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ABSTRACT 

HARNESSING SOCIAL MEDIA FOR DISASTER RESPONSE: 

INTELLIGENT IDENTIFICATION OF RELIABLE RESCUE REQUESTS 

DURING HURRICANES 

Wael Khallouli 

Old Dominion University, 2024 

Director: Dr. Samuel Kovacic 

 

 

 

Hurricanes pose a significant threat to both human lives and infrastructure. Decision-makers 

face substantial challenges during such events, as they must act quickly to address victims’ needs. 

Social media platforms provide a valuable source for quick and real-time information. Recent 

hurricane events have shown that people turn to social media to call for help when official 

communication channels, such as 911, are overwhelmed. However, extracting actionable 

information from the massive number of messages posted on social media is challenging. 

Furthermore, verifying social media messages posted by the public is a critical concern for 

disaster response practitioners, making them hesitant to use this information. This study tackles 

the problem of identifying and assessing the reliability of actionable rescue messages posted on 

Twitter during hurricanes. A novel deep learning model is proposed for identifying rescue 

tweets, integrating a fine-tuned BERT model to extract low-level statistical features from the text 

and rule-based Regex filters to extract problem-specific features. In addition, a rule-based 

scoring model is introduced to assess the reliability of the identified rescue messages using a set of 

reliability indicators derived from the literature. The proposed models were evaluated using data 

collected and annotated from various hurricane events. The results indicated that the proposed 

classification model for identifying rescue tweets provides more robust results compared to 



 
 

previous classification methods. Evaluated on rescue tweets from Hurricane Harvey, the proposed 

reliability assessment model could effectively identify reliable rescue tweets. The models 

developed in this study aim to improve the quality of actionable rescue information extracted 

from social media during hurricane events, enabling first responders to effectively integrate 

social media channels as a supplementary source of information in their decision-making 

process.
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CHAPTER 1 

INTRODUCTION 

 

 

 

1.1 BACKGROUND 

 

Natural disasters, such as hurricanes, earthquakes, and tsunamis, pose a significant threat to 

human lives and infrastructure. Over the years, their frequency and severity have increased [100]. 

Hurricanes are among the costliest natural disasters in the United States, causing billions of dollars 

in damages [128]. For instance, Hurricane Katrina (2005), one of the deadliest hurricanes in US 

history, caused significant damage to Mississippi and Louisiana. Eighty percent of the city of New 

Orleans was flooded, and 1,800 people lost their lives [17]. The total cost of Hurricane Katrina 

was estimated to be 172.5 billion (2021 USD) [128]. Similarly, Hurricane Harvey (2017) struck the 

southwest coast of Texas, leading to the loss of at least 88 lives and causing damages worth 133.8 

billion (2021 USD) [133]. Hurricane Maria (2017) hit the northeastern Caribbean, resulting in the 

loss of tens of lives and damages worth 96.3 billion (2021 USD) [128]. As hurricanes become 

increasingly disastrous, improving current emergency response and mitigation strategies is crucial 

to alleviate their catastrophic impacts. 

Disaster management is the research area that focuses on improving decision-making across 

the various stages of a disaster, including preparedness, response, recovery, and mitigation. Due to 

the rapid advancement of information and communication technology (ICT), disaster informatics 

[103] –a subfield of disaster management– has emerged as a field of study dedicated to studying 

how these technologies can improve disaster management processes. Among ICT technologies, 
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social media platforms have received considerable attention. A significant part of disaster 

informatics research has focused on exploring efficient methods to collect, process, and utilize 

social media data to improve decision-making during natural disasters. 

Humanitarian relief organizations and first responders face numerous challenges during 

hurricanes due to time constraints, uncertainty, and limited availability of resources. Under 

conditions of extreme uncertainty, they must quickly and effectively allocate resources to 

mitigate the hurricanes’ impacts, especially when human lives are at risk. Consequently, timely 

information is essential for an effective response to hurricane events. Solely relying on 

traditional and verified sources of information may not always be sufficient to meet first 

responders’ needs [42]. Social media platforms provide a unique opportunity to gain access to 

large amounts of instantaneous data posted during hurricanes. However, extracting information 

from these platforms presents a significant challenge. Hurricanes trigger a sudden surge in 

communication, resulting in complex information scenarios and vast amounts of data, of which 

only a small portion is relevant to first responders [91]. Social media messages vary widely in 

usefulness, ranging from prayers and emotional support to incident reporting, calls for help, and 

situational updates. This diversity makes it difficult for disaster responders to filter useful 

information to inform their decision-making processes. This problem is known as the 

‘information overload’ problem. 

To address the ‘information overload’ problem, a wide range of research studies have 

developed computational methods for extracting useful information from the substantial volume of 

noisy data posted on social media platforms during natural disasters, including hurricanes. The 

primary goal was to enhance the ‘quality’ of information derived from social media and better 
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fulfill disaster responders’ needs. A common approach involves training machine learning 

models to automatically categorize social media messages into different information types. 

Researchers have collected data from various disaster events and labeled them using several 

predefined categories, such as the relevance of the information to the disaster (e.g., relevant vs 

non-relevant, on-topic vs off-topic, among others) and humanitarian categories (e.g., causalities, 

caution and advice, infrastructure damage, among others), to train and evaluate the proposed 

classification systems. One significant weakness of the existing approaches is their focus on a 

general concept of ‘situational awareness’ that provide high-level information, which often fails 

to meet the precise needs of disaster responders for ‘actionable’ information. Consequently, Zade 

et al. [144] pointed out that, despite current advancements in developing social media 

information extraction methods, social media data streams are not well integrated into the formal 

disaster response workflow. To enhance the usability of social media channels, Zade et al. [144], 

Garcia et al. [42], Coche et al [29], and few other researchers have explored the concept of 

‘actionability’ as a framework for building efficient systems to process social media data. 

Actionable information was defined by disaster response practitioners as any piece of information 

on social media they could use to assist, enact, and expedite action to an identified issue [144] (in 

other words, information that can trigger immediate action by first responders). Typical examples 

of actionable information are the implicit and explicit requests posted on social media during 

disasters, such as urgent rescue requests. The literature lacks research studies proposing effective 

methods for extracting actionable information. Rescue requests posted on social media platforms 

during hurricanes are a particular type of actionable information that needs further research. 
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1.2 RESEARCH PROBLEM 

 

Urgent rescue messages posted on social media during natural disasters, such as hurricanes, 

are invaluable to search and rescue teams. These messages often contain details about individuals 

in need of immediate assistance, including their location, the nature of their urgent situation, and 

their needs. However, extracting these rescue messages is particularly challenging. Firstly, rescue 

messages are relatively rare and often hidden by a large volume of non-informative messages 

[137]. Secondly, during disasters, individuals tend to compose rescue messages in various informal 

ways, making it difficult to filter these messages by keywords. Furthermore, keyword-matching 

search approaches are inefficient and time-consuming. Therefore, developing efficient methods 

to automatically extract rescue-seeking messages from social media is of paramount importance. 

Given the critical nature of rescue information during natural disasters, it is crucial to continue 

improving current rescue identification methods for a better quality of rescue information. 

For first responders, the reliability of information is a major concern [131]. Misinformation, 

rumors, and inaccurate information can rapidly spread through social media channels, which 

makes the process of evaluating the reliability of posted content more difficult [84]. Assessing 

whether information on social media is trustworthy enough to act upon during an emergency is 

challenging. Determining whether social media information is trustworthy enough to act upon 

during an emergency is challenging. Numerous studies, such as [144], [29], and [50], have 

highlighted the reliability issue of social media data through surveys and interviews with disaster 

response officials. A common challenge identified by these studies is the absence of adequate 

tools for verifying social media information. Reliability is a key component of actionable 

information on social media [144]. 
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This dissertation investigates the problem of identifying actionable rescue-seeking messages 

posted on Twitter during hurricanes. Twitter, now rebranded as ‘X,’ was selected as a 

representative social media platform for the current study. For consistency, the name ‘Twitter’ 

will be used throughout this dissertation, as it was the platform’s name at the time of data 

collection. Messages posted on Twitter will be referred to as ‘tweets.’ Natural disasters vary 

greatly in nature and intensity. The characteristics of rescue messages may differ depending on 

the type of disaster. Hence, this dissertation focuses on rescue tweets posted during hurricane 

disasters, leaving the analysis of other natural disaster types for future research. This problem is 

divided into two parts: the first part focuses on automatically identifying urgent rescue-seeking 

tweets (with location information), while the second part focuses on assessing their reliability. 

Part 1: Identifying emergency rescue requests from Twitter during Hurricanes. 

Despite its practical relevance, research on identifying rescue requests posted on social media 

during natural disasters has received little attention [34]. This problem has been investigated in a 

few studies, such as [34] [148] and [137], where the authors trained machine learning methods to 

automatically identify rescue requests posted on Twitter during Hurricane Harvey. Additionally, 

[149] conducted a spatial and temporal analysis of rescue requests posted during Hurricane 

Harvey. However, previous studies have several limitations. Firstly, they have focused on a single 

disaster event (Hurricane Harvey) to conduct their analyses. Secondly, previous research studies 

have employed various machine learning and deep learning techniques, such as convolutional 

neural networks, support vector machines, and transformer-based models, to learn textual 

features from raw data for classification, but none of these models have investigated domain-

specific features (i.e., specific textual patterns that match the characteristics of the rescue 
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messages posted on social media). It is unclear whether incorporating these features would 

enhance the predictive capacity of the proposed learning models, yielding more accurate 

identification of rescue messages. The first part addresses the following research questions: 

• What are the main textual features that characterize emergency rescue request 

messages posted on Twitter during hurricanes? 

• Using these features, how can existing models proposed for the rescue identification 

problem be improved? 

 

Part 2: Assessing the reliability of rescue-seeking messages on Twitter during hurricanes. 

The second part of this dissertation focuses on assessing the reliability of the identified rescue 

messages. While the credibility of online data, particularly social media data, has been extensively 

addressed in domains such as news, politics, and healthcare, it remains largely underexplored in the 

context of natural disasters and humanitarian disaster response. Only a few studies have addressed 

the social media data reliability problem in the disaster context. Examples include [53], [124], 

[139], and [16]. Although the reliability of social media information presents a key component of 

actionable information, to the best of the author’s knowledge, none of these studies has addressed 

how to estimate the reliability of actionable social media information, including rescue messages 

posted on social media during hurricanes. Additionally, previous research studies proposing 

classification techniques for identifying emergency rescue tweets (e.g., [148], [34], [137]) have 

not examined the reliability of the identified rescue information. The second part addresses the 

following research questions: 
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• What are the key indicators for assessing the credibility of rescue-seeking messages 

posted on social media during natural disasters? 

• How can the reliability of these rescue-seeking messages be estimated using these 

indicators? 

 

1.3 RESEARCH GOAL AND CONTRIBUTIONS 

The overarching goal of this dissertation is as follows: 

 

 

To improve the usability of social media data streams in disaster response 

by enhancing existing models for extracting reliable and actionable 

rescue information. 

In the first part, this dissertation introduces two novel classification models designed to identify 

rescue messages posted on Twitter during hurricanes (first contribution). The first model employs 

a logic-based approach that uses regular expressions regex to catch the language patterns or features 

of rescue tweets. The second model is a novel deep learning-based framework that combines a 

state-of-the-art deep learning model for text classification (BERT) for low-level feature extraction 

and rule-based regex filters for high-level feature extraction within a single architecture. 

In the second part, this dissertation introduces a two-stage rule-based reliability scoring 

system to evaluate the reliability of rescue messages posted on Twitter during hurricanes (second 

contribution). This model integrates reliability indicators (factors) across multiple assessment 

dimensions, including user-level, content-level, and context-level assessment. 
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1.4 SIGNIFICANCE 

 

The proposed rescue detection framework is illustrated in Figure 1. This research is motivated 

by observations from Hurricane Harvey. During Hurricane Harvey and its subsequent flooding, 

many stranded individuals were unable to reach 911 and other emergency centers due to the over- 

whelming surge in emergency calls that exceeded the capacity of these call centers. A news report 

by Sedensky [116] highlighted that the Houston 911 call center received and processed 75,000 calls 

in one day from August 28th to 29th, which was more than eight times its normal daily volume; 

this number does not account for the thousands of calls that were abandoned due to excessive 

waiting times. To address this situation, people turned to social media to share rescue requests and 

calls for help. Disaster relief organizations, assisted by many digital volunteers, sifted through 

social media to locate posts calling for help. For example, the Digital Humanitarian Network 

(DHN) sent USCG command centers information every six hours in Excel spreadsheets with the 

collected information needed for rescue. Two USCG Academy cadets organized 500 volunteers 

worldwide to read social media posts, and then they used GIS to create maps for a command 

center. The volunteers used hashtag and keyword searches to filter through millions of posts [134]. 

This underscores the importance of real-time rescue information collected through secondary 

sources, such as social media, for enhancing response processes. This research contributes to the 

fields of disaster informatics and disaster management by introducing novel methods for 

efficiently extracting rescue information on social media to assist decision-makers during 

hurricanes. It builds upon existing research in the literature, aiming to better integrate social 

media channels as a complementary yet relevant source of information during hurricanes. 
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1.5 DISSERTATION ORGANIZATION 

 

Chapter 2 provides an overview of the related work. Chapter 3 describes the research 

methodology used in this research and introduces the proposed research methods and models. 

Chapter 4 presents the results of this dissertation. Finally, chapter 5 presents the main findings, 

limitations, future work, and implications of this research. 
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Figure 1. Proposed rescue identification framework 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

Social media has recently become an integral component of emergency management and 

response. Traditionally, emergency response teams and government officials have used social 

media platforms as one-way channels to disseminate critical information, promote awareness, and 

orchestrate response strategies. Nonetheless, the availability of information technology devices, 

such as smartphones and laptops, and easy access to the internet access, has transformed social 

media into a two-way communication channel. Reports on Hurricane Harvey show that people 

used Twitter as an alternative for seeking/offering help and reporting situational information 

[18]. The large flow of messages posted on social media by the general public during natural 

disasters provides a valuable source of information for emergency responders to build situational 

awareness. 

2.1 BACKGROUND INFORMATION ON DISASTER MANAGEMENT 

 

The frequency and severity of natural disasters have increased, significantly impacting the lives 

of millions of people globally each year [81]. In the last decade, disaster events such as tsunamis, 

floods, earthquakes, and pandemics have affected over 2.6 billion people [26]. 

The emergency management process consists of four major phases: preparedness, mitigation, 

response, and recovery. This framework is proposed by the Federal Emergency Management 

Agency (FEMA) [40]. Understanding the activities associated with each of these phases is 

crucial. The preparedness and mitigation phases occur before a natural disaster, involving risk 
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assessment, resource, and expertise identification, and planning to minimize potential disaster 

impacts (e.g., developing evacuation plans). The response and recovery phases take place after a 

disaster and can include multiple activities such as the implementation of emergency plans, 

medical care, rescue activities, shelter management, distribution of supplies, damage assessment 

and prevention, and recovery efforts. These phases are illustrated in Figure 2. 

 

 

 

 

Figure 2. Emergency management phases according to FEMA 

 

 

Disaster response is one of the most researched phases, as it is during this phase that immediate 

assistance becomes critical for affected people [81]. During this phase, the goal is to respond to 

the immediate needs and take actions that reduce fatalities, injuries, and damage loss. A rapid 

response can significantly save lives, meet the victim’s needs, and mitigate the catastrophic impact 
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of the disaster. Disaster response involves multiple actors operating in an uncertain and complex 

environment, including local authorities, humanitarian organizations, and volunteers. In this 

environment, if the decision-making process—from data collection to decision-making—is too 

long, it may result in ineffective decisions based on an outdated operational picture [75]. Hence, 

processing real-time data is the key to effective disaster response decision-making. Information 

needed during the different emergency management phases can be broadly categorized into two 

classes of information: 

• High-level information, such as the disaster size and magnitude, death rates, and 

affected areas, is typically used by top-level management for strategic decisions. 

• Actionable (tactical) information, such as help requests, road closures, road flooding, 

and missing individuals, is low-level information types used for operational and 

tactical decisions. 

Social media platforms provide a valuable source of real-time information during emergencies. 

Numerous studies have explored the increasing role of social media in disaster communication. For 

instance, Lachlan et al. [76] analyzed the common search strategies for disaster information from 

social media. They suggested using localized hashtags as an effective way to disseminate useful 

information. Other studies, such as those in [80] and [37], have tried to bridge the gap between 

research and practice by providing a summary of the most effective practices and lessons from 

using social media in disaster response. They noted that social media platforms, such as Twitter, 

are still utilized primarily as one-way communication channels; researchers have emphasized the 

importance of monitoring public feeds on social media to enhance the current emergency response 
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practice. Researchers in disaster informatics have made significant advancements in developing 

automated tools for extracting relevant information from social media platforms, employing 

methods from machine learning (ML), deep learning (DL), and artificial intelligence (AI). 

2.2 DISASTER-RELATED CLASSIFICATION TASKS 

 

This section explores automated techniques for extracting information through machine 

learning (ML) and deep learning (DL) methods. Previous research studies have formulated the 

problem as a classification problem, in which social media messages are categorized into several 

information types. Classification methods can be categorized according to their objectives into 

several tasks: 

• Categorizing social media messages based on their informativeness (e.g., informative 

tweets and non-informative tweets) 

• Categorizing tweets based on several humanitarian themes, including infrastructure 

damage, donation efforts, volunteering requests, and others. 

• Identifying tweets posted by eyewitnesses in the disaster area 

• Categorizing tweets based on the severity of the damages 

Table 1 provides examples of research studies proposing automated methods for disaster- 

related classification, organized by the tasks they aim to accomplish. 

Several public datasets have been used in prior research to train and evaluate the proposed 

classification methods, for instance, the disasterLexT26 dataset [105], disasterMMD [7], and 

HumAID [9]. These datasets comprise tweets collected through various disaster events and 

categorized by several information types. For instance, the disasterLexT26 dataset was created  
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by Olteanu et al. [105] in 2015 and was made publicly available through the disasterLex 

project1. This collection of disaster datasets was compiled from 26 crises between 2012 and 2013 

and annotated by crowdsourced workers. These datasets were annotated for informativeness 

(informative vs. non-informative tweets) and humanitarian needs categories (e.g., affected 

individuals, infrastructure and utility damages, donation efforts and volunteering, caution and 

advice). The disasterMMD dataset was introduced by Alam [7] and published through the 

disasterNLP resources2. This dataset contains labeled information derived from the tweets’ 

textual content and images. The datasets were annotated based on their informativeness and 

humanitarian needs categories. HumAID (Human-Annotated Disaster Incidents Data) [9] is one 

of the largest publicly available human-annotated Twitter datasets, consisting of 77,000 labeled 

tweets. These tweets were sampled from 24 million tweets gathered during 19 major real-world 

disasters between 2016 and 2019. The HumAID dataset includes tweets categorized into several 

humanitarian needs categories. In these datasets, tweets were annotated in two primary ways: 

firstly, at a high level to determine if a tweet is disaster-related or informative, and secondly, 

based on specific humanitarian needs. The categories for humanitarian needs include several 

classes, such as caution and advice, sympathy and support, requests and urgent needs, 

displacement and evacuation, injuries and fatalities, missing and found individuals, infrastructure 

and utility damage, as well as rescue, volunteering, and donation efforts. Most ML/DL systems 

developed in this area have focused on improving the accuracy of the proposed models, using 

these public benchmarks for evaluation. Consequently, researchers have defined various 

classification tasks derived from the public benchmarks’ labels. These tasks include identifying 

 
1 https://disasterlex.org/ 
2 https://disasternlp.qcri.org/ 
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informative and disaster-related social media messages, categorizing social media messages by 

humanitarian information types (e.g., cautions and advice, sympathy and emotion, infrastructure 

and utility damage, etc), identifying social media messages posted by eyewitnesses, and 

extracting social media messages reporting damages, among other. 

 

Categorization by informativeness – One straightforward application of machine learning in 

emergency response involves developing automated systems that can assist emergency response 

teams by identifying informative (sometimes referred to as disaster-related or on-topic tweets) 

social media messages from the huge volume of data posted on social media during disasters. 

Early studies that explored ML/Dl techniques for disaster response primarily focused on this 

task. For example, Parilla-Ferrer and colleagues [107] proposed a machine learning approach to 

identify informative tweets using custom data collected during the 2012 Luzon southwest 

monsoon floods. Caragea et al. [22] proposed a deep learning-based approach to identify 

informative tweets, evaluating their model using the disasterLexT26 datasets [105]. Li et al. [77] 

introduced a domain adaptation approach to classify tweets into on-topic and off-topic categories 

using disasterLex datasets. Alshehri et al. [13] developed an ensemble learning algorithm for the 

same task. Another line of research has focused on identifying informative disaster-related tweets 

by integrating multiple data modes, including both textual data and images. For instance, Koshy et 

al. [66], Kumar et al. [70], and Madichetty et al. [87] proposed multimodal deep learning models 

to filter informative tweets during natural disasters, using public benchmark datasets such as 

disasterMMD data set [7] for evaluation. Informative tweets typically refer to those social media 

messages that provide useful information directly related to the disaster. The primary issue with 

this classification is its vagueness; researchers have not provided clear guidelines on what 
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qualifies as a disaster-related or informative message. However, given the large volume of posts 

that decision-makers must process, this classification scheme is useful for high-level filtering 

social media messages. 

Classification into humanitarian information types – Numerous research studies have suggested 

using machine learning and deep learning-based methods to classify tweets into various 

humanitarian categories rather than informativeness. To this end, researchers have defined 

multiple information types, and the problem has been formulated as either a multi-class or multi-

label classification problem. For instance, Liu et al. [83] introduced a transformer-based 

technique that accomplishes three tasks: (1) identifying disaster-related tweets, (2) classifying 

tweets into various information types, and (3) recognizing rumor tweets. The authors evaluated 

their model using labels from the disasterLex T6 and T26 datasets. Similarly, Yu et al. [141] 

proposed a deep learning-based approach for cross-event topic classification, employing a 

classification scheme that included five humanitarian categories, namely caution and advice, 

casualties and damage, information sources, donation and aid, and missing people. A deep 

learning approach for multi- class classification was proposed by Aipe et al. [4], which was 

evaluated using the disasterNLP datasets. Instead of employing the disasterNLP humanitarian 

categories, the authors developed their classification scheme, consisting of the following 

categories: (1) Casualties and Public Impact, encompassing labels such as Injured or Dead 

People, Missing, Trapped, or Found People, and Displaced People and Evacuations from the 

original datasets; (2) Collateral Damages Class, derived from Infrastructure and Utility Damages 

in the original datasets; (3) General Awareness, created from the Caution and Advice class of the 

original dataset; (4) Voluntary Services Class, derived from the Donation class in the original 
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datasets; (5) Sympathy and Emotion, derived from the Emotional Support class; (6) Disaster-

Specific Information, derived from the Other Useful Information class in the original dataset; and 

(7) Non-Informative Tweets. 

Eyewitness identification task  –  Obtaining firsthand information directly from the disaster area is 

crucial for disaster response officials when a disaster occurs. Research has shown that local 

citizens and eyewitnesses are significant sources of information, as they share a vast amount of 

data. To identify such information, Zahra et al. [146] developed a method for identifying the 

direct and indirect eyewitness messages posted on social media during natural disasters. They 

created a classification scheme that categorizes tweets as ‘direct’, ‘indirect’, and ‘vulnerable’ 

eyewitness messages. Tanev et al. [130] proposed a learning framework focused on detecting 

micro-events (e.g., casualties, destruction, and damages) caused by natural disasters and 

identifying eyewitness reports in both types of media. Kumar et al. [72] proposed a multi-

channel CNN deep learning framework for this task. Their model outperformed multiple 

conventional and deep learning models in identifying eyewitness posts. 

Damage assessment task – Assessing the impact of a disaster, specifically infrastructure damage, 

is a crucial task in disaster response. Typically, disaster response officials rely on field experts to 

comprehend the extent of the damages and assess losses. Nonetheless, this approach can be 

time-consuming [57]. Therefore, numerous research studies have developed automated techniques 

for damage assessment. A common method of assessing damage through social media involves 

classifying tweets based on the severity of the damage, which typically falls into one of three 

categories: severe, mild, or low. Alam et al. [8] proposed a social media image processing 

pipeline to filter social media imagery content (e.g., removing duplicate images and retaining 

relevant ones) and extract actionable information about the damage severity. Nguyen et al. [97] 
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proposed a convolutional neural network (CNN) model to classify social media images into these 

three damage severity classes. They conducted an extensive evaluation, demonstrating the 

advantages of using CNNs over state-of-the-art machine learning models for this specific 

problem. 

Previous research papers have relied solely on images to detect damages. A few studies have 

shifted their focus to identifying damage-related information within the textual content posted on 

social media. For instance, Madichetty et al. [88] proposed an ensemble-learning approach to 

detect tweets containing information related to damage assessment. Specifically, their approach 

targeted two types of damage: (1) infrastructure damage inflicted on specific resources such as 

roads, railways, and towers; and (2) human damages referring to tweets reporting injuries and 

deaths. In another work, Madichetty et al. [90] proposed support vector regression and random 

forest approaches to automatically identify tweets for damage assessment. They introduced 

several low-level lexical and syntactic features related to damage assessment. The majority of 

classifiers proposed multimodal approaches for damage assessment using both text and image 

modalities. Examples include the studies by Hao et al. [49], Abavisani et al. [1], and Gautam et 

al. [43]. 

Other disaster classification tasks – While most past research on social media disaster 

classification has focused on the tasks described above, it is worth noting that disaster 

classification research has addressed a broader range of tasks, and additional variants of the 

problem have been explored. Related problems include disaster text summarization, location 

identification, rescue requests identification, and others. Devaraj et al. [34], Zhou et al. [148], and 

Wang et al. [137] tackled the problem of identifying emergency rescue messages from social 
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media by framing it as a binary classification problem. Interpretable machine learning models 

through text summarization is an important and promising research direction to explore. Existing 

studies tend to rely on black-box machine learning approaches, which are not ideal for disaster 

response officials who require a clear understanding of the situation. Nguyen et al. [98] 

investigated the task of summarizing informative tweets and proposed a new approach that 

categorizes information into various humanitarian categories, followed by summarizing the 

information from each category. The authors developed a unique classification task that involves 

classifying rationales into different information types. ‘Rationales’ (also referred to as 

‘explanations’) are short snippets in tweets that provide enough evidence to classify the tweet into 

a specific information type. In the tweet example cited by the authors [98],  ‘03 Dec 2012 – At 

least 475 people are killed after Typhoon Bopha makes landfall in the Philippines’, the snippet ‘At 

least 475 people are killed’ provides sufficient information to classify the tweet into the injuries 

and deaths category. The proposed framework automatically categorizes tweets once snippets are 

detected. The snippet provides interpretable information that can be summarized. 

Identifying locations of people in need during natural disasters is another task that has attracted 

the attention of several researchers. While several studies have explored the possibility of using 

geocoordinate data from Twitter to obtain accurate locations, such tweets constitute only a small 

proportion of the total number of tweets posted in real-time. Kumar et al. [71] highlighted that 

only 7.9% of tweets are geotagged. Therefore, relying on the tweets’ textual content to determine 

individuals’ locations is a viable strategy to overcome this limitation. Karam et al. [62] presented 

a machine learning solution that uses Support Vector Machine (SVM) and Named Entity 

Recognition (NER) to infer the locations of those in need of help within the disaster area. Unlike 
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previous approaches that heavily relied on Named Entity Recognition (NER) and geotagging, 

Kumar et al. [69] introduced a CNN-based classification method to extract location information 

from tweets. 

2.3 PROPOSED METHODS FOR DISASTER-RELATED CLASSIFICATION TASKS 

This section reviews the methods proposed for the tasks presented above. The proposed methods 

can be broadly categorized into the following classes: (1) keyword-matching approaches, (2) ML 

methods, (2) DL methods, and (4) transformer-based methods. 

2.3.1 Keyword-Based Methods 

 

Keyword-matching methods have been employed as rapid and efficient techniques to process 

the vast volume of messages shared on social media platforms, such as Twitter, during emergencies. 

Keyword-matching generally involves selecting a set of predefined keywords or hashtags by users 

to identify relevant tweets. 

Twitter APIs—search and streaming APIs—allow users to specify their queries to retrieve 

tweets based on specific criteria such as locations, search keywords, or hashtags. Hence, the 

Twitter API has been integrated into many social media analytics platforms for disaster 

management, such as AIDR [55] and Tweedr [15] platforms. The Twitter API relies on users 

specifying the right keywords for search based on their knowledge and expertise. Consequently, 

several research studies have explored how to develop more efficient keyword-matching 

approaches. Olteanu et al. [104] developed a more efficient keyword-based approach for querying 

relevant results from the Twitter API. This method starts by categorizing a sample of tweets as 

informative and non-informative, then assesses the terms from each category using statistical tests 
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such as Chi-square and PMI. The highest-scoring terms are then refined and used to construct a 

disaster- related term lexicon named disasterLex. Zheng et al. [147] introduced a semi-supervised 

dynamic keyword generation technique utilizing incremental clustering, support vector machines 

(SVMs), expectation maximization, and word graph generation to produce pertinent disaster 

keywords. This method leverages a limited number of labeled tweets and the co-occurrence 

properties of word to automatically generate and expand a list of keywords over time, capturing 

the evolution of the event. Olteanu et al. [104] introduced an advanced keyword-based method 

for extracting relevant results from the Twitter API. Their technique initiates by classifying a 

subset of tweets into informative (positive) and non-informative categories. Subsequently, terms 

within these categories are evaluated using statistical tests such as Chi-square and PMI, allowing 

for the refinement and selection of the most significant terms. These terms are then utilized to 

construct a disaster-related term lexicon known as disasterLex. Similarly, Zheng et al. [147] 

developed a semi-supervised dynamic keyword generation strategy that incorporates incremental 

clustering, support vector machines (SVMs), expectation maximization, and word graph 

generation to identify critical disaster keywords. This strategy employs a small set of labeled 

tweets and analyzes word co-occurrence to dynamically generate and update a keyword list that 

adapts to the unfolding of the event. Kumar et al. [73] developed TweetTracker, a platform that 

uses user-generated keywords to collect and monitor disaster tweets in real time, visualizing key 

keywords and hashtag trends. Hashtags have increasingly been used to filter relevant disaster 

tweets. Lachlan et al. [76] analyzed tweets from a winter storm and observed that localized 

hashtags were more likely to be linked to disaster-relevant tweets. They argued that utilizing 

local hashtags during a disaster event is an effective method for detecting actionable information. 

Hien To et al. [132] introduced a systematic approach to generating a comprehensive list of 
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relevant hashtags from a small set of keywords, which aids in identifying informative tweets 

from the vast data on social media. 

Overall, keywords and hashtags-based approaches for identifying relevant disaster tweets 

typically depend on a small set of predefined keywords or hashtags, such as combinations of 

disaster names or types with names of affected areas, often resulting in missing relevant tweets. 

These methods are predominantly manual, making them unscalable and ineffective for real-time 

disaster applications. Given the vast amount of data available in real-time as a natural disaster 

unfolds, monitoring social media platforms by keywords is impractical. Hence, researchers have 

explored automatic methods to identify relevant information from social media. 

2.3.2 Traditional Machine Learning Methods 

 

Early research in this field employed traditional machine-learning methods to classify 

emergency- related tweets. These works used various machine learning models, mostly Support 

Vector Ma- chines (SVM), Support Vector Regression (SVR), Random Forest (RF), AdaBoost 

(ADA), Naive Bayes (NB), Linear Regression (LR), Decision Tree (DT), and AdaBoost (ADA). 

Nazer et al. [95] compared several models, including ADA, SVM, RF, and DT, to identify tweets 

specifying urgent needs (e.g., food, water, etc.). A data set of 3,261 help requests and 9,999 

regular tweets collected from Hurricane Sandy was used to train the models. In this study, DT 

was the best-performing model (in terms of F1 measurement) Habdank [45] utilized custom 

Twitter data generated from an incident in Ludwigshafen, Germany, in October 2016 to evaluate 

SVM and RF on the relevancy assessment task (i.e., categorize tweets into relevant and non-

relevant tweets). They trained several ML classifiers, such as NB, DT, RF, and SVM. The 

performance of RF was the highest across all measurements (accuracy, F1, recall, and precision) 
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among the tested classifiers. Parilla et al. [107] trained two machine learning models (SVM and 

NB) to identify disaster-related tweets using manually annotated data collected from the Manila 

flooding. In this research, SVM significantly outperformed NB in several metrics. Wang et al. 

[137] and Devaraj et al. [34] assessed several machine learning models for identifying urgent 

rescue tweets, including RF, SVM, NB, and others. Wang et al. [137] compared the performance 

of several traditional machine learning classifiers, such as RF, NB, SVM, and LR, and found 

that the SVM model outperforms the competing machine learning models on the rescue-seeking 

messages identification task. Madichetty et al. [90] proposed different types of features, 

including lexical, syntactic, and word frequency features, for identifying damage-related tweets. 

A novel two-stage machine learning approach was used. The first stage of training involved 

using SVR and LR to give weights to the different feature vectors. The weighted feature vector is 

used as an input to the RF classifier in the second stage. The authors performed extensive 

evaluations of their proposed method, utilizing multiple public benchmarks for disaster response, 

and demonstrated its effectiveness in diverse domains and disaster types. 

2.3.3 Deep Learning-Based Methods 

 

Various deep learning models, such as Convolutional Neural Networks (CNNs) and Long 

Short-Term Memory (LSTM) networks, have been extensively employed to tackle the challenge 

of classifying social media messages during emergencies. 

Several studies, including those by Yu et al. [141] and Caragea et al. [22], have explored 

the effectiveness of Convolutional Neural Networks (CNNs) in categorizing tweets into various 

humanitarian categories and identifying informative and disaster-related tweets. For both tasks, 

CNNs have outperformed the traditional machine learning models, such as SVM and LR. The CNN 
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provided better generalization across various events, unlike non-neural network models, which are 

domain dependent. As a result, when obtaining labeled data for new disaster events is difficult, 

CNNs were considered a better approach than traditional ML models. 

Madichetty et al. [86] trained different deep learning models to detect situational tweets from 

social media, including CNN, LSTM, Bi-directional LSTM, and Bi-directional LSTM with 

attention (BLSTM-attention). Several word embedding models were evaluated in this paper, 

including those pre-trained on disaster data and those pre-trained for general use, and it has been 

found that disaster-related word embeddings performed better with the deep learning models. 

Among the different architectures tested in this paper, BLSTM with an attention mechanism 

showed a better performance for this task. Ning et al. [99] developed an automated method to 

identify and summarize informative tweets related to specific disaster events. Their model 

utilized a correlative CNN architecture that was trained to categorize tweets by informativeness 

and source. This architecture included a shared CNN module that transforms the input feature 

vector into a higher-level shared representation layer. This layer is then fed into two separate 

modules, each consisting of fully connected layers dedicated to one of the classification tasks. 

Additionally, the model incorporated a set of hand-crafted features, including lexical, 

emotional/sentiment, POS tagging-based features, and topical features such as n-grams and LDA 

topics. They found that the topical and linguistic features significantly enhanced the 

performance of the CNN model in both classification tasks. 

2.3.4 Transformer-Based Methods 

 

Recently, the application of transformer-based models for various disaster classification tasks 

has gained increasing interest. Liu et al. [83] developed disasterBERT, a transformer-based method 
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that was customized for disaster detection and recognition tasks. They trained a set of 

transformers to categorize tweets into binary categories (disaster-related and non-disaster-

related) and multi-class categories (humanitarian information types). The authors conducted a 

large-scale evaluation of several transformer models, including BERT, XLNet, GPT-2, and 

RoBERTa, with DistilERT emerging as the most effective model. The proposed disasterBERT 

architecture comprises three layers: tokenization, transformation, and classification. Initially, 

tweets are tokenized using BERT’s internal mechanism, incorporating special tokens such as 

‘CLS.’ The tokenized outputs are processed through DistilBERT layers, followed by a linear 

classifier that leverages the ‘CLS’ embedding vector to categorize the tweets. The entire system is 

trained end-to-end, showcasing superior performance over traditional classifiers such as LR, NB, 

and SVM, and even outperforming deep learning models such as CNN and LSTM. Additionally, 

the authors introduced disaster2vec, a contextual word embedding model developed by pre-

training DistilBERT on a substantial corpus of disaster-related data. This model is designed to 

enhance disaster classification tasks, offering an alternative to general-purpose word embedding 

models such as Word2vec [93]. Nguyen et al. [98] developed a two-stage BERT model 

(BERT2BERT) classifier within their text classification and summarization framework. In the 

first stage, they extracted rationales from tweets by jointly training two BERT models in a multi-

task process. The first BERT model was responsible for categorizing the tweet into humanitarian 

categories, while the second model identified which tokens contained useful information to be 

tagged as rationales, assigning each token a binary label of either 1 or 0 to indicate its inclusion in 

the rationale information. In the second stage, the classification task from the first stage was 

disregarded, and a different BERT-based classifier was trained on the rationale vectors (stage 1 

outputs) to determine the final classification results. Evaluated on two disasterNLP datasets for 
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humanitarian tweet classification, the proposed classifier demonstrated superior performance 

compared to various traditional machine learning classifiers. Li et al. [77] proposed a self-

training domain adaptation approach for disaster tweet identification. This method involves pre-

training a BERT model on a large set of unlabeled disaster-related tweets from previous disaster 

occurrences, followed by using the pre-trained BERT as a backbone model to transform input 

tweets into BERT embedding space. A CNN is then placed on top of the BERT model and trained 

to classify messages from a target disaster event. The evaluation results using disasterNLP and 

disasterLex datasets showed that the proposed self-training mechanism enhances the 

classification performance of CNN. It is recommended to employ self-trained transformers to 

transfer knowledge from previous events to a target disaster event. Furthermore, the study revealed 

that pre-training BERT on prior disaster-related tweets yields better results than using the standard 

BERT model pre-trained on the Wikipedia Corpus. Madichetty et al. [89] have recently presented 

a novel approach that combines a fine-tuned RoBERTa transformer with a feature-based method 

to classify situational tweets related to natural disasters. In their proposed approach, two feature 

vectors are generated: the first is created by training an SVM on lexical and syntactic features 

extracted from tweets, such as subjective words, personal pronouns, numeral counts, exclamation 

and question marks, and slang. The second feature vector is obtained by fine-tuning a RoBERTa 

transformer. The authors employed a multiplicative fusion technique (element-wise multiplication) 

to merge the two feature vectors into a single vector, which is then used for the final classification. 

Compared to several deep learning models, including CNN, LSTM, and LSTM with an attention 

layer, their approach has demonstrated superior performance. 
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2.4 EMERGENCY RESCUE REQUESTS IDENTIFICATION PROBLEM 

 

2.4.1 Social Media Rescue Messages Characteristics 

 

Understanding the characteristics of rescue messages posted on social media is an important 

step toward designing robust classifiers to automatically identify these messages in real-life 

scenarios. However, it is worth noting that only a few research studies have examined their 

characteristics. The purpose of this review is to highlight the key features of rescue request 

messages as identified in the related literature. some of these features are included in this 

dissertation, such as: 

• Rescue hashtags 

• Mentions of emergency response organizations’ accounts 

• Location information 

• Situational description 

Numerous studies have examined the use of rescue hashtags as a means of assisting victims 

of natural disasters. During Hurricane Harvey, hashtags such as #SOSHarvey, #SOSHouston, and 

#Rescue were employed to highlight social media messages from those in immediate need of 

assistance. However, many studies have noted that most rescue tweets do not contain any rescue 

hashtags. Zou et al. [149] observed that rescue hashtags are used in only a small fraction of tweets. 

Their textual analysis of an annotated sample of tweets revealed that the most frequently used 

rescue hashtags during Harvey were #harveysos, #houstonflood, #rescue, #houston, and #houston- 

strong. These were categorized as either location-based (local) hashtags or rescue-based hashtags 

that include rescue and help terms [149]. Based on an online survey, Mihunov et al. [92] found 

that about 25 percent of rescue tweets during Hurricane Harvey utilized rescue hashtags. The event 
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was marked by a variety of hashtags, such as #HurricaneHarvey, which were not necessarily used 

for rescue requests. Lachlan et al. [76] investigated how hashtags have been used to find actionable 

social media messages during natural disasters. They found that local hashtags were more effective 

for filtering rescue requests than nationwide hashtags. In general, relying solely on rescue 

hashtags is insufficient to identify rescue tweets. Nonetheless, they can still serve as a useful 

feature in defining rescue messages. Zou et al. [149] reported that it is a common practice to tag 

emergency response organizations and government officials (using the mention feature ‘@’) for 

seeking help. Houston police and Cajun Navy (informal volunteer groups) accounts were often 

tagged during Harvey. However, about 45.84% of the analyzed rescue tweets did not contain this 

feature. Song et al. [127] analyzed a dataset of verified rescue request tweets from the 2018 

torrential rains in Western Japan in order to extract useful rescue features that could be employed 

in automatic classification methods. Their analysis identified several types of information in 

rescue requests, including (1) rescue details, (2) location information, and (3) rescue hashtags. 

They categorized the identified features into those that can be used to detect rescue requests and 

those that cannot. They suggested that both location and rescue details features are essential 

characteristics of rescue tweets. Rescue details may include details related to the disaster 

situation, such as descriptions of evacuation locations, damage reports, or reports of evacuation 

difficulties. They may also include clear references to the relationship between the victim and the 

eyewitness reporting the message (e.g., whether the post is on behalf of a relative or a friend). For 

instance, phrases like ‘my father’ and ‘my friends’ were commonly used in rescue request 

messages. Location feature specifies the location of the person who needs rescue, which may be 

conveyed through a full address, including house number, city, or building name, or through 

location-related hashtags. 
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Zou et al. [149] analyzed an annotated dataset of emergency rescue tweets collected during 

Hurricane Harvey. They found that 89.48% of the collected rescue tweets contained full addresses, 

while 66.02% described situational information (e.g., information about victims). Only 61.08% of 

the tweets included both details. The authors also examined the number of hashtags attached to 

the annotated rescue messages and found that the majority of rescue tweets do not include rescue 

hashtags. 

2.4.2 Automatic Methods for Rescue Requests Detection From Social Media 

 

Devaraj et al. [34] conducted a study in which they evaluated a set of classifiers, including 

Support Vector Machine (SVM), Naive Bayes (NB), Decision Tree (DT), AdaBoost, Multi-layer 

Perceptron (MLP), Logistic Regression (LR), and Convolutional Neural Network (CNN), for the 

task of detecting rescue messages on Twitter. The authors found that the average word embedding 

(i.e., creating a fixed-length representation of an input tweet by averaging the word embeddings of 

each word) is an effective approach for feature extraction. They also found that SVM and CNN 

were the most effective models for the problem measured in terms of F1 score. All the experiments 

of this study were performed on an annotated set of tweets collected during Hurricane Harvey. 

Zhou et al. [148] introduced ‘VictimFinder’, a collection of transformer-based classifiers 

designed to identify rescue request messages from social media during natural disasters. To 

assess the effectiveness of the proposed models, the authors conducted experiments using a 

manually annotated set of tweets collected during Hurricane Harvey. They evaluated multiple 

transformer models such as BERT, ELMo, DistilBERT, ALBERT, and XLNet. The rescue 

message identification problem was divided into three distinct sub-tasks: (1) determining 

whether a tweet requests help, (2) determining whether it specifies a full address, and (3) 
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determining whether it provides detailed information about the victims. Each of these tasks was 

formulated as a binary classification problem. VictimFinder architecture consisted of a fine-tuned 

transformer with a classification head on top of it. Two training strategies were used: (1) fine-

tuning strategy and (2) feature-based strategy. Fine-tuning involves training the backbone 

transformer models and updating their initial parameters using the custom training data from a 

target event. In contrast, the feature-based training strategy involves freezing the initial 

parameters of the backbone transformer, previously trained on large volumes of data, such as 

Wikipedia corpus, for general use. To evaluate the effectiveness of the proposed models, the 

authors performed experiments on a manually annotated set of tweets collected during Hurricane 

Harvey, using multiple transformer models such as BERT, ELMo, DistilBERT, ALBERT, and 

XLNet. The rescue messages identification problem was divided into three distinct sub-tasks: 

(1) determining whether a tweet requests help, (2) determining whether a full address is specified, 

and (3) determining whether detailed information about the victims is provided in the tweet. Each 

task was formulated as a binary classification problem. Two training strategies were used for 

VictimFinder: fine-tuning strategy and feature-based strategy. Fine-tuning involves training the 

backbone transformer models and updating their initial parameters using custom training data 

from a target event. In contrast, the feature-based strategy involves freezing the initial parameters 

of the backbone transformer, previously trained on large datasets such as the Wikipedia corpus, 

during the training stage. The study found that all BERT-based models outperformed 

conventional machine learning models, with BERT-LSTM and BERT-CNN models achieving the 

best performance. ELMo transformer achieved the highest recall but had slow data processing 

times. Although the ELMo transformer achieved the highest recall, it was slower in processing 

data. In their recent work, Wang et al. [137] presented a machine learning approach to detect 
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rescue-seeking messages on social media, which were strictly defined in this study as messages 

containing a precise address. The research explored how ZIP codes might in- fluence the 

performance of classifiers for rescue tweets. Several machine learning models were evaluated, 

including Random Forest (RF), Naive Bayes (NB), Support Vector Machines (SVM), and 

Logistic Regression (LR). The findings indicated that conventional machine learning models are 

more effective at detecting rescue tweets tagged with ZIP codes (i.e., victims posting rescue 

request tweets that include ZIP codes) in various scenarios, with RF yielding the best performance 

among all the models. 

2.5 RELIABILITY ASSESSMENT OF SOCIAL MEDIA DATA 

 

Assessing the reliability of online information is a longstanding problem that has attracted the 

interest of researchers. With the rise of social media platforms, this issue has become more 

challenging. Researchers have addressed various related problems, such as the identification of 

misinformation, rumors, and fake news. Related studies have explored the problem across 

different application domains, including general news, politics, healthcare, sports, and 

emergencies. 

2.5.1 Related Problems 

 

This section reviews the methods proposed for various related reliability assessment problems, 

such as fake news, rumor, and misinformation detection. An increasing number of people 

nowadays seek news from social media platforms rather than traditional news outlets. This shift 

is driven by the timely and cost-effective access to information that social media offers compared 

to traditional media. Consequently, large volumes of fake news (i.e., news containing 



34 
 

 
 

intentionally false information to deceive users) are produced and propagated through these 

platforms for various purposes, including political and financial gains [121]. This problem has 

been addressed extensively in the literature. Researchers have developed a wide variety of 

methods to automate this process. 

State-of-the-art NLP models, such as BERT, have been employed for this problem and have 

shown promising results. Rai et al. [110] employed a BERT-LSTM model for fake news detection. 

The proposed model was trained to categorize news titles into fake and legitimate news and was 

effective when compared to several neural network methods. Kaliyar et al. [61] introduced Fake- 

BERT, a BERT-based deep learning model, for detecting fake news. This model integrates several 

parallel CNN blocks and utilizes BERT as a sentence encoder for each incoming news report. Ex- 

tensive evaluations conducted on a dataset from the 2016 U.S. presidential election demonstrated 

that FakeBERT outperforms traditional neural network models, such as CNN and LSTM. 

Choudhary et al. [27] presented a BERT-based deep learning framework (BerConvoNet) for 

classifying tweets into fake and real tweets. The proposed model includes two main components. 

A new embedding model using BERT for encoding input text and multi-scale feature block 

(MSFB) that includes multiple kernels to process text. 

Silva et al. [122] proposed a multimodal approach for fake news detection. This study ad- 

dresses the problem of poor generalization of ML/DL models across multiple news domains, such 

as healthcare and politics. The proposed model uses an unsupervised learning algorithm to learn 

embeddings from data across various domains and then employs a deep learning model that lever- 

ages this knowledge to perform domain-independent fake news classification. The proposed cross- 

domain classifier demonstrated promising performance, outperforming existing fake news 
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detection models in terms of F1 score, even with a low labeling budget. Yuan et al. [142] 

proposed a graph-attention neural network model to address this issue. This study also focused 

on the challenge of poor cross-domain generalization inherent in the proposed ML/DL methods. 

The model’s architecture processes multimodal data. A BERT model converts input text, while a 

CNN variant, VGG-16, extracts visual features. Additionally, the model introduces a domain 

discriminator to achieve a robust representation for each domain by identifying domain-specific 

information. Kumari and Ekbal [74] proposed a multimodal deep learning architecture for fake 

news detection on social media by analyzing both textual and visual features. The proposed 

model utilizes an Attention-Based Stacked Bidirectional Long Short-Term Memory (ABS-

BiLSTM) model to encode text and a Convolutional Neural Network–Recurrent Neural Network 

(ABM-CNN–RNN) for visual features extraction from the attached images. The extracted 

features are then integrated using Multimodal Factorized Bilinear Pooling (MFB), with a Multi-

Layer Perceptron (MLP) per- forming the final classification. The proposed approach has been 

shown to outperform the state-of-the-art multimodal deep learning architectures. In addition, the 

authors found that the fusion of textual and visual data improved the performance of fake news 

detection classifiers. Li et al. [79] adopted a self-learning approach to enhance the classification 

accuracy of deep learning models for fake news detection. Their model automatically adds 

predicted samples with high confidence back into the training loop to improve the classifier’s 

overall performance. Other research studies have developed automatic models specifically 

designed to detect misinformation and fake news during the COVID-19 outbreak. For instance, 

Kou et al. [67] introduced a knowledge-graph-based approach for detecting misinformation 

during the pandemic. This framework populates the graph network with pandemic-related 

knowledge facts crowdsourced from both experts and non-experts, using the knowledge graph to 
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provide an explainable outcome for users. Yue et al. [143] proposed a contrastive adaptation 

network for misinformation detection during the COVID-19 pandemic. This model employs a 

pseudo-labeling technique for low-cost data labeling and leverages a contrastive adaptation loss 

function to train the model. The objective is to make the model learn a robust domain-invariant 

embedding across several domains. 

Researchers also focused on assessing the reliability of information sources rather than the 

input message itself. For instance, Jose et al. [59] investigated the problem of detecting spammers 

on social networks. They proposed a hybrid approach that combines k-means clustering and Latent 

Dirichlet Allocation (LDA) algorithms to group user-profiles and SVM to categorize users into 

spammer and non-spammer categories. Lu et al. [85] employed a graph neural network to predict 

whether a given tweet’s source is fake. To this end, they introduced a new model called Graph- 

aware Co-Attention Network (GCAN), which provides an explainable classification outcome and 

a better representation of user interactions and the propagation of retweets. Scarlet et al. [112] 

proposed an attention-based graph neural network that predicts user actions and identifies social 

media accounts that are likely to spread and endorse misinformation on social media platforms. 

The framework, called SCARLET, models social media users as nodes in a graph network and is 

trained to identify vulnerable nodes based on historical behavioral data.   

2.5.2 Reliability Assessment in Disaster Management Context 

 

Most previous studies have narrowed down their research to a few application domains, such 

as general news, politics, and healthcare. Throughout this literature review, it has been noticed that 

less research has been conducted on assessing the reliability of social media and online data in the 

context of natural disasters and crises. 
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Krishnan et al. [68] trained an SVM classifier to identify tweets containing fake news during 

natural disasters. The authors utilized several user-related and content-related features to train the 

classifier, including the number of followers, the number of friends, the friends-to-followers ratio, 

sentiments, and URL reliability, among others. The proposed SVM classifier was evaluated on a 

set of tweets collected during Hurricane Sandy, the Paris attack, the Boston Marathon bombing, 

and other disaster events. The SVM demonstrated better performance compared to a decision tree 

classifier for disaster-related tweets. Hunt et al. [53] proposed a machine learning approach to 

assess the veracity of tweets posted during disaster events. The proposed approach categorizes 

tweets into three classes: (1) positive (i.e., the tweet contains reliable content), (2) negative (i.e., 

the tweet contains misinformation and false content), and (3) neutral (i.e., the tweet does not offer 

either positive or negative information). The authors annotated data collected from several dis- 

aster events. A comparative study was conducted to evaluate a set of ML algorithms, including 

k-nearest neighbors (KNN), decision tree (DT), random forest (RF), XGBoost (XGB), AdaBoost 

(AB), support vector machine (SVM), and multilayer perceptron (MLP). The results showed that 

SVM was the best-performing model among those evaluated. Rajdev et al. [111] developed a 

classification approach to detect malicious profiles during disaster events, with a case study 

focusing on the 2013 Moore Tornado and Hurricane Sandy. The authors employed a wide range 

of features derived from Twitter users’ metadata, including both user-related and content-related 

attributes, to train the classifier. Yang et al. [139] proposed a transfer learning approach to detect 

misinformation on social media networks during disaster and disaster events. Pandey et al. [106] 

trained an ensemble learning classifier to identify reliable users on social media networks during 

disaster events and natural disasters. The proposed model automatically categorizes social media 

users into organization-affiliated and non-affiliated groups. To train the model, the authors 
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utilized various features derived from users’ profile information, including social features (e.g., 

friends count, favorite counts) and activity features (e.g., status count, number of days since 

account creation). Halse et al. [46] investigated the impact of perceived emotions as predictors for 

social media messages’ trustworthiness during disasters. Using datasets gathered during 

Hurricane Sandy in 2012 and the Boston Marathon bombing in 2013, the authors found that fear 

and neutral emotions significantly influence the perceived trustworthiness of a social media 

message. 

Other research studies have conducted content analyses on datasets of tweets collected during 

disaster events, such as Hurricanes Sandy and Harvey. Hunt et al. [54] analyzed the spread of 

misinformation and rumors during these disasters through social media networks. This study 

closely examined case studies of rumors such as ‘immigration status checks at shelters.’ The 

authors categorized a set of tweets into five groups, including rumor-debunking, rumor-

spreading, and rumor-questioning tweets, among others. They discovered that during these 

hurricanes, posts from verified accounts, such as those of government entities, received more 

interaction, which highlighted the importance of official accounts in rumor debunking. They 

also found that URLs linking to external sources, such as government agency websites, were 

frequently used as a de- bunking strategy by the public. This research emphasized the critical role 

of government agencies in combating misinformation by putting a system in place to use social 

media accounts as part of their effort to stop the misinformation spread. Wang et al. [136] 

analyzed a set of tweets posted during Hurricane Sandy, using a sample posted by official agents’ 

accounts, including government organizations, NGOs, news agencies, and others. They 

identified the main characteristics of the collected accounts using several key metrics, such as 
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impressions, likes, mentions, retweets, and response time. The tweets posted by different profile 

categories were classified into various information types. The authors noted many significant 

differences among these accounts in terms of the number of retweets, interactions, and shared 

information. 

Alrubaian et al. [11] proposed a scoring system to evaluate the reliability of messages posted on 

Twitter during disaster events. Their model comprises several components that analyze the tweet’s 

content, user reputation, and user expertise, linked together in an algorithmic form. The proposed 

system employed several metrics to measure reliability for each component, including account 

popularity, users’ sentiment history, and user activities, among others. The authors evaluated their 

model using real-world data collected during a disaster event (the Saudi-led campaign against 

Houthi rebels in Yemen). The proposed reliability scoring model demonstrated good performance 

in determining reliable and unreliable tweets from collected data. Assery et al. [16] proposed a 

semi-supervised model to evaluate the reliability of disaster-related tweets. This model also utilizes 

several features derived from user profile metadata and tweet content, employing a 10-point scale 

to assess the reliability of incoming tweets. The authors labeled two datasets from Hurricanes 

Michael and Florence. The evaluation results showed good accuracy of this model compared to a 

set of machine learning models trained for this purpose. 

2.6 SUMMARY OF THE RESEARCH GAPS 

 

A major research direction in disaster informatics literature has focused on exploring automated 

methods using ML and AI technologies to categorize disaster-related information. Researchers 

aimed to reduce the cognitive load on disaster responders by automating the process of filtering 

tweets, either based on their informativeness or by information type. They proposed several 
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classification tasks to achieve this goal. 

 

Emergency rescue requests identification problem – As pointed out by Zade et al. [144], most of 

the previous classification approaches were trained to categorize tweets into general and broad 

information types, primarily organized around the idea of ‘situational awareness’ rather than the 

‘actionability’ of the extracted information. This led to a low adaptability of these automated tools 

within formal disaster response workflow. Therefore, many research studies have suggested ad- 

dressing the ‘informational overload’ problem on social media by designing methods guided by the 

concept of ‘actionability’. Despite its practical relevance, only a few research studies have focused 

on extracting actionable information from social media. Although there is no definitive definition 

of actionable information on social media, most of the definitions given by disaster response 

practitioners (through previous interviews) consider actionable information as any piece of 

information (or request) that can be used to assist and respond to an identified issue. Such issues 

may include trapped victims, missing persons, road closures, and other similar emergencies. 

Therefore, more research is needed to address classification tasks for identifying actionable 

information. Among these tasks, identifying emergency rescue messages posted on social media 

platforms has not received much attention. The proposed studies focusing on various disaster-

related information extraction tasks predominantly employ automatic learning methods. These 

methods employ traditional machine learning models, such as SVM, NB, and RF, and deep 

learning models, such as BERT, LSTM, and CNNs. The classification methods generally require 

a large number of labeled training samples to obtain strong classification performance. The 

labeling process is both time-consuming and resource- intensive. Furthermore, labeled training 

data may not be available in a short time as new disaster unfolds. In disaster scenarios, where 
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reactions vary significantly across different types of events, larger training samples are needed to 

address unseen disaster events. Although prior research re- ports good performance using 

supervised classification models for the different disaster classification tasks, there is a need to 

shift towards exploring semi-supervised, unsupervised, and few-shot learning approaches to 

address the data annotation challenge. Rule-based methods, employing domain-specific 

knowledge, often provide more precise results on small samples. However, since they do not 

require any training process, they fail to provide accurate results when evaluated on larger data 

sets. Researchers in different application domains, such as healthcare, have attempted to combine 

both approaches to obtain stronger classification outcomes. However, a combined learning and 

rule-based approach has not yet been utilized in disaster-related social media classification tasks, 

except in Zahera et al. study [145]. 

 

Reliability assessment problem – The reliability assessment of online data, including news web- 

sites and microblogs, has received significant attention across many domains, such as healthcare 

and politics, among others. The reliability assessment problem is very broad, covering numerous 

research tasks. Some of the major tasks that were extensively investigated include fake news 

detection, misinformation detection, rumors detection, and disinformation detection, among 

others. Researchers have distinguished between false information intentionally and non-

unintentionally shared by users. Additionally, they investigated the problem of assessing the 

reliability of social media accounts (information sources) to determine spammers and bot 

accounts among regular accounts. The proposed studies have focused on a few application 

domains. For instance, the problem of misinformation detection in general news and during 

political events has been extensively investigated. During the COVID-19 pandemic, numerous 
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research studies explored automatic tools to detect fake news, which posed a significant 

challenge at the time. Healthcare is another application domain that has attracted considerable 

research attention. However, the reliability assessment problem of online data has drawn less 

attention in the disaster informatics domain. During disasters, certain types of information posted 

on social media platforms, such as calls for help, requests for assistance, help offers, road 

closures, and others, can be difficult to verify. While it is easier to create ground truth data for 

fake news detection using fact-checking platforms, information of this nature requires manual 

inspection and ground verification either by internal sources or through additional channels, such 

as emergency services 911. Such information types are very useful in times of disaster and can 

provide better insight; they can be used to take action directly or as part of building situational 

awareness (i.e., a global picture of the situation by decision-makers). Disaster response 

practitioners have highlighted that the verification of such information is of critical concern. 

There is a noticeable gap in the disaster informatics literature concerning the reliability 

assessment of actionable information posted by the public on social media. Developing automated 

tools to verify information, or at least to evaluate their reliability, would help decision-makers 

make better use of social media information. However, a significant challenge in this direction is 

the lack of annotated ground truth data. Explainability plays a crucial role in the reliability 

assessment tasks. Despite the success of existing machine learning models in many related 

problems, such as fake news detection, most of these methods are black-box methods that do not 

explain ‘why’ a piece of information is labeled ‘fake news’ or ‘misinformation’ [119]. 

Explainable outcomes can build trust in reliability assessment systems, leading to better 

decision-making. Hence, there are many ongoing research efforts to explore novel explainable 

methods for online data reliability assessment tasks. This dissertation uses a rule-based approach 
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to evaluate the reliability of rescue messages, employing a set of reliability indicators that are 

inherently explainable. 

Most of the prior research has typically formulated the reliability assessment problem as a 

binary classification task. The proposed models categorize social media messages or online 

articles into either fake news (or misinformation, disinformation, rumor, etc) or not. Only a few 

studies have introduced scoring systems that assign a reliability score to a piece of information 

instead of a binary label. reliability assessment is a continuous process. Hence, there is a profound 

need to design a reliability assessment algorithm that performs a real-time assessment of the 

information. Modeling the reliability outcome as a continuous reliability score is a better 

approach to address this challenge. 
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

This chapter discusses the methodology used in this dissertation and describes the proposed 

models. Section 3.1 briefly overviews the research methodologies employed for the rescue-seeking 

messages identification and reliability assessment problems. Section 3.2 describes the different 

hurricane events from which social media messages (tweets) were collected. Sections 3.3 and 3.4 

present the different methods used for each problem. 

3.1 BRIEF DESCRIPTION OF THE RESEARCH METHODOLOGY 

 

This dissertation introduces novel models for identifying actionable rescue messages and 

assessing their reliability. This dissertation is grounded in a post-positivist, empiricist 

worldview [20] [36]. A quantitative research paradigm [32] was employed to evaluate the 

effectiveness of the proposed models. Historical tweets collected via Twitter APIs were used for 

empirical evaluation. 

3.1.1 Research Design for the Rescue Messages Identification Problem. 

 

The first part of the dissertation focuses on identifying rescue-seeking tweets. A quantitative 

research design was employed to answer the research questions related to this part. Figure 3 

illustrates an overall description of the research design. 

A set of features that characterize rescue tweets is proposed. These features are derived from 

existing literature and the author’s analysis of several rescue-seeking messages posted during 
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various hurricanes. For example, people often include expressions for asking for help, such as 

‘family trapped’ and ‘please help’ to request help. This study hypothesized that integrating 

domain-specific features (corresponding to specific textual patterns related to rescue messages) 

with large language models, such as BERT, would enhance the classification performance 

compared to the existing methods. 

 

 

Figure 3. Design for the rescue tweets identification 

 

 

 

The data for this dissertation were collected using Twitter APIs. Subsets of tweets were labeled as 

either emergency rescue tweets or non-emergency tweets using a predefined annotation 
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guideline. The labeled tweets were collected from various historical hurricane events, including 

Harvey (2017), Ida (2021), and Ian (2022). 

The model’s performance was evaluated using several statistical metrics, including F1 score, 

recall, accuracy, and AUC-PR. These metrics are commonly used in data science and machine 

learning studies to assess proposed models’ performances. The proposed classification model in 

this study was compared to previous methods proposed in [148] and [34]. Given the relatively 

small size of the collected data, k-fold cross-validation was used for the comparative analysis. 

This method allows using all the annotated tweets at least once for evaluation. The predictions 

given by each classifier, including both accurate and misclassified tweets, were further analyzed 

to identify the strengths and the limitations of each method. 

3.1.2 Research Design for the Reliability Assessment Problem 

 

A quantitative research design was employed for the reliability assessment problem. Figure 4 

illustrates an overall description of the research design. 

Since no existing model or dataset can be directly applied to the reliability assessment of 

hurricane rescue messages, the related literature was reviewed to select a set of reliability 

indicators (factors) for building the proposed reliability assessment model. An informal 

discussion was held with an expert to refine the selection and gain more insights. The selected 

indicators were then quantified using metrics from previous research and existing datasets for 

similar problems. A rule-based model for reliability assessment was developed using these 

indicators. The identified rescue-seeking tweets from the previous part were used to evaluate the 

proposed reliability scoring model. A subset of rescue tweets was annotated by a predefined 
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reliability criterion. An annotation procedure was proposed to assign reliability labels to the 

rescue tweets using an external source provided by FEMA (FEMA damage assessment map).  

Since verifying the accuracy of rescue tweets post-disaster is challenging due to human and 

technical constraints, this study’s proposed annotation scheme was designed to obtain an informed 

approximation of the rescue messages’ trustworthiness. The output of the proposed scoring 

model was compared against the reliability labels assigned to the rescue tweets. The proposed 

reliability model was empirically compared to a set of machine learning algorithms and a 

competing method proposed by Assery et al. [16]. 

 

 

Figure 4. Design for the reliability assessment problem 
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The machine learning approach was selected for comparison because it is a common approach 

used for similar problems, such as misinformation, rumors, fake news, disinformation detection, 

and other related problems. The model by Assery et al. [16] was selected for comparison because it 

was designed to evaluate the reliability of tweets posted during disasters, even though it does not 

focus directly on rescue information. A 5-fold cross-validation approach was used in the 

evaluation of the machine learning models due to the small number of annotated rescue tweets. 

3.2 HURRICANE EVENTS 

 

Tweets posted during three hurricane events were collected: (1) Hurricane Harvey (2017), (2) 

Hurricane Ida (2021), and (3) Hurricane Ian (2022). Harvey was a disastrous Category 4 hurricane 

that made landfall in Texas and Louisiana on August 25, 2017. Harvey inflicted severe loss in 

terms of human lives (at least 88 deaths have been reported) along with substantial economic 

damage (133.8 billion) [133]. The damage was primarily caused by massive flooding that followed 

the hurricane, particularly in the Houston metropolitan area and southern Texas. The flooding 

displaced more than 30,000 people and resulted in more than 17,000 rescues [63]. Ida was another 

extremely destructive Category 4 hurricane that hit the southeastern region of Louisiana on August 

29, 2021. The hurricane caused an estimated 75 billion in property and infrastructure damage 

[31]. As of September 9, 2021, 91 deaths have been reported across nine states. Most deaths 

occurred by drowning (60.4%), which was caused by the severe flooding that followed the 

hurricane [48]. Lastly, Ian hit the southwest coast of Florida on September 28, 2022, as a 

Category 4 hurricane. The hurricane caused more than 50.2 billion in terms of economic damage 

and over 150 direct and indirect deaths [82]. 
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3.3 METHODS FOR EMERGENCY RESCUE REQUESTS IDENTIFICATION 

PROBLEM 

This research presents a machine learning-based framework to automatically identify emergency 

rescue messages posted on Twitter during hurricanes. The proposed framework consists of three 

modules, as shown in Figure 5: (1) data collection and annotation, (2) classification, and (3) 

visualization. The data collection and annotation module are responsible for gathering and 

labeling data to train the classifier. The classification module is designed to automatically 

identify emergency rescue messages. To this end, a novel deep learning architecture that 

integrates low-level statistical features (extracted through a pre-trained BERT model) and high-

level problem-specific features (derived from regex filters) was introduced. Finally, the 

visualization module is responsible for plotting the extracted rescue messages, thereby providing 

actionable information for emergency responders. 

3.3.1 Problem Formulation 

The rescue requests identification problem was formulated as a binary classification problem. 

Let S = S1, S2, . . . , Sn be a finite set of n tweets collected during a hurricane. Each tweet Si in the 

sample is a sequence of T tokens Si = S1, . . . , ST . Let φ be the set of labels associated with these 
i i 

tweets. φ ∈ 0, 1 where φ = 1 indicates that the tweet contains an emergency rescue request, φ = 0 

indicates otherwise. The classification problem can be formulated as a learning function f that 

maps the input tweets (transformed into a feature space) to the label space: 

 

 

f : S → φ 

 
The objective is to train a classifier that minimizes the difference between the predicted labels and 
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the real labels based on a cost function J.  

 

 

min J(φ, f (S)) 

 

 

 
 

Figure 5. Emergency rescue requests identification framework 

 

 

 

The most common cost function is the binary cross-entropy function (logistic loss): 
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L(y, yˆ) = −(y · log(yˆ) + (1 − y) · log(1 − yˆ)) 

 

where y and yˆ are the true label and predicted label, respectively. 

 

3.3.2 Data Collection 

 

Due to the scarcity of publicly accessible data sets dedicated to this problem, the author of this 

dissertation collected and annotated a custom data set using Twitter streaming and search APIs. 

Twitter provides a useful API for collecting real-time tweets. Tweets were collected from 

August 26 to August 31, 2017, during Hurricane Harvey. The Twitter streaming API allows the 

collection of tweets using several operators, including keywords, hashtags, and bounding box 

operators. Custom filtering rules can be created with several logical connectors, such as ‘AND’, 

‘OR’, and ‘XOR’. This study used hurricane-specific keywords such as ‘Hurricane’, ‘#Harvey’, 

‘#Hurricane- Harvey’, and ‘flooding’ with the logical operator ‘OR’. Furthermore, the 

longitude/latitude pairs (-99, 27.6, -90.8, 33.5) were used to create a bounding box surrounding 

the Houston metropolitan area, as shown in Figure 7. A total of 6541641 streaming tweets were 

collected during Harvey. These tweets include a very large number of irrelevant messages. 

Hence, the data was further filtered using the filtering process outlined in Figure 6. First, 

duplicates and retweets were removed. Then, the remaining tweets were filtered using a 

keyword-matching approach. A collection of N crisis terms (keywords) from the CrisisLex 

lexicon [104] was selected. These terms include disaster-related terms (such as FEMA, Houston, 

flood, and military), rescue-related terms (such as relief, rescue, evacuate, save, help), and 

damage-related terms (such as damage, casualties, affected, trapped, search, and shelter). The 

logical relationship between these terms can be expressed by the following First-Order Logic 
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(FOL) expression: 

∀x (hasDisasterKeywords(x) ∨ hasRescueKeywords(x) 

∨hasDamageKeywords(x)) 

 

where the universe of discourse is the tweets collected. This expression implies that only tweets 

containing disaster-related terms, rescue-related terms, or damage-related terms are retained, while 

all other tweets are discarded. 

Location and rescue hashtags are relevant features of the emergency rescue tweets. Without 

location information, a rescue request is of limited use for first responders. Hashtags such as 

#SOSHarvey, #SOSHouston, and #Rescue are commonly used to flag rescue requests on social 

media. Hence, the next step was using regular expressions (regex) to detect tweets with location 

patterns and hashtags. The logical relationship between these filters can be expressed by the 

following First-Order Logic (FOL) expression: 

 

∀x (hasLocationFeature(x) ∨ hasRescueHashtag(x)) 

 

This expression implies that tweets having certain rescue hashtags, or a location pattern are 

retained while the remaining tweets are excluded. To identify tweets with location patterns, a 

relaxed variant of the regex expression used for identifying address features (this expression will 

be introduced in the next section) was employed. The final filtered sample comprised 5,792 

tweets, which were manually labeled. 

For Hurricanes Ida and Ian, the tweets were collected post-event. Twitter’s academic API v2 

was used to search for rescue tweets posted during these hurricanes. This API allows users to 

search for historical tweets using a set of keywords. Several combinations of keywords, including 
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hurricane names and hashtags (e.g., #Irma, #Ida), flooded zones (e.g., Fort Myers in Florida), and 

help/rescue keywords and hashtags (e.g., #sos, need help, family stuck), were employed. In total, 

a sample of 4044 tweets was collected from Hurricane Ida, and another sample of 1,017 tweets 

was collected from Hurricane Ian. These tweets were also manually labeled. 

 

 

Figure 6. Streaming data filtering workflow for Hurricane Harvey 
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Figure 7. The bounding box used to collect tweets during Hurricane Harvey 

 

 

 

3.3.3 Data Annotation 

 

Two categories for labeling the collected tweets were defined: (1) emergency rescue requests 

(SOS) and (2) non-emergency tweets. The author of this dissertation established two criteria to 

define the emergency category. Criterion 1: For a tweet to be categorized as an emergency 

rescue tweet, it should include a location reference [144]. Locations can be specified either by 

using a full US address pattern (e.g., <House Number> <Street Name> <Street Suffix> [<Unit>] 

<City/Town Name> <State> <Zip Code>) or a location description (e.g., the intersection of street 

X and Y, at a gas station in Z, etc.). Criterion 2: An emergency rescue tweet should include an 

emergency-related expression or contextual information about the urgent situation. Examples of 
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emergency-related keywords and hashtags include ‘please help’, ‘needs help’, ‘people stranded’, 

‘#SOS’ and ‘#SOSHarvey’ among others. Emergency rescue tweets might include (but are not 

limited to) additional details about the current situation, such as the person who needs help, the 

number of stranded people, missing relatives, etc. Figure 8 shows a typical example of an 

emergency rescue tweet captured during Harvey that meets the above two criteria. It includes a 

specific U.S. address (‘7815 Pacific Spring Ln’) and a rescue expression (‘please help my 

friend’). Tweets that did not meet the above criteria were assigned to the non-emergency 

category. 

 

 

Figure 8. A typical example of an emergency rescue request tweet 

 

 

After applying the data filtering process, the final dataset from Hurricane Harvey, which 

included 5,792 tweets, was manually labeled by graduate students as part of their coursework in 

two graduate-level courses during the Fall 2020 semester. The students were divided into groups 

of three, with each group assigned a subset of tweets to label. Each tweet was labeled as either an 
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emergency rescue tweet or a non-rescue tweet. The inter-rater reliability between annotators, 

measured in percentage agreement, was satisfactory (95.33%). All the annotated tweets were 

reviewed by the author of this dissertation for further verification. The final dataset collected 

during Hurricanes Ida and Ian, which included 5061 tweets, was fully labeled by the first author of 

this dissertation. A subset of 774 tweets was collected, representing approximately 15% of the 

total data set. This subset was given to an independent annotator to label according to the same 

annotation guideline described earlier. The inter-rater percentage reliability agreement was 

calculated on this subset, which was also satisfactory (95.09%). 

3.3.4 Proposed Emergency Rescue Requests Features 

 

The proposed features for this study are derived from analyzing the logical structure of the 

problem and its key characteristics. The proposed features can be categorized into four types: (1) 

contextual features, (2) location-based features, (3) ask-for-help features, and (4) other features. 

     Contextual features refer to the information within the rescue message that indicates an urgent 

situation or gives details about the urgent situation. These features include (1) 

keywords/expressions describing an emergency (e.g., stranded, trapped, etc.), (2) emergency 

hashtags (e.g., #SOSHouston, #HelpHouston, etc.), and (3) mentions to individuals in need of help 

(e.g., father, kids, family, etc.). 

As mentioned previously, location is a key feature of actionable rescue tweets. During 

hurricanes, emergency response agencies repeatedly emphasize the importance of providing a 

precise address when requesting help. While most people comply, only a small number of 

people describe their location using street features such as ‘at the intersection of X and 
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Y’, ‘at the end of Road X’, and so on. Ideally, an emergency rescue tweet includes a full U.S. 

address. However, some tweets might include a location description instead. Addresses in the U.S. 

have a clear and simple pattern: 

 

< HouseNumber >< StreetName >< StreetSuf f ix > [< Unit >] 

< City/TownName >< State >< Zipcode > 

 
(1) 

 

 

This pattern can be identified using regex. The house number in a US address is usually 

represented by an integer with up to six digits, with the highest recorded number identified being 

107900, as seen in the address ‘107900 Overseas Hwy, Key Largo, FL 33037’. In the proposed 

regex filter for location identification, the house number was matched as one to six digits. The 

<street Name> is typically followed by a <Street Suffix> such as ‘St’ or ‘Ave.’ The street suffixes 

listed in the source [138] were used. The regex filter for identifying U.S. addresses is defined by 

the expression in Figure 9: 

 

 

 

Figure 9. Regex expression for identifying U.S. addresses [51] 
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The substring ‘d{1,6}’ matches the house number while ‘s+’ matches one or more spaces, 

including characters for space, tab, vertical tab, newline, carriage return, and form feed. The 

optional hashtag symbol, which some users use in street names, such as ‘3 friends stuck at 4055 

South #Braeswood Boulevard’, is represented by the sub-string ‘#?’ in the regex filter. The sub-

string ‘(#?[A-z]+.?(-[A-z]+)?s+){1,3}’ represents one to three words consisting of English 

characters, possibly joined by a ‘-’ or ended with a ‘.’, ‘Alley’, ‘Allee’, ‘Aly’, and others are 

possible street suffixes, with over 200 possible suffixes listed in the regex expression. In the 

expression shown in Figure 9, only the first few lines and the last line of suffixes are included, 

with many lines in the middle omitted. It is also possible to see addresses in other forms, for 

example, ‘1108 Highway 7’ and ‘123 Avenue G’. This address format is matched with the regex 

expression shown in Figure 9.  

     While the location is a crucial feature for hurricane rescue requests, it alone is not sufficient to 

identify such requests. Another relevant feature is whether a tweet includes hashtags or 

keywords about asking for help such as ‘HurricaneRescue’, ‘FloodRescue’, ‘please help’, ‘need 

to be rescued’, etc. This feature can be captured easily with regex. Some tweets possess the 

above features but are not rescue requests, such as updates on rescue status, offers of help with 

shelter and food, political tweets, news reports, and commercial tweets.  

3.3.5 Proposed Classification Architecture 

 

The proposed architecture consists of two key components: (1) a feature extractor and (2) a 

Multi-Layer Perceptron (MLP) classifier. The feature extractor transforms input tweets into two 

distinct feature vectors: (1) low-level textual feature vector and (2) problem-specific high-level 
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feature vector. These vectors are then combined and used as input to the MLP classifier. Figure 10 

illustrates the proposed model’s architecture. 

 

 

Figure 10. System architecture of the proposed model: For a given tweet, two sets of 

features were extracted from the tweet, then concatenated and fed into fully connected 

layers to classify whether the tweet is an emergency request. 
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3.3.5.1 Feature extraction 

 

The proposed classification architecture combines two distinct types of features: (1) low-level 

textual features and (2) high-level problem-specific features. This architecture takes in two types of 

inputs: the textual features produced by a fine-tuned BERT model and high-level problem-specific 

features generated by regex. 

High-level feature extraction – A set of regular expression (regex) filters was implemented to 

transform raw input tweets into a d-dimensional feature vector. Each regex filter identifies 

specific language patterns or keywords corresponding to a given feature. The elements of the 

resulting vector are binary, with a value of 1 if the feature is detected and 0 otherwise. Table 2 

describes the different filters used in this study. For example, the feature vector for the tweet 

displayed in Figure 8 is <0,1,1,1,1,0,0,0,0,0>, where each value corresponds to a specific regex 

filter. This tweet includes an emergency hashtag (F1.2), a reference to victims needing rescue 

(F1.3), a help-seeking expression (F2), and a specific U.S. address (F3.1 and F3.2). The ‘other 

features’ (F4, F5, F6, and F7) are not detected in this tweet. The resulting high-level input feature 

vectors are resized by copying each binary value 30 times. 

Low-level feature extraction – Textual features can be extracted using either NLP statistical 

models, such as TF-IDF and GloVe, or pre-trained transformer models, such as BERT. This study 

used the pre-trained BERT [35] model for low-level feature extraction. The output of BERT is 

an abstract, comprehensive encoding of the input text that can be stacked with any classifier to 

perform the final classification using the feature space created by the transformer encoding. Devlin 

et al. [35] proposed two strategies to extract document representations from pre-trained BERT: (1) 

using the last hidden layer, which corresponds to the ‘[CLS]’ token, providing a feature vector 
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emergency 

of size 768, or (2) concatenating the outputs of the last 4 hidden layers of the ‘[CLS]’ token into 

a 3072-dimensional embedding vector. The second approach was used to extract textual feature 

vectors from BERT. 

 

 

Table 2. Regex filters used for high-level features extraction 
 

Filter Type Description 
 

F1.1 Contextual 
identifies whether the tweet includes keywords describing the  

 

identifies whether the tweet includes emergency 

hashtags (e.g., #HarveyFlood) 
 

F1.3 Contextual 
Identifies whether the tweet includes information about people in 

need of rescue 

F2 Help-seeking Identifies whether the tweet includes rescue/help request 

F3.1 F3.2 Location Identifies whether a U.S. address pattern exists in the tweet 

F4 Other Identify whether the tweet includes political content 

F5 Other Identify whether the tweet includes an offer for help 

F6 Other Identify whether the tweet includes news reports 

F7 Other Identify whether the tweet includes a situational update about a rescue 

 

 

 

 

 

 

 

F1.2 Contextual 
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3.3.5.2 MLP classifier 

 

The proposed integrated classification approach involves a two-stage training process. In the 

first stage, the BERT model was fine-tuned on the training data. Then, the fine-tuned BERT model 

weights were frozen, and the entire BERT model (excluding the classification head) was integrated 

into the proposed architecture. In the second stage, the frozen fine-tuned BERT model was used 

to produce the textual features. Fully connected layers were added on top of BERT to reduce 

the dimensionality of its output vector. The logic-based feature vector (obtained by regex filters) 

was resized by copying each binary value 30 times. These two vectors were concatenated and 

used as input to the MLP classifier. The MLP classifier consists of a couple of fully connected 

layers followed by the output layer. The whole architecture was trained end-to-end. The optimal 

model architecture (i.e., optimal number and sizes of the added fully connected layers, optimal 

hyperparameters, etc.) is determined in the experiments. 

3.3.6 Logic-Based Approach for Identifying Rescue Tweets 

 

This dissertation also introduces a logic-based classification model for identifying emergency 

rescue tweets using the proposed regex filters. These filters are integrated using a logical 

relationship expressed by the following first-order logic expression 2: 

∀x(hasFeatureAddress(x) ∧ (hasFeatureAskHelp(x) 
 

                    ∨hasFeatureDisasterContext(x))) ∧ ¬(hasFeatureStatusUpdate(x) 

                     ∨hasFeatureOfferHelp(x) ∨ hasFeatureNewsReport(x) 

                      ∨hasFeaturePolitical(x) ∨ hasFeatureAds(x)) 

 

(2) 
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where the universe of discourse comprises the collected tweets. The semantics of each predicate 

are indicated by its name and the features discussed in the previous section. This expression 

implies that a tweet with a location feature and either contextual or ask-for-help features, and with- 

out any of the ‘other’ features, can be classified as an emergency rescue tweet automatically. By 

evaluating the truth value of the previously defined logical expression (2), each input tweet can be 

classified as either a rescue tweet or a non-rescue tweet. 

For example, the following tweet was posted during Hurricane Harvey: ‘Urgently need 

#Water- Rescue at 10415 Merry Meadow Ln. Elderly #WaterRescueNeeded #HarveyFlood 

#houstonflood #hurricaneharvey’. The tweet has a location feature (10415 Merry Meadow Ln.), 

ask for help key- words (urgently need), a victim in need (Elderly), and a rescue hashtag 

(#WaterRescueNeeded), but none of the political content, news, rescue status update, and help 

offer features. 

3.3.7 Visualization 

 

After categorizing the tweets into emergency rescue and non-emergency tweets, a visualization 

module was developed for mapping actionable rescue information using regex and GeoPy. First, 

the location description for each classified rescue tweet was extracted using the regex U.S. address 

pattern [51]. Some of the extracted addresses were incomplete; the GeoPy Python package was 

used to infer the complete addresses and their latitude/longitude coordinates. The extracted 

locations were then displayed on a map using the Folium library. Figure 11 shows an example of 

an interactive map that includes a subset of rescue tweets posted during Hurricane Ian in Florida. 
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Figure 11. Visualization of a subset of IAN emergency rescue tweets 

 

 

 

3.3.8 Competing Methods 

 

The following methods were implemented for comparison: (1) Support vector machine with 

TFIDF for feature extraction (TFIDF+SVM)[34], (2) VictimFinder architecture [148] that con- 

sists of a pretrained BERT model with LSTM head (BERT+LSTM), (3) Convolutional Neural 

Network with GloVe embedding model (Glove+CNN) [34], and (4) Fine-tuned BERT classifier 

(BERT+linear). 

 

TFIDF+SVM classifier – Support Vector Machine (SVM) [30] is a robust discriminative super- 

vised learning model that has been successfully applied in a variety of applications, including text 

classification, face recognition, image classification, and others. The SVM algorithm is trained to 
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identify an optimal N-dimensional hyperplane (or decision boundary), with N being the number of 

features, to separate the training data points with a maximum distance (or margin) between classes. 

This model is very effective in high-dimensional input spaces, such as those encountered in text 

classification applications, and is also robust against outliers. The SVM architecture is shown in 

Figure 12. The margin size, specified by the regularization hyperparameter, is the distance between 

the black lines. The linearity of the hyperplane is determined by the kernel function, such as linear, 

polynomial, or Gaussian RBF. SVM was employed in the Devaraj et al. [34] study for identifying 

rescue messages posted during Hurricane Harvey. 

The Term Frequency-Inverse Document Frequency (TF-IDF) was used for feature extraction. 

In this method, a raw tweet is considered a document and converted to a numerical vector with a 

length N that corresponds to the vocabulary size. TF-IDF is a widely used statistical 

representation scheme in NLP applications. It takes into consideration the relevance of a word to 

a specific document and its frequency in the entire corpus. TF-IDF is calculated as the product of 

two metrics, term frequency (tf) and inverse document frequency (IDF). It is represented by the 

following equation:  

 

TFIDF (t, d, D) = t f (t, d) ∗ idf (t, D)                             (3)  

where t represents the term, d denotes a document (in this case, a tweet), and D is the collection 

of documents (corpus). Term frequency can be calculated in various ways, such as raw count, 

boolean count, or logarithmic scaling. The raw count method (i.e., measuring the frequency of 

each word in a document) was used in this study. Inverse document frequency (IDF) adjusts the 

weights assigned to terms based on their frequency across the entire corpus. It is calculated as 

follows: 
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where N is the total number of documents and |d ∈ D : t ∈ d| is the frequency of the term t in the 

corpus. 

 

 

 

Figure 12. Support Vector Machine (SVM) classifier 
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GloVe+CNN classifier – Convolutional neural networks (CNNs) are widely used in computer 

vision and image processing applications and have recently been applied to natural language 

processing tasks such as text classification. Wide and shallow CNNs have proven to be effective 

for short text classification, such as Twitter messages. The convolution and pooling operations of 

CNNs capture spatial information, such as relevant n-grams, in text. This study used the CNN 

architecture proposed by Kim [64] for classification. The GloVe model [108] was used to extract 

features from raw tweets. GloVe (Global Vectors for Word Representation) is a log-bilinear, 

unsupervised model for building distributed word representations. GloVe combines two families 

of methods: global word co-occurrence matrix factorization and local window methods, such as 

Skip-grams and Continuous Bag of Words (CBOW). It has been shown that GloVe outperforms 

other word representation models, including word2vec [93], in various natural language 

processing tasks, such as word analogy, word similarity, and named entity recognition. 

 

 

Figure 13. CNN architecture used in this study 
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CNN has been applied in [96] and [34] to identify emergency rescue messages posted on social 

media during hurricane events. 

BERT+LSTM classifier – VictimFinder is a set of transformer-based models proposed by Zhou 

et al. [148]. The BERT-LSTM architecture was selected as the backbone for VictimFinder since 

it achieved the highest performance among the transformer-based models evaluated in [148]. This 

architecture employs a pre-trained BERT model with a bi-directional LSTM head. This study 

employed the pre-trained BERT model3 to extract features from the raw tweets. This model 

consists of 12 transformer blocks, 768 hidden units per layer, 12 attention heads, and an overall 

110 mil- lion parameters, and was pre-trained on a large lower-case English corpus. The 768-

dimensional feature vector produced by BERT is fed to a 768-dimensional LSTM layer, followed 

by the output layer to perform classification. 

End-to-end fine-tuned BERT – In addition to the previous models, BERT was fine-tuned end- to-

end. BERT (Bidirectional Encoder Representations from Transformer) [35] is a pre-trained 

transformer network developed by Google. BERT has achieved state-of-the-art performance for 

several NLP tasks. BERT is typically pre-trained on a large, unlabeled corpus (e.g., English 

Wikipedia, with up to 2500M words) for masked word prediction and next-sentence prediction 

tasks. BERT can be fine-tuned for various downstream tasks by adding one or more fully 

connected layers on top of the core model. The whole model, including the BERT core model 

and the top- classifier, can be trained end-to-end for a specific downstream task. BERT is 

released in two general-purpose pre-trained variants: 

• BERTbase: This variant has 12 transformer blocks, 768 hidden size, 12 attention 

 
3 https://huggingface.co/transformers/v3.3.1/pretrained_models.html 
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heads, and in total 110M parameters. This architecture is used in this research.  

• BERTlarge: This variant has 24 transformer blocks, 1024 hidden size, 16 attention 

heads, and in total 340M parameters. 

The final hidden ‘[CLS]’ was used for the final BERT output. Then, several fully connected 

layers, followed by an output layer with SoftMax activation, were added on top of the core 

BERT model. The fine-tuned BERT architecture is illustrated in Figure 14. The optimal number 

of fully connected layers added on top of the core BERT model and their sizes are determined by 

Optuna [5] through the experiments. During inference, each input tweet is assigned to the target 

class with the highest probability. 

 

 

Figure 14. Fine-tuning BERT for classification 
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3.3.9 Evaluation Metrics 

 

Due to the class imbalance issue, relying on accuracy as a performance metric for quantitative 

evaluation is inadequate. The following metrics were used to provide a more comprehensive 

evaluation: precision, recall, F1 score, Area Under the Precision-Recall Curve (AUC-PR), and 

confusion matrices (CMs).  

Precision measures the accuracy of positive predictions by calculating the fraction of 

correctly identified emergency rescue tweets over the total number of positive predictions. In 

other words, this metric reports the proportion of positive tweets that were correct. 

Precision =               
TP

 
                        TP + FP 

 
Recall, also referred to as the true positive rate or sensitivity, is the fraction of correctly identified 

positive tweets (TP) relative to the total number of positives in the dataset. It shows the 

proportion of actual emergency rescue tweets that were correctly predicted. 

 

Recall =             
TP

 
         TP + FN 

 
The F1 score is the weighted average of precision and recall, as shown by the equation 

below. This metric was selected because it takes into account how data is distributed, 

making it an effective metric, particularly when the training dataset is imbalanced. 

 

F = 2 ∗ 
precision ∗ recall 

precision + recall 
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Since the training data sets are highly imbalanced, the area under the precision-recall curve 

(AUC-PR) was employed as an additional performance metric for this study. This metric is 

widely used in information retrieval applications, and it is appropriate for detecting rare events, 

such as the emergency rescue tweets in this study’s case and does not depend on model 

specificity [33]. AUC-PR ranges from 0 to 1, where a value closer to 1 indicates better model 

performance. The AUC-PR curve is produced by plotting the precision values against the recall 

values at various thresholds for binary classification. The AUC- PR score summarizes the overall 

performance of the model, regardless of the choice of threshold. This makes it a more robust 

evaluation metric than the F1 score, which assumes a threshold value of 0.5. 

Finally,  the classification confusion matrices were plotted to compare the performance of the 

different classifiers. Confusion matrices for binary classification problems are 2X2 tables that 

indicate the number of true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN). The basic structure of a confusion matrix is shown in Table 3. 

Table 3. Confusion matrix basic structure 
 

 Actual Positive Actual Negative 

Predicted Positive TP FP 

Predicted Negative FN TN 

 

 

3.4 METHODS FOR THE RELIABILITY ASSESSMENT PROBLEM 

 

This dissertation introduces a two-stage rule-based scoring system for assessing the reliability 

of rescue messages posted on Twitter during hurricane events. Unlike the previous reliability 
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assessment scoring systems for social media data, the proposed system in this study analyzes the 

reliability of rescue messages at both an aggregate level (referred to as the claim level) and at the 

tweet level. The rescue tweets are analyzed based on three reliability dimensions: (1) source-level 

reliability, (2) post-level reliability, and (3) contextual-level reliability. The reliability assessment 

methodology proposed in this study involves the following steps: 

1. Step 1 – Conduct a literature review to identify the main reliability factors (also referred 

to as ‘reliability indicators’ in the remainder of this study) used for analyzing the 

reliability of social media data. An expert opinion was also used to help select the 

appropriate reliability indicators. 

2. Step 2 – Select a list of reliability indicators to use in the proposed rule-based model. 

Quantify these indicators using metrics derived from related historical data, recent 

statistics, and the literature. 

3. Step 3 – Develop the reliability assessment model using the selected factors. 

 

4. Step 4 – Evaluate the model using ground truth data–a manually annotated data set of 

rescue tweets labeled by their reliability. 

 

3.4.1 Data Collection and Annotation 

 

To assess the proposed model’s performance, a gold standard (ground truth data) must be built. 

In previous research studies, the ground truth data sets were manually constructed. Researchers 

used annotators who were tasked with determining the reliability of given social media messages 

and judging whether they were reliable or not. To the best of the author’s knowledge, no prior data 
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set has been introduced for evaluating the reliability of social media rescue information during 

natural disasters. Hence, this study built an annotated data set from a subset of rescue tweets 

collected in the first part. The following annotation procedure was defined. Initially, the collected 

rescue tweets from the first problem were organized into several ‘claims’ based on the locations 

indicated in the tweets’ text. Tweets matching the same location (e.g., a U.S. address or a precise 

location description) were grouped into a single claim. For each claim, the Twitter search bar 

was used to find all available rescue tweets sharing the same ‘claim’. The outcome of these two 

steps is a set of rescue claims, each of which corresponds to a specific location. Each claim is 

shared by one or more tweets, either from the same or different users. An example of a rescue 

claim is presented in Figure 15. The tweets in this example describe a rescue situation at ‘8502 

Elm St’, thereby forming a unique rescue claim at this location. 

 

 

 

 

 

 

Figure 15. An example of a rescue ‘claim’ 

 

Afterward, each ‘claim’ was manually verified and categorized using the following annotation 

taxonomy. Rescue messages were categorized into either: (1) high-reliability claims or (2) low-
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reliability claims. The FEMA Historical Geospatial Damage Assessment Database4 was used for 

annotation. This database serves as a repository for geospatial damage assessments from past 

national disaster events, conducted using either high-resolution imagery or geospatial modeling 

[41]. An example of a rescue claim that is located in an impacted FEMA zone is illustrated in 

Figure 16. In this figure, the address specified in the claim is located in an area where numerous 

structures, such as houses and buildings, were marked as damaged (affected, minor dam- age, 

major damage, and destroyed) structures. For each rescue claim, the number of ‘damaged’ 

structures within a 0.3-mile radius of the claim’s address was analyzed. Claims surrounded by 

a large number of ‘damaged’ structures were marked as ‘high-reliability’. Claims that were not 

surrounded by damaged structures (or surrounded by only a very few of them) were marked as 

‘low-reliability’. 

  As previously noted, it is very difficult to assess the veracity of rescue messages posted on 

social media in the aftermath of a hurricane. The information posted on social media can be easily 

verified in some cases; for instance, when someone posts a piece of misinformation, rumor, or 

fake news, external sources, such as fact-checking websites, might be used to assess the veracity 

of the information and debunk it. However, it is more difficult to certify a call for help or a 

rescue request posted on social media unless one is present at the moment of the call [150]. 

Therefore, the reliability of the collected rescue messages was approximated by comparing the 

information to an external (official) source. This study assumes that a rescue message is likely to 

be true if it originates from an area impacted by the disaster, such as regions flooded during 

hurricanes. 

 
4 https://experience.arcgis.com/experience/c1b507827e72401aace5a6d277fad93b/page/Page-1/?views=Visual- 

Damage-Assessments 
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Figure 16. A rescue claim situated in a FEMA impacted zone 

 

 

 

Validation with an external source is a form of triangulation, where the information is 

corroborated with other sources. Disaster response professionals [144] highlighted that they often 

rely on triangulation—i.e., getting the same information from multiple sources— to determine the 

reliability of a social media report. This study investigates whether the proposed reliability 

indicators can accurately predict the rescue claims coming from the damaged areas as a proxy for 

reliability. 

3.4.2 Proposed Reliability Scoring System 

 

The second contribution of this research is a two-stage framework for prioritizing ‘actionable’ 
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rescue information on Twitter based on their reliability. After filtering emergency rescue tweets 

(previous part), the framework processes the extracted information in two stages: (1) reliability 

assessment of individual tweets (stage 1) and (2) intelligent aggregation and claim-level 

confidence scores calculation (stage 2). The framework structure is depicted in Figure 17. 

The framework employs a scoring mechanism to assign a reliability score for each incoming 

tweet. As new tweets are posted, the scoring is updated in real-time. The tweet-level reliability 

score is calculated based on two assessment dimensions: (1) source-level assessment and (2) post- 

level assessment. Intuitively, a social media message with a high-reliability score indicates that the 

user who posted the message is trustworthy and that the content is of high quality (e.g., attached 

image/video, high content interaction, etc.). Once the tweet-level reliability scores are calculated, 

an intelligent aggregation of the tweets is performed. Tweets that refer to the same information 

(indicated by a given U.S. address and/or precise location) are grouped to form an actionable 

rescue ‘claim’ defined as follows: 

An actionable rescue claim k, denoted as Ck, encompasses a call for help or a rescue message 

that may trigger a potential ‘action’. A claim is associated with a specific location, such as 

a U.S. address, and may be supported by either a single tweet or multiple tweets. 

 

For each claim, a confidence score, denoted as conf(Ck), is derived from the reliability scores of its related 

tweets.  At this stage, contextual indicators, such as location and corroboration, are integrated. Intuitively, 

a claim that is posted at a location where a high number of rescue-related messages are posted and is 

supported by many tweets (contextual indicators) is likely to be true, thereby getting a higher confidence 

score.
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Figure 17. reliability assessment framework 

 

 

 
All the components of the proposed scoring system are linked together in an algorithmic form 

to analyze the reliability of a given rescue claim. The novel features of the proposed reliability 

assessment framework are outlined as follows. Unlike most of the previous studies that have 

formulated the problem as a binary classification problem, this study proposes a reliability 

scoring system where reliability is modeled by a numerical confidence score between 0 and 1. 

Most of the research on assessing the reliability of social media data has adopted the machine 

learning approach to categorize social media messages and potentially identify suspicious social 

media messages. The systems most closely related to the one proposed in this dissertation are the 

reliability scoring systems introduced by Alrubaian et al. [11] and Assery et al. [16]. The 
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framework developed by Alrubaian et al. [11] includes three modules designed to assess the 

reliability of the content, user reputation, and user expertise, operating together algorithmically to 

calculate a final reliability score for each tweet. Assery et al. [16] proposed a reliability 

assessment model that analyzes disaster-related tweets based on post and user-related 

dimensions. The reliability score provided by this model is calculated on a 10-point scale. Each 

of these frameworks assesses the reliability of individual tweets. The proposed reliability scoring 

framework in this study differs from these models by introducing a ‘claim-level’ reliability that 

aggregates tweets’ level reliability scores. Furthermore, the previous reliability assessment 

systems focused on content-level and user-level reliability features, the proposed reliability 

assessment model in this study integrates contextual features. However, it is important to note 

that the model’s performance was evaluated on a binary scale, like previous research, given the 

current challenges in obtaining ground truth data labeled by scores. Because having this type of 

label requires extensive involvement from humanitarian and disaster response experts in the 

annotation process, this evaluation approach is deferred to future research. 

3.4.2.1 Definition of reliability 

 

Numerous studies have attempted to define ‘reliability;’ however, it has been noted that no 

clear definition has been proposed so far [109]. Researchers have defined the reliability of social 

media information through various criteria, including relevance, trustworthiness, and expertise 

[109]. The Merriam-Webster dictionary defines reliability as ‘the quality or power of inspiring 

belief’ or ‘capacity for belief.’ The Oxford Dictionary defines it as ‘the quality of being believed’. 

In this study, the latter definition was adopted, which has been frequently utilized in prior studies 

[11][109]. Based on this definition, reliability was modeled as a confidence score ranging from 
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0 to 1, reflecting the perceived level of belief in a piece of information based on several 

indicators about its content, source, and context. The confidence scores assigned to a rescue 

claim is defined as follows.   

The confidence score (conf(Ck)) of a claim Ck is a numerical score assigned to a rescue 

claim k, ranging from 0 to 1, that reflects the degree to which the information conveyed by 

the claim can be believed. 

Similarly, the confidence scores assigned to a rescue tweet is defined as follows.   

The confidence score (conf(Ti)) of a tweet Ti is a numerical score assigned to the tweet, 

ranging from 0 to 1, that reflects the degree of belief in the information it conveys. 

 
3.4.2.2 Reliability indicators selection 

 

A set of reliability indicators was selected for the proposed reliability assessment model. These 

indicators were derived from the literature and an informal discussion with an expert. In the 

literature, reliability has been analyzed from different levels [109] [58] [2] [23]: (1) medium level, 

(2) topic level, (2) source level, (3) post level, and (4) contextual level. 

While social media magnified the issue of verifying the ‘accuracy’ of recorded information 

(such as information posted on books, newspapers, and websites), the challenge predates the social 

media era. Fallis [38] identified four key areas to consider when verifying the accuracy of recorded 

information. The first suggested area to consider is the authority of the information source. Source 

authority can be determined through several factors, such as expertise (or reputation) and the his- 

tory of the author in providing reliable information. The second area is the independent 

corroboration [150]; it involves validating claims through complementary information from other 
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sources (e.g., several reliable independent websites supporting a piece of medical information). 

As indicated by Fallis [38], it is much more likely that one individual will ‘deceive or be 

deceived’ than that several individuals will ‘deceive or be deceived’ in the same way. The other 

two areas, plausibility and presentation, assess the context surrounding the information and how 

it is presented, respectively. In [123], journalists and editors from various news media outlets 

(e.g., BBC, CNN, NBC) published a step-by-step process for verifying online-generated content. 

To verify a piece of information on social media, journalists and humanitarian professionals 

should check the following elements: (1) provenance (is the information original?), (2) source (is 

the source that uploaded the content trustworthy?), (3) date (when was the content created?), and 

(4) location (where was the content created?). The journalistic approach also encompasses three 

levels of verification: (1) verifying the source of the information, (2) verifying the information 

itself (such as information provenance), and (3) verifying the context in which the information 

was posted, particularly the date and location of the information. This study conducted a 

literature review of the related problems to select a set of reliability indicators. 

More than 60 studies were reviewed in total. The reviewed studies covered various social 

media reliability assessment tasks, including fake news, misinformation, and rumor detection. The 

search scope included not only the disaster relief domain but also general news, politics, health, 

and other areas. During the review process, studies proposing black-box machine learning and 

deep learning models relying solely on raw textual features were excluded. The list of papers 

initially reviewed was narrowed down to 36 studies that used specific user-related, content-related, 

or contextual features in their reliability assessment methods. The identified features were grouped 

into different categories (reliability constructs). The final list of the selected reliability indicators is 
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illustrated in Table 4. The selected indicators include source reputation, source authenticity, 

source expertise, source location, content engagement, direct evidence, proximity, and 

corroboration. More calculation details of the reliability indicators assessment are provided in 

Appendix C. 

Source reputation – Measuring source reputation is an important aspect of reliability. Similar 

to [11] and [125], reputation in this study was approximated by the popularity of the social media 

account, leveraging features, such as the relationships between following, followers, and friends. 

Legitimate accounts usually follow known users who follow them back. The number of followers 

is often almost equal to the number of followees [125]. An exceptionally high number of 

followers, ranging from tens of thousands to millions, indicates that the account is a celebrity, 

thereby implying a high reputation. Conversely, accounts with a very low number of followers 

but a large number of followees are indicative of suspicious behavior. They tend to connect to as 

many users as they can to spread their messages through the network. In this dissertation, the 

reputation of a social media account posting a rescue message is calculated by the average of two 

popularity metrics. 

The reputation of a user j, denoted by Reputationj, is defined as a numerical score 

ranging from 0 to 1. This score is computed as the average of two Twitter Follower-

Followee ratios, namely TFF1 and TFF2. 
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Table 4. Selected reliability indicators 
 

Indicator Dimension Description 
 

This indicator analyzes the legitimacy of 

a social media profile. 
 

This indicator analyzes the perception of 

Reputation Source 

 

 

 

Location Source 

 

 

 

Expertise Source 

 

 

Engagement Content 

 

 

Direct evidence Content 

 

 

Cross-checking Context 

 

 

Proximity Context 

 

 

 

Corroboration Context 

a social media account based on its 

behavior. Messages shared by suspicious 

user accounts tend to be unreliable. 

This indicator analyzes the user’s known 

location. Accounts that are geo-tagged 

in the vicinity of the crisis zone area 

are more likely to be direct eyewitnesses, 

thereby having a higher reliability level 

This indicator analyzes the user’s level of 

knowledge and skills. Users with direct 

expertise, skills, or roles related to the dis- 

aster are generally trustworthy 

This indicator analyzes the popularity of 

the message and the level of engagement 

that it generates. 

This indicator analyzes the presence of 

direct evidence (an image or a video) 

attached to the social media post 

This indicator analyzes the extent to 

which the shared information is supported 

by external sources 

This indicator analyzes the spatial context 

of the shared information, that is, how 

many urgent messages are posted from 

the proximity of the post’s location. 

This indicator analyzes external sources 

of data to confirm the posted call for help. 

The FEMA flooding risk map was used as 

an external source 

 

 

The first Follower-Followee ratio TFF1 is given in Eq. 5. This metric calculates a score 

ranging from 0 to 1. TFF1  values that are close to 1 indicate that the user is popular, whereas 

reputation scores close to 0 are indicative of potentially suspicious users. 

Authenticity Source 
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TFF1 = 
nb. f ollowers 

nb. f ollower + nb. f ollowees 
(5) 

 

To calculate the second Follower-Followee ratio TFF2, this study starts from AsseryT FF metric 

(Eq. 6). 

 

AsseryTFF = 
nb. f ollowers 

nb. f ollowees 

(6) 

 

 

AsseryTFF is used by Assery et al. [16] for measuring profiles’ popularity on Twitter. They 

categorized Twitter profiles into 5 categories based on this ratio (as shown in Table 5): (1) Spammer 

category, (2) Suspicious user category, (3) Normal user, (4) Micro influencer, (5) influencer. 

 

Table 5. Classification of users based on follower/following ratio 

 

 
 

 

 

Based on a given user’s profile type, the second Twitter Follower-Followee ratio TFF2 is 

calculated as follows.  
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Source authenticity – Twitter’s ‘verified’ status was used as an indicator of source 

authenticity. Twitter marks ‘verified’ accounts with blue checkmarks. Previously, the ‘verified’ 

status is assigned once a given account meets several eligibility requirements, such as authenticity 

(e.g., ID verification, official website, etc), notability (e.g., associated with a predominantly 

recognized individual or brand), and user activity. However, since April 2023, these criteria have 

been updated. To receive the blue badge, a profile now simply needs to be complete (e.g., 

displaying a name and a photo), has a confirmed phone number, be active, and show no 

deceptive signs (e.g., stable activity without spam indicators) [25]. Despite the current eligibility 

criteria for verification being less rigorous, the ‘verified’ status of an account is still considered a 

strong indicator of the social media user’s authenticity. This research investigated the 

distribution of verified accounts among bots and legitimate accounts in two publicly available bot 

detection data sets (see Appendix A). As shown in Figure 18, among 9,481 bot profiles in both 

data sets, only 2 of them were verified. However, among 10,741 legitimate profiles, 453 were 

verified. This analysis suggests that almost all verified accounts are authentic. 

The authenticity of a user j, approximated by their verification status and denoted by 

Verifiedj, is defined as a binary value. This score is assigned a value of 1 for verified users 

and 0 for non-verified users. 
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Figure 18. Number of verified profiles among bots and legitimate accounts 

 

 

 

Source Expertise – The expertise is a domain-dependent indicator. Expertise refers to the level 

of knowledge and skills that a social media user possesses in a particular field or area. A profile on 

Twitter is categorized as an ‘expert’ if it belongs to the following categories: (1) officials, (2) 

journalists, (3) emergency response (affiliated) volunteers, and (4) meteorologists. Profiles not 

fitting these criteria are classified under the ‘public’ category. 

The expertise of a user j, denoted by Expertisej, is defined as a binary value. A value of 1 

is assigned for expert users and 0 for non-expert users. 

 

Source Location – Twitter’s geo-tagging feature allows users to tag their locations. Although 

only about 14% of social media users share their location information via geo-tagging, this feature 

has been used as a reliability predictor in several studies. The distribution of geotagged users 

among legitimate and bot accounts in the publicly available bot detection datasets (see Appendix 
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A) was analyzed. As shown in Figure 19, of the 9,481 bot profiles captured in both datasets, 

only1,073 were geo-tagged (11.31%). In contrast, of the 10,741 legitimate profiles, 5,035 were 

geo- tagged (46.87%). There is a significantly higher number of geo-tagged users among 

legitimate accounts compared to bot accounts. Further details on how the geotag value is 

calculated can be found in Appendix C. 

 

 

 

 

Figure 19. Number of geo-tagged profiles among bots and legitimate accounts 

 

 

 

The location of a user j, denoted by GeoTagj, is indicated by their use of the Twitter geo-

tagging feature. GeoTagj is assigned a value of 0 if the user is not geotagged within the 

disaster area, and 0.84 otherwise. 

Content Engagement – The content-related indicator measures the level of interaction a social 

media message receives over a specified period. Key engagement features frequently cited in the 

literature include the number of retweets, likes, and replies to a post. The content engagement 
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score is defined as follows. 

The content engagement of a tweet i, denoted by Ei, measures the level of interaction 

received by a post. It is calculated by the average of two tweet engagement metrics: 

TE1 and TE2. 

The first tweet engagement metric TE1 is an adaptation of the Twitter engagement ratio 5which 

is a crucial metric in Twitter analytics. This metric assesses a profile’s ability to engage and reach 

its audience. It is calculated by dividing the engagement metrics (retweets, likes, replies, and 

quotes) by the number of posts made by the user. This metric has been employed as a reliability 

indicator in various studies, such as [16] and [117]. The Twitter Analytics engagement is given by 

Eq. 8.  

AnalyticsEngagementi = 
nb.retweets + nb.replies   

                                                                 nb. f ollowers 

Then, depending on the value of AnalyticsEngagementi, an engagement category was assigned in 

the following way: 

• Low engagement (AnalyticsEngagementC1): retweets and replies to follower, ratio 

lower than 0.081. 

• Mild engagement (AnalyticsEngagementC2): retweets and replies to followers, ratio 

between lower 0.081 and 0.7483 

• Medium engagement (AnalyticsEngagementC3): retweets and replies to followers, 

ratio between lower 0.7483 and 1.333. 

• High engagement (AnalyticsEngagementC4): retweets and replies to follower, ratio 

 
5 https://scrunch.com/blog/what-is-a-good-engagement-rate-on-twitter 
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higher than 1.333.  

The first tweet engagement metric TE1 is calculated as follows. 

 
 

These values are derived from analyzing the data set published by Assery et al. [16]. The steps 

used for calculating these values are described in Appendix C. 

Furthermore, the dataset proposed by Assery et al. [16] was analyzed to investigate the 

relationship between the popularity of tweets (measured by the number of retweets) and their 

assigned reliability level. The retweet counts were divided into four groups based on the second 

quantile (Q2), third quantile (Q3), and the 90th quantile, as shown in Table 6. Four categories 

were created for retweet count groups: 

• Low popularity (rtC1): 0 to 3 retweets 

• Medium popularity (rtC2): 4 to 17 retweets 

• High popularity (rtC3): 18 to 95 retweets 

• Very high popularity (rtC4): more than 95 retweets 
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Table 6. Distribution of number of retweets ([16] data set) 
 

Quantile (θth) nb.retweets 

0.25 0 

0.5 3 

0.75 17 

0.90 95 

 

Based on the popularity class assigned to a tweet i, the second tweet engagement value 𝑇𝐸𝑖
2 

given to the tweet is calculated as follows. The steps employed to calculate these values are also 

explained in Appendix C.  

 

 

Consider the following scenario: a tweet i has 5 retweets, 2 replies, and 10 followers. The 

AnalyticsEngagementi is calculated as 0.7, derived from (
5+2

10
). Consequently, the tweet is 

categorized under the mild engagement category. Therefore, the first engagement value TE1 is 

equal to 0.6883. With 5 retweets, this tweet is classified under the medium popularity category. 

Consequently, TE2 is determined to be 0.7925. The final content engagement value for this 

tweet, Ei, is calculated as 0.7404, representing the average of the previous two metrics. 
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Direct evidence – This content-related indicator focuses on analyzing the videos and images 

attached to the social media message. Typically, the presence of direct evidence, i.e., real-time 

videos and images depicting the incident or situation, would enhance decision-makers 

confidence in the reliability of the shared information. Nevertheless, the authenticity and 

trustworthiness of these attachments are crucial. An attached image or video that is fake or 

reused from past events can substantially undermine the message’s reliability. The authenticity 

of the attached images and videos in the annotated data set by this study was manually verified 

by the author of this dissertation. 

The direct evidence attached to a tweet i, denoted as 𝐴𝑡𝑡𝑎𝑐ℎ𝑒𝑚𝑒𝑛𝑡𝑖, is a binary value that 

takes the value of 1 if an authentic image or a video is attached to the tweet’s body and 0 

otherwise. 

Proximity – proximity is a context-related indicator that focuses on assessing the geographical 

vicinity of the message’s location and analyzes the volume of similar urgent messages posted 

within that area. When a message originates from a hotspot area—i.e., a location characterized by 

a high frequency of emergency messages—this factor would significantly enhance confidence in 

its reliability. An example of how to calculate proximity is shown in Figure 20. 

The proximity of a rescue claim Ck, denoted as Proximityk, is a numerical score that ranges 

from 0 to 1. This score is calculated by a sigmoid function that takes in the number of 

emergency messages within a circular geographical area with a radius r surrounding the 

claim’s location. The output score increases to reach 1 as a higher number of rescue 

messages are posted on Twitter within this area. 
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For each actionable claim k, a circular geographical area with a radius r surrounding its location. 

 

Figure 20. Proximity example – how many emergency rescue tweets are posted within the vicinity 

of the rescue claim in red? The vicinity is represented by a circle with a radius r 

 

 
was defined. The number of tweets within this area was calculated. The proximity score Pi of a 

tweet i is given by the following equation (Eq. 11): 

 

Where n is the number of messages posted within the specified area. As shown in Figure 21, as a 

higher number of messages are posted in the vicinity of a given call for help claim, this score 

increases to reach 1 at a certain point. 
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Figure 21. Proximity score calculation – number of tweets vs proximity score 

 

Corroboration – Corroboration (with external sources) is a context-related indicator that 

analyzes external sources to find evidence that supports or refutes a rescue claim. In this study, 

the FEMA flooding risk map6 was used as an external source for corroborating a given rescue 

claim. FEMA defines several flood risk zones, including (1) high-risk zones (zones AE), and (2) 

low-risk zone (Zone X). The risk zone feature is derived from the FEMA flood zone 

designations. FEMA flood maps (Flood Insurance Rate Maps FIRMs) are efficient tools provided 

by FEMA for under- standing flood risk across a geographical area. These maps are used to 

provide information about the local flood risk and determine the necessity for flood insurance. 

FEMA flood zones can be categorized into high, moderate, and low flood zones. Each zone 

reflects the severity of flooding in a particular area. High-risk areas are usually labeled with 

letters A or V (e.g., AE, AO, AH, A1-A30, VE). These areas have a 1% annual chance of 

flooding and a 26% chance of flooding over a 30-year mortgage. If a property owner has a 

 
6 https://hazards-fema.maps.arcgis.com/apps/webappviewer/index.html?id=8b0adb51996444d4879338b5529aa9cd 
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federally backed mortgage, flood insurance is mandatory. Moderate to low-risk areas are usually 

labeled by B, C, or X. Although these areas are outside the 1 annual flood risk zone, they may 

still be at risk from flooding. There is no federal requirement for flood insurance in these zones, 

but it is recommended. An example of a FEMA flood zone is depicted in Figure 22, where the 

blue area represents a designated FEMA ’AE’ zone (high-risk), and the brown shaded area 

represents a designated FEMA ’X’ zone (low-risk). 

 

Figure 22. FEMA flood risk zones (example) 

For each rescue claim k, the designated zone (e.g., zone AE, zone X, etc) was identified. 

Subsequently, this information is converted into a risk penalty value v. This value is set to −v if the 

claim is located in a low-risk flood zone and to +v if it is located in a high-risk flood zone. This 

risk value is then used to adjust the confidence score assigned to the claim (as will be explained in 

the model description section). 

 

Corroboration for a rescue claim Ck, denoted as Corroborationk, is a numerical score that 

represents whether an external source confirms or refutes the claim. Corroborationk can 

take either a positive risk value v or a negative risk value −v. 
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3.4.2.3 Model description 

As described earlier, the proposed reliability scoring model has two stages. In the first stage, 

a confidence score (con f (Ti)) is calculated for each tweet. In the second stage, an intelligent 

aggregation of tweets’ confidence scores is performed to produce claim-level confidence scores 

(con f (Ck)). 

Tweet-level assessment (stage 1) consists of two components as illustrated in Figure 23: (1) 

source-level assessment and (2) content-level assessment. This assessment is performed 

periodically, and the scores assigned to each tweet/user are updated over time. The final tweet-

level score is a weighted average of source and content, as shown in Equation 12. A weight wu 

was assigned for the source-related score, and another wt was assigned for the content-related 

score. 

Con f (Ti) = wu ∗ Ui + wt ∗ Pi (12) 

 

 

 

 

Figure 23. reliability score calculation for an input tweet i
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The source (user) reliability score, denoted by  𝑈𝑐𝑟𝑒𝑑
𝑗

  is  calculated   using algorithm 1. Initially, 

the model checks if the Twitter account is ‘verified’. Verified users are automatically assigned a 

score of 1. The model then evaluates the user’s expertise, with accounts identified as ‘expert’ 

also receiving a source reliability score of 1. For public and non-verified profiles, the model 

calculates the user’s reputation score Reputationj. Additionally, the model checks if the user is 

geo-tagged; if so, the reputation score Reputationj is adjusted to reflect the enhanced reliability 

from being geo-tagged within the disaster area. If not geo-tagged, the source reliability score is 

set equal to the calculated reputation score Reputationj. 

 

The content reliability score of a tweet i, denoted by 𝑃𝑐𝑟𝑒𝑑
𝑖  , is calculated using Algorithm 2. 

Initially, the model determines whether a video or image is attached to the tweet. If an image or 

video is uploaded, the content reliability score is automatically set to 1. If there is no media 

attached, the system then proceeds to calculate the engagement score of the post, which 

corresponds to the final content reliability score. The second stage involves an intelligent 

aggregation of the tweet- level reliability scores to create a set of ‘actionable’ rescue claims, as 

shown in Figure 24. 
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The calculation of claims’ confidence scores follows the basic principle of truth discovery 

algorithms [140]. A claim’s confidence score is calculated by following these steps. 

 

Step 1: In the first step, for each claim, the model calculates the sum of tweets-level reliability 

scores as shown in Equation 13.  

 

Where W (ti) represents a set of tweets forming the rescue claim Ck. 

 

 

Step 2: In the second step, the model adjusts the claim’s confidence score σ (Ck) by adding 

contextual indicators to the sum. The adjusted reliability score is calculated as follows (equation 

14). 

 

                                                              σ ∗( Ck) = σ (Ck) + Icontext                                                    (14)
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Icontext includes the proximity score (Proximityk) and the corroboration score (Corroborationk) 

assigned to the claim k. 

 

Step 3: In the last step, the model computes the final confidence score to be assigned to claim k, 

denoted by (con f (Ck)). A sigmoid function is applied, as outlined in Equation 15, to normalize 

this score, resulting in a final confidence value between 0 and 1. 

 

Consider the following scenario: a claim k is confirmed by three tweets. The confidence scores 

assigned to tweets 1, 2, and 3 are 0.5, 0.6, and 0.5, respectively. Summing their confidence 

scores, σ (Ck) was equal to 1.6. Subsequently, the values of contextual indicators are integrated. 

Suppose this claim is located in a FEMA ‘AE’ zone (low-risk zone). A claim from a low-risk 

flooding zone is generally considered less credible. This evidence should decrease the 

confidence assigned to the claim. Assuming a penalty value of 0.5 is selected, the confidence 

assigned to the claim is penalized by 0.5, resulting in a new σ (Ck) of 1.1. Additionally, assuming 

there are 5 rescue messages posted within a predefined radius of 0.3 miles. The Proximityk value 

is then set to 0.9674. The σ (Ck) is adjusted again by 0.9674, resulting in 2.0674. The last step 

involves normalizing the score using the sigmoid function defined in step 3 of the algorithm, 

leading to a final conf (Ck) of 0.6957. Note that the penalty score significantly reduces the 

confidence score assigned to the claim, as it is assumed that it is uncommon for a claim to be 
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posted from an area not susceptible to flooding. However, given the number of people sharing the 

tweet and other contextual factors (proximity), the claim still receives a relatively high confidence 

score, making it reliable. 

 

Figure 24. Claim reliability scoring 

 

 

 

3.4.3 Competing Methods 

 

To the best of the author’s knowledge, no model has been directly designed to address the 

reliability assessment of rescue messages on social media during hurricane events. Therefore, 

the model proposed by Assary et al. [16] was used as a competing method. Assary et al. [16] 

introduced an unsupervised learning model to assess the reliability of disaster-related Twitter data. 

This model was evaluated using historical tweets from two hurricane events (Hurricanes 

Michael and Florence) and demonstrated promising performance when compared with a set of 
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commonly used supervised machine learning models. The model employs a 10-point scoring 

system to evaluate the reliability of tweets based on both user-based and content-based features. 

Initially, user-based features are extracted, followed by content-based features. Depending on the 

final score, the model categorizes a tweet as ‘reliable’ if the obtained score ranges from 5 to 10 

and as ‘not credible’ if the score is below 5. The features utilized by this model include: 

• Verified user account: if the user’s account is verified by Twitter, ten points are 

assigned to the tweet, and no further analysis is required. 

• Trusted username: The tweet’s score is increased by one point if the username or 

description contains trusted information sources. In the study’s implementation, trusted 

sources included journalists, media-related profiles, and weather experts. 

• Slang and swear words in the profile description: if the username or description of the 

profile has slang and swear words, one point is deducted from the tweet’s score. 

Otherwise, one point is added to the score. 

• Follower-following ratio: the popularity of the user is measured via this ratio (Eq. 16). 

Users are categorized into different popularity classes based on the obtained value. 

Spammers and suspicious users have a ratio below 1. Normal users have a ratio 

between 1 and 2. Micro- influencers and influencers typically have a ratio higher than 

2. One point is deducted from the scores of the tweets posted by Spammers and 

suspicious users, one point is added to the scores of the tweets posted by normal users, 

and three points are added to the scores of the tweets posted by micro-influencers and 

influencers’ users. 
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Follower/Following = 
nb. f ollowers

 
nb. f ollowing 

(16) 

 

• URL validity: the proposed model checks the validity and trustworthiness of the URLs 

in the tweet. Two points are added to the scores of the tweets with trustworthy and valid 

URLs, while one point is deducted from the scores of the tweets with non-valid URLs. 

In this context, a valid URL is a URL coming from a trustworthy domain. 

• Slang and swear words in the tweet: the model verifies whether the tweet contains slang 

and swear words. If it does, one point is deducted from the tweet’s score. Conversely, 

one point is added to the scores of the tweets with no slang or swear words. 

• Question marks and exclamation: one point is deducted from the tweets, which include 

exclamation and question marks. One point is added to the tweets with no questions 

and exclamation marks. 

• Tweet engagement ratio: finally, the model calculates a value, denoted by the 

engagement ratio (Eq. 17). Tweets are categorized into several engagement types. If the 

value of the ratio is below 0.02%, the tweet has a low engagement rate. If the value of 

the ratio is between 0.02% and 0.09%, the tweet is considered to have a mild 

engagement rate. If the value is higher than 0.09%, the tweet has a high engagement 

rate. One point is deducted from the scores of the tweets with low engagement rates. 

One point and three points are added to the scores of the tweets with mild and high 

engagement rates, respectively. 
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In addition to the Assery model [16], the proposed reliability assessment model was compared to a 

selected set of supervised machine learning models. Supervised machine learning is a common 

approach for addressing social media reliability assessment problems. Given the small size of the 

annotated data, traditional supervised learning models were selected for comparison, including 

ensemble machine learning models (e.g., Random Forest and AdaBoost), probabilistic machine 

learning models (Naive Bayes), and discriminative machine learning models (Decision Trees and 

Logistic Regression), for comparison instead of deep learning models. With more data becoming 

available, deep learning models will be explored in future studies. 

 

The Decision Tree (DT) algorithm is a non-parametric supervised learning method suitable 

for both classification and regression tasks. Decision Trees learn simple decision rules inferred 

from the data features and make predictions for new instances based on these rules. The structure 

of a Decision Tree consists of a tree-like model, with the top node serving as the root. This 

structure is recursively split into decision nodes from the root to the leaf (terminal) nodes. The DT 

structure is illustrated in Figure 25 with a simple example. In this example, an instance with 

three features (X1=12, X2=-1, X3=10) is classified based on a set of learned rules. At the first 

level, the DT algorithm checks if the feature X1 is less than 10. At the second level, it evaluates 

the value of feature X2. If X2 is less than 0, it then evaluates feature X3. The final classification 
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decision is made at each leaf node in the tree. Unlike other black-box machine learning models, 

the Decision Tree algorithm provides a more interpretable classification outcome based on its rule- 

based approach. 

 

 

Figure 25. Decision Tree (DT) structure 

 

 

Random Forest (RF) is another widely used ensemble learning classifier. The fundamental 

components of a Random Forest classifier are decision trees. An RF model con- sists of multiple 

decision trees operating together, each employing a subset of randomly selected attributes from 

the training data to make decisions. New instances are classified through a majority voting 

mechanism. By integrating multiple weak classifiers, specifically decision trees, the model 

substantially reduces classification variance, thereby enhancing the reliability of the ensemble 
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model. For optimal performance, several parameters must be set, primarily the number of trees 

and the number of randomly selected features. The RF structure is illustrated in Figure 26. 

 

 

Figure 26. Random Forest (RF) structure (adapted from [65]) 

 

AdaBoost (ADA) is a widely used ensemble learning classifier that combines multiple 

weak classifiers to produce a strong classifier, thereby achieving more accurate classification 

results. The weak (base) classifiers are trained on various subsets of the training data. The 

AdaBoost classifier belongs to the category of boosting algorithms, which involves creating a 

sequence of weak classifiers. Each classifier in the sequence aims to correct the misclassification 

errors of its predecessors. Consequently, AdaBoost assigns a weight to each training sample, 
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allocating higher weights to misclassified samples. This mechanism helps to reduce the variance 

of the classification results. The AdaBoost architecture is illustrated in Figure 27. 

 

 

Figure 27. AdaBoost architecture (adapted from [115]) 
 

 

Naïve Bayes (NB) is a probabilistic classification model that applies Bayes’ theorem (Eq. 

18). The term ’Naïve’ refers to the assumption of independence among the input features in the 

classification process—i.e., it is assumed that each feature contributes independently to the 

outcome. The classifier calculates the probability of each feature occurring within each class and 

identifies the most likely class. This model is very effective for classification tasks. 
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Logistic regression (LR) is a supervised learning algorithm that is particularly useful for 

binary classification problems. It operated by predicting the probability of an instance 

belonging to one class or another. LR uses a logistic function—traditionally the sigmoid 

function—that takes as input a set of independent variables (features) and outputs a value between 

0 and 1. LR is easy to implement and interpret compared to other ML models. 

3.4.4 Evaluation Metrics 

 

The proposed reliability assessment model was evaluated using various metrics. Let T Pi, TNi, 

FPi, and FNi be the number of true positives, true negatives, false positives (type-I error), and false 

negatives (type-II error) for a class i, respectively. The positive class refers to the ‘high-reliability’ 

category, while the negative class refers to the ‘low-reliability’ category. The equations for the 

evaluation metrics are given below.  

The accuracy metric measures the proportion of correctly classified claims out of the total 

number of claims in the data set. This metric is useful to determine the degree of correctness of a 

model. ACCi represents the accuracy of a class i, whereas Macro − Acc represents the overall 

accuracy among the two classes. 

 

The precision metric measures the accuracy of positive predictions for a given class (e.g., 

claims predicted to be ‘high-reliability’) by taking the fraction of correctly labeled claims over 

the total number of positive predictions. The precision metric measures the accuracy of positive 

predictions for a given class (e.g., claims predicted to be ‘high-reliability’) by taking the fraction 

of correctly labeled claims over the total number of positive predictions. 
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In other words, this metric reports the proportion of positive claims that were correct. P1 

refers to the precision related to the ‘high-reliability’ class, whereas P0 refers to the precision 

related to the ‘low-reliability’ class. 

 

 
 

The recall metric, also referred to as true positive rate or sensitivity, is the fraction of correctly 

identified positive claims (TP) for a given class to the total number of positive instances in the data 

set. R1 refers to the recall related to the ‘high-reliability’ class, whereas R0 refers to the recall 

related to the ‘low-reliability’ class. The recall of the high-reliability class (R1) shows the 

proportion of actual high-reliability claims that were correctly predicted. 

 

 
 

 

The F-score is the weighted average of the precision and recall metrics, as shown by the 

equation below. The F1 score provides a balanced evaluation of the classifier’s performance for 

a given class i. It captures the tradeoff between precision and recall. 

 

 
 

The false alarm rate (also called false positive rate) measures the proportion of low-reliability 

claims that are incorrectly classified as high-reliability claims. 
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The true negative rate, also called specificity, measures the pro- portion of actual true 

negatives –in this case, low-reliability claims– that are correctly identified by the model. 
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CHAPTER 4 

 

 

RESULTS AND ANALYSIS 

 

 

This chapter presents the experimental results of this study, which is divided into two sections. 

The first section details the experimental results for the social media rescue requests identification 

problem, while the second section discusses the results of the credibility assessment problem. 

4.1 RESULTS FOR THE RESCUE MESSAGES IDENTIFICATION PROBLEM 

 

In this section, the following methods were evaluated: (1) the logic-based classification 

approach and (2) the integrated classification model. 

4.1.1 Experimental Setup 

 

 

4.1.1.1 Data sets 

 

The experiments were conducted using two datasets: (1) the Harvey dataset and (2) the Ian/Ida 

dataset. The Harvey dataset includes the annotated tweets collected during Hurricane Harvey, 

while the Ian/Ida dataset includes annotated tweets collected from Hurricanes Ida and Ian, merged 

into a single dataset. The class distribution in each dataset is reported in Table 7. The total number 

of tweets manually analyzed in this research was 10853. Of these tweets, 407 rescue tweets were 

identified. 
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Table 7. Class distribution in the training data sets 
 

Category Harvey data set Ian/Ida data set 

Emergency rescue class 272 225 

Non-rescue class 5520 4936 

Total 5792 5061 

 

 

 

4.1.1.2 Pre-processing step 

 

For each input tweet, stop words and punctuation were removed, and all tweets were 

normalized to lowercase. Numerals were retained in the preprocessing step because they are a 

crucial part of specifying U.S. address specifications, which is a relevant feature for the problem 

under consideration. 

 

4.1.1.3 Handling class imbalance 

 

The collected datasets were highly imbalanced. The emergency rescue class (positive class) 

represents only a small fraction of the annotated tweets. To address this problem, the scikit-learn 

model selection package was used across all experiments to create balanced training and test sets by 

maintaining the same proportion of emergency rescue tweets in both. For deep learning models, 

a weight is assigned to each class in the loss calculation. These weights are based on the data 

distribution so that each class has a weight proportional to its number of samples, helping to ensure 

a fair representation of each class during training. 
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4.1.1.4 Hyperparameter optimization 

 

The Sklearn grid search package7 was used to select the best-performing Support Vector 

Machine (SVM) model. Grid search performs a comprehensive search over a defined 

hyperparameter space—a subset of manually specified hyperparameter values—to identify the 

optimal model. This optimal model is the combination of hyperparameter values that yields the 

highest performance according to a given scoring metric. The hyperparameter space used for the 

SVM experiments is defined in Table 8. 

Optuna [5] was used to perform model selection and search for hyperparameters for the proposed 

integrated classification model and all competing methods except the VictimFinder model, for 

which the hyperparameters reported in Zhou et al. [148] were used. Optuna is a hyperparameter 

optimization tool that automates the hyperparameter search in machine learning and includes 

several modules such as study, storage, trial, sampler, and pruner. The study module controls the 

tests (also called trials in Optuna terminology) and finds the optimal combination of 

hyperparameters over a predefined search space. A trial in Optuna is a single evaluation of an 

 
7 https://scikit-learn.org/stable/ 
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objective function with a set of hyperparameters. In addition to hyperparameter values such as 

learning rate, batch size, and the number of epochs, the search space in Optuna might include 

parameters of the evaluated architectures, such as the number of layers and their sizes. The sampler 

module in Optuna is responsible for generating a set of hyperparameters to try in each trial 

during the optimization process. Optuna employs several sampling algorithms, such as ‘random 

sampler’ which generates random configurations, and ‘TPE Sampler’ which uses a Bayesian 

optimization algorithm. The pruner module cuts off trials that are unlikely to yield good 

performance to reduce the total number of trials. By default, Optuna uses Bayesian optimization 

to balance exploration (visiting new areas in the search space) and exploitation (focusing on the 

areas expected to include the optimal configuration). The default Bayesian search algorithm was 

used in this dissertation. The Optuna search spaces for BERT+Linear and GloVe+CNN 

competing methods are reported in tables 9 and 10, respectively. The maximum number of trials 

for all experiments was set to 350. For each combination of hyperparameters, a 10-fold cross-

validation was conducted on each dataset. The average AUC-PR was calculated over the 10 folds, 

and the best combination for each classification method was kept. 

 

4.1.1.5 Experiments 

To evaluate the performance of the proposed model, the following experiments are conducted. 

In the first experiment, the performance of the logic-based approach was evaluated. In the 

absence of labeled data, this logic-based approach for detecting rescue messages might be 

helpful in identifying emergency rescue tweets. This experiment aims to evaluate this 

approach’s effectiveness in identifying such tweets. The second experiment compared the 

proposed integrated classification model with the competing methods. Given the small size of the 
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manually labeled data sets, 10-fold cross- validation was used. It is expected that the proposed 

integrated classifier will achieve a superior performance. 

Table 9. Optuna search space for GloVe+CNN hyperparameters 
 

Hyperparameter Configuration space Description 

Kernel 2,3,4,5,6,7,8,9,10,12,16,14,20,24,32 Kernel size 

#Filters 16,32,64,128,256,512,1024 Number of kernels 

Pool 2,3,4,6,8 Pooling size 

Lr 0.1,0.01,0.001,0.005 Learning rate 

B 16,32,64,128 Batch size 
 

#hidden 64,128,256,512,1024 Size of the hidden layer 
 units  

 

 

 

Table 10. Optuna search space for BERT+Linear hyperparameters 
 

Hyperparameter Configuration space Description 

Lr 0.00005,0.00003,0.00002 Learning rate 

Epochs 4,10,20 Number of training epochs 

B 8,16,32,64 Batch size 

#layers 1,2,3 
Number of layers on top of 

the BERT backbone 

#Hidden 

units 
1024,512,246,32 

Sizes of the layer on top of the 

BERT backbone 
 

 

4.1.2 Evaluation of the Logic-Based Approach 

 

For the Harvey dataset, the obtained F1 score was 0.8149, recall (sensitivity) was 0.8419, 

precision was 0.8149, true negative rate (specificity) was 0.9889, and the Matthews correlation 

coefficient (MCC) was 0.8059. For the Ian/Ida dataset, the obtained F1 score was 0.7897, recall 

(sensitivity) was 0.6844, precision was 0.9333, true negative rate (specificity) was 0.9977, and 
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the Matthews correlation coefficient (MCC) was 0.7918. The confusion matrices on Harvey and 

Ian/Ida data set are shown in figures 28 and 29, respectively. Table 11 summarizes the obtained 

results for the positive class (i.e., emergency rescue request class) on both data sets. Overall, 

these results indicate a promising outcome by this model. Tweets with false negative errors 

obtained by both models are typically those that did not provide complete U.S. addresses, such 

as "@KPRC2 there are stranded families at Creech Elementary on Mason Rd. You have boats 

nearby. Please send them!". The low recall obtained by the logic-based model on the Ian/Ida data 

set is due to the higher number of tweets with incomplete and fuzzy location addresses in this 

data set compared to the Harvey data set. The regex address expression employed by this model 

typically detects complete U.S. address patterns that include full house numbers, street names, 

and suffixes. The outcome of this experiment shows the potential benefits of this approach in 

supporting the hurricane emergency response in the absence of labeled data sets. 

 

4.1.3 Evaluation of the Proposed Deep Learning Architecture 

 

This section reports the 10-fold cross-validation results on the annotated data sets. The 

predictions generated by each classifier were further analyzed to understand the behavior of the 

different models. 
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Figure 28. Confusion matrix for logic-based approach on Harvey data set 

 

 

 

Figure 29. Confusion matrix for logic-based approach on Ida/Ian data set 
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4.1.3.1 Cross-validation on Harvey dataset 

The 10-fold cross-validation results on the Harvey data set are shown in Table 12. This table 

reports the means (± standard deviations) of the AUC-PR, F1, Recall, and Precision metrics. A 

paired t-test was conducted to compare the AUC-PR scores obtained by the BERT+linear model 

and those by the proposed integrated model. Table 13 reports the AUC-PR results for each 

testing fold in the 10-fold cross-validation for the Harvey dataset. The prediction results from the 

10 testing folds were concatenated and plotted the AUC-PR curves for the different models, as 

shown in Figure 30. 

Table 12. 10-fold cross-validation results on Harvey data set 

 

Classifier AUC-PR F1-score Recall Precision 

TFIDF+SVM [34] 0.9256 ± 0.03 0.8646 ± 0.03 0.8201 ± 0.05 0.9165 ± 0.04 

BERT+LSTM [148] 0.9114 ± 0.08 0.8511 ± 0.03 0.8531 ± 0.04 0.8817 ± 0.007 

GloVe+CNN [34] 0.9218 ± 0.03 0.8470 ± 0.04 0.7755 ± 0.08 0.9414 ± 0.03 

BERT+Linear 0.9251 ± 0.05 0.8834 ± 0.02 0.9191 ± 0.04 0.8527 ± 0.04 

Integrated classifier 0.9621 ± 0.02 0.9093 ± 0.02 0.8898 ± 0.05 0.9329 ± 0.03 

 

The proposed integrated classifier outperformed all the competing models in AUC-PR (0.9621) 

and F1 score (0.9093). It is worth noting that the most indicative metric is the AUC-PR, which 

provides an overall performance measure of the model, corresponding to the area under the PR 

curve shown in Figure 30, where it can be clearly seen that the proposed model has the best 

overall performance. Recall and Precision are somewhat contradictory and are dependent on the 

choice of the operating point on the PR curve and are indicative only for the chosen point. 
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Table 13. The 10-fold CV AUC-PR results for the Harvey dataset 
 

Fold BERT-Linear Proposed Classifier 

Fold 1 0.928 0.9343 

Fold 2 0.908 0.9128 

Fold 3 0.8399 0.9766 

Fold 4 0.9758 0.9918 

Fold 5 0.9321 0.9743 

Fold 6 0.9735 0.9527 

Fold 7 0.9752 0.9853 

Fold 8 0.8423 0.9572 

Fold 9 0.9177 0.9671 

Fold 10 0.9586 0.9689 

Average 0.9251 0.9621 

Stdev 0.05 0.02 

T − test  0.047 

 

 

Figure 30. AUC-PR curves on the Harvey dataset 
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A higher Recall typically means a lower Precision rate, and vice versa. The F1 score is a 

weighted average of Recall and Precision at the chosen point, which is also a good indication of 

the overall model performance. The difference between the integrated classifier and the BERT-

Linear model is that the proposed integrated classifier adds high-level features derived from 

analyzing the logical structure of the problem. In terms of the AUC-PR metric, the proposed 

model outperformed the BERT-Linear classifier by more than 3%. The t-test between the 10 

testing fold results revealed a statistically significant difference (p-values below 0.05) between 

the AUC-PR results. Overall, both BERT-Linear and the proposed model outperformed the other 

competing methods in terms of AUC-PR. The confusion matrices (given in Figures 31, 32, 33, 34, 

and 35) reveal that the GloVe- CNN and TFIDF-SVM models produce a high number of false 

negatives (e.g., 61, 42, and 40 false negatives given by the GloVe-CNN, TFIDF-SVM, and 

BERT-LSTM models, respectively). In contrast, BERT-Linear and the proposed classifier 

reported considerably fewer false negatives (22 and 30 given by the end-to-end fine-tuned BERT 

and the proposed classifier, respectively). 

 

Figure 31. Confusion matrix for GloVe+CNN model on Harvey data set 
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Figure 32. Confusion matrix for TFIDF+SVM model on Harvey data set 
 

 

 

 

Figure 33. Confusion matrix for BERT+LSTM model on Harvey data set 
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Figure 34. Confusion matrix for BERT+Linear model on Harvey data set 
 

 

 

Figure 35. Confusion matrix for the proposed integrated model on Harvey data set 
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4.1.3.2 Cross-validation on Ian/Ida dataset 

 

The 10-fold cross-validation results on Ian/Ida are also shown in Table 14. A paired t-test was 

conducted to compare the AUC-PR scores obtained by the BERT+linear model and those by the 

proposed integrated model. Table 15 reports the AUC-PR results for each testing fold in the 10- 

fold cross-validation for the Harvey dataset. The prediction results from the 10 testing folds were 

concatenated, and the AUC-PR curves were plotted for the different models, as shown in Figure 36. 

The confusion matrices obtained by the different models on the Ian/Ida data set are given in Figures 

37, 38, 39, 40, and 41. The experiments on the Ian/Ida dataset provided results similar to those 

from the Hurricane Harvey dataset. Both the BERT+Linear classifier and the proposed model 

outperformed all other competing methods in terms of AUC-PR and F1. The proposed model 

showed a slight improvement of 2% in AUC-PR over the BERT-Linear classifier. This difference 

was statistically significant, as shown by the t-test in Table 15. These results indicate that the 

proposed classifier offers more balanced classification outcomes. 

Table 14. 10-fold cross-validation results on Ian/Ida data set 

Classifier AUC-PR F1-score Recall Precision 

TFIDF+SVM [34] 0.9263 ± 0.02 0.8424 ± 0.04 0.7873 ± 0.06 0.9105 ± 0.04 

BERT+LSTM [148] 0.9206 ± 0.03 0.7905 ± 0.07 0.7557 ± 0.12 0.8494 ± 0.10 

GloVe+CNN [34] 0.9291 ± 0.03 0.8485 ± 0.05 0.7996 ± 0.07 0.9212 ± 0.070 

BERT+Linear 0.9431 ± 0.03 0.8774 ± 0.04 0.8891 ± 0.06 0.8693 ± 0.05 

Integrated classifier 0.9614 ± 0.01 0.9047 ± 0.04 0.9114 ± 0.06 0.9013 ± 0.05 
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Table 15. The 10-fold CV AUC-PR results for the Ian/Ida dataset 
 

Fold BERT-Linear Proposed Classifier 

Fold 1 0.9158 0.9404 

Fold 2 0.8802 0.9669 

Fold 3 0.9820 0.9922 

Fold 4 0.9258 0.9465 

Fold 5 0.9573 0.9592 

Fold 6 0.9891 0.9959 

Fold 7 0.9473 0.9526 

Fold 8 0.9519 0.9596 

Fold 9 0.9610 0.9624 

Fold 10 0.9202 0.9385 

Average 0.9431 0.9614 

Stdev 0.03 0.01 

T − test  0.047 

 

 

Figure 36. AUC-PR curves on the Ian/Ida dataset 
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Figure 37. Confusion matrix for GloVe+CNN model on Ian/Ida data set 
 

 
 

 

Figure 38. Confusion matrix for TFIDF+SVM model on Ian/Ida data set 
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Figure 39. Confusion matrix for BERT+LSTM model on Ian/Ida data set 
 

 

 

Figure 40. Confusion matrix for BERT+Linear model on Ian/Ida data set 
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Figure 41. Confusion matrix for the proposed integrated model on Ian/Ida data set 

 

 

4.1.3.3 Case study for emergency tweets identification 

Table 16 illustrates a few prediction examples from Harvey’s dataset provided by each 

classifier. These examples include both correctly classified and incorrectly classified tweets. 

There are two types of rescue tweets: (1) those including a complete U.S. address of the urgent 

request (full-address tweet), and (2) those including a broad (fuzzy) location description (partial-

address tweet). A typical full-address tweet (e.g., ‘There is a family @12423 Meadow Frost Lane, 

Houston 77044 in dire need of rescue. Thank you! #HoustonStrong #HurricaneHarvey’) indicates 

the location of the rescue request or call for help. However, tweets with partial location 

descriptions (e.g., ‘These are pictures of my uncle’s house. He lives in Kingwood. There is no 

way to see the street sign, but please help! There are kids here too. https://t.co/HzPiqGwuk4’ 

and ‘Some people still need rescuing in Cherry Tree Lane in Friendswood. @KHOU #Harvey’) 

provide broader location information without a precise U.S. address but are still valuable for 

https://t.co/HzPiqGwuk4
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understanding the situation on the ground and guiding rescue efforts. The first two tweets in 

Table 16 show typical examples of emergency rescue tweets that were correctly identified by all 

classifiers. Overall, these tweets are easy to identify and often include complete U.S. addresses 

and rescue keywords (e.g., ‘trapped’, ‘please help’, ‘water rescue’, etc.). However, it can be 

noticed that BERT-Linear and the proposed integrated models performed better at detecting full-

address tweets compared to GloVe-CNN and TFIDF-SVM (see 3rd, 6th, and 8th tweets in Table 

16). There are many similar examples in the dataset. 

The proposed model successfully detected tweets with fuzzy and partial addresses, such as 

‘#abc13houston We need help out here. WALLISVILLE RD, PINE TRAILS subdivision Greens 

Bayous is flooding my neighborhood’. This tweet was misclassified by all other competing 

methods. The proposed model utilized rescue-related keywords/patterns (e.g., ‘We need help’, ‘is 

flooding’, etc.) as features, which enhanced its ability to detect these tweets. However, there are 

still some challenging tweets that were missed by all methods, such as ‘Some people still need 

rescuing in Cherry Tree Lane in Friendswood. @KHOU #Harvey’.  

Most false negative tweets (i.e., rescue tweets that were incorrectly classified as non-rescue) 

have broad location descriptions (partial-address tweets). For example, among the 23 false negative 

tweets by the BERT-Linear classifier in the Harvey dataset, only 5 are full-address tweets. For 

instance, the rescue tweet ‘Some people still need rescuing in Cherry Tree Lane in Friendswood. 

@KHOU @ #Harvey’ has a fuzzy address description and was missed by all methods. 

Therefore, future research will focus on developing robust classifiers that can detect rescue tweets 

with fuzzy and partial location descriptions. Many of the false positive tweets (i.e., non-rescue 

tweets that were incorrectly classified as rescue tweets) included both full-address and partial- 
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Table 16. Examples of emergency tweet identification by different models 
 

 

True 

label 

Proposed 

Model 

BERT- 

Linear 

TFIDF- 

SVM 

GloVe- 

CNN 

BERT- 

LSTM 

Her address is 618 Regal Street. 1 1 1 1 1 1 

Houston, TX 77034 and they have       

been trapped in water through the       

night. Please help! #HoustonFlood       

#Harvey https://t.co/ZDtPGngObX       

@SheriffEd_HCSO My family is 1 1 1 1 1 1 

still waiting for a water rescue in the       

attic, they can’t get to roof! 6606       

Reamer St Houston, TX 77074       

My friends apartments are flood- 1 1 1 0 0 1 

ing bad can y’all find somebody to       

come get them and take them to cy-       

press station from 11800 grant rd       

77429,       

Some people still need rescuing in 1 0 0 0 0 0 

Cherry Tree Lane in friendswood.       

@KHOU @ #Harvey       

someone in the 4600 block of 1 1 0 1 1 0 

Huisache check on elderly lady on       

corner of Ave B + Huisache ? Not       

answering phone. #bellaire #harvey       

#houston       

#abc13houston We need help out 1 1 0 0 0 0 

here. WALLISVILLE RD, PINE       

TRAILS subdivision Greens bay-       

ous is flooding my neighborhood       

Any one with a boat near N. El- 1 1 0 1 0 0 

dridge Parkway we have someone       

here who needs to check on his par-       

ents on enclave pkwy. #ABC13 

#fox26 

      

@MsCoCoDominguez My family 0 1 1 0 0 0 

is currently no flooding and our       

house is at 2819 barrow creek lane       

77089 and we want the evacuation       

route pls       

Tweet 
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address tweets. Most of these were tweets offering help (e.g., ‘If anyone near Peach Creek needs 

help, message me. My dad and brother are out there rescuing with a boat’), sharing rescue 

updates (e.g., ‘@HCSOTexas @houstonpo- lice The elderly couple at 6603 Mariner Square, 

Richmond, TX 77407 has been rescued. Thank you, first responders! #HoustonStrong’), or 

posting advertisements (e.g., ‘Pet-Friendly #Harvey Shelter! TheMET Church, 13000 Jones Rd., 

#Houston 77070. Thank you @TheMETChurch & @Fox26Houston!’). Compared to other 

competing models, the proposed classifier significantly reduced the number of false positives, 

demonstrating a greater ability to capture the contextual details of the tweets.  

4.2 RESULTS FOR THE RELIABILITY ASSESSMENT PROBLEM 

 

This section reports the results related to the reliability assessment of rescue tweets posted during 

natural disasters. 

4.2.1 Experimental Setup 

 

 

4.2.1.1 Data sets 

 

In this part, 472 rescue tweets posted during Hurricane Harvey were labeled by reliability, 

forming a total of 141 rescue claims. Among the 141 claims collected from Hurricane Harvey, 87 

were located in a FEMA-impacted zone and categorized as high-reliability rescue claims, while 54 

rescue claims were categorized as low-reliability. The entire dataset was labeled by the author of 

this dissertation. The class distribution is provided by Table 17. Due to the small size of the data, 

5-fold cross-validation was used to select and evaluate the machine learning models. 
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Table 17. Class distribution of the labeled Harvey data set (by reliability) 
 

High-reliability Low-reliability 
 

Tweets 361 111 

Rescue claims 87 54 

 

For each annotated tweet, post-related and user-related features were collected as illustrated in 

Table 18. These features are used for training the machine learning models. 

 

4.2.1.2 Hyperparameter optimization for machine learning models 

The proposed reliability assessment model was compared to a set of supervised machine 

learning models, including Random Forest (RF), Decision Tree (DT), Naive Bayes (NB), 

AdaBoost (ADA), and Logistic regression (LR). A grid search with 5-fold cross-validation was 

employed to determine the best-performing model configuration for each machine learning 
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architecture. The hyperparameters search spaces for the machine learning models are reported in 

Table 19. The models achieving the highest average accuracy over the 5 folds were selected. The 

optimal hyper- parameter values of the best-performing models are illustrated in Table 20. 

Table 19. Hyperparameters space for the machine learning models 
 

ML model Hyperparameter Space values 

DT Criterion gini, entropy 
 max_depth 2,4,6,8,10,12 

 max_features 3,4,5,6 

RF bootstrap true, false 
 max_features 2,4,6,8,10,12 

 n_estimators 3,4,5,6 

NB Alpha 1,2,3,4 

LR C 

penalty 

solver 

0.001,0.01,0.1,1,10 

l1, l2, elasticnet, None 

lbfgs, liblinear, newton-cg, newton-cholesky, saga 

ADA learning_rate 

n_estimators 

0.001,0.01,0.1,1,10 

l1, l2, elasticnet, None 

 

 

 

Table 20. Machine learning models selected by grid search) 
 

Classifier Data Selected model 

DT Harvey (Criterion = “gini” , max_depth = 4, max_features = 3) 

RF Harvey (bootstrap: “true”, max_features: 2, n_estimators: 100) 

ADA Harvey (learning_rate: 0.1, n_estimators: 300) 

NB Harvey (alpha: 1) 

LR Harvey (C: 0.001, penalty: “l1”, solver: “liblinear”) 
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4.2.1.3 Experiments outline 

 

To evaluate the effectiveness of the proposed reliability assessment model, the obtained 

confidence scores by the model were converted into binary labels: (1) high-reliability score and 

(2) low-reliability score. The proposed model’s outcome was compared against those of 

competing methods. The objective of this experiment is to evaluate the performance of the 

proposed model in distinguishing between high-reliability rescue claims originating from flooded 

areas and low- reliability rescue claims originating from non-impacted areas. 

 

4.2.2 Results By the Reliability Assessment Model 

 

The reliability assessment framework involves multiple parameters: (1) source weight, (2) 

content weight, (3) radius, (4) risk value, and (5) threshold value. The source weight wu and 

content weight wt reflect the significance of the source and content variables in the calculated 

tweet-level reliability scores, with possible values ranging from 0 to 1. The radius r, measured in 

miles, denotes the size of the area used to count the number of rescue-seeking posts in the vicinity 

of a given claim. The risk factor is a value between -1 and 1 that was used to adjust the score 

calculations at the claim level. Finally, the threshold value defines the boundary value used to 

determine the reliability of an incoming rescue claim. The sigmoid damp factors were fixed at 1 

for the proximity sigmoid function and 0.4 for the normalization sigmoid function. A range of 

values for each input parameter was generated as illustrated in Table 22. An exhaustive search was 

performed to identify the optimal parameters through all possible combinations of values in the 

search space. The optimal parameters’ values of the reliability assessment model are illustrated in 

Table 21. 
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The proposed reliability assessment model achieved a macro-accuracy of 0.7872. The 

accuracy for the positive class (i.e., high-reliability rescue claims located in an impacted zone) 

was 0.8160, while it was 0.7407 for the negative class (i.e., low-reliability rescue claims located 

in non-impacted areas). The confusion matrix generated by the proposed scoring model is 

displayed in Figure 42. The obtained results for each class are also summarized in Table 23, 

where class 1 refers to the high-reliability claims and class 0 to the low-reliability claims. 
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Table 23. Results by the reliability assessment model for each reliability class 
 

Data Label Acci F1i Ri Pi  

Harvey class 1 0.8160 0.8255 0.8160 0.8352  

 class 0 0.7407 0.7272 0.7407 0.7142  

 Macro-Acc     0.7872 
 FPR     0.2592 
 TPR     0.8160 

 TNR     0.7407 

 

 

 

 

Figure 42. Confusion matrix obtained by the reliability assessment model 

 

 

The results demonstrate the proposed model’s effectiveness in predicting rescue calls 

originating from impacted and damaged areas within the Houston area. 
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4.2.3 Comparative Analysis 

The proposed reliability assessment model was compared to a set of common supervised learning 

models, including Random Forest (RF), Decision Tree (DT), Naive Bayes (NB), AdaBoost 

(ADA), and Logistic Regression (LR), as well as the unsupervised model proposed by Assery et 

al. [16]. Grid search and 5-fold cross-validation were employed to determine the optimal 

hyperparameter values for each machine learning model. The predicted values from the selected 

machine learning models (obtained through 5-fold cross-validation) were then directly compared 

to the results of the proposed reliability assessment model for all data points. The competing 

machine learning models make predictions at the tweet level. To convert them to claim level, a 

majority voting approach was used. For a given rescue claim, if the majority of its related tweets 

are ‘reliable’ (i.e., assigned with a ‘high-credibility’ label), the claim is also labeled as ‘high-

credibility’. Table 24 presents the comparative analysis results with the competing models. At this 

stage of the research, the analysis was performed on Harvey’s data. In this table, the results are 

reported in terms of Macro-accuracy (average accuracy), average F1 score, true positive rate 

(high-credibility categories), true negative rate (low-credibility categories), and FPR (false alarm 

rate). The proposed two-stage reliability assessment model provides the best accuracy among the 

competing methods. Assery et al. [16] model provide the worst performance in all metrics. It uses 

content and user-related features for calculating reliability, which was not sufficient to provide good 

accuracy on the annotated data proposed by this study. Contextual indicators play a significant role 

in improving the reliability model’s performance compared to the previous Assery et al. [16] 

model. The best-performing machine learning model among all the selected models, according 

to the results, is random forest (RF). The proposed two-stage reliability assessment model 

proposed in this dissertation outperformed RF by a margin of more than 8% in terms of accuracy 
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and a very large margin in terms of F1 score (from 0.5845 to 0.7764). However, the matching 

learning model can be further improved by collecting and labeling more data. RF achieves a 

100% true positive rate. However, this rate is coming at the expense of the true negative rate which 

was very low (e.g., 0.22 for RF). Overall, the proposed two-stage reliability assessment model 

was able to achieve a good balance between true positive and true negative rates compared to the 

competing models. 

 

Table 24. Comparative analysis on Hurricane Harvey data) 
 

Model Macro-Acc Avr F1 TPR TNR FPR TP TN FP FN 

DT 0.6424 0.4875 0.9885 0.111 0.8888 86 6 48 1 

RF 0.7021 0.5845 1 0.2222 0.7777 87 12 42 0 

ADA 0.6453 0.4573 1 0.074 0.9259 87 4 50 0 

NB 0.4042 0.3224 0.0459 0.9814 0.0185 4 53 1 83 

LR 0.6170 0.3815 1 0 1 87 0 54 0 

Assery model [16] 0.3758 0.3182 0.068 0.8703 0.1296 6 47 7 81 

Two-stage model 0.7872 0.7764 0.816 0.7407 0.2592 71 40 14 16 
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CHAPTER 5 

 

 

DISCUSSION 

 

 

Social media platforms have emerged as an alternative means of communication during natural 

disasters. Reports from previous hurricanes indicate an increasing trend of individuals using social 

media networks, such as Twitter, to share information, request help, and react to emergencies 

during such events. Developing automated systems to extract actionable information from social 

media platforms is crucial. Researchers have proposed various computational methods, primarily 

machine learning methods, to extract useful information that meets disaster responders’ needs. 

Most of these methods focus on the generalized concept of ‘Situational awareness’. Identifying 

actionable messages posted on social media during natural disasters, such as implicit and explicit 

rescue requests, has received relatively less attention. To fill this gap, this study introduces novel 

methods for extracting reliable rescue information from Twitter during hurricanes. This chapter 

presents the key findings and limitations of this research, discusses the practical implications, and 

outlines future research directions. 

5.1 FINDINGS 

 

The first part of this study investigates the problem of identifying actionable emergency rescue 

tweets during hurricanes. This problem has been explored in a few prior research studies (e.g., 

[148], [137], and [34]). Researchers have applied supervised machine learning and deep learning 

methods, which learn textual features directly from raw tweets. This study investigates a novel 
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approach to improve the proposed rescue messages identification methods by using rescue related 

features (domain-dependent features) identified through regular expression (regex). The proposed 

features consist of (1) contextual features, (2) ask-for-help features, (3) rescue hashtags, and (4) 

address/location features. A set of non-rescue features—intended for exclusion—was also 

identified, including (5) political tweets, (6) offering-help features, (7) commercial tweets, (8) 

news reports, and (9) situational and rescue updates. 

This study presents two models: (1) a logic-based model that uses regex features, and (2) an 

integrated classification model, which employs two types of features: high-level problem-specific 

features and low-level statistical features derived from a fine-tuned BERT model. The 

experiments showed promising outcomes of the logic-based approach. The logic-based approach 

achieved F1 scores above 0.81 for both data set, showing an acceptable balance between the 

precision of the classifier and recall. This approach does not require training and produces an 

explainable classification output. Consequently, it can be employed as a quick method to collect 

rescue tweets as a new disaster unfolds. 

This study found that combining the two sets of features (low-level and high-level features) 

enhanced the model’s performance, as measured by the area under the precision-recall curve, 

achieving a better precision-recall balance. Furthermore, the experimental results demonstrated 

that both the BERT-Linear classifier and the integrated classifier significantly outperformed 

competing methods, such as TFIDF-SVM, Glove-CNN, and BERT-LSTM VictimFinder, in 

retrieving emergency rescue requests from large volumes of social media data. This finding 

aligns with previous research indicating that transformer models are highly effective in extracting 

rescue requests [148]. Furthermore, traditional classification models, such as CNN and SVM, are 

shown to be less effective for this problem and often fail to detect urgent tweets during crises. 
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BERT-LSTM (VictimFinder) surprisingly underperformed on both datasets compared to BERT-

Linear and the proposed model. This could be attributed to the core BERT model used in BERT-

LSTM being pretrained on a general corpus, which limits its ability to learn task-specific features. 

However, the core BERT model in the BERT-Linear classifier was fine-tuned end-to-end on the 

labeled dataset, resulting in better classification performance. The proposed model also used a 

fine-tuned BERT model for low-level feature generation, indicating the importance of using 

labeled examples from newly incoming hurricane events to calibrate the parameters of the 

transformer model. The area under the precision-recall curve (AUC-PR) metric provides an 

overall view of a model’s ability to balance precision and recall, determining which model offers 

an optimal balance. In the disaster response context, accurately identifying rescue requests while 

minimizing false positives is crucial for decision-makers to ensure resources are not wasted on 

false positive alerts. For both datasets, the AUC-PR metrics indicated that the proposed model 

performed best among all competing models. 

Both disaster response practitioners and researchers have acknowledged that first-hand 

information shared on social media channels is a valuable source of real-time information that 

should be integrated into the formal emergency workflow [77]. Nevertheless, the veracity of 

social media posts, especially those posted by the general public, remains a major concern [144]. 

The assessment of the reliability of social media messages during natural disasters poses a 

significant challenge. Calls for help and rescue messages are particularly difficult to verify during 

disasters. This research is a step forward in addressing this issue. While previous studies have 

focused on assessing the reliability of social media data in different contexts, such as general 

news and medical-related messages, the reliability of actionable social media information 
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in a disaster context has not been addressed. More specifically, none of the previous studies has 

addressed the reliability of the rescue requests posted on social media during disaster events. 

This study introduces a two-stage reliability scoring model to estimate the reliability of 

hurricane- related rescue messages. The proposed model was quantitatively evaluated on an 

annotated set of rescue tweets posted during Hurricane Harvey. This study found that the 

proposed two-stage reliability assessment model was effective in categorizing both high-

reliability and low-reliability rescue tweets, where reliability was approximated by the tweets’ 

locations within the FEMA dam- age assessment map. Machine learning models trained on the 

annotated dataset using user-related, post-related, and context-related features did not perform 

well in categorizing rescue tweets by reliability. This poor performance could be attributed to 

the small size of the dataset used for training. The best performing machine learning model 

was the random forest (RF). RF employs a rule-based approach for classification, making it more 

efficient with such a small dataset. This study found that the proposed reliability assessment 

model outperformed the RF by a margin of 8% in accuracy. The proposed reliability assessment 

model was compared to the unsupervised approach for reliability assessment proposed by Assery 

et al. [16]. The Assery model provided the worst performance among all models. This study 

found that the proposed reliability assessment model significantly outperforms the Assery 

reliability scoring model by very large margins. This could be attributed to the contextual 

indicators used in the proposed two-stage model that were not used in the previous model. The 

proposed two-stage reliability assessment model was compared to the unsupervised approach 

proposed by Assery et al. [16]. The Assery model provided the worst performance among all 

models. This study found that the proposed two-stage reliability assessment model offers 
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significant improvements over the Assery model measured by several metrics. Overall, this study 

demonstrates that the proposed reliability indicators provide better outcomes than those 

achieved by training machine learning models. 

 

5.2 LIMITATIONS 

 

The integrated classification model proposed in this study was evaluated on two distinct datasets 

representing different hurricanes. Unlike previous studies that focused on data from Hurricane 

Harvey, this study includes data from several hurricane events for more robust results. It is 

important to test the model’s performance across a broader range of hurricanes. Furthermore, it 

remains uncertain how the model would perform for other disaster events, such as fires, 

earthquakes, and man-made disasters since the proposed model was tested only on hurricane 

rescue tweets. Each disaster event is unique in terms of locations, people involved, and types of 

information, which might cause slight variations in how rescue-related social media posts are 

shared. Investigating the textual characteristics of these messages across a wide range of disaster 

types requires further investigation. 

The proposed classification model uses a supervised machine learning approach. To achieve 

optimal classification accuracy using a transformer-based classifier on a newly incoming (unseen) 

event, it still requires labeled data from the event to fine-tune the model. Relying solely on 

historical data is not sufficient. Data annotation is expensive and time-consuming. Therefore, 

labeling data with every new event is not a practical approach in humanitarian relief scenarios. 

Furthermore, conducting a cross-domain evaluation of the proposed model is crucial to assess the 

effectiveness of the model in predicting unseen tweets outside of the specific hurricane on which 

it was trained. While the integrated classifier demonstrated effectiveness in identifying rescue 
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requests with full addresses, it still requires improvement in identifying emergency rescue 

requests with partial location descriptions. 

The proposed two-stage reliability assessment model was evaluated on a relatively small data 

set, which presents a primary limitation of this study. A significant challenge is the high cost of 

data collection, as human resources are required to label social media messages. At this stage, 

the proposed model was evaluated using rescue messages collected during hurricane Harvey. The 

applicability of the proposed reliability assessment model to other event types (e.g., fires, 

earthquakes) and information types (e.g., infrastructure damage, urgent needs) needs further 

investigation. Reliability was approximated by the location of the tweet in the FEMA damage 

assessment map. The results apply to the defined criteria for reliability. However, the definition 

of reliability should be refined by involving domain experts and establishing new annotation 

guidelines accordingly. 

5.3 IMPLICATION(S) 

 

This research contributes to the crisis informatics body of knowledge and disaster management 

practice by developing novel models for identifying rescue messages on Twitter during hurricanes 

and assessing their reliability. The key contributions of this research are summarized as follows: 

1. This dissertation introduced two annotated datasets derived from different hurricane 

events. These data sets can be used in future studies focused on identifying rescue 

messages from social media during hurricanes. Additionally, this dissertation 

proposed a data set of rescue tweets annotated by reliability. Despite the limited size 

of the dataset, there is potential for expansion in future research. The annotation 

procedure that was employed to label rescue messages can be adopted in future 
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research investigating the reliability of social media data.  

2. This dissertation developed a novel classification framework to identify rescue 

messages on social media platforms, combining different domain-specific rule-based 

features with textual features learned by the pretrained language model (BERT) to 

improve the robustness of the classification model. The rescue features developed in 

this research showed a good predictive performance in identifying rescue messages. 

The proposed model achieved a good balance between false negatives and false 

positives, which is of practical importance for decision- makers and first responders 

in allocating resources during emergency events. 

3. This dissertation developed a credibility assessment framework for evaluating 

“actionable” rescue information posted on Twitter during hurricane events. The 

proposed model was evaluated using rescue tweets collected during Hurricane 

Harvey. This research offered useful insights into these rescue messages from a 

reliability assessment perspective. 

To the best of the author’s knowledge, no prior research has examined the reliability of 

actionable social media information during disasters, such as rescue requests. The proposed 

model carries a practical implication. It offers analysts an explainable reliability assessment tool to 

assess posted rescue messages based on several assessment dimensions. This would help 

analysts and decision-makers to alleviate the information overload problem during disasters. 

Furthermore, the outcome of the reliability assessment model can assist analysts and decision-

makers in building a meaningful operational picture of the situation and enhance ‘situational 

awareness’ through reliable information. 
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From a theoretical perspective, the proposed rescue features and the reliability indicators for 

building the credibility scoring model provide useful insights to researchers about the 

characteristics of these messages. Although transformer-based models have made significant 

advancements in a wide variety of applications, this study found that integrating problem-

specific features can further enhance their performance. The findings of this research can be 

used to build more efficient solutions for extracting useful information from social media 

platforms. 

5.4 RECOMMENDATIONS FOR FUTURE RESEARCH 

 

Research on the reliability of social media information in the context of natural disasters is 

largely unexplored. The present research represents a step forward in this area. Potential future 

research directions can be summarized as follows. To overcome the data annotation cost issue, 

several techniques, including few-shot learning and semi-supervised learning, can be utilized to 

improve model performance with only a few labeled data samples. Experimental results showed 

that location information in tweets is crucial but often challenging to extract, as it is not always 

provided in formal English and may contain grammatical errors, spelling mistakes, abbreviations, 

etc. Future work includes improving location information extraction from social media posts and 

extending the emergency scenarios to include wildfires, shootings, and earthquakes. Future 

research can also include qualitative studies, such as interviews with disaster response 

practitioners, to enhance understanding of how professionals perceive and evaluate the reliability 

of social media rescue messages. Such studies can help refine and enhance the proposed 

automatic tools, as well as develop more accurate annotation schemes for the problem. 
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APPENDIX A 

 

 

PUBLIC DATA SETS USED FOR RELIABILITY ASSESSMENT 

 

 

This dissertation explored publicly available datasets, particularly those focusing on detecting 

bots and spammers among social media users. Social media bot and spammer detection datasets 

are particularly valuable, as they provide insights into the characteristics of both legitimate and bot 

users on social media platforms. These insights are crucial for defining the appropriate metrics for 

the user reliability assessment component in the proposed reliability assessment model. 

Bot detection data set 1 –  To analyze the features that differentiate suspicious users (e.g., 

bots) from legitimate users, a data set that was published in [24] was used. This data set includes 

8386 user accounts labeled as ‘bot’ and ‘legitimate’ users. The class distribution is detailed in 

Table 26. The data set includes a wide range of features collected from the users’ meta-data, 

including the number of statuses posted by the user, followers, and friends counts, geocode 

information, verified status, and profile description, among many others. 

 

 

Table 25. Class distribution in bot detection data set 1 [24] 
 

Category Bot detection data set 1 

Bot user class 4912 

Legitimate user class 3474 

Total 8386 
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Bot detection data set 2 – This bot detection data set was proposed by Shevtsov et al. [118]. 

The authors proposed a supervised machine learning approach for bot accounts categorization in 

the U.S. 2020 elections. The authors have collected and annotated a large number of tweets. In 

total, the data set consists of 11836 users distributed as shown in Table 26. 

 

 

Table 26. Class distribution in bot detection data set 2 [118] 
 

Category Bot detection data set 2 

Bot user class 4569 

Legitimate user class 7267 

Total 11836 

 

 

 

 

Disaster-related tweets credibility –  Assery et al. [16] proposed an unsupervised learning 

approach to evaluate the credibility of disaster-related Twitter. In this study, 3 participants were 

hired to label a set of tweets collected during Hurricane Florence. The tweets were annotated based 

on a set of user-related and content-related criteria such as: 

• Is the user trusted? 

• Is the user verified? 

• Does the profile description contain slang and swear words? 

• Number of followers and friends 

• Number of posts 

• Length of the tweet 
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• Slang and swear words in the tweet 

 

• Linguistic features (e.g., exclamation marks, question marks, etc) 

 

• Number of retweets 

 

 

In total, 1500 tweets were labeled into two categories: (1) credible tweets and (2) non-credible 

tweets. The annotators assigned a confidence level for each annotation on a 10-point scale. 
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APPENDIX B 

 

 

RELIABILITY INDICATORS ANALYSIS FROM THE LITERATURE 

 

 

In the literature, reliability has been analyzed at different dimensions [2], [23], [58], [109]: (1) 

medium level, (2) topic level, (3) source level, (4) post level, and (5) contextual level. 

Medium credibility focuses on assessing the medium through which the message is 

disseminated (e.g., TV, radio, newspaper, social media platforms). Topic (event) credibility 

measures the level of trustworthiness associated with a specific topic or event referenced in 

several social media messages [23]. Source reliability examines the characteristics of the user 

posting the message, such as the number of followers, profile age, and number of friends, among 

others. Many studies presume that if the source is reliable, the message posted by this source is 

also reliable [109]. However, unlike conventional media such as newspapers, where the source is 

known, social media sources are mostly anonymous, making the process of assessing their 

reliability more challenging. Content credibility evaluates the features of the message itself, such 

as information quality, accuracy, and timeliness [78]. Contextual reliability evaluates the details 

surrounding the communicated message, including the time and location of the shared 

information. Source reliability or content reliability has been the primary focus of most of the 

reviewed studies in this dissertation. 

Source assessment indicators – Reliability assessment of social media accounts has received 

a lot of attention. Several studies have developed automated solutions for identifying bots, 

spammers, and fake social media accounts. Detecting non-reliable users can help prevent the 
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propagation of rumors and misinformation. To assess the reliability of social media users, two 

types of features were utilized in the literature: basic features and composite features. Basic 

features are direct data derived from Twitter profiles’ metadata, such as the number of followers 

and number of friends. Composite features are combinations of various metrics, such as the 

follower-followee ratio. Figure 43 presents the most used features as found in the reviewed 

studies. 

 

 

 

Figure 43. Top used indicators for source assessment in the literature 

 

 

Other relevant features include the user’s profile age, the number of URLs in the user’s shared 

statuses, the frequency of retweets of the profile statuses, and the number of followees. Composite 

metrics were less commonly used in the literature. Examples of these metrics are depicted in Table 

27. The identified features from the literature were categorized into several categories: 

• User popularity features: this category reflects the impact that an online user has on 
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other users (how well-known the source is?). It can be quantified by metrics, such as 

the number of followers, number of friends, etc. Those features are the most common 

features used for social media user assessment. 

• User reputation and authenticity: this category reflects the level of authenticity of a 

social media user. It can be quantified using metrics, such as account age and 

verification status. Authenticity assessment may also be derived from behavioral 

metrics, such as user activities, user response time, etc. 

• User Expertise: This category measures the user’s level of knowledge and expertise. 

Expertise is often topic-dependent and can be determined either from the profile’s 

description (e.g., bio) or through analyzing the user’s tweets and replies about a 

certain topic. 

 

 

 

Content indicators – Content reliability measures the level of relevance and accuracy in a given 

social media post and is directly related to the content of the post. A well-crafted, precise message 

often indicates a higher level of reliability. Most previous studies have focused on implementing 
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machine learning and deep learning models, predominantly utilizing raw text to discern the 

characteristics of suspicious messages. Nonetheless, several studies have also explored text-

related features within their models. Among these, linguistic features are the most used for 

classifying spam and fake messages. These features focus on examining the language structure of 

the text to detect key elements associated with suspicious messages, such as message length, the 

presence of question marks, and the use of pronouns, etc. 

Sentiment analysis is extensively utilized to detect suspicious messages and misinformation on 

social media. Suspicious messages and rumors are often associated with the presence of negative 

words. Emotions such as fear are also good predictors of spam, rumors, and fake news. Other 

key content factors found in the literature include URLs, image credibility, hashtags, the number 

of retweets, mentions, and message location. The trustworthiness of URLs embedded in social 

media messages is crucial; malicious users frequently use suspicious URL links to disseminate 

rumors and misinformation and promote suspicious content. The presence of an image 

significantly enhances the reliability of an online message. However, the authenticity of the 

attached images should be verified. The number and types of hashtags/mentions play a critical 

role in evaluating the reliability of a social media post. A common behavior among spammers is to 

leverage mention features and hashtags to tag users and draw attention to their messages. Finally, 

metrics that measure the level of interaction a social media message receives, such as the number 

of retweets, likes, and replies, are also relevant content indicators. The most relevant content-

related indicators are illustrated in Figure 44. These indicators were grouped into several classes, 

each of which analyzes the content of the shared message from a different angle:  

• Textual features: This class focuses on analyzing the language and textual styles used 
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in the shared message (e.g., linguistic features) 

• Engagement features: Who is interested in this information? This class focuses on 

analyzing the extent to which the shared message generates interaction and the 

popularity of the message (e.g., the number of retweets and replies). 

• Sentiment features: This class focuses on conducting a sentiment analysis to analyze 

the emotions and sentiments in the text of the message. 

• Provenance: How has the information changed? This class includes features that 

analyze the history of the information over time. 

 

 

 

 

 

Figure 44. Top used indicators for content assessment in the literature 

 

 

 

Contextual indicators – Contextual indicators are used to analyze the underlying context of 

social media information. They provide details about the time and location of the social media 

message and how coherent the information is with external sources. Using contextual factors to 

assess the credibility of online content was less common than content and source indicators. Jaho 



175 
 

 
 

et al. [58] proposed a credibility framework that evaluates the credibility of social media 

data-based on three "Cs": (1) contributor, (2) content, and (3) context. Among the contextual 

factors used in this framework are cross-checking, coherence, and information proximity. The 

posting time and location of the social media message are used as features in numerous papers. 

Following a discussion with a domain expert, it was highlighted that the time and location of 

information are important factors in determining the reliability and relevance of information on 

social media. 

Summary – Tables 28 and 29 report the source-related features employed in previous 

research. Tables 30 and 31 present content-related and contextual features. Some of these 

indicators were integrated into the proposed reliability scoring framework. 

 

 

Table 28. Source-related features from the literature 
 

Indicator Examples of features reference(s) 

Popularity nb.followers [111] [44] [68] [19] [102] [10] [124] [28] [58] [14] [39] 
  [129] [53] [113] 
 nb.followees [102] [124] [120] [47] [85] [21] [21] 

 nb.friends [102] [28] [111] [68] [19] [101] [58] [14] [28] [114] 

 

 

 

 

Table 29. Source-related features from the literature (cont.) 
 

Indicator Examples of features reference(s) 

Source location geo-tagging [111] [44] [124] [39] [12] 

Authenticity profile age [111] [102] [10] [124] [14] [109] 

 verified account [111] [68] [19] [10] [124] [58] [14] [85] [53] 

Expertise profile description (e.g., bio) [111] [68] [19] [10] [129] [21] [6] 

 topical expertise [94] 
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Table 30. Content and context-related features from the literature 
 

Indicator Examples of features reference(s) 

Proximity Location description [58] [39] [12] [6] 

Linguistic features nb.hashtags [111] [44] [19] [102] [10] [14] [109] [114] 
 URLs [111] [44] [68] [19] [102] [124] [14] [109] [114] 

Sentiments sentimental analysis features [44] [68] [19] [102] [46] [58] [135] [126] [109] [113] 

 

 

 

 

 

 

 

 

Table 31. Content and context-related features from the literature (cont.) 
 

Indicator Examples of features reference(s) 

Engagement nb.retweets [19] [102] [10] [58] [14] [47] [85] [53] [109] [113] [94] 
 nb,replies [39] [12] [28] [124] 

Time-features publication/replying time [111] [102] [58] [39] [12] 

 recency [44] [58] 
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APPENDIX C 

 

 

METRICS FOR THE CREDIBILITY INDICATORS 

 

 

This appendix provides details about the calculation of users’ location (GeoTagj) and 

content engagement Ei related metrics. 

 

User’s Location indicator – To determine the value to assign for the GeoTagj variable, bot 

detection data sets (presented in the previous appendix) were analyzed. 

First, a Fisher exact test was run to analyze the degree of association between the geo-

tag feature and user account type (bot/legitimate) in these data sets. The obtained odds ratio 

was 0.1446 (p-value = 0), indicating a strong negative association between the two 

variables. The likelihood of a user being geo-tagged is much lower for a bot account 

compared to a legitimate account. Then, the contingency table from the account type and 

geo-tag variables in the bot detection data sets was generated (Table 32). 

 

Table 32. Contingency table from the bot detection data sets 
 

 Geo-tagged not geo-tagged 

Number of bot accounts 1073 8408 

Number of legitimate accounts 5035 5706 

 

 

From the contingency table, the following conditional probability distributions of suspicious 

(e.g., bot, spam, and fake accounts) and legitimate users were calculated given the geo-tag variable. 
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The conditional probability distributions are shown in Table 33 

 

 

 

Table 33. Conditional probability distributions of geo-tagged users 
 

 P(geo-tagged=True) P(geo-tagged=False) 

P(suspicious = True | geo − tagged) 0.1757 0.5957 

P(suspicious = False | geo − tagged) 0.8248 0.4043 

 

 

 

Content engagement indicator – To assign values for the engagement metric TE1, the 

posterior probability distributions of the posts’ reliability were calculated by employing 

the Bayesian formula specified in Equation 25. To this end, Assery et al. [16] credibility 

data set was employed. 

 

In this equation, P(Credibility | Eclass) denotes the posterior probability that a tweet is 

credible (or non-credible) given its engagement class. P(Credibility) represents the 

likelihood of a tweet being credible (or non-credible), which is approximated from the ratio 

of tweets labeled as credible (or non-credible) to the total tweet count in the dataset. Lastly, 

P(Eclass | Credibility) is the prob- ability of observing a specific engagement category, 

given the tweet’s credibility. This likelihood is calculated through the frequency of each 

engagement class in credible (and non-credible) and non-credible tweets. The obtained 

posterior probabilities calculated are shown in Table 34. 
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The posterior probability distributions of the posts’ credibility were also calculated by employing 

the Bayesian formula specified in Equation 26. In this equation, P(Credibility | retweetclass) denotes 

the posterior probability that a tweet is credible (or non-credible) given its number of retweets (or 

retweet category). P(Credibility) represents the likelihood of a tweet being credible (or non- 

credible), which is approximated from the ratio of tweets labeled as credible (or non-credible) to 

the total tweet count in the dataset. Lastly, P(retweetclass | Credibility) is the probability of 

observing a specific retweet category, given the tweet’s credibility. This likelihood is calculated 

through the frequency of each retweet class in credible (and non-credible) and non-credible 

tweets. The obtained posterior probabilities calculated are shown in Table 35. 

 

Table 34. Posterior probabilities of posts’ credibility given the engagement category 
 

 Credible = True Credible = False 

P(Credible | EC1) 0.7035 0.2964 

P(Credible | EC2) 0.6883 0.3116 

P(Credible | EC3) 0.7464 0.2535 

P(Credible | EC4) 0.5540 0.4459 
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Table 35. Posterior probabilities of posts’ credibility given the retweet category 
 

 Credible = True Credible = False 

P(Credible | rtC1) 0.6269 0.3730 

P(Credible | rtC2) 0.7925 0.2074 

P(Credible | rtC3) 0.7215 0.2784 

P(Credible | rtC4) 0.8166 0.1833 
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