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Abstract

Summary: This article suggests a novel positive false discovery rate (pFDR) controlling method for testing gene-specific hypotheses using a
gene-specific covariate variable, such as gene length. We suppose the null probability depends on the covariate variable. In this context, we pro-
pose a rejection rule that accounts for heterogeneity among tests by using two distinct types of null probabilities. We establish a pFDR estimator
for a given rejection rule by following Storey’s g-value framework. A condition on a type 1 error posterior probability is provided that equivalently
characterizes our rejection rule. We also present a suitable procedure for selecting a tuning parameter through cross-validation that maximizes
the expected number of hypotheses declared significant. A simulation study demonstrates that our method is comparable to or better than exist-
ing methods across realistic scenarios. In data analysis, we find support for our method’s premise that the null probability varies with a gene-

specific covariate variable.

Availability and implementation: The source code repository is publicly available at https://github.com/hsjeon1217/conditional_method.

1 Introduction

Gene expression refers to messenger RNA transcript abun-
dance quantified by RNA profiling techniques. The invention
of RNA-seq enables researchers to profile nearly all genes in
an organism simultaneously. Research questions involving
RNA-seq data often focus on identifying genes differentially
expressed (DE) across different experimental conditions.
Genes not DE are called equally or equivalently expressed
(EE) genes. DE genes are typically identified through hypothe-
sis testing on each gene in a statistical framework, viewed as a
multiple testing problem. When dealing with gene expression
data under the multiple testing framework, the most useful er-
ror quantity is typically the false discovery rate (FDR), intro-
duced by Benjamini and Hochberg (1995). FDR refers to the
expected proportion of false positives among all tests whose
null hypotheses have been rejected. The most widely used pro-
cedure is Storey’s (2002) g-value method.

Contemporary methods for FDR control are based on gene-
specific covariate variables such as mean nonzero expression
and the proportion of samples with the nonzero expression
(Korthauer et al. 2019). As circumstances vary across hypothe-
sis tests, it is vital to consider each test separately. Cai and Sun
(2009) developed an FDR-controlling method using external
grouping information. An FDR regression method proposed
by Scott et al. (2015) regulates FDR by utilizing the local FDR

and treating the null probability as a function of covariate vari-
ables. Lei and Fithian (2016) and Li and Barber (2019) also
used prior information regarding a specific predetermined
structure in the pattern of locations of the signals and nulls
within the list of hypotheses, such as ordered structure, to ad-
just the P-values adaptively. Boca and Leek (2018) also pro-
posed a method (BL), considering the FDR and null probability
as functions of a covariate variable. Ignatiadis et al. (2016) and
Ignatiadis and Huber (2021) proposed an independent hypoth-
esis weighting method (IHW) which maximizes the number of
rejected null hypotheses, based on a covariate-variable-based
group. Recently, Lei and Fithian (2018) developed a covariate-
specific P-value thresholding method (AdaPT), based on adap-
tively determined significance thresholds.

The AdaPT method has developed into a powerful ap-
proach that is expected to yield more discoveries by focusing
on promising hypotheses and utilizing adaptively defined
P-value rejection thresholds. Initially, the method establishes
a constant threshold across all covariate values. The initial
threshold is updated continuously to gradually increase rejec-
tion power. As a result of considering multiple thresholds, we
predict that the method’s average ability to classify the true
positives across all nominal FDR levels may deteriorate.
Simultaneously, adaptively determined thresholds complicate
FDR estimation.
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This article presents a novel and more straightforward rejec-
tion rule that accounts for the heterogeneity between hypotheses.
Specifically, our rejection rule is based on the product of the
P-value and covariate-specific conditional null probability, given
the P-value is no larger than o. Due to the simplicity, the ap-
proach easily demonstrates positive FDR (pFDR) control of the
type suggested by Storey (2002). Because pFDR provides an up-
per bound on FDR, our approach also provides FDR control.
We demonstrate that the rejection rule is uniquely determined
by a property of equalizing a particular conditional type 1 error
posterior probability across tests.

Recently, it was discovered that there exist relationships be-
tween biological timing and gene length: shorter genes tend to
regulate immediate physical processes such as skin recovery,
whereas longer genes tend to regulate long-term physical pro-
cesses such as muscle development (Lopes et al. 2021). Thus, the
fraction of DE or EE genes may vary by gene length depending
on the experimental conditions studied. From a Bayesian per-
spective, the null probability may vary by gene length. Because
of this heterogeneity, we consider gene length as a covariate vari-
able potentially important to consider when identifying DE
genes. Though we focus exclusively on gene length in this article,
our approach is applicable for any gene-specific covariate.

The remainder of this article is organized as follows. In
Section 2, we define our method in detail and argue its mathe-
matical implications in terms of posterior probability. In Section
3, we demonstrate the effectiveness of the method through simu-
lation studies. In Section 4, we illustrate our method’s efficacy
through data analysis. Lastly, Section 5 evaluates the proposed
method’s potential for further development.

2 Materials and methods

Our research objective is to declare genes to be DE while con-
trolling pFDR in the multiple testing framework. Our method
is inspired by Storey’s (2002) g-value method based on the
Bayesian perspective. Following the Bayesian perspective, we
consider two types of conditional prior probabilities of being
an EE gene, also referred to as conditional null probabilities.
Both conditional null probabilities are considered as functions
of a covariate variable. Section 2.1 presents a rejection rule
based on a conditional null probability. By inverting the rejec-
tion rule, its rejection region is naturally determined in
Section 2.2. In Section 2.3, we establish the pFDR estimator
and g-value estimator based on another conditional null
probability through mathematical reasoning. Section 2.4
describes a procedure for estimating the conditional null
probabilities, which serves as the foundation for our method.
Section 2.5 delves into the rejection rule’s intrinsic meaning
regarding posterior probability.

2.1 Rejection rule

Our rejection rule is based on the premise that a P-value rejec-
tion threshold should be negatively associated with null prob-
ability. Furthermore, we assume that null probability is
associated with a gene-specific covariate. This assumption is
reasonable given the change in the fraction of DE genes with
gene length discussed in the previous section. Therefore, we
present a rejection rule based on the conditional null probabil-
ity, given the covariate and an event involving the P-value.
Consider hypothesis testing for each of m genes. For gene
je{l,...,m}, let X; and P; denote the value of a covariate
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and the P-value, respectively. Let Hy, denote the event that
gene j is an EE gene. Let

no(X;) = P(Hoj|X;) and (1)

. (Xj) = P(Ho;|P; < o, Xj). (2)

Expressions (1) and (2) are conditional probabilities of gene j
being an EE gene. These conditional null probabilities are
functions of the covariate value Xj. Furthermore, (2) is the
conditional null probability conditioning on the jth P-value
being no larger than o. It is worth noting that « can either be
specified as a value or selected via a procedure, as described
in Section 3.2. Define the jth p-value as P; = P; - mg|,(X;). The
following is the rejection rule we propose:

Rejection Rule 2.1. Reject all null hypotheses whose p-value
< t, for some > 0.

The genes declared to be DE (DDE) following Rejection Rule
2.1 are naturally determined by {j : P; < ¢}. Under the rejection
rule, both the P-value and the conditional null probability in (2)
affect the rejection decision for each hypothesis test. Note that
we initially assume that 7g(-) and 7, (-) are known and then re-
place these functions with estimates discussed in Section 2.4.
Section 2.5 discusses the rejection rule’s intrinsic meaning.

2.2 Rejection region

By inverting the rejection rule, the rejection region for the
P-value of the jth gene can be obtained as follows:

Ix(6) ={p € [0,1] : p - m0iu(X)) < 1} = [0,(X))],  (3)

where #,(X;) =1 if mo(X;) < ¢ and u,(X)) = t(X») other-
wise. Note that /

P; <t<+= P eTlx(t) <= P < w(X)). (4)

Considering the rejection region associated with a rejection rule is
useful for estimating the pFDR and for gaining a better under-
standing of the rule. Figure 1B illustrates how the rejection region’s
upper bound varies with x for various #values for the arbitrarily
chosen |, (x) in Fig. 1A. In addition, Fig. 1B demonstrates that
genes with relatively high P-values may, nonetheless, be declared to
be DE genes when their conditional null probabilities are low. The
phenomenon is noticeable when x is between 2 and 3.

2.3 False discovery rate estimator

For a given p-value significance threshold #, the number of
genes declared to be DE is

R =3 1P, < 1) 5
=1

I

The number of false positives among the R(#) genes can be
expressed by

V(t) = Zm: Vi(t), where Vi(t) = 1(P; < t,Hp).  (6)
j=1

From (4), V;(¢) has another expression:
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Figure 1. An example function rg|,(x) is depicted in (A), and the rejection regions’ upper bounds created by five distinct t-values are illustrated in (B).

Vi(t) = H{P; < u(X;)),Hoj} (7)

pFDR can be defined as pFDR(#) = E{%H{(t) > 0}. For a

generalized significance region T of P;, V(') and R(T") can be
naturally defined by replacing P; < ¢ with P; € T in the defi-
nitions (5) and (6). The positive FDR is defined by

pFDR(T") :E{%U{(f) > O}. The following theorem is

based on the generalized significance region T".

Theorem 2.1. Suppose m identical hypothesis tests are
performed with Py, ..., P,, and significance region I".
Let ta(-) = 1 — mo(+). Assume that (P1, Hy, X1), ...,
(P, Hyy Xo) are i.i.d. random vectors, where
Pj = P; - mop(X;), Pj|H;, X; ~ (1 - Hj) - Fo + H; - Fy
for some null distribution Fy and alternative
distribution F;, and Hj|X; ~ Bern(ns(X;)), Xj~Fx for
j=1,...,m. Then,

&=

v(I)

pFDR(T) = P(H; = 0|P; € T') = ER()

Vi=1,...,m. (8)

Supplementary material contains the proof of
Theorem 2.1.

Remark 2.1. The marginal distribution of H; in Theorem 2.1
is Bern(my), where 14 = 1 — mp and
o =P(H; = 0) Vj = 1,...,m. In this framework,
(P;, H;) are i.i.d. random variables, where
P/|HI‘ ~ (1 — H]) - Fo + H,' - F; and Hf ~ Bern(nA). The
standard g-value method is established on this modeling
setup. Therefore, we can still apply the standard g-value
method, while controlling pFDR, to the P-values
generated from the model in Theorem 2.1.

Theorem 2.1 establishes that pFDR(¢) = %X(ﬁ). Our estima-
tor is obtained by estimating EV (¢) and ]ER(tS. The denomi-
nator ER(¢) can be easily estimated as R(¢). However, the
number of false positives V(¢) is unknown. To estimate the

numerator EV(¢), we propose to estimate EV(¢) using
IE{V(t)\Y = (X1,...,Xm)}, which is both the best predictor
of V(¢) under a squared error loss function and an unbiased
estimator of EV(2).

When the simple null hypothesis is true, and the test statis-
tic is continuous, the P-value follows a uniform distribution
between 0 and 1. From this fact, we make the following
assumption:

Assumption 2.1. Pj|H; = 0 ~ Unif(0, 1).

Let Y,,- denote a vector X without the jth element.
Under the model assumption described in Theorem
2.1, the following properties are obtained:

(P, H, X;)LX _; — P,|X £P,|X; )
(P, H;, X)) LX _j — H| X £ Hy|X; (10)
(P;, Hj, X)) LX ;= Pj|H;, X £ Pj|H;, X (11)
X, LP;|H; — P,|H;, X; < P;|H,. (12)

Under properties from (10) to (12) and Assumption
2.1, E{V(#)| X } has expression:

E{V(1)|X}

m m

=Y E{V,(0)[X} V() = Y _Vi(t) and linearity

=1

= P{P; < u(X), Hy X} (7)
j=1

— —
< u,(X;)[Hoj, X } - P(Hoj X )

I I
(= L0
= =
z
AN

< u,(X;)|Hoj, X} - P(Hoj| X;) .7 (10, 11)

= Zut(X,-) -mo(X;) . (12, Assumption 2.1).

By combining the predetermined form of pFDR(#) and
(13), the pFDR estimator is established:
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where 7o (-) and |, (+) are considered known. The
PFDR estimator (15) serves as an upper bound for
(14), where the equality holds when y),(X;) > ¢ for all
j. We adopt the simpler version (15) as our pFDR
estimator, used in the simulation study and data
analysis. Then, we can define g-value and its estimator
that can be utilized to declare genes to be DE:

Q; = min pFDR(z) and Q] = min pFDR( ). (16)

t:t>P; t: t>P

Up to this point, mo(-) and 7o, () have been treated as
given. In practice, we must estimate both conditional

null probabilities to apply our method. The following
section discusses an estimating procedure.

2.4 Estimation of mp(-) and mg|,(-)

To simplify the problem of estimating mo(-) and mop,(-), we
first derive a useful property. Under the model described in
Theorem 2.1 and Assumption 2.1, mg|,(-) satisfies

o (Xj) = P(HojlPj < 0, X;) = (17)

According to equality (17), when both 7o(X;) and P(P; <
«|X;) are known, mo|,(X;) can be obtained. Thus, we now dis-
cuss how to estimate 7 (X;) and P(P; < «|X;).

Let N, be a user-selected neighborhood size. Let N; C
{1,...,m} contain the N,;, indices corresponding to the N,
genes whose covariate values are closest to X; in Euclidean
distance. Both probabilities 79(X;) and P(P; < o|X;) are esti-
mated using only the neighborhood P-values {P;:i e N;}.
First, 7y(Xj) is estimated using the method of Nettleton et al.
(2006) applied to {P; : i € N;}, which gives

> ien; 1(Pi = Peu,j) 1
Nnh 1- Pz:uz,j ’

To(Xj) = (18)

where P, ; is a threshold determined by Nettleton et al.
(2006) such that the empirial distribution of {P; : i € N;, P; >
Py} is approximately uniform. See Nettleton et al. (2006)
for the details.

Next, P(P; < o|X;) can be easily estimated as the propor-
tion of the P-values in {P; : i € Nj} < o:

~ i 1 P,‘ S o
P(P; < X)) _ Zien 1P < @) EN’I\; ). (19)
nh

By (17), a natural estimator of mg,(X;) is Tou(X;) =

1A {oc . M} As a result, all necessary components for
P(P; < alX;)

Jeon et al.

our method are obtained. The following Section 2.5 provides
an in-depth discussion of the rejection rule.

2.5 Implications of the rejection rule

To better understand our rejection rule, we derive an equiva-
lent condition characterizing the rejection rule in terms of a
conditional type 1 error posterior probability, as specified in
the following theorem.

Theorem 2.2. Consider the same inference setup described
in Theorem 2.1 with a rejection rule P; < u(Xj), for a
given nonnegative function u(-). Assume that
Assumption 2.1 holds. Let T4; be the event that a type
1 error occurs for test j. If the rejection rule is more
conservative than the classic rejection rule P; < a, i.e.
max u(X;) < o, then,

j

)_5) isthesameforallj=1,...,m

forallj=1,...

P(Tyj|P; < a,
t

= u(Xj) = m and some ¢ > 0.
7'Co| (X) ’
The proof is included in the supplementary material.
According to Theorem 2.2, among more conservative
rejection rules than the classic rejection rule, the
rejection rule that preserves constant type 1 error

posterior probability given the low P-value condition

. . <7 . . .
and covariate variables X is uniquely determined by

u(X;) = m for some ¢. In other words, under the

conservativeness condition, our proposed rejection
rule is the only one that equalizes the conditional type
1 error posterior probability across all tests. According
to the model assumed in Theorem 2.2, rejection
situations vary by covariate variables. A rejection rule
ignoring the distinct situations is incapable of
equalizing error control as described in Theorem 2.2.
However, our rejection rule ensures constant
conditional type 1 error posterior probabilities across
all tests, contrary to traditional rejection rules.

3 Simulation study
3.1 Model description

We conduct a simulation study to assess our method’s perfor-
mance, inspired by the model in Theorem 2.1. We consider
gene expression datasets with =10 000 genes generated in-
dependently from normal distributions with gene-specific var-
iance from an inverse chi-square distribution. The covariate
variable, which affects the probability of being an EE gene, is
denoted by X and assumed to be normally distributed. A DE
gene’s treatment effect is randomly generated from a normal
distribution. Let j and k be the gene and treatment group indi-
ces, respectively. Let s denote a sample index within a treat-
ment group. The sample size within a treatment group # is set
to 10. Then, the data model with Y/, as the response variable
is described as follows:

Y, 9,07 ~ N(3), 07), wherej e {1,...m}ands € {1,...n}
3 = 0and 0, [H; = (1 — Hy) -0+ H; - N(u, 02 = 0.02)

H i1X; ~ Bern(nA(X)) where nA(X) =1-mn(X;),

Xj ~ N(uy = 4,0% = 0.52)707 ~ Inv — y3,
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and independence among all random variables holds except
where indicated otherwise by conditioning. After generating
the dataset from (20), a two-sample #-test is used to obtain a
P-value for testing each gene’s treatment effect.

The simulation is conducted with different combinations of
Us and mo(-). ug is chosen from a set of four equally spaced
values from 0.15 to 0.24. Three ny(-) functions are consid-
ered, illustrated in Fig. 2. The function 7} (-) is a constant
function, whereas 78 (-) and #§(-) are increasing sigmoid func-
tions. Using 74 (-), we determine whether the proposed
method works well when the probability of being an EE gene
does not vary with the gene-specific covariate. Using 75(-)
and 7n§(-), we determine whether the proposed method per-
forms better than other methods when the true model follows
the working model. #{(-) has a more extreme characteristic
than 75 (-) due to a covariate region with a null probability of
one.

3.2 Methods description

Under a target FDR level of 0.05, the proposed method is
compared to the standard g-value, IHW, BL, and AdaPT
methods. These methods are chosen because they enable pre-
cise control of the FDR in the simulation study of Korthauer
et al. (2019).

Let us begin by discussing the tuning parameters of the pro-
posed method: N,,;, and a. N, is set to 2000. The value of o is
chosen arbitrarily or through cross-validation (cv). First, we
choose o values of 0.05 and 1 to better understand the pro-
posed method’s properties. In addition, when o equals 1, we
include the proposed method with true null probability 7o()
for a reference. Depending on whether the true my(-) is used
(true) or whether 7y(+) is estimated (est), and on the value of
o, the proposed method’s procedures are referred to as
prop.q(true, a = 1), prop.q(est, & = 1), prop.q(est, & = 0.05),
and prop.q(est, o = cv).

The latter approach is our suggested o selection procedure
based on repeated 10-fold cross-validation that maximizes the
expected number of DDE genes, described as follows. We par-
tition the observations {(X;,P;) :j=1,...,m} completely at
random into 10 parts. Holding each part out as a test set in
turn, the other nine parts are used as a training set. For each
of 100 equally spaced o values between 0.001 and 0.2, the
training data are used to estimate mg|,(-) and our rejection
rule for controlling pFDR at the target level 0.05. The number
of DDE genes is determined based on applying the estimated
rejection rule to the test data. This entire 10-fold cross-
validation process is repeated M times, and the average

Figure 2. Functions from (A) to (C) illustrate three mo(x) functions used in the simulation, where n§(x) = 0.8, n§(x) = 0.6 + W, and

number of DDE genes across the 10 x M test sets is deter-
mined for each value of a. The value of o with the highest av-
erage number of DDE genes is selected and used with our
proposed procedure on the entire dataset to identify differen-
tially expressed genes. In the simulation study, we use M =1,
while M =100 in the data analysis section.

As discussed in Remark 2.1, the standard g-value method is
still applicable in our simulation setup and is guaranteed to
control pFDR. To estimate np = P(H = 0), the histogram-
based method (Nettleton et al. 2006) is used. Moreover,
can be easily approximated by P(H; =0) = Ex,P(H; =

" P(H=0|X; e
0]X;) ~ 2 ;’ X Z“m()( i Depending on whether

the true parameter is used or not, the standard g-value meth-
od’s procedures are referred to as std.q(true) and std.q(est).
For simplicity, the omission of the estimator and true parame-
ter symbols indicates the estimator version of the procedure
with parameters estimated from data. For example, std.q =
std.q(est).

Lastly, we turn to the IHW, BL, and AdaPT methods imple-
mented in R packages IHW, swfdr, and adaptMT. IHW and
swfdr are Bioconductor R packages, and adaptMT is a
CRAN R package. Essentially, we follow the default configura-
tion of the packages. For the AdaPT method, inspired by the
simulation results in Korthauer et al. (2019), we use the
adapt_glm function with the settings specified in the article.
The procedures associated with the three methods are denoted
by their respective names. In total, nine procedures are com-
pared. The simulation results are analyzed without the proce-
dures that use true parameter values because these methods
cannot be used in practice.

3.3 Simulation results

The nine procedures are compared in terms of mean false dis-
covery proportion, mean true positive number, mean area un-
der the receiver-operating characteristic (ROC) curve (AUC),
and mean partial area under the ROC curve (pAUC). The
ROC curve displays the trade-off between true-positive rate
and false-positive rate. AUC and pAUC are the ROC curve’s
summary statistics, calculated based on each procedure’s ad-
justed P-values or g-values. High AUC and pAUC values indi-
cate that the procedure generally prioritizes true positives
over false positives. The pAUC value is calculated by the stan-
dardized area under the ROC curve with a false-positive rate
< 0.1, regarded as a relevant region in our inference situation.

For each scenario composed of p5 and mo(-), we generated
5000 datasets, which were used to approximate the four
mean values: mean false discovery proportion, mean true
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Figure 3. Each row contains four graphs depicting the summary statistics of W S, AUC, and pAUC, derived from the scenarios of né(~) (top), ng(»)

(middle), and 7§ (-) (bottom), respectively.

positive number, mean AUC, and mean pAUC, denoted by
V/R, S, AUC, and pAUC. When a procedure declares no sig-
nificant hypotheses, the false discovery proportion is set to
zero, which means V/R is an empirical estimate of FDR
rather than pFDR. However, in all our simulation scenarios,
the probabilities of discovery corresponding to our proposed
procedures are ~1. Therefore, for our proposed procedures,
FDR = pFDR in our simulation.

Supplementary Table STA-C summarizes all the simulation
results. Figure 3 illustrates the results associated with the
functions 74 (-), 78(-), and n§(-), respectively. In the figures,
except for V/R, the ratio to std.q is calculated to illustrate the
relative performance. Above all, all procedures under consid-
eration control FDR in all scenarios.

Let us discuss the 7§ (-) results. As illustrated in Fig. 3, all
procedures have nearly identical AUC and pAUC across all
scenarios, showing that they perform similarly in terms of pri-
oritizing true discoveries. In terms of true positive number S,
when pg is small, the std.q outperforms the IHW and AdaPT.
On the other hand, all procedures associated with the pro-
posed method perform nearly identically to the std.q, which is
understandable as the proposed method generalizes the stan-
dard g-value method. The results of n{(-) suggest that the
proposed method performs as well as std.q even when the co-
variate is irrelevant.

We now turn to the n8(-) and =§(-) results. First, we ex-
plore the proposed method’s properties by comparing the re-
lated procedures to std.q. The summary statistics S, AUC,
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Adjusting for gene-specific covariates

and pAUC all indicate the same conclusion. The procedure
performs best in the order of prop.q(a=cv), prop.q(2=0.035),
prop.q(x=1), then std.q. The order is well illustrated in Fig. 3.
Since prop.q(« = 1) is better than std.q, we can conclude that
there is an improvement by considering covariate-specific null
probability. It is noteworthy that the BL method consistently
outperforms prop.q(x=1), even though both methods use the
covariate-specific  null  probability. By  comparing
prop.q(2=0.05) and prop.q(z=1), we can conclude that incor-
porating the classic rejection rule improves the proposed
method. From the comparison between prop.q(a=cv) and
prop.q(«=0.05), it can be concluded that cross-validation is
beneficial for o selection to improve all evaluation criteria. As
a result, we recommend using cross-validation to determine
the value of o and setting the default value to 0.05.

The prop.q(z=cv) method is now compared to IHW, BL,
and AdaPT. In terms of S and AUC, prop.q(a=cv) surpasses
other procedures in all scenarios. In the case of the AdaPT
method, we can see that the performance is weakened in
terms of AUC, which is likely due to the vulnerability stated
in Section 1. As seen in Fig. 3, there are scenarios where
AdaPT method outperforms prop.q(a=cv) regarding pAUC.
For the corresponding scenarios, however, prop.q(x=cv) con-
sistently generates more true positives S than AdaPT, which
may be attributed to the differing FDR estimators. Based on
our simulation setup, we can conclude that the proposed
method using cross-validation to select o« outperforms the
competing FDR-controlling methods in most scenarios and
evaluation criteria that we considered.

The supplementary material depicts additional simulations
under various conditions, including scenarios with a multi-
modal null probability function, covariates generated from a
mixed normal distribution, and correlated P-values.
Supplementary Figure S4 demonstrates the validity of our
method to maintaining FDR control and power under a dis-
tinct shape of null probability function and the covariate dis-
tribution. In addition, we investigated a simulation in which
gene expressions are correlated. As shown in Supplementary
Fig. S5, when the correlation is relatively small, there are no
problems with FDR control or true discovery capability. As
with other methods, we observed that FDR levels become

higher than the nominal rate when the correlation is relatively

high.

4 Data analysis

We tested our proposed method using RNA-seq data regard-
ing disease resilience in young, healthy pigs (Lim et al. 2021),
and additional data on gene lengths. A comprehensive de-
scription of the study’s design and hypotheses testing is de-
scribed in Lim et al. (2021), which is summarized as follows.
The study enrolled 912 F1 barrows at ~27 days of age in 15
batches. After three weeks in a healthy quarantine nursery,
the piglets were exposed to natural polymicrobial diseases
found on commercial farms. Not only were gene expression
levels of the piglets’ blood samples quantified, but also disease
resilience phenotypes such as subjective health score, treat-
ment rate, mortality, and growth rate. Although the article
(Lim et al. 2021) tested numerous hypotheses, our current ar-
ticle focuses on the association between gene expression and
concurrent growth rate using blood samples taken during
quarantine nursery periods before disease exposure. We antic-
ipated that the disease-independent growth rate would be a
long-term physical process, which is expected to be associated
with the expression of longer genes. This expectation moti-
vated us to concentrate on the association involving growth
rate before disease exposure.

The following is the analysis we conducted. The gene ex-
pression in blood samples acquired during quarantine nursery
was quantified using 3’'mRNA sequencing with a globin
block. Using the data in Lim et al. (2021) and genes in the
Ensembl database, we analyzed 10 858 genes with a nonzero
read count for at least 80% of the samples. The growth rate of
a pig was used as a common dependent variable. We used
log-scale read counts normalized and adjusted for nuisance
factors as described by Lim et al. (2021). A P-value was calcu-
lated for each gene, testing whether the adjusted log2 trans-
formed read count has a zero slope coefficient. In total, we
generated 10 858 P-values. Figure 4 illustrates the histogram
of log10-transformed gene lengths utilized to determine the
covariate distribution in the simulation discussed in Section 3.

We applied the seven procedures, described in Section 3, to
the P-values and their associated gene lengths. The number of

0.6 1

density

0.2+

A D

4 5 6

logip(gene length)

Figure 4. The histogram of log10 transformed gene length for 10 858 genes. The log10 transformed gene lengths have a mean of 4.4 and a standard

deviation of 0.61.

€20z Joquieldag | Uo Jasn AjisieAlun uoluiwoq piO AG 886E 12 ./867PEIN/S/GE/EI0IME/SOIBWIONI0IG/ W00 dNO"0IWBpPEo.)/:SARY WOI) POPEO|UMOQ


https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad498#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad498#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad498#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad498#supplementary-data

significant tests at various nominal FDR levels are summa-
rized in Table 1. Regarding the proposed method, decreasing
o from 1 to 0.05 or using cross-validation to select « tended to
increase the number of significant tests, consistent with the
simulation outcome. Furthermore, prop.q(¢=cv) consistently

Table 1. Summary of the number of tests declared to be significant by
the seven procedures at four nominal FDR levels 0.01, 0.05, 0.1, and 0.2.

Level Std.q Prop.q Prop.q Prop.q IHW BL AdaPT
(e=1) (¢=0.05) (a=cv)

0.01 181 182 182 184 185 184 0

0.05 298 298 305 306 290 299 291

0.10 419 425 442 443 385 426 455

0.20 707 753 774 774 608 736 725

Jeon et al.

declared a greater or similar number of tests significant than
the std.q, IHW, and BL methods. Except for the nominal level
of 0.1, the prop.q(x=cv) generated more significant results
than AdaPT. When the nominal level is set to 0.01, the
AdaPT method declared no tests significant.

To observe additional patterns genes are classified into
four groups according to their lengths. As illustrated in
Fig. 5, regardless of procedures, the significantly declared
tests are observed in greater abundance in the 4th quantile
group than in all other quantile groups. The number of sig-
nificant tests increases gradually from the second quantile
group. The finding supports our intuition that the growth
rate is a long-term physical process that tends to involve lon-
ger genes and supports our method’s assumption that
the null probability varies with gene length. The null

Procedure |l sa [l rropa(a=1) [l] propa(a=0.05) [l propate=cv) [] w [ 8L [l AdaPT

o

Proportion of Significant Tests ( % )
(6,

7.5
5.
2.
0.0
1 2 3 4

Quantile Group

Figure 5. Barplot depiction of the proportion of tests declared to be significant by the three procedures at a nominal pFDR level of 0.2 for four gene

length-based groups with almost equal numbers.

To(x) T[o|a:0.0312(X)
.__.__q_,__.,«-\'w:\
o -
g o b v
£ I
k%)
i
g 0.6
=
©
o)
<
O 04
E A
0.2 Rl o
P) 3 4 5 6 2 3 4 5 6

log;0(Gene-Length)

Figure 6. Null probability estimates of mo(x) and mg|,(x) for 10 858 covariate values, following the procedure explained in Section 2.4. The nominal pFDR
level is set to 0.2. An o value of 0.0312 was chosen through the cross-validation approach.
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probability estimates described in Fig. 6 also shows a ten-
dency supporting the assumption.

We conducted gene set enrichment analyses (GSEA) with
preranked, adjusted P-values to bring biological significance
to the data analysis. Conducting the GSEA using the adjusted
P-value, not the raw P-value, makes sense as gene length pro-
vides additional information regarding the genes of interest.
Using the same FDR threshold of 0.05 for the enriched terms,
our method declares a comparable number or more biological
processes significant compared to std.q, BL, and IHW
(Supplementary Fig. S1A). In addition, Supplementary Fig.
S1B demonstrates that the P-values derived from GSEA with
prop.q(a« = cv) are generally lower than the P-values derived
from GSEA with other methods, indicating that our method
may have a greater power to discover meaningful biological
processes. The simulation result indicates that our method
consistently outperforms other approaches regarding AUC
and that gene set enrichment testing with preranked GSEA
can be advantageous, which supports the result illustrated in
Supplementary Fig. S1B. The application of AdaPT to the
data reveals that AdaPT generates a large number of duplicate
adjusted P-values, thereby limiting the enrichment test; there-
fore, we excluded the GSEA results with the AdaPT method.

Additional data analysis is performed using four gene ex-
pression datasets described in Lei and Fithian (2018) and
available at https:/github.com/lihualei71/adaptPaper/tree/
master/data. Each dataset is named after the corresponding
file name. Supplementary Table S2 presents the results, show-
ing that, except for AdaPT, our approach consistently
declares more tests significant than other methods. Moreover,
there is a substantial overlap between our approach and the
AdaPT method in terms of the significantly declared tests.
The null probability functions estimated from these data anal-
yses (depicted in Supplementary Fig. S3) show that a sigmoi-
dal shape may be a common form for the null probability
function.

5 Discussion

While the proposed method demonstrates significant gains
over existing methods, there are still areas for improvement.
First, the modeling framework upon which our method is de-
veloped is generalizable. One may consider a method in which
the alternative distribution F; varies with the covariate vari-
able. Second, the estimation procedure for estimating the null
probabilities can be improved. The simulation results indicate
that the BL method consistently beats our method with o = 1,
indicating a promising direction for further development of
the estimation procedure. Finally, different rejection rules can
be defined using different posterior probability types.
Performance is predicted to vary according to the target poste-
rior probability. We anticipate that subsequent studies will
examine our method from various perspectives.

The data analysis demonstrates that the estimation of null
probabilities provides valuable insights into the relationship
between predictors and the features of interest. These esti-
mates are meaningful on their own and can be utilized effec-
tively. For instance, clustering features based on estimates can
reveal additional research areas of interest. Moreover, condi-
tional null probability estimates can specify genes relevant to
specific biological processes, essential for gene-set enrichment
analysis.

Supplementary data

Supplementary data are available at Bioinformatics online.
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