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Impact of disease on the survival of three commercially
fished species
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Abstract. Recent increases in emergent infectious diseases have raised concerns about the
sustainability of some marine species. The complexity and expense of studying diseases in
marine systems often dictate that conservation and management decisions are made without
quantitative data on population-level impacts of disease. Mark–recapture is a powerful,
underutilized, tool for calculating impacts of disease on population size and structure, even in
the absence of etiological information. We applied logistic regression models to mark–
recapture data to obtain estimates of disease-associated mortality rates in three commercially
important marine species: snow crab (Chionoecetes opilio) in Newfoundland, Canada, that expe-
rience sporadic epizootics of bitter crab disease; striped bass (Morone saxatilis) in the
Chesapeake Bay, USA, that experience chronic dermal and visceral mycobacteriosis; and Ameri-
can lobster (Homarus americanus) in the Southern New England stock, that experience chronic
epizootic shell disease. All three diseases decreased survival of diseased hosts. Survival of dis-
eased adult male crabs was 1% (0.003–0.022, 95% CI) that of uninfected crabs indicating nearly
complete mortality of infected crabs in this life stage. Survival of moderately and severely dis-
eased striped bass (which comprised 15% and 11% of the population, respectively) was 84% (70–
100%, 95% CI), and 54% (42–68%, 95% CI) that of healthy striped bass. The disease-adjusted
yearly natural mortality rate for striped bass was 0.29, nearly double the previously accepted
value, which did not include disease. Survival of moderately and severely diseased lobsters was
30% (15–60%, 95% CI) that of healthy lobsters and survival of mildly diseased lobsters was 45%
(27–75%, 95% CI) that of healthy lobsters. High disease mortality in ovigerous females may
explain the poor recruitment and rapid declines observed in this population. Stock assessments
should account for disease-related mortality when resource management options are evaluated.

Key words: disease ecology; epidemiology; epizootic shell disease; fisheries; Hematodinium sp.; mark–
recapture; mortality; mycobacteria.

INTRODUCTION

Recent reports of frequent and severe disease outbreaks
raise questions about how and when marine diseases
should be managed (Harvell et al. 1999, Groner et al.
2016). Critical to such decisions are whether, and under
what circumstances, disease outbreaks cause significant

impacts on marine populations, including commercially
important stocks (e.g., Chaloupka et al. 2009, Krkosek
et al. 2013). However, evaluating impacts of marine dis-
eases on populations can be challenging because quantita-
tive estimates of disease-related mortality are difficult to
obtain, particularly when host species are mobile or expe-
rience chronic diseases (Cooch et al. 2012). Although they
yield complementary data, studies of the etiology and
pathology associated with an emergent disease can be
expensive and time consuming, often taking longer to con-
duct than the window of time available for early interven-
tion (Langwig et al. 2015, Burge et al. 2016, Groner et al.
2016). The paucity of information on disease impacts in
marine systems has made it difficult for government agen-
cies to prioritize research and management actions for
many commercially and ecologically important species.
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Although underutilized, mark–recapture can be an
effective tool for estimating the impacts of disease on
host populations (Conn and Cooch 2009, Cooch et al.
2012). Mark–recapture studies that use simple biological
marking or conventional tags represent an adaptable
method for obtaining data. These studies can be imple-
mented quickly as either a new research program or as
an extension to an existing mark–recapture program. In
the latter case, adapting the program to the study of dis-
ease requires the identification and recording of a non-
lethal diagnostic for disease presence such as visual signs
or detection of pathogens in bodily fluids. Identification
of a pathognomonic diagnostic does not require that the
etiology of the disease be fully elucidated, thereby allow-
ing population impacts of the disease to be assessed
concurrently with fundamental epidemiological and
pathological research, rather than after its completion.
Moreover, mark–recapture methods are applicable to
the study of a wide range of diseases that are diverse in
their epidemiology and population impacts. Although
complex multi-state mark–recapture methods are the
ideal approach for determining survival, disease inci-
dence, and disease progression, these methods frequently
require a priori knowledge about the disease in order to
correctly specify state-transition matrices, and can suffer
from convergence issues (i.e., Choquet et al. 2009). In
contrast, logistic regressions comparing the recapture
rates of initially healthy and diseased individuals can be
used to quantify relative survival of diseased vs. healthy
individuals without a priori knowledge of the disease.
Mark–recapture methods are being increasingly used to
estimate epidemiological processes in diseases of terres-
trial wildlife, including badgers with tuberculosis (Gra-
ham et al. 2013), little brown bats with white-nose
syndrome (Maslo et al. 2015) and gorillas with Ebola
virus disease (Genton et al. 2015). However, they are not
well used in marine systems, even though mark–recap-
ture is a common method for estimating population sizes
in such systems (i.e., Chaloupka et al. 2009).
We used logistic regressions to conduct prospective,

case-control studies to estimate disease-associated mor-
tality rates in three commercially important species that
show visual signs of chronic disease: snow crab (Chio-
noecetes opilio), striped bass (Morone saxatilis), and
American lobster (Homarus americanus). These diseases
range in severity and phenology, and include a rapidly
progressing, unresolvable, parasitic infection causing bit-
ter crab disease (BCD) in snow crabs; a slowly progress-
ing, rarely resolved disease caused by mycobacteria
resulting in visceral and dermal mycobacteriosis in
striped bass; and a rapidly progressing, resolvable bacte-
rial dysbiosis causing epizootic shell disease (ESD) in
lobsters. In all cases, populations are hypothesized to be
declining in parts of their ranges due to disease (Shields
et al. 2005, Wahle et al. 2009, Vogelbein et al. 2012). We
applied logistic regression to mark–recapture data to
estimate relative survival of animals released in different
disease severity states compared to presumably healthy

conspecifics (Jennelle et al. 2007, Cooch et al. 2012). We
interpreted these results in terms of their impacts on nat-
ural mortality, management practices and, in the case of
the American lobster, impacts on spawning potential.

METHODS

Study systems and tagging method

Case 1: Snow crabs and BCD.—1. Study system.—Snow
crab support the most valuable fishery in Atlantic
Canada with exports valued at CAN$500 million annu-
ally (Fisheries and Oceans Canada 2016). In 1992, a par-
asitic dinoflagellate (Hematodinium sp.) was discovered
in crabs from the northern bays of Newfoundland. The
parasite causes bitter crab disease (BCD) and renders
the meat of the crabs unfit for consumption (Taylor and
Khan 1995). Disease prevalence in large-clawed male
crabs, which are favored by the industry, has generally
been low (<3.5%) with occasional pulses of increased
disease that have been associated with warmer tempera-
tures, and increases in densities of small and intermedi-
ated sized crabs (Shields et al. 2005, 2007, Mullowney
et al. 2011). In 2005, prevalence reached 35% in large-
clawed males, leading resource managers and the indus-
try to question the role of the parasite in crab mortalities
(Shields et al. 2007). The fishing industry elected to
reduce the quota in the affected areas in 2006 as a pre-
cautionary measure, however population estimates of
the impact of BCD are not available and it is unclear if
these management strategies increase the resiliency of
these populations to disease outbreaks.

2. Tagging.—To estimate disease mortality, 361 diseased
crabs and 361 crabs without external signs of the disease
(Fig. 1a) were tagged in Conception Bay, Newfound-
land, Canada (47°450 N, 53°100 W), in October 2006 by
tying a uniquely labelled vinyl tube (spaghetti tag) later-
ally around the carapace. All crabs in the study were
large-clawed males in terminal molt conditions (i.e.,
with a new hard shell), ranging in size from 95 to
139 mm carapace width. Crabs in the terminal molt
instar will not molt and hence will not lose the tag to
molting. Although it would have been informative to tag
other stages, this was not feasible due to the risk of tag
loss during molting and the absence of a fishery for
other sizes and stages. Most recaptures were made by
commercial fishermen and occurred during the fishing
season, in late spring (April–June) in the two years after
release. A few additional crabs were recaptured during
research cruises in the spring and fall. For all recaptures,
a reward of CAN$10 was offered for return of a tag. To
check for differential survival between diseased and
healthy crabs that resulted from tagging, tagged crabs
with and without BCD infection (five of each) were held
in commercial crab traps at sea for 24 h and then exam-
ined for differential mortality. Survival was 100% in both
groups (D. M. Taylor, unpublished data). A 24-h acute

October 2017 DISEASE REDUCES SURVIVAL IN FISHERIES 2117



test is considered sufficient to test tagging mortality in
this species.

Case 2: Striped bass.—1. Study system.—The striped
bass fishery supports both recreational and commercial
fishing, with U.S. landings between 2005 and 2014 aver-
aging 26.2 million pounds annually for recreational
efforts and 6.7 million pounds for commercial efforts
(ASMFC 2016). In the 1990s, striped bass in Chesapeake
Bay recovered from a significant population decline asso-
ciated with over-exploitation, environmental degradation,
and low recruitment (Richards and Rago 1999). Since
1997, granulomatous dermatitis (Fig. 1b) and granulo-
matous inflammation of the visceral organs have been
noted in striped bass from the region; the disease lesions
are associated with two newly described species of
Mycobacterium as well as other undescribed species
(Rhodes et al. 2003, 2005, Gauthier et al. 2011). As is
typical for infections with Mycobacterium spp. in fishes,
disease in striped bass develops slowly and some individu-
als appear to persist for long periods with low-level infec-
tions (Colorni 1992). Despite recognition of its potential
to cause mortality or alter fecundity, it is unclear how dis-
ease is affecting population size and restoration efforts
for striped bass (Vogelbein et al. 2012).

2. Tagging.—Tagging took place in September through
November every year from 2005 to 2012 and in May for
some years. Approximately 1,000–3,000 fish were
obtained from pound nets at the mouth of the Rappa-
hannock River, Virginia (37°36.670 N, 76°17.490 W) and
upriver (37°58.730 N, 76°53.040 W) each year. All fish
were greater than 457 mm in total length (minimum
legal size), and 95% were between 457 and 610 mm total
length), which, in the Chesapeake Bay, typically corre-
sponds to between three and six years of age. Upon tag-
ging, fish were measured for fork length and both sides
of each fish were photographed for a direct comparison
of disease signs at the times of tagging and recapture.
Disease status of released and recaptured individuals
was assessed in photos using the following classification:
healthy, no visible external signs of mycobacteriosis;
mild disease, up to 10 pigmented foci per side or a single,
small focal skin ulcer (<2 cm2) per side of the fish; mod-
erate disease, from 11 to 50 pigmented foci or multifocal
ulcers all less than 2 cm2; and severe disease, more than
50 pigmented foci per side or focal or multifocal ulcers
greater than 2 cm2. A pigmented focus is a small, exter-
nal, brown, focal lesion appearing as a dot on a scale
that we considered to be the earliest manifestation of the
disease. Histologically, each pigmented focus is associ-
ated with epidermal/dermal granulomatous inflamma-
tion, often containing acid-fast bacteria (Vogelbein et al.
2012). Approximately 1,000–1,500 fish obtained from
gill nets from a variety of locations were tagged annually
in Maryland waters. Anchor tags were inserted into the
body cavity through a small incision cut into the abdo-
men; a vinyl streamer remained external to the body with
a unique number and a message offering a US$20
reward for return of the fish and a US$5 reward for
return of the tag. Recaptured animals were obtained
from commercial or recreational fishers or by research
personnel. Fish were handled according to approved
IACUC procedures (project assurance number
VA-A3713-01) and were immediately released back into
the water at the tagging location.

Case 3: American Lobsters.—1. Study system.—The
American lobster is one of the most valuable fisheries in
the United States, with annual dockside revenues as high
as US$567 million (NMFS 2016). Although lobster pop-
ulations appear to be growing over most of their range,
abundance of lobsters in the southernmost stock, the
southern New England stock, is the lowest since the
1980s, despite declining exploitation rates over the last
10 years (Howell 2012, Wahle et al. 2015). Recruitment
has been low since 1998 and the natural mortality rate
appears to have increased (Castro et al. 2012, Howell
2012). In 1997, epizootic shell disease appeared on lob-
sters off southern New England (Castro and Angell
2000). The etiology of the disease remains undetermined,
but there is evidence for the involvement of chitinolytic
bacteria in a dysbiosis facilitated by environmental stres-
sors such as temperature and contaminants (Chistoserdov

FIG. 1. Pathognomonic signs of disease in snow crab,
striped bass and American lobster: snow crabs with bitter crab
disease show characteristic “cooked” appearance (left side of
panels a and b), (c) striped bass with dermal lesions from
mycobacteriosis and a green tag, and (d) American lobster with
severe lesions to the carapace due to epizootic shell disease.
Photo credits: P. C. Beck (DFO, a, b), VIMS mycobacteriosis
project staff (c), Jeff Shields (d). [Color figure can be viewed at
wileyonlinelibrary.com]
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et al. 2005, Castro et al. 2012). The disease is character-
ized by an extensive erosion and melanization of the cuti-
cle (Smolowitz et al. 2005; Fig. 1c). Mortality often
occurs during molting, which can be incomplete if cuticle
damage is too extensive. However, if molting is successful,
lobsters can rid themselves of the disease when they shed
their damaged exoskeleton.

2. Tagging.—Tagging took place from May to October
every year from 1982 through 2015. The original purpose
of the tagging study was to monitor population size; how-
ever, data on ESD were collected as well. For the pur-
poses of this study, data was only examined for the time
period where ESD was present (1999 and later). We also
excluded recaptures that occurred within 21 d or less after
tagging, as exploratory analyses revealed diseased ani-
mals were more likely to be recaptured during this period.
Tagging took place off eastern Connecticut near Jordan
Cove, Niantic Bay, and Twotree Island (41°180 N,
72°100 W). Lobsters (73.0 � 12.72 mm carapace length
[mean � 95% CI]) were caught in traps and moved to
continuous-flow-through seawater tanks until the end of
each sampling week, at which time carapace length, sex,
reproductive condition, molt stage, and disease state were
recorded. Thereafter, lobsters were tagged with serially
numbered, international orange, sphyrion tags and
released at the site of capture. Lobsters were assigned to
one of four disease states: healthy, no signs of disease;
mild disease, active shell disease covering <10% of the
carapace; moderate disease, active disease covering 11–
50% of the carapace; severe disease, active disease cover-
ing >50% of the carapace. Lobsters recaptured during
subsequent research cruises were examined for growth,
maturity, and disease state and returned to the water
immediately. A US$2 reward was offered to commercial
fishers for return of a tag. Tag loss due to molting is low
(<4%) for sphyrion tags (Moriyasu et al. 1995) and would
only be a problem for relative survival estimation if there
were a differential loss of tags by disease state.

Analyses

Relative survival estimation.—We used logistic regression
models of recaptured animals to conduct case-control
studies to estimate disease-associated mortality rates in
our three study systems. These models work as follows.
Assume two cohorts were tagged and released at the
same time and place. One cohort had external signs of
disease (D) and the other had no visible signs of disease
(H). If the size of each cohort declined exponentially
with time, at any given time t, the abundance of the ith
cohort would be

Nit ¼ Ni0e�zit; i 2 fD;Hg (1)

where Ni0 is the initial abundance of cohort D or H, and
Zi is the total instantaneous mortality rate (hazard rate)
for cohort i. Suppose that catch, C, in a short time

interval beginning at time t is proportional to abundance
at time t

Cit ¼ qitNit (2)

where qit is a cohort- and time-specific catchability
coefficient. The ratio of the catches at time t, Rt would
be proportional to the ratio of the survival rates of the
two cohorts. By substituting Eq. 1 into Eq. 2 and taking
the ratio we obtain the following relationship:

Rt ¼ CDt

CHt
¼ qDtND0e�ZDt

qHtNH0e�ZHt
(3)

We can simplify Eq. 3 if we assume that the ratio of
catchability coefficients (q) is constant throughout the
course of the study. This assumption does not require
the cohort-specific catchability coefficients to be equal
or constant through time as long as the ratio remains
constant. Thus, the model implicitly allows for disease-
associated differences in vulnerability to capture, and in
rates of tag reporting, tag-induced mortality, and tag
shedding. Rearranging Eq. 3 produces

Rt ¼ ueðZH�ZDÞt (4)

where u is a proportionality constant equal to the ratio
of the products of the cohort-specific catchability coeffi-
cients and the initial cohort abundances, i.e., u ¼ qDtND0

qHtNH0
.

Taking the logarithms of Eq. 4 results in the linear
relationship

logðRtÞ ¼ logðuÞ þ bt (5)

where b is equal to the difference in total instantaneous
mortality rates (ZH � ZD) of the two cohorts. The vari-
able Rt is equivalent to the odds of catching an animal
from the diseased cohort, given a tagged fish has been
caught, and thus estimates of b can be obtained using
logistic regression. Exponentiation of b̂, provides an esti-
mate of the relative survival rate (cRS) for the two
cohorts. Additional variables can be added to these
logistic regressions to understand how discrete demo-
graphic variables such as sex affect relative survival and
initial disease prevalence. For example, to understand
the effect of sex (s) on relative survival and initial disease
prevalence, Eq. 5 could be modified such that

logðRtÞ ¼ logðuÞ þ b1s þ b2t þ b3ðt � sÞ (6)

where exponentiation of b2 + b3 is the sex-dependent
relative survival rate, and exponentiation of b1 added to
u is the sex-specific proportionality constant.
In our studies, logistic regressions were fitted to exact

times-at-liberty. Confidence intervals for the regression
parameters were calculated by the profile likelihood
method. For striped bass and American lobster, the log
of the intercept parameter (which can be thought of as
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prevalence 9 catchability) was estimated within the
model. For snow crabs, the intercept was fixed at 0.5
because one-half of the animals tagged were diseased
and one-half appeared free of the disease at the time of
tagging. Striped bass and American lobster were tagged
and released over successive years; however, year effects
on b were not estimated for either species. This was nec-
essary because annual sample sizes (stage-specific recap-
tures) were small and was further justified by the lack of
support for year effects in more general models. Thus,
time-at-liberty was calculated as days between release
and recapture regardless of what year, or time of year,
the striped bass or American lobster was tagged.
Because we quantified different stages of disease severity
in striped bass and lobsters, we conducted separate logis-
tic regressions comparing recaptures of animals at level
of disease severity to animals without disease. In the case
of lobsters, we also included the effects of gender and life
stage (male, non-ovigerous females and ovigerous
females) in our logistic regressions. We included interac-
tion terms between all variables (time at large and gen-
der/life stage) in a full model and also calculated models
with all possible subsets of these terms. We then used
Akaike information criteria corrected for sample size
(AICc) to pick the best model for each stage of disease.
To infer if there was an association between health

and body size, we analyzed the effect of disease status
and severity on body size. We used an analysis of
variance for each case study.

Disease prevalence.—We calculated disease prevalence
from our tagging data for lobsters and striped bass. In
both cases, these calculations required the assumption
that the proportion of diseased individuals in our catch
reflected the disease prevalence of the population.
For striped bass, there was no evidence for seasonal

variation in disease. Therefore we calculated disease
prevalence as the proportion of diseased individuals
caught (tagged or recaptured) in each disease class
(healthy, mild, moderate, or severe) per year. We calcu-
lated the mean prevalence across years and used the
year-to-year variation to calculate confidence intervals
around the prevalence.
For lobsters with epizootic shell disease, prevalence var-

ied with time and by sex. Therefore we calculated disease
prevalence separately for males, non-ovigerous females,
and ovigerous females for each month that tagging
occurred. We did this separately for each year and we also
calculated mean monthly prevalence levels for males,
non-ovigerous females and ovigerous females by averag-
ing monthly prevalence levels across years. As with the
striped bass analysis, we also used all caught (i.e., tagged
or recaptured) animals to determine prevalence.

Disease-associated changes in natural mortality rate.—By
assuming that natural mortality (including fishing mortal-
ity) rates prior to disease were additive to mortality from
disease, we interpreted the relative survival rate estimate

obtained for any individual or group of severity stages as
an estimate of the change in natural mortality rate (dDM ,
equivalent to b̂) for that severity stage or group. The esti-
mate, dDMJ , did not depend on the natural mortality rate
for uninfected individuals; however, to interpret the mag-
nitude and management implications of dDMJ , we
required an outside estimate of natural mortality rate for
the component of the population that is negative for dis-
ease. For this purpose, natural mortality rates in the
absence of disease were obtained from the most recent
assessment of the population status of the stock for striped
bass. The Atlantic States Marine Fisheries Commission
estimated that natural mortality rates were M = 0.15 yr�1

in areas with little or no disease (ASMFC 2003). The dis-
ease-adjusted, population-level, natural mortality rate was
estimated as a weighted average of the stage-specific natu-
ral mortality rates where each weight was equal to the
stage-specific prevalence. Bootstrapped changes in mortal-
ity rate were obtained by sampling from the distribution
of dRSj for each disease stage and multiplying it by the dis-
ease prevalence for that stage. In the case of striped bass,
there was little seasonal variation in disease prevalence, so
we used the average yearly prevalence in this calculation.
Epizootic shell disease in lobsters, on the other hand, was
highly seasonal, with peaks in the spring and autumn. Dis-
ease prevalence in all seasons and seasonal mortality rates
would be required to estimate the disease-associated
changes in natural mortality rates due to epizootic shell
disease. Therefore we could not estimate disease associated
changes in mortality rates for this species.
All analyses were run in R (v. 3.3.1 R Core Team

2016). R code for relative survival analyses are available
as supplemental documents (Data S1). Data are avail-
able in dryad.

RESULTS

Case 1: Snow crabs

Of the 722 tagged crabs released, one-half were
healthy and one-half were diseased. Recaptures were
obtained from 219 crabs that were healthy at release and
14 crabs that were diseased at release. At the time of tag-
ging, the mean size of diseased crabs was statistically
greater than healthy crabs (t720 = �3.53, P = 0.0005);
however the mean difference (2.03 mm) was not consid-
ered biologically significant because the animals were in
the terminal molt instar. The logistic regression model
showed that large-clawed, male snow crabs with bitter
crab disease had a significantly lower survival rate than
their healthy counterparts (z = �9.364, P < 0.001). The
survival rate of diseased males was 0.009% (95% CI
0.003–0.022) that of uninfected crabs (Fig. 2).

Case 2: Striped bass

Striped bass tagging programs in Virginia and Mary-
land released totals of 22,629 and 4,712 fish, respectively.
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These fish had average prevalence levels of 39.4%
� 1.0% (mean � SE) for mildly diseased striped bass,
15.2% � 1.0% for moderately diseased striped bass, and
10.5% � 0.5% for severely diseased striped bass (Fig. 3).
A one-way ANOVA was used to test for differences in

mean length across the four disease stages. Mean length
differed significantly by disease stage (F3, 26,951 = 172,
P < 0.001), with severely diseased fish having on average
the largest size followed by moderately diseased, mildly
diseased and healthy fish. The mean length of fish with
stage 3 (severe) disease was 19.3 mm larger than that of
fish at stage 0 (healthy).
Of the tagged striped bass, 1,880 and 236 of the

striped bass released by Virginia and Maryland, respec-
tively, were recaptured and used in the analyses. Com-
bined recaptures for both tagging programs were 912,
966, 393, and 299 for healthy, mild, moderate, and
severely diseased individuals, respectively. Time from
release to recapture for striped bass ranged from 0 d (re-
captured on the day of tagging) to 1,824 d (nearly 5 yr).
Striped bass were recaptured in every month with the
majority of recaptures occurring in October and Novem-
ber corresponding with tagging activity and the annual
period of peak fishing activity. Approximately 80% of
striped bass were recaptured within a year of release and
95% of all recaptures occurred within 712 d of release.
Logistic regression showed that relative survival

decreased with increasing disease severity state and was
marginally or significantly lower than that of healthy
animals for moderately and severely diseased animals,
respectively (Table 1, Fig. 4). Relative survival was 84%
(95% CI 70–100%), and 54% (42–68%) that of healthy
animals for these stages. Weighting the distribution of
relative survivals by the prevalence of each disease state
gives an overall relative survival during this period of
86.4% � 8.7% (mean � 95% confidence interval based
on 1,000 bootstraps) for fish exhibiting dermal disease
relative to fish without signs of disease. If the mortality
associated with disease is additional to pre-disease esti-
mates of natural mortality, this is equivalent to a change
of natural mortality from 0.15, as estimated by ASMFC
(2009) to 0.29 (95% CI 0.20–0.37), or almost a doubling
of the natural mortality rate in the population.

Case 3: Lobsters

During the study period (1999–2015), 60,212 lobsters
were tagged. Time between release and recapture ranged
from 2 to 789 d, with the mean time at large being 97 d.
Preliminary analyses of lobster tagging data showed
strong seasonal differences in the overall prevalence and
severity of epizootic shell disease. Seasonal patterns of

FIG. 2. Logistic regression to estimate survival of adult
male snow crabs with disease relative to those with no signs of
disease. Rug display shows individual recaptures (disease posi-
tive on top, disease negative on bottom). Sample size is shown
and also given as proportional circles during each period.
Shaded areas indicate 95% confidence intervals.

FIG. 3. Proportion of sampled striped bass population from
the Chesapeake Bay that is healthy or has mild, moderate, or
severe dermal mycobacteriosis. Values are average yearly pro-
portions and error bars indicate standard errors around yearly
estimates.

TABLE 1. Estimated relative survival of striped bass with dermal mycobacteriosis.

Disease state Relative survival Confidence interval (95%) P Sample size Recaptures (%)

None 912 35.5
Mild 0.96 0.84–1.09 0.50 966 37.6
Moderate 0.84 0.70–1.00 0.06 393 15.3
Severe 0.54 0.42–0.68 <0.01 299 11.6

Notes: Relative survival is measured against survival of fish with no signs of disease. CI, 95% confidence interval. Data includes
fish tagged in Fall and Spring from Maryland (2007–2009) and Virginia (2005–2012).
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disease varied by sex and, for females, by reproductive
status (Fig. 5). For males and non-ovigerous females, the
highest disease prevalence occurred in October, where it
was 56.9% � 8.1% for males and 42.8% � 5.5% for non-
ovigerous females. Ovigerous females had much higher
overall prevalence levels of disease and their highest dis-
ease prevalence was in May, 84.7% � 12.3%.
In order to quantify seasonal patterns, we partitioned

the data set based on time of release. The release data for
October was eliminated from the full data set so as to sta-
bilize stage-specific estimates of relative survival. Stabi-
lization of the estimates was indicative of having reduced
the full data set to a homogenous subset that captured
the warm water disease dynamics. The sample size for the
excluded month (n = 298 tagged and recaptured individu-
als) was too small to analyze for stage-specific relative
survival. The remaining data set, which also excluded
animals that were at large for less than 21 d was 6,904
animals. An ANOVA of recaptured individuals for the

summer data set indicated that moderately and severely
diseased lobsters were slightly larger than healthy lobsters
(F3, 6,603= 6.55, P = 0.003); however, the differences were
small (2.1 and 1.9 mm, respectively) and deemed not bio-
logically significant.
Model selection of logistic regressions showed that the

best fitting model of mild ESD included time at large
and ovigerous females (Table 2, Fig. 6). The relative
survival of mildly diseased animals was 45% (95% CI
27–75%). Prevalence of mild ESD at tagging was 12.8
times higher in ovigerous females than in all other
groups at the time of tagging.
Separate logistic regressions of moderately and

severely diseased lobsters revealed that these disease
states had similar estimates of relative survival. There-
fore, we combined these data into a single (moderate/
severe) model. The best-fitting model of moderate/severe
ESD included time at large and whether a female was
ovigerous (but sex as a factor was not significant;
Table 2, Fig. 6). The survival of moderately and severely
diseased lobsters (combined) relative to healthy lobsters
was 30% (95% CI 15–60%). The prevalence of moderate/
severe disease at the time of tagging was 16 times greater
in ovigerous females than in all other lobsters.

DISCUSSION

This study demonstrates the value of mark–recapture
data for estimating impacts of poorly understood, chronic
diseases on fished populations. In all cases, mortality
resulting from disease was substantial. It reached nearly
100% in diseased snow crabs. Natural mortality in dis-
eased populations of the striped bass we examined was
approximately two times higher than the AFMSC esti-
mate for natural mortality (0.15; ASMFC 2003). Mortal-
ity of diseased lobsters was more than double that of
healthy lobsters. These findings suggest that these emer-
gent diseases are substantial drivers of population
dynamics. In such cases, disease mortality should

FIG. 4. Logistic regression to estimate survival of striped bass with mild, moderate, and severe disease relative to those with no
signs of disease (a–c). Rug displays and confidence intervals are as in Fig. 2.

FIG. 5. Seasonal variation in the prevalence of epizootic
shell disease for males, non-ovigerous females and ovigerous
females. Estimates are mean monthly prevalence levels from
1999 to 2015 and standard errors around those means are indi-
cated with shading.
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TABLE 2. Akaike information criteria corrected for sample size (AICc) to pick the best fit logistic regressions examining the effects
of sex and time at large on recaptures of (A) mild and (B) moderate to severe epizootic shell disease in lobsters relative to healthy
lobsters; (C and D) best models are shown below.

Model df AICc Coefficient SE z P

(A) Model selection for mild epizootic shell disease
Time + Ovigerous 3 2236.0
Time 9 Ovigerous 4 2237.4
Time + Ovigerous + Female 4 2237.6
Time 9 Female + Ovigerous 5 2238.8
Time 9 Ovigerous + Female 5 2239.0

(B) Model selection for mild moderate shell disease
Time + Ovigerous 3 1567.9
Time 9 Ovigerous 4 1568.7
Time + Ovigerous + Female 4 1569.6
Time 9 Ovigerous + Female 5 1570.3

(C) Best model: Mild epizootic shell disease
Intercept �3.017 0.085 �35.508 <0.00001
Time (years) �0.795 0.256 �3.098 0.002
Ovigerous 2.551 0.198 12.894 <0.00001

(D) Best model: Moderate to severe epizootic shell disease
Intercept �3.412 0.107 �31.911 <0.00001
Time (years) �1.204 0.354 �3.405 0.001
Ovigerous 2.830 0.220 12.867 <0.00001

Note: The index, or base model, is for male lobsters.

FIG. 6. Logistic regression to estimate the relative survival of (a, b) male and non-ovigerous female lobsters and (c, d) ovigerous
female lobsters with mild or moderate to severe epizootic shell disease relative to lobsters with no signs of disease. Rug displays and
confidence intervals are as in Fig. 2.

October 2017 DISEASE REDUCES SURVIVAL IN FISHERIES 2123



incorporated into population models that inform fisheries
management plans for these species.
Although we were only able to examine adult male

snow crabs in our study, the logistic regression clearly
showed that, consistent with lab studies of this species
(Shields et al. 2005) and observations in other crus-
tacean species (e.g., Meyers et al. 1987), bitter crab dis-
ease can rapidly devastate snow crab populations. Our
results support the industry’s conservative reduction in
the catch quota in 2006. The sporadic nature of severe
epizootics in Newfoundland suggests that monitoring
disease prevalence, particularly when warmer tempera-
tures may contribute to outbreaks, would be prudent in
order to forecast impacts on the fishery and protect ade-
quate reproductive potential (Shields et al. 2007). Fur-
ther studies evaluating other stages, particularly adult
females, would assist with population projections and
estimating potential reproductive loss. Field surveys in
Newfoundland show that BCD prevalence in juvenile
males and females can be higher than in adult males,
suggesting that estimations of population impacts in this
study may be conservative (Shields et al. 2005).
Prevalence of ulcerative dermal mycobacteriosis in

our study frequently exceeded 50% in striped bass from
Maryland and Virginia waters. This is higher than previ-
ously reported. However, this is likely due, in part, to
under-reporting in previous studies that did not quantify
early signs of disease (i.e., presence of pigmented foci).
Previous estimates were reported to be up to 16% in
striped bass in the Rappahannock River, Virginia, and
29% in the York River, Virginia (Cardinal 2001). While
survival of mildly infected individuals was not different
from that of healthy animals, survival of moderately and
severely diseased individuals was reduced relative to
healthy fish. Combined with this disease’s negative
impact on growth (Latour et al. 2012), its high preva-
lence in adults, and its increased severity in larger fish,
the mortality rate from mycobacteriosis raises concerns
about potential impacts on fecundity. Although gener-
ally the Chesapeake Bay populations of striped bass
have rebounded considerably from over-harvesting in
the 1980s, our results indicate a doubling of the natural
mortality rate and support concerns about the impact
this disease may be having on this population (e.g., Gau-
thier et al. 2008, Vogelbein et al. 2012). Collectively,
these results suggest that chronic disease now needs to
be considered as an important component of mortality,
and the biological reference points need to be recalcu-
lated to improve the management goals for these fish-
eries in light of new levels of non-fishing mortality.
Analyses of epizootic shell disease in the Southern New

England stock of American lobster show that this rela-
tively new, chronic disease can be contributing substan-
tially to the collapse of the stock. Our models suggest that
mortality of moderately or severely diseased individuals
can be high. Of great concern is the impact of epizootic
shell disease on ovigerous females. Ovigerous females have
nearly 85% disease prevalence and molt less frequently

than males and non-ovigerous females. It has been hypoth-
esized that they have higher mortality rates because the
disease can progress further between molts and molting is
less likely to be successful (Glenn and Pugh 2006). In addi-
tion, female lobsters rarely molt when ovigerous (Camp-
bell 1983) and, because they cannot shed the disease unless
they molt, this likely contributes to disease mortality at this
stage (Stevens 2009). A reduction in survival of ovigerous
females is consistent with results from Wahle et al. (2009)
that associate declines in settlement and recruitment to
ESD. Lobsters above the legal size limit experience high
fishing mortality and have little chance to reproduce.
Combined with decreased reproductive output due to
ESD, mortality of ovigerous lobsters may explain at least
part of the rapid declines of the Southern New England
stock. The current management strategy for lobsters
includes protecting females until at least one reproductive
event has occurred before they reach the legal size
(ASMFC 2009). Low survival of ovigerous females may be
undermining the success of this strategy.
As with striped bass, chronic disease in American lob-

ster must now be considered an important component
of mortality in southern New England. It is encouraging
that the biological reference point for mortality for the
Southern New England stock was increased to 0.285
from 0.150. Further analyses are necessary to calculate
disease-associated mortality across the year. A recent,
peer-reviewed assessment of the status of the lobster
fishery recommended a five-year fishing moratorium for
southern New England because of low abundance and
poor recruitment (ASMFC 2009). Increased non-fishing
mortality, possibly due to disease and increased temper-
atures, have been implicated (ASMFC 2009, 2015,
Howell 2012). The Atlantic States Marine Fisheries
Commission (the agency responsible for American lob-
ster management), declined to impose a moratorium
and the stock in southern New England has declined
further. Our analysis of the tagging data, in combination
with data on catch indices (Wahle et al. 2009), give
mechanistic explanations of increased natural mortality,
shifts in sex ratios and reduced recruitment in southern
New England lobsters. Increased mortality in diseased
relative to healthy individuals is particularly high in
ovigerous females. Taken together, these analyses further
substantiate the need for management actions focusing
on protecting female lobsters.
The degree to which an emergent disease should affect

management of an exploited resource is controversial
(Johnson et al. 2015, Legault and Palmer 2015) and
depends upon the specific dynamics of the host-disease
interaction. In the case where a disease is novel to a sys-
tem, we favor a conservative approach. In these cases, the
host population has not yet coevolved with the pathogen
so the stress of disease should be added to the stress of
fishing mortality to compute the maximum potential
impact on the host population. While a reference point
such as the biomass producing maximum production
might not change with the introduction of the disease, the
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amount of sustainable yield that can be achieved and the
rate of fishing that produces maximum yield should be
reduced by the amount of new disease mortality. How-
ever, in cases where the degree of change in natural mor-
tality is poorly estimated, a status quo approach may be
the best option (Legault and Palmer 2015).
Several factors need to be taken into consideration

when employing logistic regressions on mark–recapture
data to understand disease. First, the ability to establish
a pathognomonic non-lethal diagnostic can be a chal-
lenging aspect of studying disease via mark–recapture;
however, this task can be accomplished by pathologists
familiar with the affected species or by using molecular
methods to detect pathogen presence. Although the for-
mer case may result in missed detection of diseased indi-
viduals, the latter case may be too sensitive, indicating
the presence of a pathogen but not necessarily disease.
Thus, diagnostic approaches must be considered with
the research question and disease progression in mind
(Burge et al. 2016). Secondly, the model assumes that
the ratio of catchability for diseased and healthy individ-
uals is constant over time and only dependent upon the
grouping factor (e.g., disease status). Numerous factors
could lead to the violation of this assumption including
differential behavior of diseased and healthy animals in
relation to variable environmental conditions, change in
disease state after tagging, differential migratory pat-
terns in diseased and healthy individuals, or differential
tag reporting. Although such factors are frequently
unknown in marine organisms, simulations can be used
to understand how violations of these assumptions can
affect results, and laboratory experiments may help
quantify such effects. Given the value of mark–recapture
for understanding disease in poorly studied populations,
these considerations should not hinder the approach,
but, when possible, should be accounted for in the study
design and interpretation.
Logistic regression may not be appropriate for analyz-

ing all mark–recapture data. Particularly when there is
suspected error in diagnosis, or cases where diagnoses are
not possible, multi-state mark–recapture methods are
more appropriate because they can account for imperfect
detection (e.g., Conn and Cooch 2009). In addition, in
cases where there are unidentified sources of heterogene-
ity within the data set, for example, due to different life
history strategies within a population, multi-state mark–
recapture may be a better approach. In contrast to logistic
regression models, multi-state mark–recapture analyses
use all tagging data, not just recaptures, to estimate
parameters, which may be a major advantage, depending
on the data set of interest (e.g., Choquet et al. 2009). The
snow crab and striped bass data sets were well-suited to
analysis with logistic regression because, in both cases,
the disease progression was linear; it was not strongly
seasonal and recovery did not occur. In contrast, analysis
of epizootic shell disease in the American lobster was less
straightforward due to complex seasonal dynamics of
epizootic shell disease and recovery from disease as a

result of molting. While the logistic regression provides a
useful first approach to understanding mortality due to
this disease, seasonal estimates are necessary to quantify
the temporal dynamics of the disease and its time-depen-
dent impacts on survival. This next step could be accom-
modated through multi-state mark–recapture analysis. In
cases where more epidemiological processes need to be
estimated (i.e., disease incidence, progression and recov-
ery), multi-state mark–recapture is a preferred method of
analysis. The trade-offs, as discussed above, are the a pri-
ori knowledge required to specify state transitions and
potential challenges in convergence for these complex
models. On the other hand, the logistic regression models,
demonstrated here, are useful alternatives, particularly
when little is known about the disease in question.
Collectively, these studies demonstrate the value of

using simple analytical tools (i.e., logistic regression) on
mark–recapture data to assess the population impacts of
chronic marine diseases on host populations. Despite
substantial differences in disease progression, disease
mortality, and host life history, this approach was suc-
cessful in elucidating challenging yet critical estimates of
the population-level impacts of disease. One of the
advantages of this approach is that additional demo-
graphic data can be incorporated in order to identify
vulnerable groups or adjust fisheries management to
account for additional disease-related mortality. These
data can also be used to parameterize population projec-
tions. For example, for two of our study species, snow
crab and American lobster, increased temperature is
associated with disease. The data collected from our
mark–recapture studies can be used to predict disease
impacts in different environmental regimes (Maynard
et al. 2016). We expect to see more studies using mark–
recapture data to quantify the effects of disease on mar-
ine organisms. The increasingly sophisticated and flexi-
ble methods for evaluating disease with mark–recapture
data (Calvert et al. 2009, Conn and Cooch 2009, Cooch
et al. 2012) leverage the capacity of the research commu-
nity to quantify disease impacts in marine organisms
(Shields 2012, Stentiford et al. 2012, Groner et al. 2016).
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