages – 

roughly one in ten – have diabetes, while 7.3 million adults aged 18 and older (almost one in 



 

 

2 

5) are unaware that they have diabetes (just under 3 percent of all U.S. adults). The number of 

people who are diagnosed with diabetes increases with age. More than 26% of adults aged 65 

and older (about 1 in 4) have diabetes [4]. Diabetes affects an increasing number of people as 

they become older. Major issues with blood vessels, the heart, nerves, kidneys, the mouth and 

feet develop over time. These issues may necessitate the amputation of a limb. Diabetes's most 

significant complication is heart disease [5]. Diabetes makes a person more than twice as likely 

as a non-diabetic to experience heart disease or a stroke. Diabetes might cause a person to miss 

out on the common signs and symptoms of a heart attack. Diabetes is divided into three types: 

type 1, type 2, and gestational diabetes.  

 

Type 1 Diabetes. 

 

 Type 1 diabetes is an autoimmune illness in which the body's immune system assaults 

and destroys insulin-producing cells in the pancreas. As a result, the affected individual is 

unable to generate insulin naturally. Type 1 diabetes, often known as juvenile diabetes, 

frequently develops in childhood. It is rather uncommon, accounting for just around 5% of all 

diabetes cases. It would be a fatal condition if it weren't for the fact that insulin manufactured 

outside the body can be manually administered to replace what the body lacks [2,3]. Although 

type 1 diabetes is also known as Insulin Dependent Diabetes Mellitus, the term ‘insulin 

dependent’ is a misnomer because both type 1 and type 2 diabetes can require insulin therapy.  

 

Type 2 Diabetes.  

 

 Type 2 diabetes differs from Type 1 diabetes in that it begins with a progressive loss in 

the body's capacity to respond to insulin (a condition known as "Insulin Resistance") rather 
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than an abrupt cessation of insulin production. Insulin resistance develops when the body is 

regularly exposed to high insulin levels in the bloodstream. After a period, the cells no longer 

respond to insulin as fiercely as they previously did. At this stage, it requires more insulin to 

deliver the same quantity of glucose to cells. 

 

Gestational Diabetes. 

 

 Gestational diabetes occurs in the latter stages of pregnancy, is quite uncommon, and 

usually resolves with the end of the pregnancy. It is similar to type 2 diabetes. Women who 

have had gestational diabetes are at a higher risk of having type 2 diabetes later in life. 

 Diabetes causes vary depending on the kind of diabetes. Type 1 diabetes is an 

autoimmune illness whose specific origins are unknown at this time. Variables linked with type 

1 diabetes risk include genetic susceptibility and exposure to one or more environmental 

factors, which may include viral exposure [5]. In contrast to the mystery surrounding type 1 

diabetes, there are well-established risk factors for type 2 diabetes: 

• growing Older - As people get older, they are more likely to acquire type 2 diabetes. 

While type 2 diabetes can arise at any age, it is far more frequent in those over the age 

of 40. 

• ethnicity and race - Certain ethnic groups are more likely to develop type 2 diabetes 

than others. African Americans, Native Americans, Hispanic Americans, Pacific 

Islanders, and Asian Americans are more likely than Caucasians to develop the 

disease. 

• diabetes in the family - Persons who have close blood relatives (siblings or parents) 

with diabetes are more likely to develop the condition themselves than people who do 

not have a blood relative with the disease. 
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• pre-diabetes - Pre-diabetes, often known as "impaired glucose tolerance," is a 

condition that precedes type 2 diabetes. Blood sugar levels in a pre-diabetic person 

are higher than usual but not yet as high as required for a diabetes diagnosis. 

• a sedentary lifestyle - Persons with sedentary, inactive lifestyles (e.g., working at a 

desk job and then watching a lot of TV) are more likely to acquire diabetes than 

persons with more active lifestyles (e.g., who have built regular exercise into their 

daily routines). 

• obesity and Diet - the majority of Type 2 diabetes patients are overweight 

individuals. 

 In diabetics and non-diabetics blood glucose levels will increase and decrease normally 

during the day. For example, after a meal, they will rise, but after activity, they will decline. 

Blood glucose levels can be low, normal, or elevated. A normal glucose level varies depending 

on how long someone has had diabetes, their age, and other health issues. The American 

Diabetes Association, on the other hand, maintains standard blood glucose recommendations 

for diabetics: 

Prior to meals: 

• between 80 and 130 mg/dL 

1 to 2 hours after meals: 

• 180 mg/dL or less 

 Hypoglycemia, or low blood sugar, is described as having a glucose level of less than 

70 mg/dL or slightly higher, and hyperglycemia, or high blood sugar, is defined as having a 

glucose level of more than 125 mg/dL while fasting (not eating for at least eight hours) [7]. 

Diabetes is defined as a fasting blood glucose level more than 125 mg/dL, whereas prediabetes 

is defined as a fasting blood glucose level between 100 mg/dL and 125 mg/dL. While 
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everyone's blood glucose levels differ, some people are predisposed to hyperglycemia or 

hypoglycemia. Hyperglycemia is more likely in persons who: 

• have a family history of type 2 diabetes;  

• are African American, Native American, Hispanic, or Asian American;  

• are overweight;  

• have high blood pressure or cholesterol;  

• have polycystic ovary syndrome; and  

• have a history of gestational diabetes (diabetes during pregnancy). 

Hypoglycemia, on the other hand, is most frequent among diabetics and occurs quite rarely in 

persons who do not have the disease. It can occur if diet, exercise, and diabetes medicines are 

out of balance.  

Usual pitfalls for people with diabetes include: 

• being more active than normal  

• drinking alcohol without eating  

• eating late or missing meals  

• not balancing meals by incorporating fat, protein, and fiber  

• not eating enough carbs  

• not timing insulin and carb intake appropriately (for example, waiting too long to 

eat a meal after taking insulin for the meal) 

Hypoglycemia can also occur when a diabetic uses the incorrect insulin, consumes too much 

of it, or injects it inappropriately. 

 Continuously testing and documenting blood glucose levels can aid in the monitoring 

and management of diabetes. If the blood glucose level is too high or too low, the person may 

require a change in food, physical exercise, or medicine to live a healthy lifestyle. The 

following are the most generally accessible techniques for a diabetic to monitor and maintain 
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appropriate blood glucose levels: Continuous Glucose Monitoring (CGM) system, finger prick 

test using a test strip and a glucometer [8]. 

 

Figure 1. Finger prick test for individual with diabetes to monitor and most widely available glucose 

detection system [8]. 

 

 As depicted in Figure 1, the finger prick test involves pricking the finger with a lancet 

and extracting a blood drop with a disposable glucose test strip, which is then inserted in the 

glucometer to determine the blood glucose level. A glucose specific enzyme, such as glucose 

oxidase, is used in the disposable test strip. The glucose specific enzyme oxidizes the glucose 

in the blood, releasing electrons and producing gluconic acid. These released electrons are 

proportional to the concentration of glucose, which is transformed into varied voltages using 

analog to digital converters. The level is then shown in mg/dl or mmol/l units by the meter. 

The test strips used in a glucometer are costly.  Manufacturers frequently supply meters for 

little or no cost in order to generate demand for the profitable test strips. Due to the dynamics 

of insulin adjustment, people with type 1 diabetes may test up to 10 times per day, although 

those with type 2 often test less frequently, especially when insulin is not part of the treatment 

[7,8]. External elements such as humidity, temperature, and altitude also have an impact on 

these strips. The glucometer must be calibrated for different batches of test strips. Furthermore, 
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blood glucose readings can vary by as much as 4 mmol/dL or 72 mg/dL, which can be fatal in 

blood glucose monitoring [7,8,9]. 

 
 

Figure 2. External data recorder with implanted sensor as a continuous glucose monitoring system 

[9]. 

  

Continuous glucose monitoring devices (CGMs) were created to minimize the 

frequency of finger pricking. As illustrated in Figure 2, CGMs can consist of a disposable 

sensor inserted beneath the skin, a transmitter attached to the sensor, and a reader that receives 

and displays the results [10,11]. Before it must be replaced, the sensor can be utilized for many 

days [11-13].  The proposed wearable device is fueled by an external power source, such as a 

battery, making the device large. Companies like Medtronic and Dexcom are at the forefront 

of glucose monitoring research since it is a lucrative market for them. However, the CGM 

devices produced by both Medtronic and Dexcom have a huge receiver, making them a bulky 

device that cannot be miniaturized. In addition, for reliable blood glucose readings, the receiver 

must be calibrated, which takes approximately 2 hours and has a maximum lifetime of just one 

week [12-13].  

 Research on wearable healthcare devices has mostly focused on device miniaturization 

and wireless operation (e.g., Bluetooth and near-field communication (NFC)) [14–15]. 
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Although the wearable device has mostly used Bluetooth technology, its large size and weight 

may affect wearability [14]. Ali et al. [15] propose an implanted glucose monitoring device 

using Bluetooth low energy (BLE). Glucose data from the system is transferred over BLE to a 

PDA (smartphone or Ipad), which displays the data in text form. The technology has some 

success in lowering the power consumption of an external power unit and an implanted unit. 

Rasyid et al. [16] presented a wireless body area network-based blood glucose level monitoring 

system for diabetes detection. A glucometer sensor, an Arduino Uno, and a Zigbee module are 

used to construct the system. A doctor or caregiver can use a website to remotely check a 

patient's glucose levels. However, due to the high power consumption of the Arduino Uno 

board and the Zigbee module, the system is not energy efficient. Mortello et al. [17] used an 

external transmitter that connects with and charges the sensor wirelessly, and it also has 

Bluetooth functionality for interacting with a Smartphone application. Over the course of 28 

days and six in-clinic appointments, the accuracy of 19 implanted sensors was assessed by 

comparing CGM glucose levels to venous blood glucose measurements collected every 15 

minutes. It is critical to have a closed loop system that is minimally intrusive, versatile, and 

simple to use, with data that is easily available to end users and service providers. To address 

this issue, much research has been conducted to make these monitoring devices as non-invasive 

and compact as feasible and without a battery. 

 To have a truly battery-less system, a fuel cell with dual functionality of acting as a 

battery and a sensor is needed. General Electric's Neidrach and Grubb developed the first 

conventional fuel cell for NASA [16]. Platinum served as a noble metal electrocatalyst in the 

fuel cell, oxidizing hydrogen and reducing oxygen. Hydrogen oxidation generates protons and 

electrons, which flow via the external circuit. The generation of electricity is caused by the 

passage of electrons in the system. When the electron in the system recombines with the oxygen 

existing in the system, oxygen is reduced at the cathode. Water is produced as a byproduct of 
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this process. Because of its efficacy in oxidizing hydrogen, a platinum metal catalyst is utilized. 

Furthermore, hydrogen fuel is prone to carbon contamination, and a constant supply of 

hydrogen fuel is required to provide electrical power.  

 A glucose (bio-)fuel cell has been considered as a potential source of power for 

implanted bioelectronic devices. The fundamental impetus for the substantial study in the field 

of glucose fuel cell technology is the hunt for a cost-effective alternative sustainable fuel source 

that can fulfill rising global energy demands, as well as recent breakthroughs in 

microelectronics [17]. Many researchers are striving to power implantable bioelectronic 

devices with glucose fuel cells. A conventional fuel cell assembly is made up of an anode, a 

cathode, and an electrolyte, and it works by converting chemical energy into electrical energy. 

In a fuel cell, two sorts of processes take place: 1) oxidation and 2) reduction. The entire process 

is referred to as a redox reaction. The anode undergoes the oxidation reaction, whereas the 

cathode undergoes the reduction reaction. They are environmentally friendly, biocompatible, 

small in form factor, and their use as analytical devices has increased because of their capability 

to serve as diagnostic tools [18–19].  

 A key advantage of glucose fuel cells is that at ambient temperature and neutral pH 

conditions, they demonstrate high conversion efficiency and have been demonstrated to 

generate adequate bioelectricity to power small electronic devices [20]. The two types of 

commonly developed glucose fuel cells are the enzymatic biofuel cell and the non-enzymatic 

fuel cell. The enzymatic biofuel cell uses complex enzyme immobilization strategies to 

immobilize enzymes to the surface of electrode material. The enzyme stability is widely 

affected by pH and temperature, which can result in enzyme denaturation if the 

microenvironment conditions are not optimal. To address the current limitations associated 

with enzymatic glucose biofuel cells, conductive materials such as carbon nanotubes [21,22], 

metal oxides [23,24], nanostructured materials [25,26], and graphene [27] are being explored 
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as an alternative sensing material for glucose and molecular oxidation and reduction of oxygen, 

respectively.  

 Noble metal nanoparticles such as gold, platinum, and silver have received a lot of 

attention due to their unique electrocatalytic capabilities [28,29]. When utilized as a sensing 

material, these nanoparticles have been found to increase direct electron transfer, signal 

transduction, and sensor efficiency. Platinum nanoparticles (PtNPs) and nanocomposites have 

been demonstrated to electro-oxidize glucose directly in the absence of enzymes and mediators 

[30,31]. Nanoparticles, notably colloidal platinum in biofuel cells, have a huge surface area, 

making them appealing for the creation of glucose sensors [32,33].  

Flexible electronics that incorporate tiny components to create analytical devices on 

conformal substrates are in high demand. Because of its great mechanical strength and 

flexibility, bacterial nanocellulose (BNC) thin film has attracted interest in biomedical, flexible 

electronics, separation, and waste purification research [34]. When compared to native 

cellulose, BNC has transferrable tattoo-like qualities such as strong form preservation, high 

water-binding capacity, and greater surface area [35,36]. These distinct qualities enable the use 

of BNC in the production of a variety of goods, including membranes, high-grade paper, 

speaker diaphragms, diet food, and textiles.  

 The inclusion of inorganic and/or organic nanomaterials to give antibacterial, optical, 

electrical, magnetic, and catalytic capabilities for application in biomedical research is the 

focus of current BNC research [37]. Using screen printing and inkjet printing technologies, 

BNC might be used as a substrate or sensing material in the creation of transferable tattoo-like 

biosensors and bioelectronics. These technologies have various benefits over cleanroom 

microfabrication strategies, including lower processing costs, faster processing rates, less waste 

creation, and lower contamination [38,39]. Inkjet printing allows for the reliable large-scale 

fabrication of conductive material arrays. Materials ranging from nanoparticles to proteins that 
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can be printed using inkjet printers provide a method for mass producing functional 

components for biofuel cells. Inkjet printing of conductive and non-conductive materials 

allows for the production of ultra-thin and compact analytical devices, which have the potential 

to revolutionize wearable and implantable devices in terms of cost, efficiency, and repeatability 

[40,41,42]. 

 

Problem statement  

 

The purpose of this research is to create a unique abiotic continuous glucose monitoring system 

that can obtain and monitor data wirelessly from anywhere. The created technology will 

operate without an external battery source and under physiological settings on a flexible 

substrate. The system is intended to have a wide linear range as well as good sensitivity and 

selectivity toward the analyte glucose. It can also serve as a power supply for small electrical 

equipment if necessary. Using an NFC based circuit allows for a battery-less instantaneous 

reading using a custom-built smartphone application. The collected data will be recorded into 

the database to monitor glucose levels and enable the user to make lifestyle changes to improve 

health outcomes. The data can be given to doctors or health care providers to be maintained in 

a patient’s medical record and to determine the appropriate treatment strategy. The constructed 

system includes a flexible wireless battery-less data access and monitoring system as illustrated 

in Figure 3. 
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Figure 3. Schematic of a continuous glucose monitoring system with wireless module and application 

interface. 

 

 

Dissertation contribution  

 

 In this dissertation, we developed a novel abiotic glucose fuel cell consisting of an 

anode made up of conductive gold nanoparticles ink with electrodeposited colloidal platinum 

and a cathode made up of a composite of silver oxide nanoparticles and carbon nanotubes on 

flexible biocompatible bacterial nanocellulose substrate. The morphology of the electrode 

materials was characterized using scanning electron microscopy (SEM), and the 

electrochemical characterization was achieved via linear sweep voltammetry (LSV) and cyclic 

voltammetry (CV). This combination of anodic and cathodic sensing materials enables the 

direct oxidation of glucose at the anode and reduction of Ag2O at the cathode to generate 

bioelectricity. Amperometry was also carried out to further study the performance of the 

biosensor.  

 

 The power output of the biofuel cell is directly proportional to the glucose concentration 

level. This abiotic fuel can then be used to act as an input for the 13NFC based circuit. The 

NFC based circuit consist of a low power microcontroller which enables analog to digital 



 

 

13 

conversion (ADC) of the input signal which is directly proportional to the power produced by 

a biofuel cell. By incorporating a wireless NFC based circuit, a complete glucose sensing 

system was realized.  An android application was designed, which uses a custom-built 

algorithm that correlates the input signal from 14-bit ADC values to a glucose concentration. 

This data is recorded in the application with other independent parameters which then can be 

stored onto a Realtime database for data processing.  

 For diabetes management, a machine learning algorithm is developed to provide insight 

on the future level prediction for the respective user over a period of continuous data collection.  

 

Scope of dissertation  

 

The purpose of chapter 2 is to provide context for the thesis and to expose the reader to the 

electrical and bioelectrical concepts that regulate the operation of a basic fuel cell and biofuel 

cells. The chapter also discusses the various electron transfer mechanisms utilized in biofuel 

cells, which are responsible for current flow in a sensing system. 

 Chapter 3 focuses on the glucose biosensor. This chapter discusses the many types and 

generations of glucose biosensors. It also discusses continuous glucose monitoring 

technologies and current research and development trends. 

 Chapter 4 focuses on the Near-field communication based wireless circuit and its 

operating principle. This chapter provides a detailed explanation of the RF430frl152h and 

general operation.  

 Chapter 5 describes the custom-built android application for data processing with NFC 

based modules. This chapter provides insight on the machine learning based analytics used to 

predict future glucose levels. 

 Chapter 6 focuses on the different electrochemical characterization methods used.  
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 Chapter 7 focuses on the discussion of the fabricated abiotic glucose sensing system. 

The manufacturing methods and materials used in the preparation of the bioelectrodes are 

explained.  

 Chapter 8 describes all the experimental data, the characterization methods, 

stabilization studies, and results obtained by the glucose monitoring system.  

 Chapter 9 summarizes the studies performed. The result and path forward of the novel 

glucose sensing system are also discussed. 
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CHAPTER II 

FUEL CELL 

 

 

 A fuel cell is an electrochemical device that directly transforms a fuel's chemical energy 

into electrical energy. This one-step process from chemical to electrical energy as opposed to 

the multi-step (e.g., from chemical to thermal to mechanical to electrical energy) characteristics 

involved in combustion-based heat engines, has numerous distinct benefits [43]. Current 

combustion-based energy generating methods, for example, are extremely damaging to the 

environment and are primarily contributing to many global issues, such as climate change, 

ozone layer depletion, acidic rains, and consequently a continual loss in plant cover. 

Furthermore, these technologies rely on the world's finite and declining supply of fossil fuels. 

Fuel cells, on the other hand, provide an efficient and clean energy conversion method. 

Furthermore, fuel cells are compatible with renewable energy sources and contemporary 

energy carriers (such as hydrogen) for long-term development and energy security. As a result, 

they are viewed as the future of energy conversion devices. Because fuel cells are static, they 

operate quietly and without vibration, and their inherent modularity allows for easy assembly 

and a wide range of applications in portable, fixed, and transportation power production. 

 A thorough grasp of the operations of fuel cells and the fuel cell industry, are critical 

for overcoming existing difficulties and advancing fuel cell technology in general [43,44]. 

Despite this, constructing a fuel cell requires a thorough understanding of electrochemistry, 

thermodynamics, engineering economics, material science and engineering, and electrical 

engineering, making this a challenging undertaking. A fuel cell is made up of three active 

components: a fuel electrode (anode), an oxidant electrode (cathode), and an electrolyte in 

between. The electrodes are made of a porous substance with a coating of catalyst on top. The 
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essential operational mechanisms within a typical hydrocarbon cell are depicted in Figure 4. A 

typical fuel cell functions by transferring hydrogen through the anode and oxygen via the 

cathode. A catalyst at the anode site separates hydrogen molecules into electrons and protons. 

Protons travel through the porous electrolyte membrane, while electrons are driven through a 

circuit, resulting in an electric current and surplus heat. Protons, electrons, and oxygen mix at 

the cathode to form water molecules.  

 

Figure 4. Hydrocarbon Fuel Cell Representation. 

 

 In order to sustain continuous isothermal operation for optimal electric power 

generation, heat and water byproducts must be continually eliminated. As a result, water and 

temperature management are critical components in the effective design and operation of fuel 

cells. Fuel cells and batteries are quite similar in that they are both electrochemical cells made 

up of an electrolyte sandwiched between two electrodes. Both employ internal oxidation–

reduction processes to convert a fuel's chemical energy content to direct current power. The 

composition and function of the electrodes, on the other hand, change dramatically between 

the two energy devices. A battery's electrodes are often metals (such as zinc, lead, or lithium) 

submerged in mild acids [43]. The electrodes (catalytic layer and gas diffusion layer) in fuel 

cells are generally made up of a proton-conducting medium, a carbon-supported catalyst, and 
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electron-conducting fibers. Batteries are used for both energy storage and conversion, whereas 

fuel cells are exclusively utilized for energy conversion. The chemical energy stored in a 

battery's electrodes is used to power the electrochemical processes that produce electricity at a 

certain potential difference. As a result, a battery has a finite lifespan and can only work as 

long as the electrode material is not exhausted. As a result, an operational fuel cell system must 

have a fuel storage mechanism as well as an oxidant supply mechanism. Furthermore, when 

the battery is inactive, electrochemical processes that damage the battery occur slowly, 

decreasing the battery's lifetime [44].  

 Many technological difficulties restrict the usage of rechargeable batteries, including 

power storage and retrieval potential, depth of charge, and number of charge/discharge cycles 

[4]. Acids, alcohol, oxides, and hydrogen are employed as fuel sources in laboratories and 

commercial settings [45]. The fuel must be easily available inside the human body in the case 

of portable and implanted devices. In this case, a regular fuel cell cannot be used. Abiotic fuel 

cells (AFC) and biofuel cells (BFCs) might be viewed as the optimal power source for portable 

and implantable devices to overcome this challenge. The human body has more than 100 W of 

power as chemical energy on average. AFC and BFC convert chemical energy from molecules 

in living organisms into electrical energy. The distinction between biofuel cells and batteries 

is that in both AFCs and BFCs, the reactant content is constantly re-established by bodily 

fluids. The permanent presence and availability of fuel straight from the body eliminates the 

need for external recharging systems or replacement, and theoretically allows for endless 

operation if there is a steady supply of fuel. 
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Biofuel cell 

  

 The benefits of these fuel cells are typically obscured by one or more of the 

aforementioned problems, namely high temperatures, expensive costs, and, in some 

circumstances, very corrosive medium. BFCs are appealing in this regard because they operate 

under mild reaction conditions, namely ambient operational temperature, and pressure, use 

neutral or circumneutral electrolytes, and use inexpensive catalysts and anodic fuel, which can 

range from simple organic molecules like glucose or acetate to complex organic waste, such as 

waste waters and urine [47]. Depending on the catalysts utilized in the oxidation and reduction 

processes, biofuel cells can be enzymatic, microbial, or mammalian in nature.  BFCs are 

devices that may convert chemical energy to electrical energy via electrochemical processes 

involving biological pathways. The former employs selected enzymes to carry out redox 

reactions that generate current, whilst the latter employs electroactive microorganisms to 

breakdown organics and generate power. Because of the quantity and sustainability of these 

fuels, biofuel cells are a renewable energy source, albeit it has recently been demonstrated that 

biofuel cells can even run-on JP-8 airplane fuel [48]. The key parameters influencing the power 

generation of a biofuel cell are the electrodes and biocatalysts used, the operational component 

in described in Figure 5. Driving the recent ascendance of biofuel cells are the aspects of 

biocatalysis that are unmatched by conventional low-temperature oxidation-reduction 

catalysts, namely, activity at near-room temperatures and neutral pH and, more importantly, 

selective catalytic activity.   

 Microbes have benefits over enzymes because they can catalyze biofuel oxidation. It is 

also less susceptible to poisoning and activity loss under normal working conditions, making 

it a good candidate for usage in biofuel cells [48,49]. One of the most significant shortcomings 

is the use of the electrons generated during the process that occurs inside the cell. One possible 
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solution is to employ mediators, which must otherwise satisfy many characteristics, including 

(a) passage across the membrane of the microorganism's cell and (b) not be harmful. 

Organelles, on the other hand, are in their infancy compared to their enzymatic and 

microbiological counterparts. As a result, they lack the power output of enzymatic biofuel cells 

as well as the stability of microbial biofuel cells. Organelles, such as mitochondria, may be 

separated from live cells and connected directly to an electrode [50]. Mitochondria include a 

number of membrane-bound enzymes that create an electron transport chain that can connect 

directly to an electrode. Because the enzymes are membrane-bound, they should be more stable 

than in an enzymatic biofuel cell, and because the mitochondria are not surrounded by cellular 

walls, they should transport electrons faster than a microbial fuel cell. Fuel cells have the ability 

to deal with miniaturization because of their simple manufacturing design, which includes no 

moving parts. Non-biological miniature fuel cells consisting of methanol and air, with an active 

area of 0.25 cm2, employs polymer electrolytes instead of a solution and achieves power 

densities comparable to big cells [51].  

 

Figure 5. Biofuel cell consisting of its major components and basic operational components. 
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 Enzymatic biofuel cells are composed of enzyme catalysts derived from biological 

sources and applied to the anode, cathode, or both electrodes as shown in Figure 6. Because 

the enzymes have been separated from their natural environment, they may be able to 

communicate directly with mediators or electrodes, resulting in higher power density than 

microbial or organelle biofuel cells. Enzymes have higher electrochemical catalytic activity 

than microorganisms in general, but they are less sustainable. Because of their unique 

characteristics, such as high turnover rates, which results in a high bio-catalysis rate, 

researchers are constantly thinking about biofuel cells that use enzymes. The requirement to 

transfer electrons to the electrode is one of the primary issues with such biofuels. Extensive 

study of new advances in enzyme immobilization on the surface of an electrode using a variety 

of methods results in higher transfer rates, making them an appealing option [51,52].   

 Although most attention has been focused on anode reactions, study of the reduction of 

oxygen at the cathode may also be undertaken utilizing biological moieties, which was 

proposed as an alternative to the usage of platinum [53]. Enzymes offer several advantages 

over chemical catalysts, including biocompatibility, higher trans-formation efficiency, activity 

at mild conditions, and most crucially, increased specific selectivity. These characteristics 

enable BFCs to function without a separation membrane, allowing for miniaturization and 

potential use in wearable and implantable devices [54].  

 Unfortunately, enzyme lifetime is limited, and it is significantly reduced when 

interfering analytes are present [55]. One of the challenges of an Enzymatic biofuel cell (EFC) 

is the use of mediators, which has been overcome by the development of mediatorless enzyme-

based biocathodes and bioanodes. Encapsulating immobilized enzymes in micellar polymers 

has been shown to limit enzyme denaturation and offer a biocompatible hydrophobic and pH-

buffered environment [56]. 
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Figure 6. Model representation of enzymatic biofuel cell. 

  

 Enzyme biocatalyst assemblies on electrode surfaces typically do not accomplish 

considerable electron transfer communication between the redox center and the conductive 

support, owing to the surrounding protein matrix's electrical insulation of the biocatalytic site. 

Several strategies have been presented and researched in the field of bioelectrochemical 

technology during the last four decades in an effort to establish effective electrical 

communication between biocatalysts and electrodes. In general, electron transfer is divided 

into two mechanisms: mediated electron transfer (MET) and direct electron transfer (DET) 

(DET) [54]. A low-molecular-weight, redox-active molecule known as a mediator is used in 

MET to shuttle electrons between the enzyme active site and the electrode. In this situation, 

the enzyme catalyzes the redox mediator's oxidation or reduction. On the electrode surface, the 

mediator undergoes a reverse transition (regeneration). The main properties of mediator-
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assisted electron transfer are that (i) the mediator functions as a co-substrate for the enzymatic 

process and (ii) the mediator's electrochemical transformation on the electrode must be 

reversible. The catalytic process in these systems involves enzymatic changes of both the first 

substrate (fuel or oxidant) and the second substrate (mediator).  

 At the electrode surface, the mediator is renewed, ideally at a modest overvoltage. The 

enzymatic reaction and the electrode response can be thought of as independent but linked 

processes. Direct (mediatorless) electron transfer links the enzymatic and electrode processes 

in DET. The electron is transmitted straight from the electrode to the substrate molecule (or 

vice versa) via the enzyme's active site in this situation [57]. The coupled overall process in 

such a system is the redox transformation of the substrate(s), which may be thought of as an 

enzyme-catalyzed electrode process. According to this mechanism, the electrode surface serves 

as an enzyme substrate, and the enzymatic and electrode reactions are not distinct; rather, they 

are  formal steps of the bioelectrocatalytic reaction process [58]. 

 Sensors and biofuel cells have considerable overlap in technological criteria, such as 

chemical and mechanical stability, selectivity, and material cost. However, these two 

technologies differ in terms of energy supply, as sensors are often energy-consuming cells, 

whereas biofuel cells, by definition, are energy providers. Because of this large variation, in 

the areas of current density and cell potential, sensors driven by cells often function at cell 

potentials larger than an open circuit [59]. Also, cell current must be kept to a minimum in 

order to reduce power consumption. Usually the power consumption for biofuel cells are in 

mW and for biosensor in uW as compared to other energy production methods as shown in 

Figure 7. Sensors are often built with currents in the nanoampere to microampere range, 

resulting in very low power consumption even at cell potentials around 1 V. To avoid unwanted 

side effects, cell potential in a sensor is frequently reduced.  
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Figure 7. Visualization for reference of power range by some of the alternative energy production 

methods. 

 

 An ideal enzymatic fuel cell, on the other hand, creates maximum power as an energy-

producing cell, implying both high current and high potential. Overpotentials owing to kinetics, 

ohmic resistance, and mass transfer must be reduced, while current density, particularly in 

terms of current per unit volume, must be optimized. Although these difficulties are more 

difficult in the context of biocatalyzed fuel cells, they are nevertheless ubiquitous in traditional 

fuel cell design. Indeed, since William Grove's pioneering tests in 1839, fuel cells have been 

stacked, or connected in series, to obtain larger total system voltage by increasing individual 

cell voltage.  

 Stability is another factor that separates biofuel cells from sensors. Because 

biocatalyzed electrochemical sensors are frequently cheap enough to be disposable, long-term 

stability is not required. If stability is essential, encapsulating the biocatalytic species in a low-

porosity hydrophilic medium, such as silica gel, is one option [60]. Hydroxides on the gel 

surface interact with enzyme shell sugars to "cage" the enzyme, limiting translational motion 
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and decreasing enzyme denaturation. Caging of the molecule might result in diminished 

activity depending on the enzyme. Such gels also limit the mobility of reactants and products, 

limiting mass transfer in the electrode. In an amperometric sensor, where mass-transfer-limited 

signals are frequently linearly proportional to reactant concentration, this may be a desired 

result. 

 

Figure 8. A model representing a non- enzymatic biofuel cell. 

 

 An abiotic glucose fuel cell uses noble metals as catalysts to transform the chemical 

energy of glucose and oxygen into electric power. An abiotic fuel cell's general electrode 

reactions involve the oxidation of glucose to gluconic acid at a platinum-based anode catalyst 

and the reduction of oxygen to water at the cathode as seen in Figure 8. Protons are released 

and pass from the anode to the cathode via a proton-conducting membrane or electrolyte, 

generating electric power. Glucose, methanol, and ethanol are examples of biofuels [60]. 

Abiotic cells also provide the prospect of long-term stability under operational and 

physiological settings. Furthermore, abiotic fuel cells may operate better at normal glucose 
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concentrations [60]. When compared to EBFC, an abiotic glucose fuel cell has superior 

stability and a longer life cycle.  

 Abiotic fuel cells might be viewed as an alternative to traditional fuel cells based on 

metal catalysts due to increased research and development in the field of biofuel cells. These 

devices create a system capable of directly converting chemical energy into electricity. The 

link between biology and electricity, as well as the notion of a biofuel cell, has been recognized 

since 1911, when MC Potter discovered that a culture of the bacteria E. coli produced electricity 

in half-cell investigations using platinum electrodes [61]. Glucose is more typically employed 

as a biofuel. Though enzymatic, microbial, and whole cell/organism-based bio-fuel cells have 

received a lot of interest in recent decades for implantable devices, abiotic fuel cells have 

several benefits over biotic biofuel cells. Even though using noble catalysts results in a more 

expensive biofuel cell system, abiotic fuel cells offer endurance to high temperatures during 

steam sterilization or a wide range of pH values.  

 For the electro-oxidation of glucose in neutral fluids, a variety of noble metals and 

alloys, including platinum–ruthenium alloys, rhodium, and iridium, have been proposed [61]. 

The persistent non-selectivity towards oxygen or glucose, as well as the electrocatalytic activity 

of metal-based catalysts at neutral pH, continue to motivate research to reach satisfying power 

output for the supply of electronic devices under physiological conditions. The primary 

benefits of AFCs and BFCs are the employment of environmentally friendly catalysts, the 

capacity to work at low temperatures (20-40 °C) and physiological pH levels, and the ability 

to utilize several fuels. These benefits point to an economically feasible method, as seen by the 

rising research in this sector throughout the world. 
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CHAPTER III 

 
GLUCOSE BIOSENSOR 

 

  

 A biosensor is a device that monitors biological or chemical processes by producing 

signals proportional to an analyte concentration in the reaction. Biosensors are used in 

applications such as illness monitoring, drug discovery, and the detection of contaminants, 

disease-causing microorganisms, and disease markers in physiological fluids (blood, urine, 

saliva, sweat). A bioreceptor is a molecule that recognizes the analyte specifically. 

Bioreceptors include enzymes, cells, aptamers, deoxyribonucleic acid (DNA), and antibodies. 

Bio-recognition refers to the process of generating a signal (in the form of light, heat, pH, 

charge or mass shift, etc.) as a result of the interaction of the bioreceptor with the analyte [63, 

64]. A transducer is a component that transforms one type of energy to another. The transducer 

in a biosensor converts the bio-recognition event into a quantifiable signal. This energy 

conversion process is called signalization. The majority of transducers provide optical or 

electrical signals that are proportional to the number of analyte–bioreceptor interactions.  

 Electrochemical, optical, thermometric, piezoelectric, and magnetic transducers are the 

five major types of transducers [65]. The bulk of modern glucose biosensors are 

electrochemical in nature, owing to their higher sensitivity, repeatability, ease of maintenance, 

and low cost. Potentiometric, amperometric, and conductometric electrochemical sensors are 

available [66-67]. Enzymatic amperometric glucose biosensors are the most prevalent 

commercially available devices, and they have been extensively researched over the previous 

few decades. Amperometric sensors measure currents that are created when electrons are 

transferred directly or indirectly between a biological system and an electrode [68,69]. A 

glucose biosensor is a device that detects the presence of glucose in a complicated mixture. A 
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blood glucose sensor monitors the concentration of glucose in the blood by using a glucose 

specific enzyme to break down glucose molecules and create electrons. When glucose is 

completely oxidized, the current created corresponds to the glucose concentration. Thus, the 

biorecognition enzyme element is immobilized on a transducer, which converts the chemical 

signal into an electrical signal that a read-out circuit can read. The glucose analyte is the 

chemical ingredient of interest in this investigation, and it is usually detected using the 

amperometric detection technique. Glucose biosensors have been created to offer diagnostic 

information about a patient's health status.  Multiple laboratory tests are used to diagnose and 

treat diabetic individuals. The blood glucose concentration is a helpful parameter for patient 

monitoring and is the primary diagnostic criteria for diabetes with HbA1c level [69].  

 Self-monitoring of blood glucose (SMBG) has been proven to be an effective technique 

in the management of diabetes. The purpose of SMBG is to assist the patient in achieving and 

maintaining normal blood glucose concentrations, therefore delaying, or even preventing the 

advancement of microvascular (retinopathy, nephropathy, and neuropathy) and macrovascular 

problems (stroke and coronary artery disease). Furthermore, it may be used to identify 

hypoglycemia and provide real-time information for altering medicines, dietary 

recommendations, and physical activity to accomplish glycemic targets [69]. 

 

Blood – Glucose monitoring  

 

 Regular blood glucose measurements may give information for optimizing and/or 

altering patient treatment options. Blood-glucose concentrations in healthy persons are 

typically in the 4.9–6.9 mM range, increasing to up to 40 mM in diabetics after glucose 

injection [66–72]. Glucose concentrations are determined by interactions with one of three 

enzymes: hexokinase, glucose oxidase (GOx), or glucose-1-dehydrogenase (GDH) [68]. In 
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many clinical laboratories, the hexokinase assay is the gold standard for detecting glucose using 

spectrophotometry [69]. GOx and GDH enzyme families are commonly used in glucose 

biosensors for SMBG. These enzymes differ in terms of redox potential, cofactors, turnover 

rate, and glucose selectivity [70]. The usual enzyme for biosensors is GOx, which has a greater 

selectivity for glucose. GOx is simple to acquire, inexpensive, and can survive larger pH, ionic 

strength, and temperature fluctuations than many other enzymes, allowing for less demanding 

production conditions and comparatively flexible storage regulations for use by lay biosensor 

users [73,74]. The essential idea behind the glucose biosensor is that immobilized GOx 

catalyzes the oxidation of D-glucose by molecular oxygen, resulting in gluconic acid and 

hydrogen peroxide and water as byproducts as seen in Figure 9 [75].  

               Glucose                                              Gluconolactone                     Gluconic Acid 

 

Figure 9.Glucose conversion to gluconic acid using mediator glucose oxidase [78]. 

  

 For the electrochemical sensing of glucose, three broad methodologies are used: 

monitoring oxygen consumption, detecting the quantity of hydrogen peroxide created by the 

enzyme activity, or utilizing a diffusible or immobilized mediator to transfer electrons from the 

GOx to the electrode. The quantity and variety of GDH-based amperometric biosensors has 

lately increased. GDH-pyrroquinolinequinone (PQQ) [68-79] and GDH-nicotinamide-adenine 

dinucleotide (NAD) [80] are members of the GDH family. GDH's enzymatic process is not 

affected by dissolved oxygen. PQQ is used as a cofactor by the quinoprotein GDH recognition 

element. Clark and Lyons of the Children's Hospital of Cincinnati presented the concept of the 

biosensor for detecting glucose levels in 1962 [82]. An oxygen electrode with an inner oxygen 
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semipermeable membrane, a thin layer of GOx, and an outside dialysis membrane made up 

this glucose biosensor. To create an enzyme electrode, enzymes might be immobilized at an 

electrochemical detector. A reduction in measured oxygen concentration is proportionate to the 

concentration of glucose. The Yellow Springs Instrument Company analyzer (Model 23A YSI 

analyzer) [83] for the direct measurement of glucose, which is based on the amperometric 

detection of hydrogen peroxide, was the first commercially viable glucose biosensor employing 

Clark's method in 1975. This analyzer was almost entirely employed in clinical settings. The 

usual commercially employed methods are shown in Figure 10 illustrating the development. 

 The first generation of biosensors were improved by substituting oxygen with non-

physiological electron acceptors known as redox mediators, which were capable of transporting 

electrons from the enzyme to the surface of the working electrode [84]. Instead of hydrogen 

peroxide, a reduced mediator is generated and subsequently re-oxidized at the electrode, 

delivering an amperometric signal and renewing the oxidized form of the mediator [85]. To 

increase sensor performance, a range of electron mediators such as ferrocene, ferricyanide, 

quinines, tetrathialfulvalene (TTF), tetracyanoquinodimethane (TCNQ), thionine, methylene 

blue, and methyl viologen were utilized [86-90]. 

 
 

Figure 10.Illustration of a Urine glucose testing, finger prick glucometer and continuous glucose 

monitoring (CGM) from left to right. 
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 Continuous ex vivo monitoring of blood glucose was proposed in 1974 [91] and 

Shichiri et al. [92] performed in-vivo glucose monitoring in 1982. CGMS is designed to 

enhance diabetes control by giving real-time data from an internal insulin release mechanism. 

There are two types of continuous glucose monitoring devices in use today: continuous 

subcutaneous glucose monitors and continuous blood glucose monitors. However, because of 

surface contamination of the electrode by proteins and coagulation factors, as well as the danger 

of thromboembolism, most CGMSs do not directly monitor blood glucose. As a result, 

subcutaneously implanted needle-type electrodes sensing glucose concentrations in interstitial 

fluid and reflecting blood glucose levels have been created [93-97]. Minimed was the first 

company to launch a needle-type glucose biosensor (Sylmar, CA, USA). It did not, however, 

give real-time data; nevertheless, the results of 72-hour monitoring could be retrieved in a 

physician's office [98]. The most extensively used CGMS devices on the market are FDA-

approved needle-type CGMS devices such as the Minimed Guardian, REAL-Time system by 

Medtronic (Minneapolis, MN, USA), SEVEN by Dexcom (San Diego, CA, USA), and 

Freestyle Navigator by Abbott (Abbott Park, IL, USA). These glucose monitors display real-

time glucose concentrations that are updated every one to five minutes and the disposable 

sensor has a three to seven-day lifespan [99-102]. 

 

Sweat - Glucose Monitoring 

 

 A continuous glucose monitoring device that can quantify glucose concentrations 

without frequent calibration is in great demand among consumers. Although blood is still the 

most researched bodily fluid for such assessments, other more accessible biological fluids such 
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as interstitial fluid, ocular fluid, perspiration, breath, saliva, or urine have been examined as 

alternative sample media for noninvasive continuous monitoring [103]. 

 

Figure 11.Integrated sweat extraction-based glucose monitoring system. Monitoring of sweat 

(intophoresis) on a stretchable and transparent nanowire heater for wearable electronics applications 

[103]. 

 To date, two primary types of wearable glucose biosensors have been identified: 

enzymatic and non-enzymatic sensors. Colorimetric and electrochemical biosensing are both 

possible with enzymatic biosensors. Non-enzymatic sensors, on the other hand, can only be 

used for electrochemical sensing since glucose detection necessitates redox processes. For 

starters, wearable electrochemical and optical glucose biosensors based on the enzyme glucose 

oxidase (GOx) are extremely sensitive to changes in the sweat environment, such as 

temperature, pH, and ionic strength, which cannot be adjusted in situ [104]. Enzymes cannot 

restore their features after denaturation due to acidic pH, high temperature, or strong ionic 

strength. Second, in addition to enzyme degradation over time, low stability is an issue. Even 

if the GOx is highly glycated and therefore stable, its catalytic activity will gradually decline 

over time, reducing its shelf life and long-term wearable monitoring capabilities (increase in 
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skin temperature during exercise, normal body temperature: 36.5–37.5 C) [105]. Third, 

frequent mechanical friction and skin deformation may result in delamination of the mounted 

enzyme layer from the biosensor interface. These constraints reduce the sensors' long-term 

storage stability and continued utility in real-time monitoring. Fourth, enzyme immobilization 

on the transducer surface involves procedures like covalent attachment, cross-linking 

polymerization, or sol-gel entrapment on the working electrode surface. This not only lowers 

enzyme activity but also immobilizes electrode reagents, delaying electron transfer and 

decreasing detection sensitivity [106]. Fifth, commercially available enzymes are expensive 

and are often bio-sourced agents suited for in vitro analysis only, making them unsuitable for 

wearable biosensing. Sixth, wearable sweat-based biosensors with a closed air gap to avoid 

sweat evaporation have just a two-phase solid–liquid interface, with oxygen communicated 

through the liquid phase (excreted sweat) with a low diffusion coefficient compared to oxygen 

in the air. By utilizing iontophoresis to create perspiration, the body temperature would stay 

steady at 37 degrees Celsius at rest, allowing for optimum enzyme activity to detect glucose as 

shown in Figure 11. Due to the brief contact period between acidic sweat and immobilized 

GOx enzyme, the enzyme would not be destroyed until submerged in acidic sweat continuously 

in the absence of a microfluidic system. A thin, soft, and flexible outer cover sheet will also 

preserve the enzyme and prevent delamination from the biosensing interface by preventing 

sweat evaporation [107]. The exterior, isolating cover layer is constructed of soft silicone 

rubber with strategically placed air holes. As a result, oxygen may easily travel from the air to 

the active biosensing interface. For a long time, non-enzymatic electrochemical sensors have 

been used to detect glucose [108]. These sensors employ electrocatalytic materials capable of 

rapidly and efficiently oxidizing glucose (such as bulk metal, metal oxide, alloys, metal 

nanoparticles, and carbon nanocomposites). If the study is performed at the physiological pH 

of sweat (pH 7.2–7.3), electrochemical responses are reduced or even completely lost. The 
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linear range of non-enzymatic transition-metal sensors is insufficient for diagnosing blood 

glucose (2–40 mM) or sweat glucose (sweat glucose level: 0.2– 1 mM) as shown in Table 1. 

Table 1. Biomarker – Glucose in physiological fluids for healthy and diabetic patients in mM. 

 

 

The fuel cell for energy harvesting and conversion and flexible and secure rechargeable 

batteries (e.g., Zn-MnO2) are seen as intermediate energy storage devices for non-invasive, 

real-time, and continuous monitoring of sweat glucose levels. An iontophoretic system with a 

well-controlled sweat production rate has been implemented for autonomous on-demand sweat 

extraction (at least 100 nL/min/cm2) [109]. A microfluidic system can be used for collecting 

and storing sweat and when coupled with electrochemical/colorimetric biosensing platform 

with functioning electrodes can convert sweat glucose concentrations into electrical/optical 

signals. As a controlling module, a flexible printed circuit board (PCB) drives the iontophoretic 

process and allows in-situ data analysis (e.g., processing, calibration, and easy read-out signal 

transmission), and there is preferably a digital screen for direct and real-time glucose tracking, 
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removing transmitting systems [110]. Furthermore, the electronic display module should 

ideally provide a steady display without the need for constant power, ultra-low power 

consumption, a broad viewing angle, great visibility, and strong contrast. However, without 

additional data storage and download capabilities, this architecture prohibits data storage or 

distribution of the data to health care providers and is thus less appealing for integrated health-

monitoring systems [111, 112]. Therefore, it is critical to monitor sweat glucose levels 

continuously for at least 24 hours. The capacity to do so is obviously commercially useful, with 

the sole drawback being the limited downsizing of the entire system. 

Other Physiological Fluids 

 

Figure 12.Concept for solid microneedle device with the representation of oxidase- enzyme 

electrochemical reaction at the microneedle interface with data recording to a phone [113].  

  

The extracellular fluid that surrounds tissue cells is known as interstitial fluid. It has 

tremendous promise for medical diagnostics since it has a comparable composition to blood in 

terms of numerous clinically relevant indicators [113,114]. By diffusion with the interstitial 

fluid, blood and surrounding vascularized tissue exchange biological analytes and tiny 

compounds [114]. As a result, interstitial fluid can provide vital information about a patient's 
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health and has been used to determine hereditary metabolic illnesses, organ failure, and 

treatment efficacy in a minimally intrusive manner. Sode et al. have created the 

BioRadioTransmitter, a self-powered implanted continuous monitoring device for use in an 

artificial pancreas [115]. In this case, the device is made up of a capacitor, a radio transmitter, 

and a receiver. The BioRadioTransmitter device's capacitor discharges a radio signal in the 

presence of glucose, which is received and amplified by the radio receiver. The variation in 

transmission frequency is thus proportional to the concentration of glucose [116].  

 Several minimally invasive or invasive approaches have been developed to detect 

glucose in interstitial fluid, with many of these techniques used in animal and human (with and 

without diabetes) investigations under varied settings (e.g., glucose infusion, glucose plus 

insulin infusion, oral glucose tolerance test) with an example shown in Figure 12. These 

investigations have shown a broad range of accuracy, which might be attributed to variances 

in experimental settings, methodologies procedures, species, and subject characteristics [117]. 

In general, fluctuations in interstitial fluid (IF) and plasma glucose were assessed under two 

conditions: steady state and non–steady state. Under steady-state circumstances, IF glucose 

typically corresponded with blood glucose, with a reported lag time ranging from 0 to 45 

minutes, with an average lag of 8–10 minutes. When plasma glucose levels are rising, boosting 

blood flow to the interstitial glucose sampling location with regulated pressure has been found 

to reduce the lag time between blood and interstitial glucose [118-120]. The observed gradient 

in interstitial and plasma glucose concentrations ranged from 20% to 110%. Interstitial glucose 

may decline ahead of plasma glucose and reach the lowest values that are lower than 

comparable venous glucose levels during a period of declining glucose. Interstitial glucose 

levels have been demonstrated to stay lower than plasma glucose concentrations for extended 

periods of time after insulin-induced hypoglycemia has been corrected. 
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 Clinical studies representing the benefit of using CGM as an adjunct to detect glucose 

trends for various patient populations with and without diabetes are likely to broaden CGM use 

in medicine [121]. Sensors have been used successfully to detect abnormal glucose levels in 

the intensive care setting despite confounding factors like edema, hypothermia, or multiple 

medication use. Outpatient studies including the use of CGM for diagnosing gestational 

diabetes documents the need for a self-powered glucose biosensing microsystem that would 

reduce the need for batteries as a power source, glucometers, and CGM devices, therefore 

enhancing the standard of living of patients. 
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CHAPTER IV 

NEAR FIELD COMMUNICATION BASED WIRELESS SYSTEM 

 

 

 Near Field Communication (NFC) technology is gaining attention in the 

implementation of current wireless technologies. It opens many new possibilities for designing 

innovative wireless systems including interaction between two NFC-enabled devices or 

between a device and an NFC tag. The communication method is quite easy; all that is required 

is to bring the device or specific label (tag) in proximity to the reader to begin signal 

transmission. NXP Semiconductors, created by Philips, is a co-inventor of NFC technology. In 

2004, the corporation, along with Sony and Nokia, established the NFC Forum [126], a non-

profit organization dedicated to the advancement of this technology [127]. As previously 

stated, NFC is not a new technology but an advancement of current RFID technology. It 

operates across a distance restricted by a fraction of a wavelength of the carrier frequency, as 

well as the size of the antenna in relation to the wavelength [127]. In practice, this means that 

NFC connection is only available within 4 centimeters of the Google Pixel 3a smartphone. 

Therefore, a mobile phone must get quite close to the NFC tag to power it, connect to it, and 

query its content.  

A popular use-case is to have an NFC buscard for payment, with part of the leather/cloth 

wallet and the user's hand in between the card and the reader when held against the active 

reader. In this payment use-case, the distance and RF attenuation are near to the maximum 

feasible with the proximity-card specification and card-sized antenna diameter utilized, which 

is advantageous in terms of security and anti-collision. Another typical application is the use 

of proximity cards to get access to ski lifts. In contrast to vicinity cards, which have a minimum 

field strength of 1500 mA/m [126], proximity cards may function with a minimum field 

strength of 150 mA/m [127]. In reality, this equates to a communication distance of up to 1.5 
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meters for proximity cards if the reading antenna(s) are large enough to allow the reading of a 

card placed in the clothes of a person walking between two fixed antennae. NFC is intended to 

function between two nodes, one of which must be active. By feeding the antenna with power 

at the prescribed frequency, an active device generates an RF field surrounding its NFC-

antenna. NFC is a subset of RFID that works in the high frequency band at 13.56 MHz utilizing 

three RFID protocols: ISO 14443-Type A and Type B [ISO08] and FeliCa. At a distance of 5-

10 cm, the highest transmission speed can be 106 Kbit/s, 212 Kbit/s, or 424 Kbit/s. Table 2 

showcases the different technologies with the comparison of attributes based on range, set up 

time and useability which is indirectly suitable for the application. 

 

Table 2. Comparison between NFC and related technologies [131]. 

 
 

 

 

Near and far field  

 

 The near and far field operates on the fundamentals when an antenna emits RF energy 

at a specific frequency, f, the electromagnetic field around the antenna varies at different 

distances from the antenna. To begin, the distance from the antenna may be separated into two 

regions: near-field and far-field [126]. 
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 If the antenna length is half or less of the wavelength, the border between the near-field 

and the transition to the far-field is around one wavelength distance from the antenna. An 

electromagnetically short antenna is one that has a length that is less than half the wavelength. 

In the case of Nfc, for example, f = 13.56[MHz] λ ≈ 22.1[m]. Second, the near field is separated 

into two parts: a reactive zone close to the antenna and a radiative region that extends out to 

one wavelength. The extent of the reactive near field is determined by the antenna's parameters, 

such as its size in relation to the wavelength. The near field of an antenna is inductive, which 

means it may induce a current (transfer electrical power) into properly designed antennas 

within this area. As seen in Figure 13, a load (resistance) on antenna B, existing in antenna A's 

reactive near-field, feeds back, generates a higher load on antenna A. In other words, antenna 

A can create an electromagnetic field while taking a specific amount of power from its power 

source, and the load on antenna A's power supply will rise only when antenna B, in the reactive 

near field, puts (or increases) a load on its antenna [126]. Near-field communication is based 

on the inductive characteristic of the near-field area for powering passive tags and the feedback 

characteristic of the reactive near-field region for signaling back to the reading device using 

load modulation by adjusting the load on its antenna. 

Figure 13.NFC based antenna communication mechanism between emitter and receiver. 
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ISO-15693 Vicinity cards  

 

For this work the standard ISO-15693 “Contactless integrated circuit(s) cards - Vicinity cards” 

specify contactless cards are used which operates at a distance up to 1.5 meters [126]. The 

realistic read-distances of NFC and RFID-type technology differ significantly. RFID systems 

provide data back to the active reader using the same concepts of power induction into passive 

tags and load modulation on the reader's field [127]. Many RFID standards employ frequencies 

other than 13.56 MHz, which has additional properties such as a longer near-field and/or a 

higher allowable field strength, resulting in greater read-distances [128]. 

 

NFC supports three communication modes:  

 

Reader/Writer Mode: This mode is most typically used for data exchange for reading the 

information contained on the tag (label) using an NFC-enabled device. The tag itself does not 

have a power source, but it is powered by an NFC-enabled smartphone (reader or writer). NFC 

Forum specifies four types of tags that can be used together with NFC [128]:  

• Type 1 and Type 2: 

– based on the ISO/IEC 14443 Type A standard  

– small capacity (1 or 2 KB) 

– cheap to produce 

– transfer speed is limited to 106 Kbit/s  

• Type 3: 

– based on the FeliCa standard  
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– higher capacity (1 MB) 

– higher price 

– transfer speed is limited to 212 Kbit/s  

• Type 4: 

– based on both Type A and Type B ISO/IEC 14443 standards  

– capacity of 32KB 

– transfer speed between 106 Kbit/s and 424 Kbit/s  

Card Emulation Mode: In this case, it is a reverse process. The NFC device acts as a tag and 

works in a passive mode. The device can emulate an unlimited number of smart cards which 

are read by an external NFC reader. It is mainly used as a method of payment or for 

identification.  

Peer-to-peer mode: For this communication mode, two NFC-enabled devices are needed. It 

is used for direct data exchange between the devices.  

 

 The NFC Data Send Format (NDEF) message is a data format established by the NFC 

Forum and used to exchange data between two NFC devices or between two NFC devices and 

a tag. Each NDEF message can be made up of an infinite number of NDEF records, each of 

which provides a description of the sort of information it contains, and its length as shown in 

Figure 14 [141]. Record Type Definition (RTD) defines this information. According to NFC 

Forum [129], [132], commonly used RTD types are NFC Text RTD used for exchange of 

simple text string, whereas NFC URI RTD employs Uniform Resource Identifiers (URIs), 

which are used to describe resources on the Internet. They are compressed into a 1-byte field 

of the NDEF header. Smart Poster RTD allows the combination of multiple text and URI NDEF 

records, creating a self-describing ‘smart object’. The NFC Generic Control RTD contains a 

request for an NFC device to perform an action, such as start application, store data, modify 



 

 

42 

tag, etc. The NFC Signature RTD defines a format which is used to secure NDEF records and 

includes information about signature algorithms and certificates.  

 

 

Figure 14.NDEF message consisting of record and its parts. 

 

 

 Android NFC-enabled smart phones are equipped with the Google Wallet1 application. 

This application enables customers to use their smartphones as payment (credit) cards instead 

of traditional payment (credit) cards. The smart phone emulates credit cards by employing the 

NFC card emulation mode. To complete the transaction, the user just places the smart phone 

near the NFC capable payment terminal. Aside from security features in communication 

between the smart phone and the payment terminal, the user must enter the password to approve 

the payment transaction. By placing the Android NFC-enabled smart phone upon the tag, the 

information is read from the tag. Depending on the type of tagged device and the read 

information, the Touch & Connect Android applications can be started on the Android NFC-

enabled smart phone [129]. This application takes advantage of NFC to obtain Wi-Fi 

connection settings and a password from a tagged badge. Visitors to conferences throughout 
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the world are given badges as they enter the venue. The NFC tag connected to the badge carries 

all of the information needed by users to connect to a router through Wi-Fi. When a user scans 

the badge with an Android NFC-enabled phone the program instantly establishes a Wi-Fi 

connection. 

 

 

RF430FRL152H NFC ISO/IEC 15693 Sensor Transponder 

 

 

 In this work we employ the RF430FRL15xH line of devices because it incorporates a 

programmable 16-bit MSP430 core that is linked to an analog front end (AFE) to provide a one 

chip solution. This allows for the connection of a large number of analog or digital sensors, as 

well as the transfer of sensor data using short-range wireless NFC technology. The integrated 

MSP430 core features 2KB of FRAM and 4KB of SRAM for programming and data storage. 

It supports SPI and I2C connection and has a 3-channel 14-bit sigma-delta ADC [143]. The 

device has a clock rate of 2 MHz. The RF430FRL15xH devices run at 1.5-V, making them 

suitable for use with low-voltage coin cell batteries as described in the block diagram in Figure 

15 with the coin like shape and its components. It is even possible to passively power the device 

by drawing energy from the RF field of any reader connected to an RF430FRL15xH [131]. 

The RF430FRL15xH portfolio is divided into three components: the RF430FRL152H, the 

RF430FRL153H, and the RF430FRL154H. The 152H supports all of the hardware 

specifications stated above. The 153H, on the other hand, lacks SPI and I2C connections, and 

the 154H lacks the sigma-delta ADC.  
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Figure 15. Block diagram for RF430FRL152H Sensor tag [147]. 

 

 

The RF430FRL15xH includes a Sensor Application ROM, which enables the 

simultaneous operation of multiple sensors by simply declaring a set of registers. Features 

that support the Sensor Application include: 

 

• number of measurement cycles 

• skipping of specific sensor measurements based on the cycle count 

• measurement frequency (either predefined time steps or a custom time steps) 

• format in which samples are stored (all, first, last, highest, lowest, or average) 

• sensor configurations 

– gain 

– filter Type (CIC or Moving Average) 

– oversampling Rate 
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• monitor and Alarm Conditions 

 The features described above are handled by the ROM code and can be 

enabled, disabled, and configured with simple register writes that can be part of the 

FRAM firmware or done over the air with NFC technology [130]. 

 

 The RF430FRL152H may be interfaced with up to three analog sensors via the 14-bit 

sigma-delta ADC. The ADC additionally contains two channels (ADC1 and ADC2) that can 

detect resistance, allowing thermistors to be used. The sigma-delta ADC is a slow-acquisition 

ADC with extremely low-power input current, offset, and noise thresholds. This allows users 

to reduce the amount of electricity necessary to take samples using the gadget. Because of the 

way sigma-delta ADCs work, getting high-accuracy samples takes longer. A full 14-bit 

conversion, for example, takes around 2 seconds. Much quicker samples can be collected at 

the expense of precision [130]. 

The sensor patch contains an RF430FRL152H IC chip, passive components needed to 

link the RF430FRL152H pins to power and ground, and thermistor circuitry including a 

reference resistor. The RFID antenna is built into the PCB on the patch’s outside rim and 

surrounds it entirely. It is a three-turn coil that is adjusted by two capacitors. There is also a 

variety of test points that are used to program the RF430FRL152H with software, link the 

device through SPI or I2C lines, or attach a battery to the patch. 

A technique for coping with tag collisions is specified in the ISO/IEC 15693 standard. 

When there are numerous NFC/RFID tags in the RF region, the ISO/IEC 15693 anti-collision 

procedure provides a robust solution to the difficulty of recognizing and communicating with 

a single NFC/RFID tag. When presented to an ISO/IEC 15693 compatible NFC/RFID reader, 

a single slot Inventory command may be used to initiate communication with a single ISO/IEC 

15693 tag. The tag answers by providing its Unique Identifier (UID) and Identified Data 

Storage Format (IDSF) (DSFID). A collision occurs when many ISO/IEC 15693 tags are 
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shown at the same time because each tag is attempting to react to the same command. To 

overcome the collision of numerous ISO/IEC 15693 tags, a 16-slot Inventory command is 

supplied [131, 132].  

 One of the main components used in this module is the MSP430FR41xx ultra-low-

power (ULP) microcontroller series designed for low-cost LCD applications that need an 

integrated 10-bit ADC, such as remote controls, thermostats, smart meters, blood glucose 

monitors, and blood pressure monitors. The MCUs include a strong 16-bit RISC CPU, 16-bit 

registers, and constant generators for optimal code efficiency. The digitally controlled 

oscillator (DCO) enables the device to go from low power to active mode in fewer than 10 

seconds [132]. The architecture, paired with a wide range of low-power modes, is designed to 

maximize battery life in portable measurement applications. FRAM technology combines low-

energy rapid writing speeds with flexibility and endurance of RAM with the nonvolatile 

behavior of flash. The MSP430 family mixed signal microcontrollers are particularly well 

known for their low cost and low power consumption with functional block diagram shown in 

Figure 16. Furthermore, they provide many peripherals and other hardware features. General 

characteristics and features of this microcontroller are:  

• five power modes 

• 16-bit RISC architecture 

• fast wake up from standby mode 

• 16KB flash storage 

• 512B SRAM 

• clock frequency scalable up to 16 MHz 

• two 16-Bit Timers with capture/compare registers 

• 16 GPIO pins 

• universal Serial Communication Interface (USCI) module 
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 • analog-to-digital converter  

 

 
 

Figure 16. Functional Block Diagram of MSP430 microcontroller [132]. 

 

 

 

 

The most important features of the MSP430 which are essential for the realization of 

the project are described here. A sigma-delta modulator is provided for high resolution analog-

to-digital conversion of quasi-dc voltages that uses first-order integrator, 1-bit comparator, 1-

bit DAC, a sampling frequency of up to 2 kHz and is fully differential. 

One advantage of this architecture as shown in Figure 17 is that the device does not 

require firmware to be configured. This design makes use of the ROM features included within 

the RF430FRL152H. The NFC/RFID Reader/Writer device that writes the configuration 

registers initializes the device "over the air." It is crucial to note that with this arrangement, 

each sample takes 128 ms to acquire [132].  
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Given that each ISO/IEC 15693 tag has its unique UID and that most applications 

interact with a large number of tags, it is typically not possible to utilize the UID just to identify 

a single ISO/IEC 15693 tag. Any NFC/RFID reader may identify a tag as an RF430FRL152H 

by combining the Get System Information answer with the tag UID. The first two UID bytes 

are the obligatory 0xE0 byte (needed for all ISO/IEC 15693 compliant tags) and the 

manufacturer identification byte, which is 0x07 for Texas Instruments devices. If the UID is 

supplied, this is referred to as an addressed read, and only the tag with that particular UID 

responds. Addressed reads can be used to verify that the data received is solely from the 

RF430FRL152H tag by first identifying it. 

 

 

Figure 17. EAGLE Board schematic for RF430FRL152HCHRGER based sensor tag assembly. 

  

The same procedure may be used with the Write Single Block command to verify that 

data is exclusively written to the RF430FRL152H. TI recommends using addressed 
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instructions for Write Single Block to ensure that data is exclusively written to the designated 

tag and not accidentally overwritten on other surrounding tags [132]. 

The Inventory command is the NFC command for initial tag detection, and it may be 

used for both single and multiple tag detection. When numerous tags are detected, the 

anticollision algorithm handles the tags and resolves all collisions. After identifying a tag or 

many tags, the Get System Information NFC command is used to detect whether a tag is a TI 

RF430FRL15xH transponder. If no tag is found, the procedure terminates. If an 

RF430FRL15xH transponder is discovered, the Write Single Block NFC command is used to 

set it up for sensor measurements. The sample firmware communicates ADC port settings, but 

these configurations can be adjusted to accommodate different specialized applications. The 

sensor data is read out after setup [149]. The NFC transmission is finished at this point. Using 

a custom-built android application and NFC library on the MSP430FR4133 and the raw data 

from the RF430FRL15xH transponder, the ADC values may be converted to glucose data. In 

this work, the fuel cell’s glucose concentration is computed, and the resulting value is 

transferred to the smartphone to be displayed to the user. The procedure ends when the value 

is refreshed. 
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Figure 18. Board layout made on Eagle Autodesk for MSP 430 based assembly with external antenna 

of 13.56MHz. 

 

The electrical voltage produced by this single biofuel cell was supplied as the input 

voltage for the RF430frl152H. The device is based on the NFC system technology. Figure 18 

shows the board layout for a device made in the eagle software. The operating system is divided 

into two parts: the first is the wireless interface composed of the NFC chip and coil for wireless 

communication with smartphone. The second part is the biofuel cell interface with the NFC 

chip that reads the analog signal into 16-bit sigma delta ADC values. The circuit is designed 

following the guidelines established in the NFC chip datasheet, which includes an in-depth 

circuit diagram for operation of the NFC chip [133]. 

  



 

 

51 

CHAPTER V 

SMARTPHONE APPLICATION WITH DATA ANALYTICS 

 

In this section the android application is configured with the near field communication 

module that allows the data to be received and recorded for further functionalities. An Android 

application framework is a software toolkit that allows app developers to assemble a final 

product that fits the needs of its owner. A framework serves as the structure for an application, 

which is then built out with visuals, animation, unique features, and functionality. The Android 

Application Framework, which includes NFC API [134], is the next layer. The Android NFC 

API supports NFC and enables developers to create applications that use NFC in all three 

communication modes (reader/writer, card emulation, and peer-to-peer mode). 

This API's major classes are: 

• NfcManager - used to obtain an instance of the NfcAdapter.  

• NfcAdapter - represents the default adapter (NFC module), which is located inside the 

mobile device.  

• NdefMessage - a class that provides support for reading and writing of NDEF messages.  

• NdefRecords - represents NDEF records and provides methods for working with NDEF 

records.  
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Figure 19. NFC software stack showing how the NFC modules are linked with the design process in 

the android application [134]. 

 

During the design process of an Android application, considerable attention is paid to core 

Android system components that are used in the application's implementation as shown in 

Figure 19. The following are the most essential features of the application's design that have 

been considered: 

• definition of an Activity and possible states of Activity within the application  

• definition of Intents 

• structure of the Android manifest file  

 An Android application is made up of a main class that derives from the Android 

Activity class. An activity may be characterized as the main procedure in the program, and it 

is responsible for creating the application's window using the given user interface. Although 

an application may have one or more activities, only one may be designated as main [135]. The 
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Activity class implements methods that are responsible for transitions between distinct states 

of an Activity, and this is where the application begins.  

 For every Android application an Android manifest file must be specified. An Android 

manifest file contains information relevant for the Android system to successfully run an 

application [136]. This description, structured as an XML file, contains the following 

information:  

• general information about the used Android version  

• name of the application  

• definition of permissions for accessing the individual smart phone’s hardware 

components  

• definition of the application’s Intents  

• main Application and User Interfaces  

The main application's principal function is to provide capability for choosing between two or 

more user interfaces that demonstrate the target devices and executing the selected user 

interface. User interfaces graphically depict target devices and their appearances. Specific 

implementations are supplied for their functions and operations. User interfaces are meant to 

closely approximate the appearance and functionality of genuine target devices in order to 

improve the user experience of apps that represent target devices. As a consequence, graphical 

user interfaces that are simple, functional, and aesthetically appealing are built. Because each 

target device has its unique set of functionalities and actions, user interfaces are designed 

independently for each device [137]. The Android manifest file as shown in Figure 20 for the 

implemented application designates NFCAppActivity as the main class that implements the 

Activity and serves as the program's entry point. The Intent Filter is defined to inform the 

system of the application's intents, such as the intention to discover an NFC enhanced target 

device. Even when the application is not running and the NFC module identifies an NFC 
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upgraded target device, the system offers that the application be launched. Furthermore, the 

application's permissions are defined. In this situation, the application must be granted 

permission to utilize the NFC module. 

 

Figure 20. Code Snippet of an android manifest file displaying the structure. 

 

Next one of the main task is the Basic Communication Library to provide functionalities 

for establishing connection and communication between the NFC module of the Android smart 

phone and the NFC [138]. The library consists of six classes and the following Android NFC 

API classes are used for the realization of this task:  

• android.nfc.NfcAdapter  

• android.nfc.Tag 

• android.nfc.NdefMessage  

• android.nfc.NdefRecord  

• android.nfc.tech.IsoDep  

• android.nfc.tech.Ndef  
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Figure 21 shows the relationship between the classes of the library. The core class of the library 

is NFCapp, and its instance is used by user programs and other libraries to establish connection 

with the NFC-app. At the top, library level, it serves as an interface and offers all essential 

communication activities. The NFC class controls the whole interaction with the NFC via the 

TagCommunicator and Node classes.  

 

 

Figure 21. Android Smartphone – Basic Communication Library Class Diagram. 

 

 TagCommunicator is a low-level class which utilizes Android NFC API and other 

necessary packages to access and control the hardware NFC module [138]. This class provides 

methods for the following operations:  

• detection of the NFC 

• identification and activation of the NFC 

• establishing the communication with the NFC 

• accessing the NFC’s NDEF tag application  

• retrieving and writing the General Information Record  
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• native communication (sending C-APDUs and receiving R-APDUs)  

 

When the user launches the Android program, the initialization procedure begins, and 

the application launches the primary user interface, which simply states that the application is 

ready and waiting for the Android NFC-enabled smart phone to discover the NFC upgraded 

target device. Furthermore, the application gains access to the NFC module and maps all NFC 

detections to itself. This is accomplished by specifying an Intent. Simply defined, the 

application expresses a desire to conduct specific activities with the detected tags or, in this 

example, the NFC upgraded target device. The program then waits for the NFC module to 

detect the target device and take control of it [139]. When the target device is discovered, the 

application uses an instance of the Basic Communication Library to connect to the target device 

and read the General Information Record. The program adjusts the user interface to one that 

matches the target device based on the information about the kind of NFC (target device). The 

procedure is repeated if the NFC module identifies another target device or if the current target 

device vanishes and reappears in the magnetic field of the NFC module. The reading of the 

General Information Record is completed before the program switches user interfaces, and the 

application now has access to information about nodes and their elements. 

 

A distinct class with the name of the target device is defined as part of the application 

for each target device that is operated with the assistance of the Android application. User 

interfaces are created in such a manner that users can utilize them without difficulty to operate 

the target equipment. In other words, if the target device is a washing machine and the 

application is used to control the various washing programs for different clothing and 

temperatures, the application will provide an understandable user interface with graphics and 

explanations indicating the preferred washing program. This is performed via the usage of two 
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Android user interface packages android.view (block construction for user interface elements) 

and android.widget [140]. In addition, graphics and other resources are employed to develop 

the user interfaces as shown in Figure 22 with additional attributes declared. Event listeners 

are provided for each user interface element that conducts certain tasks. The native 

communication between the Android application and the NFC upgraded target device is 

executed when the user interacts with the user interface (e.g., by pressing a button). The 

instance of the NFC class is used by user application classes to communicate with the NFC 

upgraded target device. 

 

 
Figure 22. Code snippet for android view and widget application for initialing layout and applying 

parameters to a button. 

 

The Android platform contains a system which is managing all the actions with regards to 

NFC and apps, called the NFC Dispatch System. The dispatcher mainly determines which app 

should receive the message when an NFC tag has been scanned [141]. There are three types of 

messages that can result from a scan: NDEF_DISCOVERED, TECH_DISCOVERED, and 

TAG_DISCOVERED. One of the scripts for tag discovery that, by using the intent filter, is 

displayed in Figure 23. 
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Figure 23. Code snippet for tag discovery which uses NfcAdapter to check if the tag is ISO15693 and 

help in displaying the message of Tag discovered or not. 

 

These three are prioritized in the presented order and which app they will go to depends on 

the following:  

• content on Nfc tag (NDEF or not) 

• any currently focused app requesting foreground dispatch  

• nfc-filters in Manifest of installed apps  

When an app expresses interest in receiving NFC events, it must always specify which 

events it is specifically interested in receiving. This registration can range from a particular 

registration, such as a specific URI pattern in an NDEF Record, to a wide wildcard registration 

of any NDEF Message and/or any NFC Tag technology. To guarantee that the app receives 

what it needs while not interfering with other Nfc applications on the device, developers must 

understand how the NFC dispatch mechanism on Android prioritizes and selects which apps 

(one or multiple) can receive the scanned Tag or NdefMessage [142]. This is done to avoid 

conflicts with other programs, if feasible. When there is a conflict, the user is provided with 

the application-picker, where they may select whether to send the NFC scan to an app once or 

by default. Figure 24 depicts a flowchart of the NFC dispatcher's decisions about Tag content 

and app filters. 
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Figure 24. The priority of NDEF and tag dispatching by the android system [142]. 

 

An app registers interest in receiving NFC tags in two ways. The first involves the use 

of foreground listening, which can be engaged or stopped at any moment the program is 

running, is visible to the user and is active in the foreground on the device, and the other 

requires providing specific filters in the Manifest [143]. The foreground dispatch always takes 

precedence over other programs. The following filters are used for both foreground dispatching 

and manifest filtering:  

• When filtering for TECH DISCOVERED was applied NfcV tag technology was used. 

When the tag did not contain an NDEF message or no app request matched it, these 

filters will not be iterated. 

 

• Filtering for TAG DISCOVERED allowed to catch tags that did not match any TECH 

DISCOVERED requests. It was ineffective on its own since any higher priority event 

overrode it. Having only the TAG DISCOVERED filter in its Manifest allowed it to 

capture unknown tags while avoiding conflicts with other apps. 
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FIREBASE DATABASE 

 In this work, all acquired data will be kept on a cloud database (Firebase Realtime 

Database), forming temporal series that the patient/physician may view on the online platform. 

The patient will be able to input information such as blood pressure, heart rate, glycemia, and 

so on and events (other physical examinations).  

 Firebase is an online application and mobile development platform created in 2011 by 

Firebase, Inc. and acquired by Google in 2014 [144]. It provides several services that are 

extremely useful for creating online and mobile apps, including Firebase Authentication, the 

Realtime Database, and Firebase Storage. These services are simply linked into apps by 

utilizing an API key for the web and an SHA-1 key for Android. Firebase provides a service 

for managing user authentication across many paradigms. Aside from the Email-Password 

paradigm, Firebase authentication allows directly authentication of a user using his/her Google, 

Twitter, Facebook, or GitHub profiles, among others [145].  The Authentication service also 

includes several models for creating Email and SMS conversations. For example, there is a 

model to validate the email address used to establish an account or to reset the user's password 

if it is forgotten. Following the creation, each user is assigned a Uid, a unique identifier that is 

unrelated to the user's information or the authentication provider. That identity will be utilized 

in the database for two reasons: first, the database's rules can manage Uids to restrict access to 

a certain branch to the person who owns it, and second, this can make the database anonymous. 

 Firebase Realtime Database is a cloud database that is NoSQL ("non-SQL," which 

means it is not based on Structured Query Language). Data is synchronized in real time and 

remains accessible even if the program is shut off. Data is saved in the JSON (JavaScript Object 

Notation) format, which has a tree structure [146]. Because it is a real-time database, data 
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synchronization is used instead of traditional HTTP queries. This implies that if data changes, 

the linked devices receive an update within milliseconds. The onDataChange() function must 

be called when the program wants to read a database snapshot. Because the Firebase Realtime 

Database SDK (Software Development Kit) maintains data in local storage, Firebase apps stay 

responsive even while offline. When communication is restored, the client device receives any 

updates it missed, bringing it up to date with the current server state. Firebase also allows for 

the creation of programmer defined rules for accessing the database [147]. To access data, users 

must be logged in, but they may be redefined using the Firebase Realtime Database Security 

Rules, a versatile expression-based rules language with an example shown in Figure 25. This 

enables more precise control over who and how each database branch may be accessed. 

 

Figure 25. Basic rules in firebase database that allows any patient to edit the storage recordings. 

The Firebase Realtime Database can handle up to 100,000 simultaneous connections, 

where a simultaneous connection is defined as one mobile device, browser, or server app 

connecting to the database [148]. It is critical to note that the maximum number of users is not 

the number of users that are connected at the same time. For example, apps with tens of millions 

of users often have fewer than a hundred thousand concurrent users. However, by creating 

numerous databases, it is feasible to go over this limit [149]. Each database can send roughly 
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100,000 replies per second, which is the maximum number of concurrent reading activities on 

the database as seen in one of the examples in Figure 26.  

With UTF-8 encoding, the maximum size of a string is 10 MB. Each letter in UTF-8 is 

represented by 1 to 4 bytes; however, only 1 byte is required for each of the 128 characters in 

the ASCII alphabet [6]. Therefore, each string can be 5/10 million characters long. A single 

write request should be no larger than 256 MB through the REST API and no more than 16 

MB from the SDKs [150]. The amount of RAM that the complete database can occupy in total 

varies depending on whether it is utilized for free or for a fee. The free version utilized for this 

thesis work has a memory limit of 1 GB [8]. 

Figure 26. Storage metrics based on a month usage with connections and download speeds. 

The application database rules specify who has access to each database branch and how 

they may access it. Using Uids as database keys allows the restriction of access to a certain 

branch to the user who owns it, via the $uid key of the Firebase Realtime Database Security 

Rules language. The patient branch is the one that is edited via the Web Application, so only 

physicians have writing access, but the information within must be viewable on the Android 

Application so that each patient may read their own record [151]. Data and events branches 

can be read and written by both physicians and patients, with each patient having their own; 
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however, the physicianUid branch can only be viewed by physicians. This is the one utilized 

in the web application 

JSON (JavaScript Object Notation) is a simple data-transfer format. It is a language-

independent text format that employs patterns known to the C-family of languages [152]. These 

characteristics make it a suitable data-transfer language. JSON is composed of two structures, 

a grouping of Key/Value pairs and a set of values in descending order. 

These two data structures are well-known, and they are supported by all current 

programming languages in some form or another. As a result, JSON is a data format that is 

easily understood by multiple languages [152]. 

 

Figure 27. Storage format in J-SON for a test patient with other independent parameters. 

 

 Firebase Security Rules for Cloud Storage, like the Realtime Database, makes it simple 

to set storage access permissions. The fundamental rule is that users must be authorized in 

order to access files, but it is simple to specify certain paths that can be read and written only 

by specific users [153]. The patient's information is saved in the patient’s branch. The first 
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portion of the list of parameters is shown in Figure 27. The Data section comprises all the 

patient's health records. Data from the most recent examination are preserved in the History 

branch. This is the section of the database where patients save data using the Android App as 

shown in Figure 28. Each piece of information is saved in the appropriate branch with the date 

of the chosen day. It is natural for a person to not engage in all forms of physical activity on a 

daily basis, so the system automatically manages the missing fields [154].  

 

Figure 28. Data communication using Firebase Realtime database. 

 

MACHINE LEARNING  

 Glucose level monitoring is an essential part of diabetes self-management; diabetes 

patients and their families utilize it to make proper day-to-day treatment decisions about 

nutrition and physical activity, as well as insulin or other medication [155]. Zecchin et al. [159] 

have shown that by forecasting future glucose levels and informing patients when their blood 

sugar drops too low, patients can avoid hypoglycemic crises. Type 2 diabetes patients, on the 

other hand, are frequently less knowledgeable about their condition and do not always know 

what to do with their blood sugar monitoring data to keep their blood glucose within a 

reasonable range. That is why an application that advises these patients while precisely 

predicting and visualizing the impact of their actions on their future blood glucose results might 
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be useful. It can provide patients with a far better understanding of how their present behavior 

(mostly food consumption and physical activity) affects their future blood glucose levels and, 

as a result, how they should modify their behavior. It is critical that this application provides a 

relatively accurate forecast since an erroneous prediction may cause patients to take too much 

insulin (possibly resulting in hypoglycemia) or to inappropriately change their behavior 

(potentially causing hyperglycemia). It may also cause patients to lose faith in the application, 

making it less likely that they would change their behavior as a result.  

 This study aims to predict blood glucose levels 30 minutes to 120 minutes in the future 

(this is called the prediction horizon). This is believed to be the most helpful prediction horizon 

since a patient's blood glucose during this time is most impacted by behaviors (such as eating) 

at the time of the forecast. A secondary study aim is to establish how the prediction model 

should be used in a real-world application and whether it is preferable to train a different model 

for each patient or to utilize a patient-independent model. Finally, it is important to determine 

which input properties are critical for creating good predictions and how a prediction model 

acts. The blood glucose predictions in "Smartphone-based individualized blood glucose 

prediction" [157] is likewise based on manually submitted blood glucose measurements and 

physical activity, but they additionally incorporate diet and sleep. They have claimed to have 

developed a more accurate prediction of blood glucose using a mix of patient-based and 

population-based information. They are, however, employing a small and very contrived 

dataset [158], and it appears that they did not utilize a separate test and validation set, rendering 

purported speed benefits by clustering, for example, possibly inaccurate (could simply be 

overfitting to the dataset). 

 In Juang et al. [159] an algorithm is developed to predict the occurrence of 

hypoglycemia (too low blood glucose) using machine learning, but there was no attempt to 
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directly predict blood glucose levels.  Because insulin management is so important for type 1 

diabetes patients, more research is being conducted with the goal of precisely predicting blood 

glucose levels in type 1 diabetes patients. Because the dynamics of type 1 and type 2 diabetes 

are so similar, several studies believe that the performance of models employed for type 1 

diabetes will generally transfer to type 2 diabetes [160]. Cunningham et al. [161] made no 

distinction between the two categories. However, in some models, type 2 diabetes is actually 

more difficult to simulate than type 1 diabetes since the model must also account for insulin 

that the body is still producing (which is not a factor in adult type 1 diabetes patients).  It turns 

out that having more input characteristics improves prediction model accuracy, and it is 

believed that this is true for type 2 diabetes patients as well. As the prediction horizon (PH) is 

raised, performance suffers. Although the models are not directly comparable, hybrid models 

that combine Compartmental Models (CM) with a data-driven model such as Recurrent Neural 

Networks (RNNs) appear to have the lowest error [162]. 

 An autoregressive model is a regression model that predicts the next value based on 

its own prior values. For example, we might use the last three blood glucose measurements to 

forecast the blood glucose in 60 minutes, using a weighted sum in the form of equation 1:  

                                                            y60 = a*x−30 +b*x−15 +c*x0                                                        (1) 

where yt is the predicted blood glucose at time t and xt is a previous blood glucose value at 

time t . We can easily determine the optimal parameters for a, b and c by minimizing the error 

between the actual blood glucose value and the predicted value for all available data points. 

The number of previous values used as input to the model is a crucial consideration while 

training an autoregressive model [163]. In general, the most recent known value has the 

strongest connection with the value that must be predicted, and this correlation decreases when 
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values further in the past are considered. This means that when more past values are provided 

as extra input, the performance gains decrease. 

 Neural network regression  

 An artificial neural network (ANN) is a form of computing model that is loosely based 

on how neurons in biological brains work. When a neuron in the brain gets a signal from its 

dendrites, it fires a signal through its axon, which branches out to the dendrites of several 

additional neurons. Each neuron may learn by changing the weight it assigns to various inputs 

from other neurons. 

 

Figure 29. Graph visualization of a neural network [165]. 

 

In the computational model, each artificial neuron has one or more inputs that are 

weighted and summed with an additional bias, and then an activation function is applied to this 

value, which is comparable to a set threshold of when a neuron fires. Training an artificial 

neural network means optimizing these weights and biases for each neuron. The computational 

model based on a biological neuron was first presented in the 1940s [164], but it has only 

recently gained popularity due to other algorithmic breakthroughs (such as backpropagation 

[161]), higher computer power, and more accessible data. 
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 A neural network is often represented graphically by a graph structure (see Figure 29) 

with each node representing a neuron and the connections between neurons representing 

weights. We receive a given output by putting input into the network from left to right, which 

we can compare to the predicted output using a cost function. 

Using the Mean Squared Error (MSE) as an example with equation 2:  

                                                                                

                     𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑁
𝑖=1                         (2)    

 

where N is the number of cases, y represents the real value of the input and yi represent 

the predicted value of input. We compute the derivative of this cost with respect to the model's 

weights and biases to determine in which direction to adjust these parameters in order to reduce 

the cost (this is called backpropagation). The model may then be improved repeatedly by 

continuously feeding a batch of data into the network and adjusting the weights and biases 

depending on the derived derivatives as shown in Figure 30. 

 

Figure 30. Backpropagation model visualization. 

 Overfitting is a typical issue with neural networks. This suggests that the network has 

become too acclimated to the noise of the training data and will therefore perform poorly on 
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new data (it does not generalize effectively). Weight regularization is one approach to 

attempting to overcome this problem. This entails assigning a cost to the weight parameters, 

providing the network an incentive to keep the weights as low as possible. Dropout is a 

relatively modern strategy for avoiding overfitting [165]. During each training cycle, a certain 

fraction of randomly chosen neurons is not taken into account. This avoids neuron co-

dependence and makes it more difficult for the network to overfit on the training data. 

Recurrent Neural Network  

 Another difficulty with traditional artificial neural networks is that they are unsuitable 

for use with sequential data. Assume we wish to use neural networks to anticipate the next 

word in a phrase. This would need knowledge of the previous words in the statement. We may 

opt to feed the past five words into the network and see whether the network can predict the 

next word with the architecture diagram shown in Figure 31. However, it is possible that 

information from a few lines before is needed to figure out which word follows next [166]. We 

may utilize a recurrent neural network (RNN) architecture to handle this problem. The neurons 

in the buried layer in this design can receive additional input from their prior state. This prior 

state is also linked by weights learned by backpropagation. It is feasible to preserve knowledge 

about previous inputs while just feeding the network data for one timestep in this manner. 

 

Figure 31. Graph visualization of a unrolled recurrent neural network [166]. 
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The vanishing gradient problem is a common issue with this architecture. This is the 

phenomenon in which, as the network computes the gradient of the cost function based on an 

input many timesteps in the past, the gradient can vanish (become very small) due to a large 

number of computation steps between the output and an earlier input. In reality, this means that 

the network has a difficult time learning long-term dependencies. 

Long-term memory networks 

Hochreiter et al. [167] presented an adaption to the regular recurrent neural network 

(RNN) architecture to address the issue of vanishing gradients and make it simpler for a neural 

network to learn long-term as well as short-term dependencies.  

 

 

Figure 32. LSTM architecture using different gates [167]. 

 

This architecture as shown in Figure 32, known as the long short-term memory (LSTM) 

network, extends the standard RNN by adding gates to the hidden layer. These gates are 

essentially just extra weight parameters that the network uses to select which information from 
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the prior hidden state information from the current input to utilize, information to forget, and 

information to remember. Because these weights are all differentiable, they can also be 

optimized via backpropagation. RNNs have difficulty learning long-term dependencies with 

LSTM models essentially being the extension of RNNs’ memory. Applying the LSTM twice 

as in bidirectional and stacked models leads to improvement in learning long-term 

dependencies which will consequently improve the accuracy of the model. 

Bidirectional long-short term memory (bi-lstm) is the technique of allowing any neural 

network to store sequence information in both ways, either backwards (future to past) or 

forwards (past to future). Our input runs bidirectionally, distinguishing a bi-lstm from a 

conventional LSTM. We can make input flow in only one direction using a conventional 

LSTM, either backwards or forwards. 

Stacked LSTMs or Deep LSTMs have been used in voice recognition, beating a 

benchmark on a difficult standard issue. Stacked LSTMs are already a well-established 

approach for solving difficult sequence prediction issues. A Stacked LSTM architecture is an 

LSTM model made up of many LSTM layers. An LSTM layer above sends a series of values 

to the LSTM layer below, rather than a single value. There is one output time step for each 

input time step rather than one output time step for all input time steps. The challenge is that 

most statistical measures summarize a large dataset to a single value, so it provides only 

projection of model error categorizing a certain aspect of error of the model performance. For 

time series forecasting, RMSE comes into consideration which measures the square deviations 

to keep the positive and negative deviations from canceling one another out. 

 

The error metrics used to measure and compare the performance of the two baselines 

and the support vector regression S model are described. These measurements are Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE). The mean absolute error represents 
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the average overall error between the actual and predicted values. The definition is given in 

equation 3.  

                                                                        

                                        𝑀𝐴𝐸 =  
∑ |𝑦𝑖−𝑦𝑖̂|𝑛

𝑖=1

𝑛
                             (3)   

where y is the actual value, 𝑦̂  is the predicted value, and n is the number of test examples.  

The Root Mean Square Error is similar to the standard deviation of the error as seen in equation 

4 

                                                

                                                 𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

𝑛
                        (4) 

where y is the actual value and 𝑦̂ is the predicted value. 
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CHAPTER VI 

ELECTROCHEMICAL CHARACTERIZATION 

 

 Electrochemical characterization is used to investigate the electrochemical behavior of 

materials under different electrochemical circumstances. There are three types of electrode 

systems in an electrochemical cell: two-electrode systems, three-electrode systems, and four-

electrode systems. Any of these electrode systems can be used to perform electrochemical 

characterizations. A working electrode and a counter electrode make up an electrochemical 

cell. The potential of the working electrode is proportional to the concentration of the analyte. 

The circuit is closed by the counter electrode. The working electrode's potential is determined 

in relation to the counter electrode, which serves as a reference potential. As a result, the 

potential of the counter electrode is constant. If the potential of the counter electrode is not 

constant, two electrodes are used to complete the electrical circuit: a reference electrode with 

a constant potential and an auxiliary electrode. The area of the auxiliary electrode is large 

enough to handle the current flowing through the circuit. 

 In a two-electrode setup, the setup consists of only two electrodes, the working 

electrode and the counter electrode, which function as a two-electrode system to characterize 

the electrochemical cell. As a result, the voltage measured in the two-electrode system is the 

voltage between the counter and the working electrode, which is the cell voltage.  

Cyclic voltammetry  

 Cyclic voltammetry (CV) is the most fundamental electrochemical test for materials. 

The current is measured by sweeping the potential back and forth (from positive to negative 

and negative to positive) within the predetermined limits. The information gained by CV may 

be utilized to describe the material's electrochemical behavior. A graphical study of a cyclic 

voltammogram yields the redox peaks (reduction and oxidation peaks), therefore enabling the 
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prediction of the capacitive behavior of the electrode. From this curve in Figure 33, the 

potential for oxidation and reduction of the material may be determined. 

 

Figure 33. Schematic for Cyclic Voltammetry. 

 In a CV, a ramp signal is used as the input signal. The forward scan is given a positive 

ramp (with a positive slope), while the voltage is switched after the first half-cycle, which is 

followed by a negative ramp, essentially inverting the nature of the cyclic voltammogram for 

the next half-cycle. The system returns to the starting point as it attempts to achieve equilibrium 

through redox reactions. It follows a cyclic pattern, which provides information about the 

changes that the system has undergone. By carefully evaluating the CV curve, one may draw 

numerous key inferences about the material and its characteristics (such as capacitive nature, 

for example), as well as the system behavior. The CV experiment can be performed with a 

single cycle or with numerous cycles. The scan rate is defined as the slope of the ramp signal 

given in volts per unit time [168]. This scan rate can range from a few millivolts per second to 

several hundreds of volts per second. The system's scan rate may be changed to acquire a better 
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understanding of the cell's electrochemistry. As a result, the scan rate is critical in determining 

the voltammetric behavior of the material to be evaluated. The oxidation and reduction peak 

currents, as well as peak potentials, may shift depending on the scan rate.  Due to the existence 

of electroactive species at the electrode's (working electrode) surface, a faster scan rate leads 

to a greater number of redox reactions. With a slower scan rate, however, there is a chance of 

missing the peak (either forward or reverse scan peak) because the products of the reduction or 

oxidation have enough time to engage in a chemical process whose products may not be 

electroactive. The Randles - Sevcik equation may be used to compute the peak current in the 

CV from equation 5:      

                                    𝑖𝑝 =  2.69 ×  105𝑛
3

2𝐴𝐶√𝜈𝐷                (5)              

where ip is the peak current, n is the number of electrons in the redox reaction, A is the area of 

the working electrode, C is the concentration of the electroactive species at the electrode, D is 

the electroactive species diffusion coefficient and 𝜈 is the scan rate. 

 All of these characteristics are important in calculating the peak current in CV. From a 

CV, the electron transfer coefficient (number of electrons transferred), rate-limiting factor 

(factor limiting the pace of the reaction), and rate constant of the process can be determined. 

As shown in Figure 34, the difference between the two CV peak potentials indicates the 

influence of the analytes' diffusion rates. The ratio of currents peaks of cathode and anode may 

also be used to determine if the system is reversible, irreversible, or quasireversible. If the ratio 

is equal to one, it signifies that the anodic and cathodic peak currents are the same, and it 

indicates that the system is reversible. Because the CV is taken in a scenario where the solution 

is held undisturbed, the current peaks are essentially acquired; otherwise, the peak current may 

be substituted by the limiting current. The CV provides comprehensive capacitance behavior 
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by monitoring it at various sweep speeds. It also offers a sense of the material's specific 

capacitance, which may be computed using the formula 6: 

                                    𝐶𝑠 =  
∫ 𝐼𝑑𝑉

𝑣𝑚∆𝑉
                             (6) 

where ∆V is the potential window (V), m is the mass of electroactive material (g), and v is the 

scan rate (mV/s), and IdV is the area under the curve in the plot of I and V. 

 The pH of the medium also has a significant impact on the electrode response. In the 

case of polymers, CV can readily anticipate the electrochemical behavior of the polymer by 

utilizing the band gaps, electron affinities, and work functions of the materials [168]. As a 

result, CV is utilized to investigate the compound's chemical and electrochemical 

characteristics. In addition to the benefits listed above, CV can aid in the functionalization of 

materials by executing different redox reactions with numerous scans. 

 

Figure 34. Cyclic Voltammetry waveform with description based on the process [168]. 
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Chronoamperometry 

 

 A constant voltage is given to the working electrode in amperometry, and the current 

is measured as a function of time. Amperometry is utilized in flow systems to identify analytes. 

As a result, analytes from a patient's body can be identified even in vivo because the bulk of 

the human body is made up of liquid flows. Amperometry may also be utilized for sensor 

research, and portable amperometric sensors can be built. Chronoamperometry (CA)varies the 

input potential and records the resultant current fluctuation as a function of time. CA is based 

on Cottrell's equation 7:  

                     𝑖(𝑡) = 𝑛𝐹𝐴𝐶√(
𝐷

𝜋𝑡
)  =  

𝑘

√𝑡
                       (7) 

 

where n, F, A, C, D, t, and i are the number of electrons, Faraday constant, electrode surface 

area, analyte concentration (electrochemically active species), diffusion coefficient, time, and 

current, respectively. 

 Fick's second law of diffusion is used to generate Cottrell's equation. It aids in 

determining the diffusion coefficient D (cm2/s) of the electroactive species present on the 

surface area of the working electrode. It predicts the variation in current over time (current time 

response or chronoamperometric response) when a potential step is applied in the presence of 

a significant overpotential. The Cottrell equation is only true in the situation of a diffusion 

current, which is essentially the diffusion of the analyte to the electrode surface.  

 CA provides the present time (I vs t curve) response since it follows the Cottrell 

equation as shown in Figure 35. The curve's behavior is Cottrellian, where the current is 

determined by the inverse square root of the time from equation 8: 
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      𝐼 ∝  
1

√𝑡
       (8) 

where I is the current and t is the time.  

 
 

Figure 35. Graphical representation for current vs time in chronoamperometry process [168]. 

 

 

 

 

 

 Initially, the working electrode is provided the step input potential, which raises its 

potential from the point where no faradaic reaction occurs to the point where the surface 

concentration of the electroactive species becomes zero, resulting in a fading current profile. 

The I vs t curve depicts the variance in the surface neighborhood's concentration gradient. A 

potential pulse is delivered to the working electrode at regular time intervals. CA may also be 

used to investigate the mechanisms of electrode processes [168]. 
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Linear Sweep Voltammetry 

 

 Linear Sweep Voltammetry (LSV) is a fundamental potentiostatic sweep technique. It's 

the same as a one-segment cyclic voltammetry experiment. Working electrode potential is 

linearly swept between final and beginning values in LSV, and current is monitored as a 

function of time. The most frequent result of an LSV experiment is a voltammogram, which 

shows current vs. potential. LSV sweeps the potential vs. reference electrode in one direction, 

generally via the electroactive species to allow analysis of the ensuing electrochemical species 

formed at the electrode surface. Potential is swept linearly from a starting to a final potential 

in an LSV experiment, with current sampled at defined intervals. LSV delivers both qualitative 

and quantitative information about electrochemical systems and has proven itself a quick and 

dependable characterization technique. LSV is commonly used to study the kinetics of electron 

transfer reactions, including catalysis, and has since been extended for use in sensor and 

biological system evaluation, organic and inorganic synthesis, and in fundamental physical 

mechanics of electron transfer reactions, like reversibility, formal potentials, and diffusion 

coefficient determination. 

 Linear sweep voltammetry, like cyclic voltammetry, employs a three-electrode setup. 

A working electrode, a counter electrode, and a reference electrode are included. The three 

electrodes are linked by a potentiostat and put in an electrochemical cell containing the solution 

of interest. The potentiostat regulates the potential between the working and reference 

electrodes and monitors the current at the counter electrode to create a potential vs. current 

diagram. At the potential where oxidation or reduction begins, a peak or dip might be visible. 

Linear sweep voltammetry may be used to compute the peak current, peak current potential, 

and half-peak current potential. Several crucial factors can be measured using linear sweep 

voltammetry to identify a material's thermodynamic reversibility. These metrics include the 
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peak current (ip), the potential at the peak current (Ep), and the potential at half the peak 

current. These can be interpreted in this context for the system O + e- ⇌ R, where R is absent 

initially (i.e. assuming no coupled reactions). At the reversible and quasireversible limits, these 

values can be used to calculate key electrochemical parameters. The LSV in a fuel cell permits 

the I-V characteristics to follow the same pattern as an ideal electrical circuit component (i.e. 

Ohm's law). More losses, such as kinetic loss (charge transfer), activation loss, mass transport 

loss (concentration), and ohmic loss (ion and electron transport) can be determined for any 

electrochemical system. Because the V/I ratio is not always constant, these losses influence the 

I-V characteristics curve.  
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CHAPTER VII 

MATERIALS & METHODS 

 

Materials 

 

                 Silver nitrate, polyethylene glycol 3000 (PEG), sodium hydroxide, D (+) glucose, 

potassium phosphate monobasic, sodium azide, and Nafion were obtained from Sigma-

Aldrich. The platinizing solution was purchased from YSI Inc., and NGP-J gold nanoparticle 

ink was acquired from Iwatani Corporation of America. The multiwalled carbon nanotube 

NINK-1000 was obtained from Nanolab, Inc. Gluconacetobacter xylinus (ATCC 10245) was 

purchased from ATCC. Hydrosulphite of sodium medium (HS medium) was purchased from 

Himedia Laboratories. All the solutions were prepared with 18.2 MΩ-cm Milli-Q water. 

Platinum counter electrode, Ag/AgCl reference electrode, and PalmSense4 potentiostat were 

purchased from BASI Inc. The S882Z charge pump integrated circuit (IC) was obtained from 

Seiko Electronics.  

 

Bacterial nanocellulose synthesis  

 

 

The Gluconacetobacter Xylinus culture was maintained in sterile HS medium as static 

cultures at 30 °C. Briefly, the cell pellet was rehydrated in HS medium and transfered to a 50 

mL conical tube containing 5 mL broth at 30 °C to establish good growth for 72 h. To generate 

the inoculum, the pellicle was removed to disperse the cells by vortexing at maximum speed 

for 1 min. The suspended bacteria (1 mL each) solution was transferred to a fresh 50 mL HS 

medium in sterile 100 mm crystallization dishes. The inoculated crystallization dishes were 

incubated at 30 °C undisturbed for 1 week. The bacteria were fed at 1-week intervals by 

carefully adding 50 mL of HS medium to enable the formation of subsequent pellicles for a 

total of 6 weeks to form 6 uniform pellicles. To harvest the bacteria nanocellulose, the pellicles 

were incubated at 90 °C in 0.5 M NaOH for 1 h to denature the bacteria. The pellicles were 
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extensively washed in Milli-Q water for 48 h to remove the NaOH and achieve neutral pH. The 

washed pellicles were stored 0.02% sodium azide solution at 4 °C prior to use.  

 

Electrode Fabrication 

 

 

The bacterial nanocellulose pellicles were placed on 3-inch PET wafers, smoothed in 

Milli-Q water to remove all air bubbles, and allowed to dry at room temperature overnight prior 

to printing on the BNC substrate. Figure 36 provides an illustration of the electrode pattern 

with an overall dimension of 15 mm × 10 mm designed using CoralDRAW. A semicircle and 

a larger circle (r = 5 mm) shape design were implemented for the cathode and anode, 

respectively. The .bmp file was exported to the Fujifilm Dimatix 2850 Materials Printer to be 

converted to a .tf file for printing. The software then was configured with the thickness of the 

substrate (130 μm bacterial nanocellulose on PET), printing layers (2 layers), and jetting speed 

(50 Hz) for printing the electrodes. The NGP-J gold ink (650 μL) was injected into a DMC-

11610 cartridge (10 pL drop-size) tank using a syringe followed by capping of the cartridge 

with the nozzle head. The platen and cartridge temperatures were set at 45 °C and 28 °C. A 

printing resolution of 1016 DPI was used, with the jetting voltage range between 22 and 25 V 

and all 16 jets were used. After printing, the substrate was dried in a conventional oven for 90 

min at 85 °C to dry the ink, and then cooled to cool temperature overnight before the 

preparation of the fuel cell.  

 
 

Figure 36. Coral draw design for electrode fabrication. 
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Preparation of Au-co-Pt 

 

The dried printed electrodes were rinsed with isopropanol (IPA) for 5 min and dried 

with nitrogen gas to remove any impurities from the surface. Colloidal platinum (co-Pt) was 

electrodeposited on the anodic electrode using a three-electrode configuration consisting of the 

anodic working electrode, platinum counter electrode, and Ag/AgCl reference electrode 

immersed in platinizing solution. The co-Pt was electrodeposited onto the surface on the 

printed gold electrode at an applied potential of − 225 mV vs. Ag/AgCl for 1500 s. The 

electrode was then washed with Milli-Q water and dried at 80 °C for 30 min, followed by 

cooling in ambient air as shown in Figure 37.  

 

 

Figure 37. Au-co-Pt electrode after electrodeposition process. 

 

Synthesis of silver oxide nanoparticles  

 

The silver oxide nanoparticles (Ag2O) solution was prepared by dissolving 20 g of PEG in 1 L 

of Milli-Q water, which was then heated to 75 °C under constant stirring for 1 h to ensure that 
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all the PEG was completely dissolved to form a homogeneous solution. The resulting PEG 

solution was filtered using Whatman ashless filter papers to remove any impurities. Under 

constant stirring, a silver nitrate solution was prepared from 0.5 g of silver nitrate and was 

added to the prepared PEG solution at 75 °C for 1 h. The pH was maintained at pH 9.8 to 10 

throughout the reaction process using 0.1 M NaOH solution. Subsequently, the Ag2O particles 

precipitated to the bottom of the solution, and the solution was centrifuged to extract the 

particles from the original solution. A 20 μL of MWCNTs solution was mixed in with the Ag2O 

particles using ultra-sonication for 30 min to form the Ag2O-MWCNTs solution.  

The Ag2O-MWCNTs solution was drop-casted onto the cathode surface, followed by soft 

baking at 60 °C for 30 min. Figure 38 provides a schematic illustration of the process involved 

in preparation of the cathodic functional components of the glucose abiotic fuel cell. For easy 

handling and device testing, a tungsten wire was attached to the electrodes using carbon wire 

glue.  

 

 

Figure 38. Cathode electrode after nanoparticle synthesis process. 
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RF430frl152h module  

 The RF430FRL15xH series of devices is well-suited for sensor-based applications that 

benefit from a wireless interface. The RF430FRL15xH employs NFC/RFID connectivity to 

wirelessly send data over short distances (typical range is 1 to 5 cm). The RF430FRL15xH can 

be powered by an RF field, enabling battery-free applications using one or more sensors. An 

NFC reader that supports ISO/IEC 15693 is required to receive sensor data from a tag 

employing the RF430FRL152H. Furthermore, depending on the sensor, computations may be 

necessary to turn raw results into usable data. The RF430FRL15xH line of devices can be used 

for a variety of sensor measurements.  

 The RF430FRL15xH has 2KB of FRAM, 4KB of SRAM, and 8KB of ROM. The 

Sensor App, the ISO/IEC 15693 RF Stack, and the device's Boot Code are all stored in the 

ROM, which cannot be modified. The 4KB of SRAM, which is made up of eight 512-byte 

sectors, is utilized to store sensor data. Individual sections of SRAM can be switched off to 

save power, but any data held in a turned off section of SRAM is lost. The 2KB of FRAM is 

used to store data and create custom applications. FRAM is a nonvolatile memory that retains 

data even when the device is switched off. The FRAM may be partitioned to serve as additional 

RAM memory to store extra sensor data, and it is divided into four 512-byte blocks. The 

Battery-less NFC/RFID Temperature Sensing Patch TI Design was created using the 

RF430FRL152H. This patch is constructed on a flexible PCB and features a single thermistor 

that is interfaced with the RF430FRL152H to provide temperature measurements. The tag gets 

its energy from the RF field provided by NFC/RFID scanners. The conversion of the analog 

signal was carried out in an on-air Android application to remove additional firmware coding 

that allowed in creating a custom algorithm to calculate the incoming bits to glucose 

concentrations as shown in Figure 39.  
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Figure 39. Code snippet for glucose conversion based on the input string transferred from the 

wireless module. 

 

Android Application 

 

 Android is a mobile operating system built especially for touchscreen mobile devices 

such as smartphones and tablets. It is based on a modified version of the Linux kernel and other 

open-source applications. Android is created by a group of developers known as the Open 

Handset Alliance, with Google serving as the primary contributor and commercial marketer 

[127]. The Android Open Source Project (AOSP) is the name given to the core Android source 

code, which is predominantly released under the Apache License. This has enabled Android 

variations to be built for a variety of different technologies, including gaming consoles, digital 

cameras, and personal computers (PCs) and others, each with its own user interface. Google's 

Android TV for televisions and Wear OS for wearable devices are two well-known adaptations. 
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The source code of Android has been utilized as the foundation of other ecosystems – most 

notably Google's, which is coupled with a suite of proprietary software known as Google 

Mobile Services (GMS) [127] that commonly comes pre-installed on those devices. This 

comprises essential programs like Gmail, the Google Play digital distribution network, the 

accompanying Google Play Services development platform, and apps like the Google Chrome 

web browser. These apps are licensed by Android device makers who have met Google's 

criteria. Amazon.com's Fire OS and LineageOS are two more Android ecosystems to consider. 

In most cases, software distribution is done over the internet. Applications ("apps") that 

increase device capabilities are created with the Android software development kit (SDK) and, 

in many cases, the Java programming language. 

 Java may be integrated with C/C++, as well as a variety of non-default runtimes that 

provide improved C++ compatibility. A debugger, software libraries, a handset emulator based 

on QEMU, documentation, sample code, and tutorials are all included with the SDK. Initially, 

Eclipse with the Android Development Tools (ADT) plugin was Google's supported integrated 

development environment (IDE). Google announced Android Studio in December 2014 as 

their primary IDE for Android application development, based on IntelliJ IDEA. Because of 

the open nature of Android, a number of third-party application marketplaces for Android exist, 

either to serve as a replacement for devices that are not permitted to ship with the Google Play 

Store, to provide applications that cannot be offered on the Google Play Store due to policy 

violations, or for other reasons. The Amazon Appstore, GetJar, and SlideMe are a few 

examples of third-party storefronts. Another alternative marketplace, F-Droid, aims to only 

deliver programs licensed under free and open-source licenses. This enables anybody with 

access to the source code to modify it and use it as needed. 
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CHAPTER VIII 

RESULTS & DISCUSSION 

 

The abiotic fuel cell was constructed from Au-co-Pt anode and silver oxide nanoparticles and 

carbon nanotubes composite cathode, as illustrated in Figure 40. 

 
Figure 40. Fabricated Au-co-Pt anode on left and silver oxide nanoparticles and carbon nanotubes 

composite cathode on the right. 

 

The gold surface on the BNC was characterized by scanning electron microscopy 

(SEM). Figure 41A shows the printed gold electrode surface. The gold electrode surface 

exhibited a plain surface with nanostructures (ϕ = 22.4 ± 6.2 nm), thereby making it ideal for 

use as electrode substrate material. As noted in Figure 41B, the electrodeposition was 

performed to deposit co-Pt on the printed gold electrode. The electrodeposited co-Pt presented 

a fractal-like distribution of microstructures, measuring on average 3.8 ± 1.1 μm in diameter. 

The co-Pt structures were found to be uniformly deposited on the printed gold surface. They 

also exhibited a porous morphology with a high surface area to volume ratio and appear to be 

composed of nanostructures. The co-Pt structures act as an inorganic catalyst at the electrode–

electrolyte interface to improve the catalysis of glucose at the anode when compared to the 

bare printed gold electrode. Figure 41C shows the Ag2OMWCNTs nanocomposite drop casted 

on the printed gold electrode. A network of MWCNTs (ϕ = 53 ± 0.8 nm) intertwined with the 
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Ag2O nanostructures with diameters ranging from 12 nm to 389 nm was observed. Smaller 

Ag2O nanostructures were observed to be directly attached to the MWCNT’s surface. This 

interconnected network of Ag2O-MWCNTs nanocomposite is essential in creating a porous 

environment to enable Ag2O reduction at the cathode [170]. 

 

 

Figure 41. Scanning electron micrographs of (A) bare printed gold nanoparticles (AuNPs) on 

bacterial nanocellulose sheet, (B) colloidal platinum (co-Pt) electrodeposited on printed gold 

nanostructures, (C) sliver oxide-multiwalled carbon nanotubes (Ag2O-MWCNTs) nanocomposite 

drop cast on printed Au electrode. 

 

 

 The cyclic voltammogram in Figure 42A shows the electrooxidation of glucose in the 
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presence of co-Pt electrodeposited on printed gold nanostructures to produce gluconic acid 

and electrons according to equation (9).  

 

                  𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 𝐴𝑢 − 𝑐𝑜 − 𝑃𝑡 = 𝐺𝑙𝑢𝑐𝑜𝑛𝑖𝑐 𝐴𝑐𝑖𝑑 + 2𝐻+ + 2𝑒−                (9) 

 

At the anodic electrode, hydrogen adsorbed to the co-Pt electrode surface and the co-

Pt acts as the dehydrogenation site wherein the gold nanostructure surface facilitates the 

regeneration of co-Pt from poisoning due to adsorbed intermediates from the oxidation of 

glucose. At the onset potential of −0.428 V, surface Pt-OH particles are formed which oxidizes 

the intermediates produced by the absorption of glucose, and thus frees up active Pt sites for 

direct oxidation of glucose [271]. During the electrooxidation of the glucose, a well-defined 

peak was observed around a potential of −0.052 V with higher current density of 1.435 

mA/cm2 in comparison to the current density of 0.85 mA/cm2 in the absence of glucose. The 

presence of an oxidation peak is attributed to the electron transfer occurring at the gold co-Pt 

surface in the presence of glucose. This shows that co-Pt exhibits a catalytic effect in the direct 

oxidation of glucose. Therefore, the electrodeposition of co-Pt on the gold printed BNC 

provides a large surface area decorated with nanostructures to enhance the electrocatalytic 

performance of the anode. The offset panel in Figure 42B shows the linearity of the peaks from 

1 mM to 30 mM glucose (r2 = 0.9887) with a sensitivity of 35.01 μA/mM-cm2 and a limit of 

detection of 0.88 mM (3 S/N).  
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Figure 42. A Cyclic voltammetry performed on the Au-co-Pt showing linear increase in current with 

increase in glucose concentration. 

 
Figure 42B. Calibration curve for the cyclic voltammetry performed. 

 

Figure 43 shows the electrocatalytic behavior of the Ag2O-MWCNT cathode in a non-

stirring air-saturated PBS. The shape of the voltammogram is consistent with those previously 
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reported [172]. The electrode was then placed under oxygen purging for 5 and 10 min to 

achieve oxygen saturation conditions. From the voltammogram, the reduction current density 

of the Ag2O-MWCNT cathode increases in the presence of oxygen with an onset potential of 

0.231 V in a similar manner to oxygen reduction at noble metal or enzyme-based cathodes 

[173].  The Ag2O-MWCNT composite is used here as an alternative cathode material and thus 

serves as the cathodic electron acceptor in the biofuel cell. Ag2O accepts the electrons 

generated at the anode and is reduced to Ag. As Ag2O is reduced to Ag, hydroxyl (OH–) is 

generated as depicted in Equation 10.  

                                      𝐴𝑔2𝑂 + 𝐻2𝑂 + 2𝑒− = 2𝐴𝑔 + 2𝑂𝐻−                      (10) 

 

 
 

Figure 43. Cyclic voltammetry performed on the sliver oxide-multiwalled carbon nanotubes (Ag2O -

MWCNTs) nanocomposite showing linear increase in current with increase in current with increase in 

purged oxygen. 

 

The abiotic fuel cell was constructed with the co-Pt anode and Ag2O-MWCNT 

composite cathode arranged side by side on a PET substrate to provide structural support for 

characterization. The fuel cell was placed in a beaker containing various concentrations of 
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glucose. Glucose electrolyte solutions ranging from 1 mM to 20 mM were prepared within 

PBS. The polarization performance of the fuel cell is shown in Figure 44. The co-Pt anode was 

used as the negative electrode, and the Ag2O-MWCNTs cathode was used as the positive 

electrode. The polarization curves were measured using linear sweep voltammetry (LSV), and 

power density curves were acquired to determine the peak power of the abiotic fuel cell. The 

open-circuit voltage (Voc) of the fuel cell was 0.43 V and the short current density was 0.405 

mA/cm2 when operating on 5 mM glucose, although the Voc was smaller than the expected 

maximum theoretical thermodynamic redox potential for glucose oxidation and Ag2O 

reduction [174]. However, the high current observed is attributed to the increased surface area 

caused by the incorporation of nanostructures on the printed gold substrate. 

 

 
Figure 44. Power curve obtained from the abiotic fuel cell from glucose concentration of 0mM to 

20M using Linear sweep voltammetry technique. 
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Figure 45 presents the power density profiles. The peak power densities achieved in 5 

mM and 20 mM glucose were 0.055 mW/cm2 at a cell voltage of 0.23 V and 0.087 mW/cm2 at 

0.35 V, respectively. The obtained power densities were the result of the decoration of the 

highly conductive printed AuNPs with electrodeposited co-Pt or Ag2O-MWCNTs on the 

surface of the electrodes, which further improve the overall conductivity of the electrodes and 

provide a porous structure to enable the catalysis of glucose and Ag2O. The glucose fuel cell 

output power response was collected in triplicates and the calibration curve is shown in Figure 

46A. The abiotic fuel cell exhibited a curve that has a linear response over a range of glucose 

concentrations from 1 mM to 10 mM (r2=0.9458) with a detection sensitivity of 7.84 μW/ mM-

cm2. 

 

Figure 45. Polarization curve obtained from the abiotic fuel cell from glucose concentration of 0mM 

to 20M. 
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Furthermore, the glucose abiotic fuel cell was set up using serum solution as an 

electrolyte and the polarization curve and power output were recorded (Figure 46B). The 

glucose concentrations of serum were 1 mM and 5 mM. The peak power output was observed 

to be 0.045 mW/cm2 at 0.21 V in serum as shown in Figure 46B. This value was obviously 

smaller as compared with the oxidation of 5 mM glucose solution. The fall in power from the 

0.055 mW/cm2 at 0.23 V observed for 5 mM glucose could be due to the interaction of protein 

molecules present in the serum electrolyte solution with the electrode surfaces, thereby 

inhibiting the catalytic reaction [175]. The porosity of the nanocellulose enables the vertical 

wicking of glucose fluid from the source to the active area of the electrodes to enable the redox 

reaction to take place in the presence of glucose. 

 

 

Figure 46. (A) Calibration curve for abiotic fuel cell with error bars (triplicates). (B) Polarization and 

power curves in serum and glucose solutions. 

 

 

Glucose sensing application 

For the amperometry sensing application, the Au-co-Pt electrode was evaluated by 

measuring current response at a fixed potential with sequential addition of the glucose analyte. 
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Figure 47 displays the amperometry response of the Au-co-Pt electrode to successive addition of 

four times 1 mM glucose and then increment by 1mM glucose in a 0.1 M PBS solution after every 

100 seconds at a fixed potential of 0.5 V. 

 

 

Figure 47.  Amperometry response of the Au-co-Pt electrode to successive addition of glucose in 0.1 

M PBS solution after every 100 seconds interval for four times each. 

 

The Au-co-Pt electrode showed an enhanced linear response to the changes of glucose 

concentration, producing steady-state oxidation current signals as illustrated in Figure 48. The 

Au-co-Pt electrode gives a linear dependence with a correlation coefficient of 0.9893 in the 

glucose concentration range of 1 mM to 45 mM with a sensitivity of 1.87 μA mM−1. 
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Figure 48. Calibration curve from the linear response of the sensor to change in glucose 

concentration. 

 

Sensing changes in glucose concentration is only one part of the process of developing 

a sensing system; another critical task is the accurate measurement of glucose concentration 

values, as well as continuous monitoring of the glucose concentration level via communication 

of sensed glucose readings to the user, treating specialists, etc. Throughout the literature, 

wearable healthcare devices have mostly focused on device miniaturization and wireless 

operation (e.g., Bluetooth and near-field communication (NFC)) [122–123]. Although the 

wearable device has mostly used Bluetooth technology, its large size and weight may affect 

wearability [124]. 

A solution presented in this work is a miniaturized glucose monitoring system 

comprising a glucose abiotic fuel cell and battery-less wireless module using NFC technology. 

The voltage generated from the abiotic fuel cell serves as the analog signal for the data transfer 

from the NFC module to a handheld smartphone application. The data transfer module uses a 

low power microcontroller that is enabled using a smartphone with NFC antenna receiving the 
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respective instantaneous glucose value from the abiotic fuel cell. A smartphone application is 

developed and deployed to communicate the data between the NFC device and the smartphone 

for end-user visualization. 

 The Au-co-Pt anode and the silver oxide with carbon nanotube composite cathode were 

assembled to make an abiotic fuel cell. The electrical voltage produced by this single fuel cell 

was supplied as the input signal for the NFC based RF430FRL152H circuit as interface in 

Figure 49. The fabricated abiotic fuel cell generated voltage in the range of 100 – 700 mV 

which was detectable by the low power microcontroller on the wireless system. The electrical 

voltage produced by this single abiotic fuel cell was supplied as the input voltage for the 

RF430frl152H. The device is based on the NFC system technology. As shown in the block 

diagram for device operation, the operating system is divided into two parts: the first is the 

wireless interface composed of NFC chip and coil for wireless communication with 

smartphone. The second part is the abiotic fuel cell interface with the NFC chip that reads the 

analog signal into 16-bit sigma delta ADC values. The last part is the NFC reader (i.e., 

smartphone) that provides sufficient power to the device and obtains data transferred from the 

wireless device. Figure 49 explains the circuit diagram of the device. R1 (100 kΩ) is the 

reference resistor for the abiotic fuel cell, C1 (9 pF) is resonance capacitor for resonance 

frequency tuning of NFC system and C2 (0.1 μF) is the decoupling capacitor used to remove 

noise. The circuit is designed by relating to the NFC chip datasheet, which includes an in-depth 

circuit diagram for operation of the NFC chip. 
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Figure 49. Lower power microcontroller-based NFC wireless interface and fuel cell as input signal. 

 

The circuit consists of a low power microcontroller of the MSP430 family and three 

ADC analog to digital conversion inputs on it. The module was obtained from Texas 

instruments. This microcontroller can work at a nominal input range of 0 – 0.9 V and transmit 

the data through the RF antenna communication. It is a completely battery-less module as the 

necessary voltage to start up the device drawing through RF field of any reader device 

(smartphone). Also, a cell battery of 1.5 V can also switch the device ON. The programmable 

MSP430 core is interfaced with an analog front end to make it as a single chip solution. This 

allows the abiotic fuel cell, which acts as an analog sensor, to interface and support 

transmission of sensor data over the short-range wireless NFC technology as seen in Figure 50. 

The RF430FRL15xH uses NFC / RFID communication to transmit data wirelessly over 

short distances typically ranging from 1 to 5 cm. The RF430FRL152H is a passive 13.56 MHz 

RFID transponder chip that contains an ISO 15693 and ISO 180003 compliant RFID interface 

as well as a programmable 24-bit microcontroller MSP430 with 2 KB integrated FRAM, 

Sigma-Delta-ADC Interfaces. A built-in 14-bit sigma-delta analog-digital converter (ADC) in 

this case enables the sensor readings with high resolution analog to digital conversion with 
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sampling frequency of up to 2kHz. For our experiment Google based Pixel 3a with an ISO / 

IEC 15693 capable phone was configured for the device to run. When the device completes 

the configured number of sensor scans, it turns itself off. The device can be restarted by 

applying an RF field again. The ADC on the device has an analog front end that includes a 

programmable gain amplifier so that the input signal does not reach the upper limits of input 

power.  

The Sigma Delta modulator is the heart of the Sigma delta-ADC, it is responsible for 

scanning the analog input signal and reducing noise at lower frequencies. The resulting samples 

are always saved in 14-bit format, whether for an analog result or not. The data received is 

stored in raw format which comes through the modulator outputs, namely high frequency and 

1-bit output speed [134]. A low pass digital filter function is used to attenuate high frequency 

noise causing the signal with high resolution from the abiotic fuel cell.  

 
Figure 50. Calibration curve derived from the linear response of the sensor to change in glucose 

concentration. 
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  The analog signals from the abiotic fuel cell are directly correlated to the changes in 

glucose concentration. By monitoring the change in analog signal, the exact concentration of 

the analyte can be deduced. After the NFC enabled wireless system communicates with a 

smartphone, the data received in 14 bit format is recognized by the android environment.  

Android studio is used to build a custom algorithm that correlates the analog signals from the 

abiotic fuel cell to the respective glucose concentrations. For the application development, Nfc 

based libraries allow the discovery, communication and read/write operations. In the main 

activity class of the application the 14 bits are stored as strings, and when the phone is placed 

on the tag it delivers a message that the tag has been discovered or not. This action is executed 

using an intent function that checks whether the tag is ISO15693 meaning that it is detected as 

shown in Figure 51.  

 
Figure 51. Sequential image from left to right displaying the tag discovery from idle state to 

disconnection on an android app. 

 

 

After over the air reading of the tag is executed, the main function starts to convert the 

incoming 14-bit string value to an integer value by parsing the string into substrings. Using the 

correlation coefficient from the glucose sensing characterization, an algorithm was developed 

that allows the exact conversion of the analyte concentration in the beaker to the respective 

glucose value on the android application. Creating independent features for a user profile 

included features that would allow for the user to keep track of the glucose reading and other 
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vital signs. More in depth information has been included in the code implementation in 

Appendix A. The features added to the android application as shown in Figure 52A are age, 

height, weight, gender, and blood pressure as displayed. These parameters could be beneficial 

when it comes to diabetes management. Keeping track of the body mass index is essential for 

the user to validate glucose readings over a certain period. The features also play a vital role in 

data collection especially when a physician is involved in analyzing the situation better and 

prescribing an appropriate solution.  

Remote access with data recording is also added to the smartphone application using 

the Firebase Realtime database. This No-SQL cloud-based database allows recording of the 

data which is linked to the store button on the interface. It stores the data in a key value format 

as a JSON object as shown in Figure 52B. The parent branch is usually assigned by the user 

and the child branch enables storing the independent features, glucose values and the time and 

date stamps that allow us to create a proper database for further analytics. One of the features 

involves the database working offline, capturing the data in the device memory and 

synchronizing it after reconnecting to the internet. The data acquired are some of the important 

parameters that will eventually lead to better diabetes management for an individual. 
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Figure 52. (A) User Interface with features for glucose recording and independent features like 

height, weight, age with a store button that transfers to database. (B) Firebase Realtime database 

format for data recording with dependent and independent features. 

 

 

 A representation of the entire sensing system consisting of the abiotic fuel cell and the 

NFC based wireless system with mobile glucose sensing is shown in Figure 53. The entire 

system was simplified by adding a wireless based data transfer module with a smartphone 

application that can act as a remote access and data storage unit. This holds the user accountable 

for monitoring and making necessary life changes to improve their state with diabetes. This 

approach makes the framework affordable and less bulky for users and healthcare providers.  
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Figure 53. A model of a novel abiotic glucose monitoring system with wireless data acquisition and 

data storage using android application. 

 

An experimental setup involving three components involving a fuel cell, NFC module 

and smartphone were used to study the performance as seen in Figure 54. The database 

recording was done with a local PC with a login through the Firebase webpage. To verify the 

fuel cell performance, multimeter was used to verify the output with the respective glucose 

concentration. In addition, the biofuel cell assembly was connected to a charge pump integrated 

circuit (S-882Z) through resistor, capacitor, and light emitting diode (LED). The voltage 

generated by the single biofuel cell was fed into the charge pump circuit, which then charges 

and discharges the charge pump through an output capacitor (0.1 μF) to increase the nominal 

input voltage to 1.8 V and illuminate the LED. 
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Figure 54. Assembled fuel cell setup with NFC/smartphone data recording and with voltage 

measurement using multimeter. 

 

 

The convenient smartphone-based wireless system enabled an experiment to 

understand the stabilization time for the abiotic fuel cell at a particular lower concentration. It 

was observed that after approximately 2 min the signal started to get consistent and noise free 

for the respective concentrations. The experiment was performed with a 100 mM phosphate 

buffer solution with glucose concentration of 1, 3, 5, 7 mM aliquots over time and data 

recording using a smartphone. From Figure 55, it can be deduced that the surge in the glucose 

level after addition of glucose concentration within 30 sec the signal starts to get consistent and 

level out. This gave a clear picture of the performance of the fabricated sensor with the wireless 

module for the stabilization of the startup value for a respective concentration of glucose. 
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Figure 55. Stabilization Plot for glucose concentration from 0mM – 10mM. 

 
 

 The objective moving forward was to create a database of glucose values from the 

abiotic fuel cell to further analyze the performance of the system. Random glucose 

concentrations were given to the abiotic fuel cell at three-minute intervals to check the accuracy 

of the glucose value received from the application. Overall, 50 recordings were carried out over 

a day with each random value generated from a random Python script generator. The margin 

of error was found to be 1.09 during three trials. The experiment was repeated for the next two 

days to provide triplicate data to monitor the repeatability for the glucose reading from the 

smartphone application as shown in Figure 56.  
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Figure 56. Random triplet plot for glucose concentration to understand the repeatability of the fuel 

cell. 

 

 

 Tensorflow Lite is a package in the android development environment that allows the 

addition of machine learning (ML) based analytics onto the smartphone application. Also, a 

local server is used to collect data points from the database to perform analytics. For this 

purpose, Python scripts were prepared for a time series prediction for the glucose reading. 

Experiments were conducted over the period of a week with 286 datapoints collected for a day. 

Within the in vitro setting, a dataset for 2000 data points were collected by mimicking a data 

from a patient with Type 2 diabetes. For future glucose prediction, time series-based 

forecasting models were explored, namely Recurrent Neural Networks (RNN) and Long short 

term memory (LSTM) with its types with every model performance described in Appendix B. 

To validate the performance the predicted horizon was set to 15, 30 and 60 min. Usually 60min 

was observed to have the worst performance for the prediction models. Performance metrics 

that were used to understand the best model for future glucose prediction are the root mean 

square error and mean absolute error. The Python-based script was developed by data 

preprocessing of the data set. Libraries like matplotlib, numpy and sklearn were used to import 
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cleanly and plot the data.  Below is the data visualization plot on the recordings for glucose 

reading for 7 days as seen in Figure 57. 

 

Figure 57. 2000 datapoints across 7 days run after 5 mins. 

 

 

 Threshold values for hyperglycemic (185mg/dL) and hypoglycemic (75mg/dL) levels 

were created to visualize the data points as illustrated in Figure 58. 

 

Figure 58. 2000 datapoints with label for glycemic levels. 

 

 

 

 Training and validation set were divided into 1399 and 599 data points. At each 

prediction horizon, the average RMSE over the datapoints are reported. There are four models 
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that are used to evaluate the performance of the prediction models. The models namely are 

RNN, LSTM, Stacked LSTM and Bidirectional LSTM. With glucose concentration as a feature 

in the model and other features being BMI, life events etc., the RMSE and MAE were used to 

evaluate the performance of the model. The difference in layers results in better prediction of 

the future glucose value.  

  Figure 59 presents results for predictions made at 15 minutes. An interesting result is 

that for a 15-minute prediction horizon, the RNN which does not use life event data, scored a 

better RMSE and MAE -- more than LSTM and its types. The RMSE and the MAE best values 

amongst the models were 14.74 and 9.63. There is room for improvement in the model 

development for better time series forecasting by increasing the layers for prediction. While 

comparing the models for 15 minute predicted horizon the peaks were well established in 

comparison with the predicted value in RNN model. This provides a good basis for the model 

development in Bidirectional and stacked LSTM to improve deviation from the actual value 

for future glucose monitoring. 

 

Figure 59. 15 minute prediction for RNN along with actual targets. 
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 For the 30 min best scenario, Figure 60 represents results for predictions made at 30 

minutes. In this comparison of models, LSTM performed better according to the error metrics. 

The RMSE and MAE that resulted in the best scenario of the LSTM based model are 29.53 

and 18.66 respectively. It solves the huge issue that RNN struggles with -- short-term memory. 

With each peak in the LSTM prediction as compared to the RNN model, it helps in solving 

vanishing gradient descent by repeated weight adjustments that allows the values to be 

predicted more accurately. The only concern with the LSTM models are that they 

computationally expensive depending on the window and data size for which the scenario to 

build a better model that iterates bidirectionally in the LSTM model. 

 

 
 

Figure 60. 30 minute prediction for LSTM along with actual targets. 

 

 

 

 

 With the increase in prediction horizon the 60 min best scenario was seen in the 

bidirectional LSTM model as seen in Figure 61. The increase in complexity of the model and 

the bidirectional LSTM provided a better prediction peak as compared to other models. The 
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target was the long-term preservation of the information and two direction input sequence 

scanning which was available by bidirectional LSTM models that enabled better error metrics 

than others. Usually, as the prediction horizon increases the prediction gets worse which leads 

to more error-based prediction. The RMSE and MAE were seen to be 35.80 and 26.25 

respectively. With bidirectional LSTM, the model was much deeper and more accurate 

compared to the other models with bidirectional sequence layers. 

 

 

Figure 61. 60 minute prediction for Bidirectional LSTM along with actual targets. 

 

 

 

 

 Table 3 provides all the performance metrics based on RMSE and MAE values. 

Observation was made during the outcomes of each model that according to the prediction 

horizon each model performance varies, i.e as model complexity increase so does the 

requirement for a larger set of data and the prediction horizon varies. Performances based on 1 

day and 4 days were also performed which showed results that were based on the lower number 

of data points. For 7 day testing interesting results were seen when it came down to the error 

metrics that concluded the performance of the model was improving as with the dataset. The 
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RNN model performance was better for the 15 min prediction horizon as compared to others 

whereas for 30 minute the LSTM performed much better due to short term memory allowing 

more accurate prediction. For 60 minutes with increase in complexity the bidirectional LSTM 

performed much better to allow peaks that were predicted better as compared to other models 

but not totally accurately. This might be enhanced by improving features like BMI, food intake, 

insulin intake, life events etc. based on the validation data. This optimization may be 

approached in two ways: by optimizing the parameters of each feature template and by 

optimizing feature combinations. Evaluation of the accuracy of predictions during meals and 

exercise should also be noted.  Although they cannot be directly compared since they would 

be assessed using distinct methods, patient dependent models appear to outperform patient 

independent models. The inclusion of more independent features would provide greater 

information about the link between input data (such as food intake) and anticipated blood 

glucose levels. Patient-independent models have the potential to improve as more data is 

collected in the future. The ultimate goal of this categorization is to create a viable clinical tool 

that would automatically screen for high glycemic fluctuation in diabetic patients. A systematic 

clinical screening for high glycemic fluctuation would allow for the early identification of 

individuals at risk of avoidable diabetes complications. Preventing diabetes complications 

increases patients' quality of life while lowering the financial burden of healthcare expenses. 

As a result, future plans include the creation of a commercial software package for clinical 

usage. 
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Table 3. RMSE and MAE values for different models with prediction horizons 

 

Model / Prediction 

Horizon  

15 min 

(RMSE), (MAE) 

30 min 

(RMSE), (MAE) 

60 min 

(RMSE), (MAE) 

Vanilla RNN 14.74, 9.63 22.57, 16.66 32.00, 23.86 

LSTM 14.80, 10.3 21.74, 16.35 33.38, 26.37 

Stacked LSTM 16.08, 11.71 22.49, 16.69 35.33, 30.76 

Bidirectional LSTM 14.93, 9.86 22.51, 17.53 31.80, 23.25 
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CHAPTER IX 

CONCLUSION 

 

 In conclusion, we demonstrated an abiotic glucose fuel cell with glucose sensing and 

battery-less NFC based data acquisition using a mobile android application. The wearable 

sensing system consists of a novel abiotic cell with co-Pt as anode and silver oxide with carbon 

nanotubes composite as cathode, NFC wireless module, smartphone android application with 

analytical capabilities. The non-enzymatic glucose fuel cell comprises a glucose oxidizing co-

Pt anode and Ag2O reducing Ag2O-MWCNTs cathode fabricated on the surface of gold inkjet-

printed on a thin-film of nanocellulose synthesized via bacteria G. xlyinus. A linear dynamic 

range of 1 mM – 45 mM glucose with a sensitivity of 1.87 μA mM cm−2 was observed. The 

Android application took a diabetes management approach by creating dependent and 

independent features in glucose measurements, age, body mass index, etc. to enable proper 

tracking over a period.  

The analog signals from the abiotic fuel cell act as the input received on the android 

application. The custom-built algorithm then converts the signal into the corresponding glucose 

level which is then stored onto a cloud based Realtime database. The data stored has the time 

and date stamp that allows the patient / physician to validate the levels in glucose. 

Electrochemical characterizations showed that the performance of the abiotic fuel cell was 

ideal for the proposed glucose sensing. Further analytics involving machine learning based 

future glucose level prediction showed the characteristics of continuous glucose monitoring 

and how it has the potential to help in diabetes management.  

 For future work, the system can be tested in real environments through animal testing 

to real patient testing. More work to develop the stability of these biosensors is needed. 

Introducing highly porous nanofibers using electrospinning and combining them with a 
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bioreceptor is an example for enhancing sensor sensitivity, sensing range. Likewise, conductive 

metal nanoparticles can be used to enhance the performance of non-conductive but highly 

selective materials. In conclusion, this framework allowed an abiotic glucose fuel cell and 

battery-less sensing system to be realized. The cost-effectiveness and less bulky tattoo-like 

characteristics enable easy management for the end-user to track and modify their lifestyle 

accordingly.  
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APPENDIX A 

ANDROID APPLICATION DEVELOPMENT  

 

 

For application-based development the android studio used as the native environment 

enabled a lot of features for NFC tag detection and incoming signal modification. The 

application was initiated by the development of the latest build using a Java version that 

basically allows new features to be compatible. We started with gradle build which is a build 

automation tool based on groovy and kotlin. It is an open source and flexible tool which 

supports many dependencies that allow addition of multiple features for the application. The 

gradle build used in this application is as shown in the code snippet comprised of the software 

development kit (sdk) version with default configuration having minimum and maximum 

requirements for the app to run on multiple generations of Android devices. 

android { 

    compileSdk 30 

 

    defaultConfig { 

        applicationId "com.example.assemble" 

        minSdk 17 

        targetSdk 30 

        versionCode 1 

        versionName "1.0" 

 

        testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner" 

    } 

 

    buildTypes { 

        release { 

            minifyEnabled false 

            proguardFiles getDefaultProguardFile('proguard-android-

optimize.txt'), 'proguard-rules.pro' 

        } 

    } 

    compileOptions { 

        sourceCompatibility JavaVersion.VERSION_1_8 

        targetCompatibility JavaVersion.VERSION_1_8 

    } 

} 
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Dependencies involved in this project are mentioned in the code snippet where latest 

contrait layout and android material were implemented. Also, an external dependency was used 

for graphical purposes using a graph based library to enable that plot. And a firebase database 

dependency was added to call upon when data was stored in the database. 

dependencies { 

 

    implementation 'androidx.appcompat:appcompat:1.3.1' 

    implementation 'com.google.android.material:material:1.4.0' 

    implementation 'androidx.constraintlayout:constraintlayout:2.1.0' 

    implementation 'com.google.firebase:firebase-database:20.0.2' 

    testImplementation 'junit:junit:4.+' 

    androidTestImplementation 'androidx.test.ext:junit:1.1.3' 

    androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0' 

    implementation 'com.jjoe64:graphview:4.2.1' 

} 

 

In the main activity section where the actual functions are initiated, variables associated 

with the NFC tag detection are written with the ADC input parameters set to 0 so that the 

RF430FRL152H is able to communicate and transmit the bits into the right location. As shown 

in the code snippet, the values are assigned to the variable to perform the read function for the 

NFC based tag. 

public class MainActivity extends AppCompatActivity { 

 

    TextView Value,Byte_text,text_view,adc0,adc1,adc2, date_value, 

time_value; 

    Button increase, decrease,dig_out; 

    private NfcAdapter nfc; 

    float ADC0=0,ADC1=0,ADC2=0; 

    private PendingIntent mpendingIntent; 

    private final Handler mHandler = new Handler(); 

    private Runnable mTimer; 

    private Button button3; 

    //private Runnable mTimer; 

    //display variables 

    String f_val="00 00 00 00 00 00 00 00 00",text_val="Place phone on 

Tag"; 

    byte b_val=0x01,dig_op=0x00; 

    public final static String EXTRA_MESSAGE = 

"com.example.assemble.MESSAGE"; 

 

Among the variables assigned, functions were created to create a tag discover intent 

filter such that the respective tag from the emitter is read by the application. Detection involves 
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whether the NFC is disabled or the tag is not readable as shown in the code snippet. Features 

involving Calendar and time format were also inscribed among the function so that the 

recording can be tracked for the application. 

nfc = NfcAdapter.getDefaultAdapter(this); 

if (nfc == null) { 

    text_view.setText("No NFC!!"); 

    text_val="No NFC!!";} 

if (!nfc.isEnabled()) { 

    text_view.setText("NFC is disabled."); 

    text_val="NFC is disabled."; 

} 

mpendingIntent = PendingIntent.getActivity( 

        this, 0, new Intent(this, 

getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP), 0); 

 

//Date and time functionality 

date_value = findViewById(R.id.textView4); 

time_value = findViewById(R.id.textView5); 

 

Calendar calendar = Calendar.getInstance(); 

SimpleDateFormat simpleDateFormat = new SimpleDateFormat("dd-MMM-yyyy"); 

SimpleDateFormat simpleDateFormat1 = new SimpleDateFormat("hh:mm::ss a"); 

String Timedate = simpleDateFormat.format(calendar.getTime()); 

String Timedate1 = simpleDateFormat1.format(calendar.getTime()); 

date_value.setText(Timedate); 

time_value.setText(Timedate1); 

 

The database used here, firebase Realtime, is initiated using the child and parent 

command which enables communication to the cloud with the respective features. Referencing 

the names of the features that are stored in the user profile as a parent is shown in the code 

snippet. This allows values to be input by the user and converted to a string to be communicated 

to the cloud and stored as a JSON object. 

String child = editTextName.getText().toString(); 

reference = database.getReference("Users").child(child); 

 

reference.child("Name").setValue(editTextName.getText().toString()); 

reference.child("Glucose").setValue(adc0.getText().toString()); 

reference.child("Temperature").setValue(adc2.getText().toString()); 

reference.child("Age").setValue(editTextGlucose.getText().toString()); 

reference.child("Height").setValue(editTextheight.getText().toString()); 

reference.child("Weight").setValue(editTextWeight.getText().toString()); 

reference.child("Gender").setValue(editTextgender.getText().toString()); 

reference.child("Blood 

Pressure").setValue(editTextBP.getText().toString()); 

reference.child("Date").setValue(date_value.getText().toString()); 

reference.child("Time").setValue(time_value.getText().toString()); 
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Another important snippet that allows the user to parse the data in one field in the source 

file and write the parts of the data to a field (in this scenario, the input string that is recognized 

by the application) is converted to a hex array in which all the characters are converted to return 

a string value that could be passed on to be recognized as ADC0, ADC1 and ADC2 values 

using the custom built algorithm. 

//parsing function 

final protected static char[] hexArray = "0123456789ABCDEF".toCharArray(); 

public static String bytesToHex(byte[] bytes) { 

    char[] hexChars = new char[bytes.length * 3]; 

    for ( int j = 0; j < bytes.length; j++ ) { 

        int v = bytes[j] & 0xFF; 

        hexChars[j * 3] = hexArray[v >>> 4]; 

        hexChars[j * 3 + 1] = hexArray[v & 0x0F]; 

        hexChars[j * 3 + 2] = ' '; 

    } 

    return new String(hexChars); 

} 

 

To read the data from the tag, a class in NfcV is created which acquires an object using 

get tag value as shown in snippet 68. This tech allows us to read the incoming data from the 

tag by creating an instance for the tag. Reading the register bits in which the components of 

the flags, block number, ADC0, ADC2, sensor configuration registers, delay periods are 

programmed as pe the datasheet of RF430FRL152H. This enables us to create a format for the 

input signals that is recognizable by the tag and the NFC based module datasheet. This works 

in the background for reading the data, which is an important function to distinguish the input 

data read.  

//read data 

private void readTagData(Tag tag) { 

 

    byte[] id = tag.getId(); 

    boolean techFound = false; 

    for (String tech : tag.getTechList()) { 

 

        // checking for NfcV 

        if (tech.equals(NfcV.class.getName())) { 

            techFound = true; 

 

 

            // Get an instance of NfcV for the given tag: 

            NfcV nfcv_senseTag = NfcV.get(tag); 
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            try { 

                nfcv_senseTag.connect(); 

                text_val="Tag connected"; 

            }catch (IOException e) { 

                text_val="Tag connection lost"; 

                return; 

            } 

 

 

 

            //read register test 

            byte[] cmd = new byte[] { 

                    //   (byte)0x18, // Always needed, everything after 

this 18 is sent over the air, response is given in the text box below 

                    (byte)0x02, // Flags (always use same) 

                    (byte)0x20, // ISO15693 command code, in this case it 

is Read Single Block 

                    (byte)b_val, // Block number 

            }; 

 

            byte[] systeminfo; 

            try { 

                systeminfo = nfcv_senseTag.transceive(cmd); 

            }catch (IOException e) { 

                text_val="Tag transfer failed"; 

                //Log.i("Tag data", "transceive failed"); 

                return; 

            } 

 

 

            //Log.i("Tag data", "result= " + bytesToHex(systeminfo)); 

 

            //write  to block 2 

            cmd = new byte[] { 

                    //   (byte)0x18, // Always needed, everything after 

this 18 is sent over the air, response is given in the text box below 

                    (byte)0x02, // Flags (always use same) 

                    (byte)0x21, // ISO15693 command code, in this case it 

is Write Single Block 

                    (byte)0x02, //block number 

                    (byte)0x11, //reg1 Reference-ADC1 Configuration 

Register DECIMATION 12 BIT 

                    (byte)0x11, //reg2 ADC2 Sensor Configuration Register 

                    (byte)0x10, //reg3 ADC0 Sensor Configuration Register 

                    (byte)0x00, //reg4 Internal Sensor Configuration 

Register 

                    (byte)0x00, //reg5 Initial Delay Period Setup Register 

                    (byte)0x00, //reg6  JTAG Enable Password Register 

                    (byte)0x00, //reg7 Initial Delay Period Register 

                    (byte)0x00, //reg8 Initial Delay Period Register 

            }; 

            byte[] ack; 

            try { 

                ack = nfcv_senseTag.transceive(cmd); 

            }catch (IOException e) { 

                text_val="Tag transfer failed"; 

                Log.i("Tag data", "transceive failed"); 

                return; 

            } 

            //Log.i("Tag data", "ack= " + bytesToHex(ack)); 

            while(b_val>0) { 
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                //write 01 00 04 00 01 01 00 40 to block 0 

                cmd = new byte[]{ 

                        //   (byte)0x18, // Always needed, everything after 

this 18 is sent over the air, response is given in the text box below 

                        (byte) 0x02, // Flags (always use same) 

                        (byte) 0x21, // ISO15693 command code, in this case 

it is Write Single Block 

                        (byte) 0x00, //block number 

                        (byte) 0x21, //Start bit is set, after this is 

written this starts the sampling process, interrupt enabled for On/Off 

                        (byte) 0x00, //Status byte 

                        (byte) 0x07, //Reference resisitor, thermistor, 

ADC0 sensor selected selected 

                        (byte) 0x00, //Frequency register, this is do not 

care since only one sample or pass is done 

                        (byte) 0x01, //only one pass is needed 

                        (byte) 0x01, //No averaging selected 

                        (byte) 0x0E, //Interrupt enabled, push pull active 

high options selected 

                        (byte) 0x40, //Selected using thermistor 

                }; 

                if(dig_op==1) 

                    cmd[3]|=0x40; 

                ack = new byte[]{0x01}; 

 

                try { 

                    ack = nfcv_senseTag.transceive(cmd); 

                } catch (IOException e) { 

                    text_val="Tag transfer failed"; 

                    //Log.i("Tag data", "transceive failed"); 

                    return; 

                } 
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APPENDIX B 

PREDICTION RESULTS  

 

 Machine learning models were prepared after data preprocessing for time series 

forecasting. Forecast errors on time series regression problems are called residuals or residual 

errors. Careful exploration of residual errors on your time series prediction problem can 

describe a lot about the designed forecast model and even suggest improvements. For all the 

models, after the validation dataset prediction residual errors were visualized using a Q-Q 

plot.  This is the prequel before the actual models were optimized to perform results as 

explained in the results and discussion section. A Q-Q plot, also known as a quantile plot, 

compares two distributions and may be used to determine how similar or dissimilar they are. 

Using the statsmodels library's qqplot() method, we can make a Q-Q plot. The Q-Q plot is 

used to rapidly verify the normality of the residual error distribution. The comparison is 

depicted as a scatter plot (theoretical on the x-axis and observed on the y-axis), with a match 

between the two distributions depicted as a diagonal line running from the bottom left to the 

top right of the plot. The graphic is useful for identifying obvious deviations from this 

assumption. 

A. 15 minutes 

In Figures 62 – 69, predictions based on validation set are displayed with residual error 

plots that help in understanding the deviations from the prediction made by the algorithm, 

with outliers being presently detectable in the Q-Q plot. Also, the table provides an additional 

comparison between the models based on the error metrics. RNN performed much better than 

other error metrics of models. 
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Figure 62. A Vanilla RNN implementation with validation set for 15min. 

 

 

 
Figure 63. Q-Q plots for Vanilla RNN representation in 15 min. 

 

 
Figure 64. LSTM implementation with validation set for 15min. 
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Figure 65. Q-Q plots for LSTM representation in 15 min. 

 

Stacked LSTM model 

 

 
Figure 66. Stacked LSTM implementation with validation set for 15min. 
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Figure 67. Q-Q plots for stacked LSTM representation in 15 min. 

Bidirectional LSTM model  

 
Figure 68. Bidirectional LSTM implementation with validation set for 15min. 

 
Figure 69. Q-Q plots for Bidirectional LSTM representation in 15 min. 
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Table 4. RMSE and MAE values for different models with 15 minute prediction horizons 
 

Error metric Vanilla RNN LSTM Stacked LSTM Bi-LSTM 

RMSE 14.74 14.80 16.08 14.93 

MAE 9.63 10.03 11.77 9.86 

 

 

B. 30 minutes 

For the model performance shown below in Figures 70- 77, each model performed prediction 

based on the actual value learning. The validation-based test resulted in training to remove a 

residual error that was seen in the Q-Q plot with outliers seen at each iteration which could be 

removed using the normalization method. Better peaks were observed when compared with 

the actual value for the LSTM model which was also able to produce the lowest MAE and 

with deviation low as compared to other models.  

 

 

Vanilla RNN 

 
Figure 70. Vanilla RNN implementation with validation set for 30min. 
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Figure 71. Q-Q plots for Vanilla RNN representation in 30 min. 

 

 

LSTM model 

 
Figure 72. LSTM implementation with validation set for 30 min. 
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Figure 73. Q-Q plots for LSTM representation in 30 min. 

 

 

Stacked LSTM model 

 

 
Figure 74. Stacked LSTM implementation with validation set for 30min. 
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Figure 75. Q-Q plots for Stacked LSTM representation in 30min. 

 

 

 

Bidirectional LSTM 

 
Figure 76. Bidirectional LSTM implementation with validation set for 30min. 
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Figure 77. Q-Q plots for Bidirectional LSTM representation in 30 min. 

 

Table 5. RMSE and MAE values for different models with 30-minute prediction horizons 
Error metric Vanilla RNN LSTM Stacked LSTM Bi-LSTM 

RMSE 22.57 21.74 22.49 22.51 

MAE 16.66 16.35 16.69 17.15 

 

 

 

C. 60 minutes 

For the model performance shown below in Figures 78 – 85, each model deviated from 

the actual values. The validation-based test resulted in training to remove a residual error that 

was seen in the Q-Q plot with outliers seen at each iteration which could be removed using the 

normalization method. With better error metric based vanilla RNN was able to produce the 

lowest MAE and with deviation low as compared to other models.  



 

 

147 

 
Figure 78. Vanilla RNN implementation with validation set for 60 min. 

 

 

 
 

Figure 79. Q-Q plots for Vanilla RNN representation in 60 min. 
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LSTM model 

 
 

Figure 80. LSTM implementation with validation set for 60 min. 

 

 

 

 
Figure 81. Q-Q plots for LSTM representation in 60 min. 
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Stacked LSTM 

 
Figure 82. Stacked LSTM implementation with validation set for 60 min. 

 

 

 
Figure 83. Q-Q plots for Stacked LSTM representation in 60 min 
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Bidirectional LSTM 

 
Figure 84. Bidirectional LSTM implementation with validation set for 60 min. 

 

 
Figure 85. Q-Q plots for Bidirectional LSTM representation in 60 min. 

 

 

Table 6. RMSE and MAE values for different models with 60minute prediction horizons 

 
Error metric Vanilla RNN LSTM Stacked LSTM Bi-LSTM 

RMSE 32.00 33.38 38.33 35.80 

MAE 23.86 26.37 30.76 26.25 
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