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I. Introduction

Actuator and sensor faults can cause poor performance or even
instability in dynamic systems. In flight control systems for aircraft
and spacecraft, such faults can lead to loss of control and serious
incidents. Therefore, rapid detection and identification of actuator
and sensor faults is important for enhancing flight safety. One
approach to fault detection and identification (FDI) in actuators and
sensors is based on multiple-model methods [1,2]. These methods
have been extended to detect faults, identify the fault pattern, and
estimate the fault values [3,4]. Such methods typically use banks of
Kalman–Bucy filters (or extended Kalman filters) in conjunction
with multiple hypothesis testing and have been reported to be
effective for bias-type faults, such as aircraft control surfaces getting
stuck at unknown values, or sensors (e.g., rate gyros) that develop
unknown constant or slowly varying biases. A basic requirement for
these methods is that the faults should be identifiable. Identification
of biases in the inputs and sensors was initially considered in [5].
Identifiability of bias-type faults was considered in [4] and

preliminary identifiability conditions were presented. A more
detailed analysis of identifiability was presented in [6]. This Note
provides a complete characterization of the conditions for
identifiability of constant bias-type actuator faults, sensor faults,
and simultaneous actuator and sensor faults. Section II considers
actuator faults and presents necessary and sufficient conditions
(NASC) for their identifiability. Section III presents NASC for
identifiability of sensor faults occurring in some of the sensors, and
Sec. IV presents NASC for identifiability of simultaneous faults in
actuators and sensors. Numerical examples are included to illustrate
the results.

II. Actuator Faults

Consider a linear time-invariant system:

_x � Ax� Bu�wp y � Cx�ws (1)

where x ∈ Rn, u ∈ Rm, wp ∈ Rn, y ∈ Rl, and ws ∈ Rl denote the
state vector, control vector, process noise, output vector, and sensor
noise, respectively, and A, B, and C are appropriately dimensioned
matrices; wp and ws are usually assumed to be zero-mean Gaussian
white noise processes.
In the actuator fault scenario considered in this Note, some of the

actuators may get locked in unknown positions at unknown time
instants (“stuck actuator” failures) and produce constant unknown
input values (a zero value represents complete actuator outage). Thus,
in the kth failure pattern, whenmk of them actuators fail, the system
dynamics becomes

_x � Ax�
X
j∈=F ak

bjuj �
X
j∈Fak

bj �uj �wp

� Ax� Bkuk � �Bk �uk �wp (2)

where Fak is the set of indices corresponding to the failed actuators,
and �uj denotes the corresponding failure value (for example,
deflection of a stuck control surface in aircraft); �uj is constant after
the failure occurs. There are up to (2m − 1) possible failure patterns
form actuators: �uk ∈ Rmk denotes the failure value for the kth failure
pattern; uk ∈ Rm−mk denotes the input vector corresponding to the
functioning actuators; �Bk denotes the columns ofB corresponding to
the failed actuators; and Bk denotes the remaining columns of B
corresponding to the functional actuators. An actuator fault is
identifiable if the failure can be determined and the fault value can be
estimated. In methods employing state augmentation, unknown bias
faults are represented as Wiener processes [7]. A specific (kth)
actuator fault pattern is isolated, and the corresponding fault values
�ukj are estimated by augmenting Eq. (2) with

_�ukj � wkaj (3)

where wkaj is a fictitious zero-mean white noise process. Thus, the
augmented equation corresponding to model k (failure pattern k) is

d

dt

�
x
uk

�
�
�
A �Bk

0 0

��
x
�uk

�
�
�
Bk

0

�
uk �wk (4)

where wk ∈ Rn�mk denotes the input noise vector consisting of the
process noise wp and the fictitious noise wka corresponding to �uk.
Denoting

ξk �
�
x
�uk

�
(5)

the system corresponding to failure pattern k is expressed as

_ξk � Akξξk � Bkξuk �wk (6)

y � �C 0 �ξk �ws :� Ckξξk �ws (7)

where Akξ and Bkξ are the augmented system- and input-matrices
from Eq. (4).
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In multiple-model-based methods, the FDI approach consists of
designing a bank of Kalman–Bucy filters (KBF), where each filter
corresponds to one of the 2m models, and determining (in real time)
which model correctly represents the actual fault pattern. Criteria
such as highest conditional probability or smallest residual norm are
used to determine the correct fault pattern. TheKBF corresponding to
the correct model also gives an unbiasedminimum-variance estimate
of the fault values. The KBF corresponding to model k is given by

_̂
ξ
k
� Akξ ξ̂

k � Bkξuk �Hk�y − Ckξ ξ̂
k� (8)

where ξ̂k denotes the estimate of ξk andHk (a function of time) is the
KBF gain. From Eqs. (6) and (8), the estimation error dynamics are
given by

_~ξ
k
� �Akξ −HkCkξ�~ξ

k �wk −Hkws (9)

where ~ξk � ξk − ξ̂k. The residual (which is used in decision making
to determine which fault model is “closest” to the actual system) is
given by

rk � y − Ckξ ξ̂
k � Ckξ ~ξ

k �ws (10)

For the KBF to work, the error dynamics [Eq. (9)] must be
asymptotically stable and unbiased, that is, the mean of ~ξk should
converge to zero and its covariance should be uniformly bounded
over t ∈ �0;∞�.
For failure pattern k, if �Bk is not of full rank, it is not possible to

distinguish between fault values for actuators corresponding to
linearly dependent columns of �Bk. For example, for some failure
pattern, if

�B � � �b1; �b2; �b3�

and if �b3 � α1 �b1 � α2 �b2 for some constant α1, α2, the input terms
due to the failed actuators are

�B �u � �b1 �u1 � �b2 �u2 � �b3 �u3 � �b1� �u1 � α1 �u3� � �b2� �u2 � α2 �u3�
(11)

That is, �u1, �u2, �u3 cannot be estimated individually; only the
aggregated fault values �u1 � α1 �u3, �u2 � α2 �u3 can be estimated.
Therefore, it is assumed henceforth that, for each failure mode, the
fault inputs corresponding to linearly dependent columns of �Bk have
been aggregated and that �Bk is of full rank. As a result, the number of
distinguishable failure patterns (and the corresponding Kalman–
Bucy filters) is usually less than (2m − 1).
The Kalman–Bucy filters can work correctly and give correct fault

estimates only if the augmented system (6), (7) is detectable
(preferably observable). Nondetectability or unobservability can
result in grossly erroneous estimates of the augmented state vector
and incorrect FDI. Furthermore, in the infinite-duration case, a
constant KBF gain Hk that stabilizes the system matrix in Eq. (9)
exists only if (Ckξ , A

k
ξ) is detectable, which is possible only if the

augmented zero-frequency modes of Akξ are observable. Although
detectability assures exponential decay of estimation error, it is
desirable to have observability, which provides the ability to obtain a
desired error decay rate. Thus, we define a fault to be identifiable (in
the weak sense) if the augmented system is merely detectable, and
strongly identifiable if the augmented system is observable. The
following theorem gives necessary and sufficient conditions for
detectability (respectively, observability), that is, for weak and strong
identifiability of the kth actuator failure pattern.
Theorem 1: The pair (Ckξ , A

k
ξ) is detectable (respectively,

observable) iff all of the following conditions are satisfied:
1) l ≥ mk.
2) The pair (C, A) is detectable (respectively, observable).
3) The system (C, A, �Bk) has no invariant zeros at the origin.

Proof:Applying the Popov-Belevitch-Hautus (PBH) rank test [8],
(Ckξ , A

k
ξ) is detectable [respectively (resp.), observable] iff

rank

2
6664
sI − A − �Bk

0 sImk

C 0

3
7775 � n�mk

for s ∈ fΛu�A� ∪ 0g �resp:; s ∈ fΛ�A� ∪ 0g� (12)

where Λ�A�, Λu�A� denote the sets of eigenvalues of A and closed-
right-half-plane (CRHP) eigenvalues of A, respectively. The first n
columns of the PBH test matrix are independent for all s ∈ fΛu�A� ∪
0g�resp:; s ∈ fΛ�A� ∪ 0g� iff (C, A) is detectable (resp., observable).
For s ≠ 0, the last mk columns are mutually independent as well as
independent of the firstn columns, thus the test matrix has a full rank.
For s � 0 , the rank condition (12) is satisfied iff l ≥ mk and (C, A,
�Bk) has no invariant zeros at s � 0. □
Remark 2.1: The invariant zeros of (C, A, �Bk) mentioned in

Theorem 1 include transmission zeros and (some or all of the) input
decoupling zeros (IDZs) [9]. The IDZs are simply the eigenvalues of
A corresponding to the uncontrollable modes of (A, �Bk). Because (C,
A) is detectable, there are no output decoupling zeros in the CRHP.
Note that �Bk corresponds to failed actuators in failure pattern k;
therefore, (A, �Bk) may not be controllable for all k. For the
corresponding models, Theorem 1 requires that the uncontrollable
modes must not have zero eigenvalues that are also invariant zeros. If
(A, �Bk) is controllable, the invariant zeros are just the transmission
zeros. If the system is degenerate (i.e., if the rank of the Rosenbrock
system matrix [9] is less than full rank for all s in the complex plain),
there is an invariant zero at every complex number including the
origin, and Condition 3 of Theorem 1 is violated.
Remark 2.2: In practical implementations, the estimation is

performed in a discrete-time setting using discrete-time Kalman
filters. The detectability conditions of Theorem 1 are very similar, the
only difference being that, in Condition 3, the phrase “no invariant
zeros at the origin” is replaced by “no invariant zeros at unity” [for the
discretized version of (C, A, �Bkξ)].
Remark 2.3: If (C,A) is observable, the unobservable subspace �Ok

ξ

of (Ckξ , A
k
ξ) can be obtained as follows after some manipulation:

�Ok
ξ � N

2
6664

Ckξ
CkξA

k
ξ

..

.

Ckξ�Akξ��n�mk−1�

3
7775 � N

�
A �Bk

C 0

�
(13)

whereN �·� denotes the null space. Thus, the unobservable subspace
of (Ckξ , A

k
ξ) consists of the generalized eigenvectors of (C, A, �Bk)

corresponding to the invariant zeros at the origin.
Remark 2.4: It is intuitively straightforward to see that a

transmission zero at the origin adversely affects the ability to estimate
a constant fault value �u, because input frequency components
corresponding to the transmission zeros do not appear in the output.
Furthermore, a set of initial conditions exists such that y�t� is
identically zero.
We consider two illustrative examples, a large transport aircraft

and a small experimental uninhabited aerial vehicle (UAV), which
have qualitatively different dynamic characteristics, as described
next.
Example 1: Consider a fourth-order longitudinal dynamics model

of a large transport aircraft inwings-level cruise condition,whichwas
used in [4]. The state vector consists of the pitch rate, forward speed,
angle of attack, and pitch angle (i.e., x � �q; v; α; θ�T), and the control
vector consists of elevator deflection and engine thrustu � �ue; uT �T :
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A �

2
666664

−0.6803 0.0115 −1.0490 0

−0.0026 −0.0062 −0.0815 −0.1709

1.0050 −0.0344 −0.5717 0

1.0000 0 0 0

3
777775;

B �

2
666664

−44.5192 0.88254

0 1.3287

−11.4027 −0.0401

0 0

3
777775 (14)

All eigenvalues of A are in the left half-plane, and it can be verified
that the system is controllable with respect to either input (i.e., there
are no IDZs). Also, (C, A) is observable for all sensor suites. For the
purpose of this example, considering that 1–4 sensors can be used,
there are (24 − 1) possible sensor suite configurations. There are
(22 − 1) possible actuator failure states for the two actuators,
therefore, the total number of fault cases for the 15 sensor suite
configurations is 45. Out of these, four cases violate Condition 1 in
Theorem 1 (l < mk). In addition, four cases were found to have
invariant zeros at the origin: y � x1 and actuator 1 or 2 fail; y �
�x1; x2� or y � �x1; x3� and both actuators fail. For these cases, the
faults are not identifiable. In addition, when y � �x1; x4�, the two-
actuator fault is not identifiable because the system is degenerate (the
rank of the Rosenbrock system matrix is less than the full rank; see
Remark 2.1). For all the remaining cases, the actuator faults are
strongly identifiable.
Example 2: Consider the linearized sixth-order longitudinal

dynamics of the Cranfield A3Observer, a research UAV presented in
[10], in cruise condition. The UAV’s airframe is a gust-insensitive
configuration [11]. For improved performance, the center of gravity
is placed aft of the neutral point. The state vector consists of the
forward speed, vertical speed, pitch rate, pitch angle, altitude, and
engine rpm (i.e., x � �v; w; q; θ; h; NE�T). The control vector
consists of engine thrust (throttle) and elevator deflection (i.e.,
u � �uT; ue�T). In this example, the output matrix (sensor suite) is
specified in addition to the system and input matrices:

A �

2
66666666664

−0.146 −0.016 0.557 −9.809 0 0.001

−0.63 −4.487 34.57 0.161 0 0

0.001 0.039 −0.894 0 0 0

0 0 1 0 0 0

−0.016 −1 0 35.2 0 0

665.7 −6.89 0 0 0 −8.57

3
77777777775
;

B �

2
66666666664

0 −1.368

0 −19.96

0 −15.96

0 0

0 0

45; 910 0

3
77777777775
;

C �

2
6666666664

1 −0.014 0.019 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0.984 0

0 0 0 0 0 1

3
7777777775

(15)

where the output measurements are selected to be y � �ve; q;
θ; he; NE�T , ve represents the measured speed error (relative to the
trim speed), and he represents the perturbed altitude.
The linearized dynamics are analyzed in [10]. In particular, the

model has one eigenvalue at zero corresponding to the altitude mode
and a dominant well damped complex pair. For this configuration, the
axial phugoid mode is unstable and coupled to the single-pole short
period mode. The system is controllable with respect to either input;
thus, there exists no input decoupling zeros. Furthermore, because
the sensor suite is specified, the number of sensor configurations is
limited to this single case. There are (22 − 1) possible actuator failure
states for the two actuators. All of the actuator failure cases for the
given nonbiased sensor suite are strongly identifiable (i.e., the
conditions of Theorem 1 were satisfied).
All numerical results for the examples are summarized in Table 1,

which includes results for actuator, sensor, and simultaneous
actuator–sensor fault cases (the last two fault types are discussed in
the following sections). The table lists the numbers of possible fault
cases and the numbers of nonidentifiable cases for each fault
condition. Note that the second example has fewer fault cases
because the sensor suite was fixed.

III. Sensor Bias

Consider the case when there are no actuator failures but q of the l
sensors have unknown sensor biases (or are known to be prone to
developing biases). Denote the bias-free part and the biased part of
the sensor output vector as y1 and y2, respectively, and the
corresponding output matrices as C1 ∈ R�l−q�×n and C2 ∈ Rq×n.
Then, the sensor output equation is

y �
�
y1
y2

�
� Cx�

�
0

�y2

�
�ws �

�
C1x

C2x� �y2

�
�ws (16)

where �y2 ∈ Rq is the sensor bias vector andC � �CT1 CT2 �T . Aswas
done in the case of linearly dependent columns of �Bk, it is assumed
that linearly dependent sensor outputs have been combined andC has
a full row rank. (Biases corresponding to linearly dependent sensors
cannot be estimated individually and must be aggregated).
Upon augmenting the sensor bias �y2 to the state vector, the system

becomes

_η :� d

dt

�
x
�y2

�
�
�
A 0

0 0

�
η�

�
B
0

�
u�w 0 :� Aηη� Bηu�w 0

(17)

y �
�
C1 0�l−q�×q
C2 Iq

�
η�ws :� Cηη�ws (18)

where w 0 denotes the augmented process noise vector.
The bias estimation approach involves constructing a KBF for the

augmented system (17), (18). As in the case of actuator faults,
detectability of (Cη, Aη) is essential for the KBF to function correctly
(observability is desirable). The following theorem gives necessary
and sufficient conditions for identifiability of sensor faults.
Theorem 2: The pair (Cη, Aη) is detectable (respectively,

observable) iff the following conditions are satisfied:
1) The pair (C, A) is detectable (respectively, observable).
2)All zero-frequencymodes ofA are observablewith respect to the

bias-free sensor outputs.
Proof: Applying the PBH rank test, (Cη, Aη) is detectable

(respectively, observable) iff
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rank

2
666664

sI − A 0

0 sIq

C1 0

C2 Iq

3
777775 � n� q

for s ∈ fΛu�A� ∪ 0g �resp:; s ∈ fΛ�A� ∪ 0g� (19)

The first n columns of the PBH test matrix are linearly independent
∀ s ∈ fΛu�A� ∪ 0g�resp:; ∀ s ∈ fΛ�A� ∪ 0g� if (C, A) is detectable
(respectively, observable). For s ≠ 0, the last q columns are mutually
independent as well as independent of the first n columns. For s � 0,
the rank of the test matrix is n� q iff

rank

" sI − A 0

C1 0

C2 Iq

#
s�0

� n� q (20)

Because elementary column operations do not change the column
rank,

rank

2
664
sI − A 0

C1 0

C2 Iq

3
775
s�0

� rank

8>><
>>:

2
664
sI − A 0

C1 0

C2 Iq

3
775
s�0

� In 0

−C2 Iq

�9>>=
>>;

� rank

2
664
sI − A 0

C1 0

0 Iq

3
775
s�0

(21)

Thus, the rank of the PBH test matrix at s � 0 is n� q iff the first n
columns are linearly independent for s � 0 (i.e., iff the zero-
frequency modes of A are observable with respect to C1). □
When all sensors have biases (i.e., q � l), they are identifiable

(respectively, strongly identifiable) when (Cη, Aη) is detectable
(respectively, observable), as stated next.
Corollary 2.1: If all sensors have biases, (Cη, Aη) is detectable

(respectively, observable) iff the following conditions are satisfied:
1) (C, A) is detectable (respectively, observable).
2) A has no zero eigenvalues.
Remark 3.1: For the case when all sensors have biases, the

condition thatA should not have zero eigenvalues is rather restrictive,
because many engineering systems have free integrators in their
dynamics. However, there does not appear to be an obvious way of
getting around this problem. Consider the effect of using output
feedback which moves the eigenvalues away from the origin, for
example,

u � −Gy � −G�Cx� �y�ws� (22)

whereG ∈ Rm×l and �y � �0; �yT2 �T , which gives the following closed-
loop system (including the augmented state �y):

_η �
�
A − BGC −BG

0 0

�
η�w :� A 0ηη�w (23)

y � �C I �η�ws (24)

The pair (Cη, A
0
η) is detectable iff

rank

2
664
sI − A� BGC BG

0l×n sIl

C Il

3
775 � n� l

for s ∈ fΛu�A − BGC� ∪ 0g (25)

Proceeding as in the proof of Theorem 2, the first n columns are
linearly independent for s ∈ CRHP iff �C; �A − BGC�� is detectable.
For s ≠ 0, the last l columns of the PBH test matrix are mutually
independent as well as independent of the first n columns. For s � 0,
because the rank of a matrix is unchanged by multiplication by an
elementary matrix,

rank

��
In −BG
0 Il

��
sI − A� BGC BG

C Il

�
s�0

�

� rank

�
sI − A 0

C Il

�
s�0

(26)

The rank is n� l iff A has no eigenvalue at the origin. Thus, using
feedback to move the eigenvalue away from zero does not make the
augmented closed-loop system detectable.
Remark 3.2: If A has one or more zero eigenvalues, the

unobservable subspace of (Cη, Aη) can be readily obtained. Defining

Γ � � 0q×�l−q� Iq �T , the unobservable subspace is

�Oη � N

2
666664

C Γ
CA 0

CA2 0

..

. ..
.

CAn�q−1 0

3
777775 (27)

That is, if �xT1 ; xT2 �T ∈ �Oη,

Cx1 � Γx2 � 0; �OT XT �TAx1 � 0 (28)

where O � �CT; ATCT; : : : ; �An−1�TCT �T and X � ��AT�nCT : : :
�AT�n�q−2CT �T . (X is present in Eq. (28) only if q ≥ 2.) If (C, A) is
observable, �OT XT �T has full column rank. Therefore,

Ax1 � 0; C1x1 � 0; C2x1 � x2 � 0 (29)

That is, x1 must be an eigenvector of A corresponding to a zero-
frequency mode of A that is unobservable with respect to C1. If all
zero-frequency (“0-freq”) modes of A are observable with respect to

C1, then x1 � 0, therefore, x2 � 0, �Oη � 0, and the augmented

system is observable, which is consistent with Theorem 2. If some

zero-frequency modes of A are not observable with respect toC1, �Oη

can be characterized as

Table 1 Summary of results for Examples 1 and 2

Example 1 Example 2

No. of fault
states Nonidentifiable cases

No. of fault
states Nonidentifiable cases

Actuator faults 45 Four due to Theorem 1(1); five due to Theorem 1(3)
(includes one degenerate case)

3 None

Sensor faults 65 None 31 16 due to Theorem 2(2)
Actuator and
sensor faults

195 73 due to Theorem 3(1); 23 due to Theorem 3(3)
(includes three degenerate cases)

93 Eight due to Theorem 3(1); 42 due to Theorem 3(3)
(includes one degenerate case)
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�Oη�
�� x1

−C2x1

�
; x1� eigenvector ofAcorresponding to

unobservable 0-freqmodes

�
(30)

Remark 3.3: In practice, the Kalman filter is implemented in a
discrete-time setting, and Condition 2 in Theorem 2 changes to “all
modes corresponding to λ�A� � 1 are observable with respect to the
bias-free sensor outputs” (for the discretized version of A).
For the aircraft longitudinal dynamics model in Sec. II, if k sensors

are used in a sensor suite, there can be 4Ck (nCr denotes
n!∕�r!�n − r�!�) such combinations (sensor suites) for each
k � 1; : : : ; 4. Each of the k sensors in a sensor suite may or may
not have a bias (i.e., there can be up to 2k − 1 cases with at least one
biased sensor). This yields 4Ck × �2k − 1� combinations. When
summed over 1–4, the number of such combinations is 65. BecauseA
is Hurwitz, the detectability conditions in Theorem 2 are satisfied.
Furthermore, for this example, (C, A) is observable for all the
corresponding C’s, and the sensor faults are strongly identifiable.
For the UAVexample in Sec. II, there is a single sensor suite given

with five measurements; thus, there are �25 − 1� � 31 possible
sensor bias cases. The pair (C, A) is observable. There were 16 cases
of nonidentifiability due to violation of Condition 2 in Theorem 2,
that is, A has unobservable zero-frequency modes with respect toC1,
the bias-free part of the output. All of these cases included a bias in the
he sensor, with one case occurring due to a fault in he alone, and 15
cases occurring due to biases in he and all the other combinations of
sensors. The remaining 15 cases are strongly identifiable.
The identifiability results for both examples are summarized in

Table 1.

IV. Simultaneous Actuator Faults and Sensor Bias

For the case with actuator fault pattern k, if q of the sensors have
biases, the augmented system is given by

d

dt

"
x
�uk

�y2

#
:� _φ �

"
A �Bk 0

0 0 0

0 0 0

#
φ�

"
Bk

0

0

#
uk �w 0 0 (31)

:� Aφφ� Bkφuk �w 0 0 (32)

y �
�
C1 0 0

C2 0 Iq

�
φ�ws � Cφφ�ws (33)

where w 0 0 is the augmented process noise vector. The following
theorem gives necessary and sufficient conditions for identifiability
of simultaneous actuator faults and sensor bias.
Theorem 3: The pair (Cφ, Aφ) is detectable (respectively,

observable) iff the following conditions are satisfied:
1) l ≥ mk � q.
2) The pair (C, A) is detectable (respectively, observable).
3) The system (C1, A, �B

k) has no invariant zeros at the origin.
Proof: Applying the PBH rank test, (Cφ, Aφ) is detectable

(respectively, observable) iff

rank

2
666666664

sI − A − �Bk 0

0 sImk 0

0 0 sIq

C1 0 0

C2 0 Iq

3
777777775
� n�mk � q

for s ∈ fΛu�A� ∪ 0g �resp:; s ∈ fΛ�A� ∪ 0g� (34)

The first n columns of the PBH test matrix are linearly independent
for all s ∈ fΛu�A� ∪ 0g (respectively, s ∈ fΛ�A� ∪ 0g) iff (C, A) is
detectable (respectively, observable). For s ≠ 0, the last mk � q
columns are mutually independent as well as independent of the first
n columns. For s � 0, the columns of the test matrix are linearly
independent iff the columns of the following �n� l� × �n�mk �
q� matrix (after applying elementary column operations as shown)
are linearly independent:

2
6664
sI − A − �Bk 0

C1 0 0

C2 0 Iq

3
7775
s�0

2
6664
In 0 0

0 Imk 0

−C2 0 Iq

3
7775

�

2
664
sI − A − �Bk 0

C1 0 0

0 0 Iq

3
775
s�0

(35)

The columns of the preceding matrix are linearly independent iff
Conditions 1 and 3 hold. □

If all sensors have biases (q � l), Condition 1 cannot be satisfied in
the presence of one or more actuator failures and the system is not
detectable. This represents a major limitation of this approach to FDI
when actuator faults and sensor biases are simultaneously present,
and suggests that some alternate techniques should be considered
(perhaps for sensor FDI).
For the aircraft example, in addition to sensor biases (as discussed

in Sec. III), if one, two, or both actuators fail, then the total number of
possible combinations is 65 × 3 � 195, out of which 99 were found
to be strongly identifiable. The 96 nonidentifiable cases included 20
cases with invariant zeros at the origin, 3 degenerate cases, and 73
cases in which Condition 1 in Theorem 3 was violated.
For the UAV example, the total number of possible fault

combinations is �25 − 1� × �22 − 1� � 93, out of which eight were
not identifiable due to violation of Condition 1 in Theorem 3, that is,
l < mk � q, and 42 were not identifiable due to violation of
Condition 3 (i.e., invariant zeros at the origin). Of the cases of
nonidentifiability due to invariant zeros at the origin, one case is also
an instance of a degenerate system, so that every point in the entire s
plane is an invariant zero. In all but one of the nonidentifiable cases, a
bias is present in the he measurement. When the he measurement is
not biased, the only nonidentifiable fault requires that both actuators
fail and that there are biases in the measured velocity and pitch angle.
The remaining 43 cases are strongly identifiable.
The identifiability results for both examples are summarized in

Table 1.

V. Conclusions

Aclass of FDImethods for bias-type actuator and sensor faultswas
explored in detail from the point of view of fault identifiability. The
methods use banks of KBFs to detect faults, determine the fault
pattern, and estimate the fault values. A complete characterization of
conditions for identifiability of bias-type actuator faults, sensor
faults, and simultaneous actuator and sensor faults was presented. It
was shown that FDI of simultaneous actuator and sensor faults is not
possible using these methods when all sensors have unknown biases.
The fault identifiability conditions were demonstrated via numerical
examples. The analytical and numerical results indicate that caution
must be exercised to ensure fault identifiability for different fault
patterns when using such methods. Future work in this area should
address detection and identification of a larger class of faults, such as
time-varying biases (including oscillatory faults), reduced effective-
ness, as well as unknown disturbances.
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