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Outstanding Advantages, Current Drawbacks, and Significant
Recent Developments in Mechanochemistry:
A Perspective View
Silvina Pagola

Department of Chemistry & Biochemistry, Old Dominion University, 4501 Elkhorn Avenue,
Norfolk, VA 23529, USA; spagola@odu.edu

Abstract: Although known since antiquity, mechanochemistry has remained dormant for centuries.
Nowadays, mechanochemistry is a flourishing research field at the simultaneous stages of gathering
data and (often astonishing) observations, and scientific argumentation toward their analysis, for
which the combination of interdisciplinary expertise is necessary. Mechanochemistry’s implementa-
tion as a synthetic method is constantly increasing, although it remains far from being fully exploited,
or understood on the basis of fundamental principles. This review starts by describing many remark-
able advantages of mechanochemical reactions, simplifying and “greening” chemistry in solutions.
This description is followed by an overview of the current main weaknesses to be addressed in the
near future toward the systematic study of its energetics and chemical mechanisms. This review
finishes by describing recent breakthrough experimental advances, such as in situ kinetics monitor-
ing using synchrotron X-ray powder diffraction and Raman spectroscopy, plus equally significant
computational chemistry approaches, such as quantum mechanochemistry, used for the understand-
ing of covalent or hydrogen bond ruptures in biomolecules or mechanophores in polymers at the
single-molecule level. Combined with new technologies to control temperature and pressure in ball
mills, these appealing new methods are promising tools for establishing the fundamental knowledge
necessary for the understanding of mechanochemical reactivity and mechanisms.

Keywords: mechanochemistry; reaction mechanisms; chemical kinetics; in situ kinetics monitoring;
quantum mechanochemistry

1. Introduction: Terminology Overview and Mechanochemical Instrumentation

Mechanochemistry describes diverse phenomena having in common that mechanical
forces affect chemical reactivity. This broad definition encompasses seemingly unrelated
processes, such as organic syntheses in ball mills and twin-screw extruders, reactions at
propagating cracks in solids, or covalent bond braking in stretched polymers at the single-
molecule level. It has been stated that microscopic to macroscopic scale mechanical motion
can induce chemical reactivity leading to endergonic reactions, while spontaneous chemical
reactions can also power mechanical motion [1].

While many chemical reactions occur spontaneously, many others require that energy
is provided to the reactants to induce and sustain a chemical reaction. Based on the type of
energy used, several branches of chemistry can be defined [2]: Thermochemistry (based on
the addition of heat), photochemistry (radiation), electrochemistry (electrical potentials),
and mechanochemistry (mechanical energy). IUPAC has defined mechanochemical reac-
tions as “those induced by the direct absorption of mechanical energy” [2,3]. However, one
can wonder what exactly “mechanical energy” is. Mechanical energy is delivered to the
reactants through a mechanical treatment, which involves the application of mechanical
forces, such as shear and non-hydrostatic compression forces, and combinations thereof.
These are represented in Scheme 1.
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Scheme 1. Typical mechanical force types delivering mechanical energy to reactants and inducing
mechanochemical reactions. (a) Shear forces lead to surfaces sliding against each other. (b) Non-
hydrostatic compression forces anisotropically compress the reactants. The arrows labeled F represent
such forces. During ball impacts (in all types of ball mills), mechanical forces, such as (c) shear forces,
and (d) non-hydrostatic compression forces, are applied to the reactants at the collision sites, resulting
in plastic deformations and the absorption of mechanical energy. The arrows in (c,d) represent the
ball’s velocities (v) before impact.

Mechanical energy acts synergistically with the internal energy of a chemical system
due to its temperature, further increasing the chemical reactivity of matter. In the chemical
laboratory, many mechanochemical reactions can be induced simply by manually grinding
the reactants in a mortar with a pestle. However, in order to gain control of the reaction
conditions and to obtain reproducible results, various types of ball mills [2,4], or alterna-
tively single- or twin-screw extruders [5], are used. These instruments are represented in
Figure 1 and will be further described in the next section.

Mechanochemistry can be carried out in any state of matter [2]. It has been mostly
studied in solids and liquids (and their combinations); however, the reactivity of gases such
as H2, O2, HCN, CO, CO2, etc., has also been shown to increase using mechanochemistry [6].

The application of mechanical energy to solids involves several associated physical
processes (not immediately producing chemical changes but modifying the chemical system
toward them), which have been called mechanical activation [2]. Those processes are
particle size reduction (comminution), with a consequent surface area increase, and the
formation of lattice defects of various types [2], wherein the reactivity is enhanced due
to the reduction of the strength of the attractive interactions that hold the solid together,
which also ultimately leads to amorphization. For example, partially crystalline α-cellulose
can be rendered amorphous using mechanical processing in a planetary ball mill, and the
degree of crystallinity can be studied using X-ray powder diffraction [7].

Most of the mechanical energy provided to the reactants is dissipated as frictional
heat [8]. Nevertheless, during or after mechanical activation, many substances undergo
chemical reactions, such as covalent bond breaking and forming (also called covalent
mechanochemistry), hydrogen transfer (acid-base reactions) or hydrogen bonding rear-
rangements, electron transfer (redox reactions), polymerization, decomposition reactions,
etc., and often new phases containing the products crystallize during the mechanical treat-
ment (typically as powders) with varied degrees of crystallinity, crystalline domain size,
lattice microstrain and defects, particle sizes, and morphologies.

1.1. Mechanochemical Instrumentation and Accessories

Various types of laboratory equipment are used to carry out mechanochemical reac-
tions. Besides a simple mortar and pestle for manual grinding (without systematic control
of the amount of mechanical energy applied or the reaction time), mechanochemical reac-
tions are typically carried out in ball mills of the planetary, vibratory or mixer, and attrition
types [2,4,9], as shown in Figure 1.

Basically, ball mills consist of one or more vessels where the reactants, the milling
media (one or more balls), and sometimes milling additives are placed together to receive
mechanical treatment and react.
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by the arrow. Two reaction jars, in which individual rotational axes are placed at R distances from 

the central axis, each rotate with r frequency in a direction opposite to that of the support disc. A 

vertical view of a reaction jar (right side) shows a ball’s trajectory. Scheme reproduced from refer-

ence [9] with permission. (e) A twin-screw extruder. The reactants are introduced through the feed 

port, the reaction occurs in the barrel, and the products are obtained in the exit port. Figure repro-

duced from reference [10] with permission. 
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lected, while in vibratory/mixer mills, the vibrational frequency of the reaction jars can be 

chosen (see Figure 1d and 1b, respectively). 

Inside mixer/vibratory and planetary ball mills, balls collide at relatively high veloc-

ities, and pulsed ball impacts dominate the mechanical energy input. In attritor ball mills, 

the ball velocities can be lower than in the previous types, leading to frictional dynamics 
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mechanochemical reactions, and/or the products obtained can also differ. 

Planetary and vibratory/mixer (sometimes also called shaker) ball mills are most 

commonly used in the laboratory [11–13]. Reaction vessels and balls can be made of steel 
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ical reactions, although their implementation is gaining interest. In a twin-screw extruder, 

the reactants undergo mechanical treatment with the action of interlocking screws in a 

Figure 1. Examples of laboratory equipment and instruments commonly used in mechanochemistry.
(a) An agate mortar and pestle for manual grinding. (b) A Retsch GmbH (Haan, Germany) mixer-type
ball mill model MM 500 with optional temperature control capability. The pink horizontal arrows
(drawn on the photograph) indicate the oscillatory movement of the reaction jars. (c) A Retsch GmbH
(Haan, Germany) planetary ball mill model PM 100. (d) Schematics of the operation mode of a
planetary ball mill. The support disc at the bottom rotates with ωd frequency as indicated by the
arrow. Two reaction jars, in which individual rotational axes are placed at R distances from the central
axis, each rotate with ωr frequency in a direction opposite to that of the support disc. A vertical
view of a reaction jar (right side) shows a ball’s trajectory. Scheme reproduced from reference [9]
with permission. (e) A twin-screw extruder. The reactants are introduced through the feed port, the
reaction occurs in the barrel, and the products are obtained in the exit port. Figure reproduced from
reference [10] with permission.

The reaction vessels are rotated (see Figure 1d) or oscillated at chosen frequencies
(horizontally, such as in Figure 1b, or vertically in other models), so that the milling media
acquire and maintain kinetic energy during a preset milling time. The balls repeatedly
collide among themselves and with the container walls, trapping the reactants in inelastic
collisions (in which the ball’s kinetic energies are not conserved), transferring to them part
of that energy through repeated impacts. Ball mills are furnished with timers to select the
operation times, and most often, milling frequency control is also possible. In planetary
ball mills, the rotational frequencies of the support disc and the milling jars can be selected,
while in vibratory/mixer mills, the vibrational frequency of the reaction jars can be chosen
(see Figure 1b,d, respectively).

Inside mixer/vibratory and planetary ball mills, balls collide at relatively high ve-
locities, and pulsed ball impacts dominate the mechanical energy input. In attritor ball
mills, the ball velocities can be lower than in the previous types, leading to frictional dy-
namics in which shear forces are also important [9]. All these instruments deliver different
amounts of mechanical energy per time unit, and they can be operated under slightly
different experimental conditions, further varying the overall mechanical energy input,
and the shear to shock ratio [4,9]. Hence, the chemical reactivity of substances, the rates of
mechanochemical reactions, and/or the products obtained can also differ.

Planetary and vibratory/mixer (sometimes also called shaker) ball mills are most
commonly used in the laboratory [11–13]. Reaction vessels and balls can be made of steel
(various types), agate, ZrO2, WC, PMMA, and less often other materials, such as aluminum,
Al2O3, polylactic acid, or Teflon®. Mechanochemical reactions between organic solids,
which are generally soft, may be conducted using agate, steel, or PMMA as milling vessels
and media. Harder materials, such as many inorganic compounds, may require the use of
mechanically resistant vials or milling media composed of ZrO2, Al2O3, or WC.



Crystals 2023, 13, 124 4 of 33

Single- or twin-screw extruders are less commonly used to carry out mechanochemical
reactions, although their implementation is gaining interest. In a twin-screw extruder, the
reactants undergo mechanical treatment with the action of interlocking screws in a barrel
(see Figure 1e), which can also be heated to a chosen temperature [13]. These instruments
allow continuous flow processes [5,12,13], and so, they are uniquely suited for scaling up
mechanochemical reactions. Products of organic syntheses, cocrystals, and other materials
have been obtained at the multi-kilogram per hour scale [14]. The mechanochemical
syntheses of metal-organic frameworks (MOFs) have been similarly scaled up [10].

Furthermore, grinding, ball milling, and reactive extrusion in twin-screw extruders are
not the only techniques used to carry out mechanochemical reactions. Other methods such
as ultrasound [15], resonant acoustic mixing [16], and the manipulation of chemical bonds
using the application of mechanical forces at the single molecule level with AFM [1,17–19]
can lead also to mechanochemical processes.

Single molecule force spectroscopy techniques have provided significant insights
on the mechanical strengths of chemical bonds [1,17,18], such as the magnitudes of the
mechanical forces required to break covalent bonds and non-covalent interactions like
hydrogen bonds. Figure 2 shows the orders of magnitude of such forces [18], as determined
at the single-molecule level. As intuitively expected, the forces to break covalent bonds
are typically higher (reaching the nN order of magnitude), than those to disrupt non-
covalent interactions.
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Figure 2. (Top) Orders of magnitude of the mechanical forces (spanning up to hundreds of pN)
required to disrupt non-covalent interactions such as hydrogen bonds in biomolecules, or to induce
molecular fragment rotations of defined groups of bonds. (Bottom) The ranges of the mechanical
forces required to break covalent bonds, such as metal-organic bonds in proteins, disulfide bonds,
and the ring opening of mechanophores in polymers. Note that the forces to break covalent bonds
can be higher, in the nN order of magnitude. Figure reprinted by permission from Springer Nature,
in Nature Reviews Chemistry, “Steering Chemical Reactions with Force,” by S. Garcia-Manyes and
A. E. M. Beedle, 2017.
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1.2. Mechanochemistry-Related Fields and Terminology in Publications

The history of mechanochemistry has been recently reviewed [20]. Although known
since antiquity, the first systematic investigations and the definition of mechanochemistry
as a new chemistry field appeared only at the end of the 19th century.

The mechanochemistry-related jargon has evolved with the field, more rapidly during
the 20th century. Besides mechanochemistry, other related terms have been (and are still) used,
such as tribochemistry (reserved for chemical and physicochemical processes in solids [19]
such as ball milling, but also involving lubrication, shear, comminution, friction, and wear
processes), and mechanical alloying, which was brought into existence in 1966 [20] and
involves the preparation of alloys and intermetallic compounds not obtainable using other
methods, with important practical applications [19–21].

A recent search in the Web of Science™ using the keywords “mechanochemistry”
or “mechanochemical” led to 14,993 entries (including abstracts and proceeding papers)
published since 1937. Within these, 13,362 publications were articles and 942 were review
articles. Since 2013, the number of publications has added up to more than 500 per year,
whereas this number had been fewer than 100 per year before the early 1990s. Currently
the worldwide interest in mechanochemical studies appears to be on the rise, and this has
been already pointed out by other research groups [13].

The number of publications increased from 14,993 to 17,167 when “tribochemical”
was added to the search keywords, not a substantial change. However, when “mechanical
alloying” was added as a new search keyword, 27,738 publications were found. Within
the 11,001 publications under only the “mechanical alloying” keyword, 121 were review
articles, and only since the early 1990s the number of those publications consistently
surpassed 100 per year. However, in the most recent years the publications per year in
this field were around half of the corresponding values for the “mechanochemistry” or
“mechanochemical” category.

Overall, these data reflect not only the timeline of the terminology most frequently
used and a recent increasing interest in mechanochemical reactions other than mechanical
alloying, but they also highlight the highly interdisciplinary nature of the field (one can
suspect sometimes using different jargons) that engages material scientists, engineers, inor-
ganic, physical and organic chemists, biochemists, computational chemists, and physicists.

2. Mechanochemistry: A Rediscovered Branch of Chemistry with Increasingly
Recognized Advantages

It has been stated, without exaggeration, that currently mechanochemistry is truly
experiencing a “renaissance” [22] of epoch-making significance toward realizing different
types of chemistry [23].

Among the many compelling reasons promoting the increasing study of mechanochem-
istry, its sustainability features stand out. Mechanochemistry affords versatile chemical pro-
cesses that do not require the use of reaction solvents, significantly reducing the generation
of waste and pollution while simultaneously cutting down economic costs. Mechanochem-
ical processes often give rise to larger yields than the analogous reactions in solution, and
typically involve considerably reduced reaction times [24,25], good stoichiometry control,
and enhanced product selectivity [11,25]. Furthermore, sometimes they lead to products
not obtainable from solutions or other synthetic methods, in terms of structures, stere-
ochemistry, stoichiometries, or mixture compositions. These observations point to the
unique chemical mechanisms involved in mechanochemistry, which sometimes appear to
be considerably different from those in the analogous reactions in solution.

Mechanochemical reactions are amenable to the use of catalysts [13]. Mechanochemical
reactivity also depends on the temperature [26,27], the amounts of mechanical energy
delivered to the reactants, and although still scarcely studied, it also depends on the
pressure, most importantly for reactions involving gases [6]. Hence, new paths to fine tune
mechanochemical reaction conditions and obtain new products are enabled.
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The following sections provide further details about the many advantages of mechanochem-
istry with selected examples of mechanochemical reactions.

2.1. “Green” Mechanochemistry toward a Sustainable World

A large number of inorganic, organic [28], and organo-metallic reactions (if not all)
can be carried out under solvent-free conditions, including those using mechanochemistry.
Reaction solvents are not necessary in mechanochemical processes. This is very important
because most solvents are harmful (or toxic), they must be purchased and disposed of prop-
erly, the reactants must be soluble in them (which may limit the number of possible starting
materials, potentially increasing costs), the products must be separated and purified, and
occasionally they contain unwanted residual solvent. Moreover, solvents often may need
preliminary conditioning such as degassing, distilling, and drying. In the laboratory or in
large scale syntheses, all these operations increase economic costs and require energy input
and time, specialized infrastructure, and trained workers, besides generating vast amounts
of waste and pollution. Substantial quantities of water are also used in many of these pro-
cesses, for washing, cooling, as a solvent, etc. In contrast, the workup procedures involved
in mechanochemical reactions are generally much simpler, work safety is simplified, and
often mechanochemical products require minimum purification steps, leading to further
cost reductions, overall lower energy consumption, and reduced waste production.

Solvent-free reactions are a very significant step forward toward realizing sustainable
chemistry. Sustainable industrial processes and the “greening” of all areas of chemistry are
sought due to their environmental and economic advantages. For example, the American
Chemical Society, Green Chemistry Institute Pharmaceutical Roundtable has been estab-
lished with the objective of promoting the integration of green chemistry and engineering
into the pharmaceutical industry [29].

Another significant benefit is that mechanochemical reactions can be scaled up [10,14,30]
and carried out under continuous flow conditions. Not surprisingly, IUPAC has recently
nominated reactive extrusion (a form of mechanochemistry in flow reactors) as one of the
ten most important technological innovations toward a sustainable world [31].

However, it must be pointed out that small amounts of solvents used as reaction
additives also find applications in mechanochemistry. Liquid assisted grinding (LAG) is a
recently developed mechanochemical synthetic method based on the mechanical treatment
of powdered reactants together with small (catalytic) quantities of liquid additives [32,33].
LAG typically affords increased reaction rates or even enables mechanochemical reactions,
it generally gives rise to increased crystallinity of the products, and product selectivity,
topology, or polymorph control can be achieved by using particular liquid additives [12,34].
Mechanochemical reactions in pastes (e.g., powders with minimum volumes of solvent
added) may provide benefits comparable to the use of reaction solvents in solution chem-
istry, such as energetically stabilizing ionic species [35], among others.

Mechanochemistry encompasses not only waste prevention (one of the most important
green chemistry principles), and the use of energy efficient processes, but also simplified
reaction instrumentation that minimizes accident risks and human exposure to harmful
chemicals. “One pot” syntheses avoiding the purification and isolation of intermediate prod-
ucts are often possible. Mechanochemical reactions many times involve high atom economy
processes, wherein all atoms of the reactants are incorporated into the products [36].

Moreover, it has been stated that all twelve principles of green chemistry can be
related in one way or another to mechanochemistry [36]. These principles and how they
are supported through mechanochemistry with examples, are shown in the table below.
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Table 1. The twelve principles of green chemistry and how they can be fulfilled through
mechanochemistry, including selected examples.

Green Chemistry Principle How Mechanochemistry Helps and Examples

Waste prevention Largely reduced use of solvents and water.
Reduced need of isolation and purification processes.

Atom economy

Avoided use of reactants in large excess.
Typical high chemical selectivity and high yields.
Avoided formation of unwanted solvates.
Example: Syntheses of MOFs directly from metal oxides
instead of metal salts [37].

Less hazardous syntheses

Highly reactive species can be produced and immediately
reacted, without using controlled atmospheres.
Example: Mechanochemical activation of CaC2 avoiding
the use of gaseous acetylene [38]. Replacement of aqua
regia with safer oxidants such as oxone® [39].

Design of safer chemicals

Alternative synthetic routes to active pharmaceutical
ingredients and new solid-state forms (cocrystals,
polymorphs). Example: Syntheses of new metallodrugs
with reduced toxicity [40].

Safer solvents and auxiliaries

Reactant solubility considerations are unnecessary. New
potential reactants (less toxic, cheaper, safer to use)
become available.
Reactivity tunability using LAG selectively leading to
different polymorphs, MOF topologies, etc.

Design for energy efficiency

Scalability for industrial production and continuous flow
processes using reactive extrusion.
Typical fast reaction rates and high yields, often at room
temperature and ambient pressure. Heating may be
avoided, shortened, or the temperature reduced,
potentially leading to lower fossil fuel consumption and
reduced carbon footprint. Example: Synthesis of ammonia
under mild conditions [41].

Renewable feedstock use Biomass valorization reactions of cellulose, charcoal,
lignin, chitin, and eggshell [42] renewable feedstocks.

Reduced derivatives

Affords important synthetic processes in less steps and
“one pot” syntheses.
Example: Highly processed salts used as catalysts have
been replaced with less costly mineral ores [43].

Catalysis
Milling media/vessels can be used as catalysts [44].
Many enzymes remain active in ball milling and reactive
extrusion [45].

Design for degradation
Affords the synthesis of biodegradable polymers [46], and
the efficient degradation of waste polymers such as
polyethylene terephthalate [47].

Real-time analysis Raman spectroscopy affords in situ monitoring of
product formation.

Accident prevention
Automation of chemical processes in flow reactors is
possible. A reduced exposure of humans and the
environment to hazardous chemicals can be achieved.

The benefits of mechanochemistry (justifiably called chemistry 2.0 [26,48]) touching all
green chemistry principles, are truly remarkable. Worldwide current goals for sustainable
economic and industrial development, while encompassing environmental protection, have
found in mechanochemistry a priceless resource. Yet it is necessary that mechanochemistry is
increasingly taught to and practiced by the new generations of chemists and chemical engineers.
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2.2. A Myriad of (If Not Any) Materials from Mechanochemical Reactions

A truly immense number of mechanochemical reactions (yielding materials with
varied types of chemical bonding) have been published. Several early discovered reactions
in mortar and pestles were inorganic redox reactions, such as the preparation of Hg from
cinnabar (HgS) in a Cu mortar with a Cu pestle in the presence of vinegar [49], which has
been dated at around 315 B.C. [2,20,22].

The mechanochemical reactions of inorganic materials of the main group elements
(s- and p-blocks) have been recently reviewed [49]. These studies include simple oxides [2,33,50],
sulfides and selenides [2,33,51], and their phase transformations [2]; chalcogenides [50],
nitrides [33], hydrides [52], and materials for hydrogen production and storage [49,53].

The facile mechanochemical syntheses of coordination complexes of transition metals
with organic ligands have led to mononuclear complexes and coordination clusters, cages,
and other one-, two-, and three-dimensional architectures [54]. Hybrid organic-inorganic
metal halide perovskites for solar cells [23,55], advanced energy materials [23], complex
ceramic oxides [2,50,56], including technologically important piezoelectric materials such
as Pb[Zr,Ti]O3 (PZT) [57], can be synthesized using mechanochemistry. Improved inorganic
catalysts [58], and nanomaterials preparation and functionalization have also been similarly
achieved [2,22,59,60], including metal nanoparticles and graphene-based materials, among
others. Scheme 2 shows some examples of inorganic mechanochemical reactions.
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composition of silver and mercury chlorides into the respective metals and chlorine in a mortar and
pestle [20]. (c) The ball mill synthesis of an alane for hydrogen storage [49,53]. (d) The mechanochem-
ical synthesis of a spinel-type material for lithium-ion battery applications [49,56]. Note the symbol
used above the reaction arrows to denote mechanochemical activation [19].

Mechanochemical organic synthesis (through breaking and forming covalent bonds),
also called “covalent mechanochemistry” is a more recent, albeit flourishing and remarkably
promising research area, covering all types of organic reactions [61]. Organic solvents are
ubiquitous in organic chemistry, so solvent-free mechanochemical reactions are especially
appealing as “green” synthetic alternatives. Organic mechanochemical reactions are also
typically faster, are more selective, provide good stoichiometry control, and generally lead
to higher yields than the analogous reactions in solution [11,25].

Several reviews [13,61–63], and books on mechanochemical organic syntheses have
been published [24,64]. As a note toward providing a simplified overview of the scope
of organic mechanochemistry, Margetić and Štrukil organize their book [24] into chapters
dedicated to C-C bond forming reactions (22 reaction types), C-N (16 types), C-O and other
bond forming reactions (nine types), cycloadditions (e.g., Diels Alder), and oxidations
and/or reductions of alcohols, aldehydes, ketones, amines, esters, and thiols, among other
functional groups. Sometimes multistep organic and organometallic reactions can be
conveniently performed as “one-pot” syntheses [65–67], without isolation and purification
of intermediate products. Mechanochemical rearrangements in organics have been also
investigated [68].

Peptides and polymers can be also prepared using mechanochemistry [12,69,70]. The
extraction of chemicals from plants (renewable resources) can be also enhanced with
mechanochemistry [71].

(a) 2 AgCI (s) 00 ► 2 Ag (sl + Cb (gl 

(b) Hg Cb (s) 00 ► Hg (I) + Cb (g) 

(c) LiAIH4 (s) + 2 UH (s) ,Ph ► LbAIH6 (s) 

(d) LbO (sl + MnO (sl W ► LixMnO (sl + ... 
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mechanochemical reactivity from fundamental physicochemical principles, enabling the
formulation of rationales for implementing and controlling mechanochemical reactivity.
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55. Prochowicz, D.; Saski, M.; Yadav, P.; Grätzel, M.; Lewiński, J. Mechanoperovskites for Photovoltaic Applications: Preparation,

Characterization, and Device Fabrication. Acc. Chem. Res. 2019, 52, 3233–3243. [CrossRef]
56. Soiron, S.; Rougier, A.; Aymard, L.; Tarascon, J.-M. Mechanochemical Synthesis of Li–Mn–O Spinels: Positive Electrode for

Lithium Batteries. J. Power Sources 2001, 97–98, 402–405. [CrossRef]
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114. Juribašić, M.; Užarević, K.; Gracin, D.; Ćurić, M. Mechanochemical C–H Bond Activation: Rapid and Regioselective Double
Cyclopalladation Monitored by in Situ Raman Spectroscopy. Chem. Commun. 2014, 50, 10287–10290. [CrossRef] [PubMed]

115. Fischer, F.; Wenzel, K.-J.; Rademann, K.; Emmerling, F. Quantitative Determination of Activation Energies in Mechanochemical
Reactions. Phys. Chem. Chem. Phys. 2016, 18, 23320–23325. [CrossRef] [PubMed]
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129. Julien, P.A.; Malvestiti, I.; Friščić, T. The Effect of Milling Frequency on a Mechanochemical Organic Reaction Monitored by in

Situ Raman Spectroscopy. Beilstein J. Org. Chem. 2017, 13, 2160–2168. [CrossRef] [PubMed]
130. Zhang, Z.; Peng, Z.W.; Hao, M.F.; Gao, J.G. Mechanochemical Diels-Alder Cycloaddition Reactions for Straightforward Synthesis

of Endo-Norbornene Derivatives. Synlett 2010, 19, 2895–2898. [CrossRef]
131. Schneider, F.; Szuppa, T.; Stolle, A.; Ondruschka, B.; Hopf, H. Energetic Assessment of the Suzuki–Miyaura Reaction: A

Curtate Life Cycle Assessment as an Easily Understandable and Applicable Tool for Reaction Optimization. Green Chem. 2009,
11, 1894–1899. [CrossRef]

132. Cincotti, A.; Traversari, G.; Pia, G.; Delogu, F. Milling Dynamics and Propagation of Mechanically Activated Self-Sustaining
Reactions. Adv. Mater. Sci. Eng. 2020, 2020, 26–35. [CrossRef]

133. Geng, F.; Gang, L.; Wang, Y.; Li, Y.; Yuan, Z. Numerical Investigation on Particle Mixing in a Ball Mill. Powder Technol. 2016,
292, 64–73. [CrossRef]

134. Burmeister, C.F.; Hofer, M.; Molaiyan, P.; Michalowski, P.; Kwade, A. Characterization of Stressing Conditions in a High Energy
Ball Mill by Discrete Element Simulations. Processes 2022, 10, 692. [CrossRef]

135. Kakuk, G.; Zsoldos, I.; Csanády, Á.; Oldal, I. Contributions to the Modelling of the Milling Process in a Planetary Ball Mill. Rev.
Adv. Mater. Sci. 2009, 22, 21–38.

136. Reichardt, R.; Wiechert, W. Event Driven Algorithms Applied to a High Energy Ball Mill Simulation. Granul. Matter 2007, 9,
251–266. [CrossRef]

137. Carta, M.; Colacino, E.; Delogu, F.; Porcheddu, A. Kinetics of Mechanochemical Transformations. Phys. Chem. Chem. Phys. 2020,
22, 14489–14502. [CrossRef] [PubMed]

138. Rybkin, V.V. Franck-Condon Theory of Quantum Mechanochemistry. J. Phys. Chem. A 2017, 121, 5758–5762. [CrossRef] [PubMed]
139. Tricker, A.W.; Samaras, G.; Hebisch, K.L.; Realff, M.J. Hot Spot Generation, Reactivity, and Decay in Mechanochemical Reactors.

Chem. Eng. J. 2020, 382, 122954. [CrossRef]
140. Andersen, J.; Brunemann, J.; Mack, J. Exploring Stable, Sub-Ambient Temperatures in Mechanochemistry via a Diverse Set of

Enantioselective Reactions. React. Chem. Eng. 2019, 4, 1229–1236. [CrossRef]

http://doi.org/10.1021/jacs.6b09011
http://doi.org/10.1002/anie.201502026
http://doi.org/10.1039/C4CC04423A
http://www.ncbi.nlm.nih.gov/pubmed/25056429
http://doi.org/10.1039/C6CP04280E
http://www.ncbi.nlm.nih.gov/pubmed/27498986
http://doi.org/10.1021/acs.cgd.6b00137
http://doi.org/10.1134/S0965544119110069
http://doi.org/10.1016/0926-860X(95)00319-3
http://doi.org/10.1016/j.apsusc.2011.03.024
http://doi.org/10.1016/j.apenergy.2017.07.088
http://doi.org/10.1021/acsomega.6b00315
http://doi.org/10.1039/C6SC03182J
http://doi.org/10.1163/156855200750172204
http://doi.org/10.2298/HEMIND121025122F
http://doi.org/10.2320/matertrans1989.37.1091
http://doi.org/10.1039/c3cs35455e
http://doi.org/10.1016/j.powtec.2012.08.031
http://doi.org/10.1039/c3cc47898j
http://www.ncbi.nlm.nih.gov/pubmed/24382417
http://doi.org/10.3762/bjoc.13.216
http://www.ncbi.nlm.nih.gov/pubmed/29114323
http://doi.org/10.1055/s-0030-1259030
http://doi.org/10.1039/b915744c
http://doi.org/10.1155/2020/8032985
http://doi.org/10.1016/j.powtec.2015.11.038
http://doi.org/10.3390/pr10040692
http://doi.org/10.1007/s10035-006-0034-y
http://doi.org/10.1039/D0CP01658F
http://www.ncbi.nlm.nih.gov/pubmed/32573582
http://doi.org/10.1021/acs.jpca.7b06565
http://www.ncbi.nlm.nih.gov/pubmed/28685567
http://doi.org/10.1016/j.cej.2019.122954
http://doi.org/10.1039/C9RE00027E


Crystals 2023, 13, 124 32 of 33

141. Ong, M.T.; Leiding, J.; Tao, H.; Virshup, A.M.; Martínez, T.J. First Principles Dynamics and Minimum Energy Pathways for
Mechanochemical Ring Opening of Cyclobutene. J. Am. Chem. Soc. 2009, 131, 6377–6379. [CrossRef]

142. Hickenboth, C.R.; Moore, J.S.; White, S.R.; Sottos, N.R.; Baudry, J.; Wilson, S.R. Biasing Reaction Pathways with Mechanical Force.
Nature 2007, 446, 423–427. [CrossRef]

143. Ferguson, M.; Moyano, M.S.; Tribello, G.A.; Crawford, D.E.; Bringa, E.M.; James, S.L.; Kohanoff, J.; Del Pópolo, M.G. Insights into
Mechanochemical Reactions at the Molecular Level: Simulated Indentations of Aspirin and Meloxicam Crystals. Chem. Sci. 2019,
10, 2924–2929. [CrossRef]

144. Ma, E. Amorphization in Mechanically Driven Material Systems. Scr. Mater. 2003, 49, 941–946. [CrossRef]
145. Ma, X.; Shi, L.; He, X.; Li, L.; Cao, G.; Hou, C.; Li, J.; Chang, L.; Yang, L.; Zhong, Y. Graphitization Resistance Determines Super

Hardness of Lonsdaleite, Nanotwinned and Nanopolycrystalline Diamond. Carbon 2018, 133, 69–76. [CrossRef]
146. Khawam, A.; Flanagan, D.R. Solid-State Kinetic Models: Basics and Mathematical Fundamentals. J. Phys. Chem. B 2006,

110, 17315–17328. [CrossRef]
147. Gonnet, L.; Chamayou, A.; André-Barrès, C.; Micheau, J.C.; Guidetti, B.; Sato, T.; Baron, M.; Baltas, M.; Calvet, R. Elucidation of

the Diels-Alder Reaction Kinetics between Diphenylfulvene and Maleimide by Mechanochemistry and in Solution. ACS Sustain.
Chem. Eng. 2021, 9, 4453–4462. [CrossRef]

148. Oliveira, P.F.M.; Baron, M.; Chamayou, A.; Baltas, M.; Guidetti, B.; Haruta, N.; Tanaka, K.; Sato, T. Lowering the Activation
Energy under Mechanochemical Conditions: The Case of 2,3-Diphenylquinoxaline. ChemistrySelect 2016, 1, 984–988. [CrossRef]
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