
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Electrical & Computer Engineering Theses & 
Dissertations Electrical & Computer Engineering 

Summer 8-2022 

Emotion Detection Using an Ensemble Model Trained with Emotion Detection Using an Ensemble Model Trained with 

Physiological Signals and Inferred Arousal-Valence States Physiological Signals and Inferred Arousal-Valence States 

Matthew Nathanael Gray 
Old Dominion University, mgray564@gmail.com 

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds 

 Part of the Artificial Intelligence and Robotics Commons, Biological Psychology Commons, and the 

Signal Processing Commons 

Recommended Citation Recommended Citation 
Gray, Matthew N.. "Emotion Detection Using an Ensemble Model Trained with Physiological Signals and 
Inferred Arousal-Valence States" (2022). Master of Science (MS), Thesis, Electrical & Computer 
Engineering, Old Dominion University, DOI: 10.25777/16j8-ah19 
https://digitalcommons.odu.edu/ece_etds/243 

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital 
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an 
authorized administrator of ODU Digital Commons. For more information, please contact 
digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.odu.edu%2Fece_etds%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/405?utm_source=digitalcommons.odu.edu%2Fece_etds%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.odu.edu%2Fece_etds%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/243?utm_source=digitalcommons.odu.edu%2Fece_etds%2F243&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


EMOTION DETECTION USING AN ENSEMBLE MODEL TRAINED WITH 

PHYSIOLOGICAL SIGNALS AND INFERRED AROUSAL-VALENCE STATES 

by 

 

Matthew Nathanael Gray 

B.S. April 2016, University of Alabama at Birmingham 

 

 

 

A Thesis Submitted to the Faculty of  

Old Dominion University in Partial Fulfillment of the  

Requirements for the Degree of  

 

MASTER OF SCIENCE 

 

ELECTRICAL AND COMPUTER ENGINEERING 

 

OLD DOMINION UNIVERSITY 

August 2022 

 

 

 

 

Approved by: 

 

Jiang Li (Director) 

 

Krzysztof Rechowicz (Member) 

 

Sampath Jayarathna (Member) 

 

Chung-Hao Chen (Member) 

 

  



ABSTRACT 

EMOTION DETECTION USING AN ENSEMBLE MODEL TRAINED WITH PHYSIOLOGICAL 

SIGNALS AND INFERRED AROUSAL-VALENCE STATES 

 

Matthew Nathanael Gray 

Old Dominion University, 2022 

Director: Dr. Jiang Li 

 

 

Affective computing is an exciting and transformative field that is gaining in popularity among 

psychologists, statisticians, and computer scientists. The ability of a machine to infer human emotion and 

mood, i.e. affective states, has the potential to greatly improve human-machine interaction in our 

increasingly digital world. In this work, an ensemble model methodology for detecting human emotions 

across multiple subjects is outlined. The Continuously Annotated Signals of Emotion (CASE) dataset, 

which is a dataset of physiological signals labeled with discrete emotions from video stimuli as well as 

subject-reported continuous emotions, arousal and valence, from the circumplex model, is used for 

training and testing the model [1, 2]. Blood volume pulse (BVP), galvanic skin response (GSR), and skin 

temperature physiological signals are windowed and used to extract 17 physiological features (13 BVP, 2 

GSR, and 2 skin temperature features). These physiological features are then used along with subject-

reported arousal and valence state values as inputs into regression models to create predicted arousal and 

valence values for each feature window. The predicted or “inferred” arousal and valence state values were 

then concatenated to the original 17 physiological features and used as inputs to a classification model for 

the final classification of emotion state into five categories, including relaxed, bored, neutral, amused, and 

scared. Multiple regression and classification models were tested, and the best performing model was a 

linear regression arousal and valence predictor followed by a hyperparameter-tuned support vector 

machine (SVM) classifier, achieving a five-fold cross-validation accuracy of 98.79% ± 0.29% for the 

five-class emotion classification across subjects. Finally, an impactful real-world application in an 

emotional feedback household environment for enabling independent living in differently-abled people is 

discussed.  
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NOMENCLATURE 

AMIGOS A dataset for Multimodal research of affect, personality traits, and mood on 

Individuals and GrOupS 

AUC Area Under the Curve 

BPM Beats Per Minute 

BVP Blood Volume Pulse 

CASE Continuously Annotated Signals of Emotion 

cEMG corrugator supercilii-Electromyogram  

CNN Convolutional Neural Network 

CUDA Compute Unified Device Architecture 

DEAP Database for Emotional Analysis using Physiological Signals 

DECAF MEG-Based Multimodal Database for DECoding AFfective Physiological Responses 

DNN Deep Neural Network 

DREAMER A Database for Emotion Recognition Through EEG and ECG Signals From Wireless 

Low-cost Off-the-Shelf Devices 

GPU Graphics Processing Unit 

GSR Galvanic Skin Response 

ECG Electrocardiogram 

EEG Electroencephalography 

EMG Electromyography 

EOG Electrooculogram 

hEOG horizontal-Electrooculogram 

HMM Hidden Markov Model 

IBI Inter-beat Interval 

JERI Joystick-based Emotion Reporting Interface 

KNN K-Nearest Neighbor 

LDA Linear Discriminant Analysis 

LDF Linear Discriminant Function 

LSTM Long Short-Term Memory 

MAD Median Absolute Deviation of ECG RR Intervals 

MAE Mean Absolute Error 

MAHNOB-HCI A Multimodal Database for Affect Recognition and Implicit Tagging 

MAP Maximum a Posteriori 
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MEG Magnetoencephalogram 

MLP Multilayer Perceptron 

MMC Meta-multiclass 

M-SVR Multiple Output Support Vector Regression 

mRMR Minimum Redundancy Maximum Relevance 

MSE Mean Squared Error 

NIR Near Infrared 

NN Neural Network 

pNN20 Proportion of Successive Differences above 20 milliseconds 

pNN50 Proportion of Successive Differences above 50 milliseconds 

PPG Photoplethysmography 

RECOLA Remote Collaborative and Affective Interactions 

ReLU Rectified Linear Unit 

RF Random Forest 

RFE Recursive Feature Elimination 

RMSSD Root Mean Square of Successive Differences of Intervals 

RMSE Root Mean Squared Error 

S Area of Poincaré Ellipse 

SD1 Standard Deviation Perpendicular to Line of Identity 

SD2 Standard Deviation Parallel to Line of Identity 

SD1/SD2 Ratio of Poincaré Standard Deviations 

SDNN Standard Deviation of ECG NN Intervals 

SDSD Standard Deviation of Successive Differences 

SEMAINE Sustained Emotionally colored Machine-human Interaction using Nonverbal 

Expression Dataset 

SEWA A Rich Database for Audio-Visual Emotion and Sentiment Research in the Wild 

SFFS Sequential Floating Feature Selection 

SFS Sequential Forward Selection 

SMOTE Synthetic Minority Oversampling Technique 

SVM Support Vector Machine 

SVR Support Vector Regression 

tEMG trapezius-Electromyogram 

WMD-DTW Weighted Multi-Dimensional Dynamic Time Warping 

zEMG zygomaticus major-Electromyogram  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Affective computing is the study of detecting one’s emotional (affective) state through computational 

methods such as facial expression recognition, body language recognition, speech tone and inflection 

recognition, and physiological signals [3]. The ability of a computer to infer the emotional state of a 

human being is potentially revolutionary through applications such as improving human-machine 

interaction, notification of a certain emotional state for improved self-awareness and emotion regulation, 

assisting individuals with autism in communicating emotional states, and augmenting an individual’s 

environment based on a certain detected emotional state. The miniaturization of electronic sensors and 

processors with increased computational ability has enabled the use of affordable devices which can 

measure and analyze signals such as heart rate, galvanic skin response, respiration rate, skin temperature, 

video, and sound using computationally expensive filtering and modeling techniques. The increased 

availability of such low-cost and miniaturized sensors has allowed the average person access to data 

previously only available in a lab using highly specialized equipment and software. Society is currently 

experiencing a data revolution where vast quantities of data are collected about people’s daily lives and 

can be used to improve living conditions. Affective computing is one of many big data fields on the cusp 

of becoming mainstream through smart wearable devices. It is gaining in popularity as can be seen by the 

growth of the number of research papers submitted in recent years [3-10]. 

Many wearable devices have been created and proposed for measuring various physiological signals 

[11]. In Healey’s dissertation in the early 2000s, multiple unique devices are proposed including a sensor 

embedded inside a shoe to measure GSR from the sole of the foot, a photoplethysmography (PPG) sensor 

for measuring blood volume pulse (BVP) at the lobe of the ear which is worn like an earring, and a 

respiration sensor embedded in a sports bra for measuring respiration rate through chest expansion and 

decompression [11]. In recent years, wearable physiological sensors, namely BVP and GSR sensors, have 

become commercially available in devices usually worn on the wrist that are smaller or the same size as 

watches. Devices such as Fitbits ®, Apple Watches ®, and Garmin ® Smartwatches are all small, 

affordable devices which contain embedded sensors such as BVP, GSR, and skin temperature. Research 

devices such as the Empatica E4 are also available which measure BVP, GSR, and skin temperature with 

Bluetooth capability for data acquisition and real-time use-cases. Devices will only become smaller, 

cheaper, and more capable as time goes on, so now is an opportune time to develop systems and processes 

which apply this technology to solving complex problems as well as improving everyday life.  
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Real-time affective computing using widely available and affordable wearable technology has the 

potential to improve lives, especially for those with emotional and/or cognitive differences. A typical 

symptom of children and adults with cognitive differences such as autism is difficulty in expressing 

emotions [12]. Emotions are fully experienced, but the expression of the emotion is inhibited. This leads 

to utilizing other methods for individuals with autism to be self-aware of and better express emotions 

such as affective computing. Some challenges would need to be solved such as giving the user of the 

affective computing system the ability to decide whether their emotion is shared or not with the outside 

world which is necessary for social interactions. This would be equivalent to throttling the outward 

expression of emotion to abide by social norms and cues. The goal of such a system would be to improve 

the user’s life by improving their social interactions with the world through insight into their own 

emotions and behavior to themselves and those around them on a real-time basis. The predicted emotion 

from the affective computing device could be taken a step further and be used to drive feedback from a 

smart environment such as a house or vehicle to actively improve someone’s daily experiences with the 

outside world [13-16]. 

There are several limitations to the current state-of-the-art in affective computing. The most 

prominent of which are low accuracies for subject-independent models – models that are generalizable to 

any user. The models in current literature with high accuracy (90% or greater) are all subject-dependent. 

Another limitation of some studies is the use of complicated sensors such as electroencephalography 

(EEG), electromyography (EMG), near-infrared spectroscopy (NIRs), and others that are difficult to use 

outside of a controlled lab setting and thus have limited real-world applications. There are also difficulties 

in comparing affective computing models due to the lack of standardization in emotion labels. This makes 

it difficult to use multiple datasets of human emotions in the same model due to the use of differing 

emotion labels. Another limitation is the use of ground truth emotions from subject self-reporting in some 

affective datasets. While this may help account for the uniqueness in emotional responses to stimuli, this 

also introduces noise in the form of human bias due to phenomena such as confirmation bias and the 

desire to follow cultural norms. A much more comprehensive discussion on the current state-of-the-art 

and the limitations and challenges facing the field of affective computing can be found in the second 

chapter, Related Work. 

 

1.2 Proposed Work 

Using the Continuously Annotated Signals of Emotion (CASE) dataset which includes discrete 

emotion labels as well as continuous arousal and valence emotion labels correlated to physiological data 
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from thirty subjects, a novel method of preprocessing, generating features, and ensemble model 

generation is presented. The following research questions are investigated: 

• Can a subject-independent, multi-class emotion recognition model with  greater than 95% 

accuracy be created? 

• Can this model use only non-invasive, readily available sensors such as BVP, GSR, and Skin 

Temperature with high accuracies? 

Based on these questions, the following hypotheses are proposed and investigated in this work:  

• A discrete emotion detection model using physiological sensors can be made that is generalizable 

to any user (subject-independent). 

• A discrete emotion detection model using physiological sensors can be made with greater than 

95% accuracy. 

• A discrete emotion detection model can be made using easily-acquired, readily-available 

physiological sensors currently on the market today. 

 

1.3 Outline of Thesis 

This work covers a background of affective/emotion model types, openly available affective/emotion 

datasets, a literature review of the field of affective computing from its inception in the late 1980s to 

2022, and brief descriptions of the regression and classification models used in this work in the Related 

Work section. Then a description of a novel, generalizable, and well-performing methodology for 

predicting emotion is given in the Materials and Methods section. Accuracy and other metrics for this 

methodology are given in the Results section, and discussions of potential applications and significance 

are given in the Discussion and Conclusions section.   
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CHAPTER 2 

2 RELATED WORK 

2.1 Affective Models 

Some of the first models and hypotheses of emotions are from Charles Darwin and James-Lange [17]. 

Emotions are complex psychological phenomena derived from conscious and unconscious thoughts. In a 

pathological sense, emotion dysregulation due to mental illnesses such as bipolar, depression, anxiety, 

and borderline personality disorder can significantly affect one’s life. To better understand emotions and 

the roles they play in our lives, many different emotion models have been developed. These emotion 

models vary greatly in form and function and can be categorized into two types: continuous and discrete. 

Continuous emotion models describe emotions in a continuum across multiple dimensions. Discrete 

models, on the other hand, describe emotions as separately defined phenomena. It is also worth noting 

that in the field of psychology, “affect” is an overarching term used to describe moods and emotions [18]. 

An emotion is a short-term feeling caused by a stimulus such as a thought or an experience, and a mood is 

a long-term state of mind lasting hours, days, or longer which do not necessarily need a stimulus [18]. 

The following section briefly looks at the variety of emotion model methodologies suggested by 

researchers, and a more detailed and comprehensive literature review is available if the reader desires to 

dive deeper into emotion theories in [3-10, 19]. Fig. 1 shows the varied nature and categorization of 

popular emotion models.  

 

 

 

 

 

Fig. 1. Categorization of Example Emotion Models. 
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2.1.1 Continuous Models 

Continuous models of affect define multiple attributes along a continuous spectrum. Each attribute is 

placed on a dimension, and each emotion is defined by its location in the n-dimensional space. The most 

popular continuous model is the two-dimensional circumplex model of affect defined by Russel which is 

defined by two attributes: arousal and valence [2]. There are also other continuous models such as 

Mehrabian’s three-dimensional PAD (Pleasure-Arousal-Dominance) model [20] and Plutchik’s “emotion 

wheel” model [21].  

The circumplex model of affect defined by Russel in 1980 is a two-dimensional model of arousal and 

valence. Arousal is a measure of a person’s excitement where low arousal depicts emotions such as 

boredom or relaxation and high arousal depicts amusement or anger. Valence is a measure of negativity to 

positivity where low valence depicts emotions such as sadness or anger and high valence depicts 

amusement and joy. This model can be correlated with discrete emotion labels by defining regions in the 

multi-dimensional space each emotion belongs. Fig. 2 below shows an example of correlating the 

arousal/valence circumplex model of affect to discrete emotions: 

 

 

 

 

 
Fig. 2. Example of Arousal/Valence Space with Correlated Discrete Emotions. 
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The circumplex model has also been correlated with physiological responses from GSR, BVP, facial 

expressions, and others. One of the first studies to correlate arousal and valence with physiological 

responses is Winton et al. in 1984 [22]. They proved that arousal and valence responses from emotional 

stimuli in the form of pictures can be linearly correlated with changes in physiological features such as 

GSR amplitude and heart rate [22]. The two dimensions of the circumplex model (arousal and valence) 

are preferred over traditional discrete emotion labels such as joy, anger, and sadness since it better 

captures the time and intensity varying nature of emotions [1].  

Other continuous emotion descriptors exist such as dominance, liking, predictability, and 

performance. Dominance is a measure of how in control a person feels and ranges from dominant to 

submissive [20]. Liking, as the name suggests, is a measure of how much a person likes the stimuli [23]. 

This is a useful metric since people can like negative valence emotions such as sadness and fear. A good 

example of this is the popularity of the horror movie genre. Fontaine et al. also proposed a fourth 

emotional dimension, predictability, as an important indicator of the surprise emotion along a spectrum 

[24]. This four-dimensional emotion model was the first to include the reasoning behind all six of the 

“basic” discrete emotions proposed by earlier researchers allowing for the blending of emotions within 

the four-dimensional space [24]. Table 1 below gives an example list of emotion models using continuous 

descriptors. 

 

 

 

 
TABLE 1. CONTINUOUS EMOTION MODELS SUGGESTED BY RESEARCHERS 

Year Paper Continuous Emotion Categories 

1980 Russel [2] Arousal, Valence (Circumplex model) 

1988 Plutchik [21] Emotion Wheel 

1996 Mehrabian [20] Arousal, Valence, Dominance 

2005 Lee et al. [25] Negative and Non-negative emotions 

2006 Martin et al. [26] Emotional Activation 

2007 Fontaine et al. [24] Arousal, Valence, Dominance, Predictability 

2008 Vogt et al. [27] Positive-Active, Negative-Active, Positive-Passive, Negative-Passive 

2014 Hasan et al. [28] Happy-Active, Happy-Inactive, Unhappy-Active, Unhappy-Inactive 

 

 

 

 

2.1.2 Discrete Models 

Discrete emotion models are the traditional way to describe emotions into separate defined categories 

such as anger, sadness, and happiness. Four authors in the 1990’s produced seminal research into discrete 

emotion models: Ekman [29], Izard [30], Levenson [31], and Panksepp [18], and a good discussion of the 
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rationale and analysis of the similarities and differences of these emotion models can be found in [32]. 

Table 2 below displays a list of different discrete emotion models developed and illustrates the variety of 

models available for use in applications such as affective computing. Question marks after an emotion 

label in the table refer to the researcher’s uncertainty in the inclusion of that label in the emotion model. 

 

 

 

 
TABLE 2. DISCRETE EMOTION MODELS SUGGESTED BY RESEARCHERS 

Year Paper Discrete Emotion Categories 

1992 Ekman [29] Anger, Disgust, Fear, Happiness, Sadness, Contempt, Surprise 

1992 Izard [30] Anger, Disgust, Fear, Happiness, Sadness, Interest, Contempt? 

1994 Levenson [31] Anger, Disgust, Fear, Enjoyment, Sadness, Interest?, Love?, Relief? 

1998 Panksepp [18] Play, Panic/Grief, Fear, Rage, Seeking, Lust, Care 

2005 Alm et al. [33] Anger, Disgust, Fear, Happiness, Sadness, Positively Surprised, Negatively 

Surprised 

2008 Strapparava et al. [34] Anger, Disgust, Fear, Joy, Sadness, Surprise 

2008 Gill et al. [35] Anger, Disgust, Fear, Joy, Sadness, Surprise, Anticipation, Acceptance 

2011 Balahur et al. [36] Anger, Disgust, Fear, Joy, Sadness, Shame, Guilt 

2012 Balabantaray et al. [37] Anger, Disgust, Fear, Happiness, Sadness, Surprise 

2012 Roberts et al. [38] Anger, Disgust, Fear, Joy, Sadness, Surprise, Love 

2012 Agrawal et al. [39] Anger, Disgust, Fear, Happiness, Sadness, Surprise 

2013 Sykora et al. [40] Anger, Disgust, Fear, Happiness, Sadness, Shame, Surprise, Confusion 

2013 Wang et al. [41] Anger, Disgust, Fear, Joy, Sadness, Shame, Guilt 

2013 Suttles et al. [42] Anger, Disgust, Fear, Happiness, Sadness, Surprise, Trust, Anticipation 

2013 Calvo et al. [43] Anger, Disgust, Fear, Joy, Sadness 

 

 

 

 

As can be seen from Table 2, there is a wide range of discrete emotion models which are similar but 

still have notable differences. This lack of consensus on a standardized emotion model introduces 

difficulty in any potential application of these models in other fields. While some emotions are easily 

related to each other such as joy, happiness, and enjoyment, others are more difficult to relate to each 

other since they describe similar feelings but have slightly different meanings such as disgust, shame, and 

guilt. It is also notable that all emotion models listed in Table 2 contain these emotions: anger, disgust, 

fear, joy, and sadness. If the reader would like to explore further information and discussion about 

discrete emotion models, they can refer to the comprehensive survey in [19]. 

 

2.2 Affective Datasets 

There are multiple publicly available datasets that contain data of subjects while various emotions are 

elicited in an experimental setting. Table 3 lists many of the openly available emotional datasets which 
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can be used to train and test emotion detection algorithms. A subset of these datasets also contain data 

regarding the subject’s arousal and valence from the stimuli as described in the Circumplex model 

including the DEAP [23], SEMAINE [44], RECOLA [45], DECAF [46], SEWA [47], and CASE [1] 

datasets. The arousal and valence of these datasets are self-reported by the subjects during or after the 

presentation of the stimuli using discrete scales or continuous reporting mechanisms such as a joystick in 

the CASE dataset. 

 

 

 

 
TABLE 3. POPULAR OPENLY AVAILABLE AFFECTIVE DATASETS 

Dataset Year, 

Author 

# of 

Subjects 

Stimuli Data Type Emotion Model 

DEAP 2011, 

Koelstra et 

al. [23] 

32 Videos Physiological: 

EEG, GSR, 

Resp, Skin 

Temp, ECG, 

BVP, zEMG, 

tEMG, and 

EOG 

Continuous  

(discretely self-reported after 

video): 

Arousal (1-5) 

Valence (1-5) 

Dominance (1-5) 

Liking (1-3) 

 

SEMAINE 2012, 

McKeown et 

al. [44] 

150 Simulated 

Conversation 

Facial Video and 

Voice Audio 

Recordings 

Continuous  

(labeled after the fact by 

experts) 

Valence 

Activation 

Power 

Anticipation/Expectation 

Intensity 

 

Discrete 

Fear, Anger, Happiness, 

Sadness, Disgust, 

Contempt, Amusement 

Epistemic States 

Interaction Process 

Analysis 

Validity 

MAHNOB-

HCI 

2012, 

Soleymani et 

al. [48] 

27 Videos Facial Video, 

Audio, Eye Gaze,  

Continuous: 

Arousal 

Valence 

Dominance 

Predictability 

 

Discrete: 

Disgust 

Amusement 

Joy 

Fear 

Sadness 

Neutral 
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TABLE 3. CONTINUED 

Dataset Year, 

Author 

# of 

Subjects 

Stimuli Data Type Emotion Model 

RECOLA 2013, 

Ringeval et 

al. [45] 

46 Collaborative 

Task 

Video, Audio, 

ECG, GSR 

Continuous: 

Arousal 

Valence 

Agreement 

Dominance 

Engagement 

Performance 

Rapport 

DREAMER 2018, 

Katsigiannis 

and Ramzan 

[49] 

23 Audio-Visual EEG, ECG Continuous: 

Arousal 

Valence 

Dominance 

CASE 2019, 

Sharma et al. 

[1] 

30 Videos Physiological: 

ECG, BVP, EMG 

(3x), GSR, Resp, 

and Skin Temp 

Continuous 

(continuously self-reported 

with joystick): 

Arousal (0-9) 

Valence (0-9) 

 

Discrete: 

Relaxed 

Bored 

Neutral 

Amused 

Scared 

SEWA 2021, 

Kossaifi et 

al. [47] 

398 Watching and 

Discussing Ads 

Facial Video and 

Audio 

Continuous: 

Valence 

Arousal 

Liking 

Agreement 

Disliking 

DECAF 2015, Abadi 

et al. [46] 

30 Music Videos 

and Movie 

Clips 

MEG, NIR Facial 

Videos, hEOG, 

ECG, tEMG 

Continuous: 

Arousal 

Valence 

Dominance 

AMIGOS 2021, 

Miranda-

Correa et al. 

[50] 

40 Videos EEG, ECG, GSR Continuous: 

Valence 

Arousal 

Control 

Familiarity 

Liking 

 

Discrete: 

Neutral 

Disgust 

Happiness 

Surprise 

Anger 

Fear 

Sadness 
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2.3 Regression Machine Learning Models 

2.3.1 Linear Regression 

As the name suggests, linear regression creates a model that linearly correlates the inputs to the 

outputs. This allows the prediction of a value along a continuous range given a specific input by creating 

a linear best fit line. There are a couple of different methods for creating this best fit line including simple 

linear regression using statistics values such as mean, standard deviation, correlations, and covariance, 

ordinary least squares which minimizes the residual sum of squares, gradient descent which optimizes the 

model’s coefficients by iteratively minimizing the error of the model using the training data, and 

regularization which uses the ordinary least squares method but also attempts to reduce the complexity of 

the model by optimizing the coefficients through various methods [51]. Fig. 3 below is an example of 

linear fit lines for two sets of data. 

 

 

 

 

 

Fig. 3. Example linear regression best fit lines on two datasets. 

 

 

 

 



11 

2.3.2 Random Forest Regressor 

The random forest regression is functionally constructed in the same way the random forest classifier 

models are constructed. The theory behind the random forest model structure is described in detail in the 

Classification Machine Learning Models section below. The major difference between a random forest 

classifier and regressor is that in the classifier, the decision is based on a majority vote of the decision 

trees for which class the input feature set is classified, and in the regressor, the average of decision tree 

outputs is calculated and taken as the value prediction from the regression [52]. Fig. 4 below gives an 

example of a single decision tree used for regression. The random forest regressor is an ensemble model 

using multiple of these decision tree regressors to determine the final regression output. 

 

 

 

 

 

Fig. 4. Simplified Diagram of Random Forest Regressor. 

 

 

 

 

2.3.3 Support Vector Regressor 

Support vector regression uses the same principles as support vector machines used in classification 

problems by creating a hyperplane in higher dimensional spaces. A more detailed explanation of support 

vector machines in general is given in the Classification Machine Learning Models section below. 

However, instead of finding a hyperplane which attempts to maximize the separation of the datapoints 

between datapoint classes, the regressor attempts to find a hyperplane that contains, or touches, as many 
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datapoints in the dependent variable as possible. This hyperplane is then used to predict new datapoints of 

the dependent variable. Fig. 5 below shows example hyperplanes produced by SVRs that contains a 

majority of the datapoints in the dataset using three different kernel functions. 

 

 

 

 

 

Fig. 5. Example hyperplanes created by different SVR kernels.  

 

 

 

 

2.3.4 Adaboost Regressor 

Adaboost, or “Adaptive Boosting”, regression is a type of ensemble learning which uses the output of 

multiple weak learners to create a single strong learner [53]. The Adaboost algorithm in particular takes 

the output of multiple decision trees with a single split, known as “decision stumps”, sequentially where 

each decision tree’s output is used to improve the next decision tree’s output. It is interesting to note that 

random forest models also use decision trees, but instead of running the decision trees in “parallel” to 

each other and aggregating the outputs of the decision trees at the end, the Adaboost model runs the 

decision trees sequentially and improves each tree in each iteration. Each decision is a separate regressor 

which is improved on itself for a predetermined amount of times set by the model designer. The resulting 

regressor is the ensemble regression model used. Fig. 6 illustrates the multiple decision stumps being used 

to improve the performance of the ensemble decision stump.  
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Fig. 6. Adaboost aggregation of multiple decision stumps (Box 1-3) into the final output (Box 4). 

 

 

 

 

2.3.5 XG Boost Regressor 

Extreme Gradient Boosting (XG Boost), like Adaboost, is a type of ensemble boosting model. The 

base regression model is a decision tree that is improved upon in each consecutive decision tree. Unlike 

Adaboost, XG Boost uses a loss function and gradient descent optimization to improve the performance 

of each decision tree [54]. The algorithm itself is designed to be scalable and fast which enables the use of 

the gradient boosting method on very large datasets. 

 

2.4 Classification Machine Learning Models 

2.4.1 Neural Network 

Neural networks are composed of input, hidden, and output layers each with a set of nodes that are 

‘connected’ with sets of weights and biases. Each node contains a nonlinear activation function such as 

the sigmoid or rectified linear unit (ReLU) functions which filter the output of that node non-linearly. If 

the non-linear activation functions were not present in the nodes, increasing the number of layers would 

have no effect on the accuracy of the neural network. Fig. 7 below shows the general structure of a neural 

network with an input layer, hidden layer(s), an output layer, nodes, weights, biases, and activation 

functions. 
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Fig. 7. Example Neural Network Structure. 

 

 

 

 

Each circle represents a node where the first column is the input layer, the middle columns are the 

hidden layer(s), the last column is the output, xi are the inputs (features), wij are the weights, θi are the 

biases, oi, are the outputs (classification or regression), and the symbols inside the nodes represent the 

activation function. 

 

2.4.2 Random Forest  

The Random Forest model is a common, robust machine learning algorithm used for supervised 

learning of datasets in classification and regression scenarios. It is an ensemble method that combines the 

classification prediction from multiple decision tree classifiers based on a majority voting system. It also 

incorporates a random subsampling through the replacement of the original feature set for each decision 

tree to reduce the correlation between trees. This greatly reduces the variance between prediction outputs 

without increasing bias making random forest models robust to oversampling and accurate. 

The functional component of the random forest model, the decision tree model, is a classification 

algorithm that makes a decision for each feature in a datapoint’s feature vector based on a predefined 

function such as Gini Impurity or Information Gain. The structure of a decision tree model is shown in 

Fig. 8 below. 
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Fig. 8. Example decision tree showing node and branch structure for classifying data. The features 

used for classification and decision-making are seen in the branches labelled as xn. 

 

 

 

 

The Gini Impurity function is calculated as the sum of probabilities that a class, 𝑖, will be chosen, 𝑓𝑖, 

times the probability of misclassifying that class, 1 − 𝑓𝑖. The equation for Gini impurity of a dataset with 

𝐽 classes is 

 

 
𝐼𝐺(𝑓) = ∑ 𝑓𝑖(1 − 𝑓𝑖) =

𝐽

𝑖=1

∑(𝑓𝑖 − 𝑓𝑖
2) =

𝐽

𝑖=1

∑(𝑓𝑖 − 𝑓𝑖
2) =

𝐽

𝑖=1

∑ 𝑓𝑖 −

𝐽

𝑖=1

∑ 𝑓𝑖
2

𝐽

𝑖=1

= 1 − ∑ 𝑓𝑖
2

𝐽

𝑖=1

= ∑ 𝑓𝑖𝑓𝑘

𝑖≠𝑘

 (1) 

 

The branch with the minimum impurity value is then chosen to continue the classification until a node 

is reached where the impurity equals zero, i.e. every case in the node is the same class. The decision tree 

then classifies that datapoint in that class. 

The other possible decision function, information gain, aims to minimize the complexity of the 

decision tree by finding the split that minimizes the amount of information needed in the child node to 

make a decision on the class of the datapoint. To define this amount of information, the entropy of a node 

is calculated and defined by 

 

 
𝐻(𝑇) = 𝐼𝐸(𝑝1, 𝑝2, ⋯ , 𝑝𝑛) = ∑ 𝑝𝑖 log2 𝑝𝑖

𝐽

𝑖=1

 (2) 
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The information gain from parent to child node is then calculated as the difference between the parent 

node’s entropy and the child node’s entropy given by 

 

 𝐼𝐺(𝑇, 𝑎) = 𝐻(𝑇) − 𝐻(𝑇|𝑎) (3) 

 

The feature with the highest information gain, or difference between parent and child node entropy, is 

then chosen to split the node on. 

The Random Forest algorithm then uses a method called feature bagging to aggregate the 

classifications of multiple decision trees to reduce the variance of predictions by statistically validating 

them using multiple models. Fig. 9 below shows this aggregation and the equation used to make the final 

classification prediction for the ensemble model. 

 

 

 

 

 
Fig. 9. Simplified Diagram of Random Forest Classifier. 

 

 

 

 

For each decision tree in the random forest, a subset of features is chosen from the full feature set to 

classify each observation. This ensures that each tree is sufficiently different from the rest to prevent 

overfitting of the training data. It also decreases variance while keeping the bias relatively low. This 

makes random forests more robust to overfitting and accurate than a single decision tree model. 
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2.4.3 Support Vector Machines (SVM) 

SVMs are a common classification algorithm that classifies data by creating hyperplane boundaries in 

multidimensional space. The optimal hyperplane is defined as the plane with the farthest distance between 

the datapoints of two separate classes. For multiclass classification, a set of hyperplanes is created to 

separate the distributions of multiple sets of datapoints.  

A kernel function, 𝑘(𝑥, 𝑦), is used to project the data into a higher-dimensional space for easier 

separation by a hyperplane. Fig. 10 below displays a projection of a dataset into a higher dimensional 

space through a kernel function.  

 

 

 

 

 
Fig. 10. Projection of dataset into higher dimensional space by a radial basis kernel function, r. 

 

 

 

 

This kernel function can be linear or non-linear depending on the dataset and application. A nonlinear 

kernel function is more accurate than linear kernels since the boundary is more flexible in its 

distinguishing between two datasets, but it is much more computationally expensive. A linear kernel is 

less accurate and much less computationally expensive, but with enough data, the accuracies of a linear 

kernel are similar to those of a non-linear kernel. For this reason, linear-kernel SVMs are useful for large 

volumes of data, and non-linear kernel SVMs are more applicable to smaller datasets.  

The hyperplane is defined by the location of the datapoints of one class closest to the datapoints of 

another class. These datapoints are denoted as support vectors. As stated in [55], by convention, the 

formal equation of a hyperplane is defined as  
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 |𝛽0 + 𝛽𝑋
𝑇| = 1 (4) 

 

where β0 is known as the bias, β is the weight vector, and x is the vector/array of datapoints. Using (4) 

as the definition of a hyperplane, we can compute the distance from the hyperplane to a support vector as 

 

 
distance support vectors =

|𝛽0 + 𝛽𝑋
𝑇|

‖𝛽‖
=

1

‖𝛽‖
 

(5) 

 

The margin, or distance between the two closest datapoints in different classes, is calculated as 

 
𝑀 =

2

‖𝛽‖
 

(6) 

 

This margin needs to be maximized to obtain the optimal hyperplane to separate the data. The 

following equation maximizes the margin by minimizing a function, 𝐿(𝛽), such as 

 

 
min
𝛽,𝛽0

𝐿(𝛽) =
1

2
‖𝛽‖2 subject to 𝑦𝑖(𝛽𝑥𝑖

𝑇 + 𝛽0) ≥ ∀𝑖 
(7) 

 

subject to the equation of the hyperplane with respect to the class, yi, being greater than or equal to 1. 

This equation can be solved using Lagrangian optimization to find the optimal hyperplane to classify the 

data. 

 

2.4.4 Convolutional Neural Network (CNN) 

CNNs are a form of neural networks which implement a layer of convolution with a set amount of 

convolutional filters which detect features in an n-dimensional ‘image’ matrix. The filter size and number 

of filters can be chosen for each convolutional layer. The model calculates and updates weights and biases 

similar to a traditional neural network in each convolutional layer. The convolutional layer is followed by 

a nonlinear activation function such as the sigmoid or ReLU function.  

There are also pooling, dropout, and fully connected layers. Pooling layers downsample the layer 

input by performing an operation such as max or average along an n-dimensional moving window. This 

preserves most of the information within the moving window while downsampling the data and 

increasing the speed of the algorithm. The dropout layer is a method of preventing overfitting by 

randomly dropping out nodes in the network [56]. This prevents the nodes from correlating with each 

other too much during training and overfitting the data [56]. The fully connected layer reduces the dataset 

to a 1-dimensional vector corresponding to the classification of the images. The final layer of a CNN is a 
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vector with the number of classes where each node corresponds to the probability that that datapoint 

belongs to that class. The max node in that layer is the class that is assigned to that datapoint. Fig. 11 

below visualizes an example layout of a CNN. 

 

 

 

 

 
Fig. 11. Example architecture of a CNN showing the different types of layers. 

 

 

 

 

2.4.5 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) models are a type of Recurrent Neural Network (RNN) model 

which are special types of Neural Networks that can gain insight into data at the current timestamp using 

data from previous timesteps as contextual information [57]. This allows RNNs to use temporal 

information to improve performance for applications such as speech detection, music composition, 

handwriting detection, grammar insights, and other time-dependent datasets. LSTMs are a special type of 

RNN that helps overcome the technical issues with simple RNNs of vanishing gradients and exploding 

gradients [56]. The vanishing gradient problem is an issue with RNNs where the influence of an input 

either decays or blows up exponentially as it cycles around the network’s recurrent layers, and the LSTM 

is designed specifically to alleviate this issue [56]. This allows LSTMs to perform better with longer time 

lags between the current datapoint and previous datapoints to gain insight on data further back in time.  

A general LSTM node consists of an input gate, output gate, and forget gate [58]. Fig. 12 below 

illustrates a single LSTM cell within a neural network structure: 
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Fig. 12. Single LSTM node layout illustrating mathematical operations performed on the input to 

achieve output.  

 

 

 

 

The terms ct-1 and ct represent the previous and current cell state, ht-1 and ht represent the previous and 

current hidden state, and xt represents the new input value(s) for this timestep. The first gate, forget gate, 

decides whether the information should be kept or forgotten through a sigmoid function. The next gate, 

input gate, uses a tanh function to regulate the values between -1 and 1 as well as a sigmoid function to 

determine the importance of the output of the tanh function. The outputs of the forget and input gates are 

added together to produce the next cell state. The third gate, output gate, decides what the next hidden 

state should be by taking the tanh of the new cell state and multiplying it by the same output of the 

sigmoid function used in the previous gates. This product is then the new hidden state for this timepoint.  

 

2.5 Literature Review 

The field of affective computing is extensive and diverse due to the increasing availability of quality 

datasets, wearable sensor technology, and processing capability. Affective computing has been 

investigated since the late 1980s, and some of the first research into affective computing came from the 

University of Iowa and Ohio State University using facial electromyography to differentiate valence and 

affective state [59]. Dr. Picard’s Media Laboratory at the Massachusetts Institute of Technology (MIT) 

was also responsible for many of the first seminal studies published on affective computing [11, 60-62]. It 
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is difficult to compare results from affective computing and emotion detection research studies due to the 

varying nature of the emotional stimuli, methodologies, and emotion labeling/model used. However, 

emotion detection research can be broadly categorized into similar methodologies such that a comparison 

of the classification accuracies or regression errors can be made. This literature review categorizes the 

extensive research of emotion detection into three groupings: multi-class discrete emotion label 

classification models, multi-class arousal/valence classification models, and arousal/valence regression 

models. It would not be useful or prudent to review all research performed on affective state detection to 

date, so this review describes a sampling of papers in order to provide insight into the evolution of 

affective state detection research from the late 1980s to the present.  

 

2.5.1 Discrete Emotion Classification 

This emotion detection method uses classification models to classify data collected from human 

subjects into discrete emotion labels. The type of data, features extracted, models, number of emotions, 

and descriptors of emotions all vary across subjects. Table 4 below describes a sampling of research 

papers that shows the evolution of emotion classification models from some of the first models developed 

in the late 1990s up to the present. In the late 1990s, the Media Lab at MIT published some of the first 

seminal research papers on discrete emotion detection. These papers were published before the rise in 

popularity of machine learning techniques and used statistical techniques such as the Maximum a 

Posteriori (MAP) model to classify 8 emotions with a 48.8% accuracy. While this result is low by today’s 

standards, they proved that there was in fact a correlation between physical physiological signals and the 

abstract theories of emotion which laid the groundwork for future affective computing research. Over the 

next two decades, emotion classification research evolved to use popular machine learning algorithms 

with some accuracies achieving up to 97% with a three-class model using an SVM classifier in 2020 [63]. 

However, this classification was trained and tested on a single subject’s data making the model subject 

dependent, and an important distinction for comparing accuracies across different papers is the creation of 

subject dependent vs. independent models. A model created and tested on the same subject’s data is 

significantly easier to create than a model created on a set of subjects’ data and trained on a completely 

different set of subjects’ data. Most research performed to date is subject-dependent, meaning the models 

have little applicability outside of use by a single subject.  
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TABLE 4. DISCRETE EMOTION CLASSIFICATION RESEARCH REVIEW 

Year Author Data Set # of 

Feat. 

Feature 

Selection 

Classificatio

n Model 

Emotions 

Classified 

Results 

1998 Vyzas 

and 

Picard 

[62] 

EMG, BVP, 

GSR, Resp 

6 None MAP Neutral (N), 

Anger (A), Hate 

(H), Grief (G), 

Platonic Love 

(P),  Romantic 

Love (L), Joy 

(J), Reverence 

(R) 

8-class: 48.8%,  

5-class (NAGJR): 

71.0%,  

4-class (NAGR): 

72.5%,  

4-class (AGJR): 

72.5%,  

3-class (AGR): 

83.3%,  

3-class (AJR): 

88.3% 

2000 Healey 

[11] 

EMG, 

BVP, 

ECG, 

Resp, 

EMG 

11 8-emotion: 

Fisher 

Projection 

and 

Sequential 

Floating 

Feature 

Selection 

(SFFS) 

8-emotion:  

K-Nearest 

Neighbors  

(KNN) 

 

3-emotion: 

Linear and 

Quadratic 

No Emotion, 

Anger, Hate, 

Grief, Platonic 

Love, Romantic 

Love, Joy, 

Reverence 

8-class: 81.3% 

 

3-class: 87.0% 

2005 Wagne

r et al. 

[64] 

EMG, ECG, 

GSR, Resp 

32 SFS Linear 

Discriminant 

Function 

(LDF) 

Joy, Anger, 

Sadness, 

Pleasure 

4-class: 92.1% 

2005 Herbe-

lin et 

al. [65] 

EMG, BVP, 

GSR, Resp, 

Skin Temp, 

Arousal/ 

Valence 

labelled by 

subject 

36 Fisher 

LDA 

(reduced to 

2 features) 

KNN Neutral, Fear, 

Boredom, Joy, 

Exaltation  

5-class: 24.0% 

2008 Maaoui 

and 

Pruski 

[66] 

EMG, BVP, 

GSR, Resp, 

Skin Temp 

6 None SVM w/ 

linear kernel 

Amusement, 

Contentment, 

Disgust, Fear, 

Neutral, 

Sadness 

6-class: 88.0% 

2014 Verma 

and 

Tiwary 

[67] 

EEG, EMG, 

EOG, BVP, 

GSR, Resp, 

Skin Temp 

25 None SVM, MLP, 

KNN, MMC 

Terrible, Love,  

Hate, 

Sentimental, 

Lovely, Happy,  

Fun,  

Shock, 

Cheerful, 

Depressing, 

Exciting, 

Melancholy, 

Mellow 

Terrible: 80.9% 

Love: 82.2% 

Hate: 79.8% 

Sentimental: 82.5% 

Lovely: 81.6% 

Happy: 82.8% 

Fun: 79.8% 

Shock: 79.7% 

Cheerful: 80.3% 

Depressing: 85.5% 

Exciting: 83.6% 

Melancholy: 77.7% 

Mellow: 82.5% 
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TABLE 4. CONTINUED 

Year Author Data Set # of 

Feat. 

Feature 

Selection 

Classificatio

n Model 

Emotions 

Classified 

Results 

2014 Wen 

[68] 

BVP, GSR 3 None Random 

Forest 

Amusement,  

Anger 

Grief 

Fear 

Neutral 

5-class: 74.0% 

2019 Albrai-

kan et 

al. [69] 

BVP, GSR, 

Skin Temp, 

and 

MAHNOB 

Raw 

Data 

None Weighted 

Multi-

Dimensional 

Dynamic 

Time 

Warping 

(WMD-

DTW), KNN 

Neutral, 

Cheer,  

Sadness,  

Erotic, 

Horror 

5-class: 65.6% 

2019 Bălan 

et al. 

[70] 

EEG, EOG, 

EMG,  

BVP, GSR, 

Resp, Skin 

Temp 

Raw 

Data 

Fisher, 

PCA, SFS 

DNN, SVM, 

RF, LDA, 

KNN 

Binary (yes/no): 

Anger, Joy, 

Surprise, 

Disgust, Fear, 

Sadness 

Anger: 98.3% 

Joy: 100% 

Surprise: 96.0% 

Disgust: 95.0% 

Fear: 90.8% 

Sadness: 90.8% 

2020 Domín-

guez-

Jiméne

z [63] 

BVP, GSR 27 Random 

Forest 

Recursive 

Feature 

Elimination 

SVM Amusement, 

Sadness, 

Neutral 

3-class: 97.0% 

2020 Liu et 

al. [71] 

GSR 6 None 3-Layer NN Anger, Disgust, 

Fear, Happy, 

Surprise, Sad, 

Neutral 

7-class: 42.1% 

2021 Oh et 

al. [72] 

GSR and 

Predicted 

Arousal/Val

ence from 

Facial 

Images 

Raw 

Data 

None DNN named  

“Sensor 

Fusion 

Emotion 

Recognition 

(SFER)” 

Neutral, Happy, 

Excited, 

Fearful, Agony, 

Depressed, 

Bored, Relieved 

8-class: 89.0% 

 

 

 

 

2.5.2 Arousal/Valence Classification 

Another popular type of emotion classification research methodology is classifying arousal and 

valence in the Circumplex model of affect into different discrete classes along the continuous range of 

arousal and valence. Most papers used two classes for arousal: low and high arousal, and two classes for 

valence: negative and positive valence. Some papers split the continuous ranges of arousal and valence 

into three classes: low/middle/high arousal and negative/neutral/positive valence. Most papers used two 

separate classification models: one for arousal and another for valence. Some of them, however, used a 

single model to classify four classes: low arousal (LA), high arousal (HA), negative valence (NV), and 
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positive valence (PV). As can be seen, there are multiple classification methodologies of varying 

practicality and training difficulty. The models in this category are similar enough to be adequately 

compared since the resulting classes are the same or very similar. One of the first emotion recognition 

papers released used this methodology to determine a correlation between physiological signals and 

emotions in the 1980s [73]. Since then, hundreds of research papers have been published for classifying 

arousal and valence into discrete classes. The accuracies of these papers range from the 50s percentage in 

the early 2000s to the mid-90s percentage in 2019 in a paper by Albraikan et al. [69]. Table 5 below gives 

a sampling of papers using this arousal/valence classification methodology and shows the progression of 

modeling techniques and accuracies.  

 

 

 

 
TABLE 5. AROUSAL/VALENCE CLASSIFICATION RESEARCH REVIEW 

Year Author Data Set # of 

Feat. 

Feature 

Selection 

Classification 

Model 

Emotions 

Classified 

Results 

1986 Cacioppo et 

al. [59] 

Facial EMG 6 None Multivariate 

Analysis 

Pos./Neg. 

Valence 

Correlation 

was 

Statisticall

y 

Significant 

1998 Healey and 

Picard [61] 

EMG, 

BVP, 

GSR, 

Resp 

11 None Fisher Linear 

Discriminate 

Projection 

Low/High 

Arousal 

 

Pos./Neg. 

Valence 

Low 

Arousal:  

80.0% 

High 

Arousal:  

88.0% 

 

Neg. 

Valence:  

50.0% 

Pos. 

Valence:  

82.0% 

2000 Healey [11] EMG, 

BVP, 

ECG, 

Resp, 

EMG 

11 None Linear and 

Quadratic 

Low/High 

Arousal 

 

Pos./Neg. 

Valence 

Low/High 

Arousal:  

84.0% 

 

Neg,/Pos. 

Valence:  

63.0% 

2005 Wagner et 

al. [64] 

EMG, ECG, 

GSR, Resp 

32 SFS LDF and NN Low/High 

Arousal 

 

Pos./Neg. 

Valence 

Low/High 

Arousal:  

96.6% 

 

Neg,/Pos. 

Valence:  

88.6% 



25 

TABLE 5. CONTINUED 

Year Author Data Set # of 

Feat. 

Feature 

Selection 

Classification 

Model 

Emotions 

Classified 

Results 

2005 Herbelin et 

al. [65] 

EMG, BVP, 

GSR, Resp, 

Skin Temp, 

Arousal/ 

Valence 

labeled by 

subject 

36 Fisher LDA 

(reduced to 2 

features) 

KNN Arousal 

Low/Middle/

High 

 

Valence 

Neg./Neutral/

Pos.  

3-class 

Arousal:  

N/A 

 

3-class 

Valence:  

45.0% 

2007 Jones and 

Troen [74] 

BVP, GSR, 

Resp 

11 None NN Scale from 

Low (1) to 

High (5) 

Arousal 

 

Scale from 

Pos. (1) to 

Neg. (5) 

Valence 

Arousal:  

67.0% 

 

Valence:  

62.0% 

2008 Khalili and 

Moradi [75] 

EEG, BVP, 

GSR, Resp, 

Skin Temp 

384 Genetic 

Algorithm 

LDA and KNN Valence: 

Calm (C), 

Positively 

Excited (PE), 

Negatively 

Excited (NE) 

3-class (C 

vs PE vs 

NE):  

51% 

(KNN) 

 

2-class (PE 

vs NE):  

70% 

(LDA 

and 

KNN) 

2008 Gu et al. 

[76] 

EMG, ECG, 

BVP, GSR  

36 Genetic 

Algorithm 

KNN, Fuzzy 

KNN, LDF, and 

Quadratic 

Discriminate 

Function 

(QDA) 

Low/High 

Arousal 

 

Pos./Neg. 

Valence 

Arousal:  

77.0% 

 

Valence:  

75.0% 

2012 Koelstra et 

al. [23] 

DEAP 

(original 

paper) 

322 None Decision Fusion Low/High 

Arousal 

 

Pos./Neg. 

Valence 

Arousal: 

57.0% 

 

Valence: 

62.7% 

2013 Nogueira et 

al. [77] 

Self-report: 

Arousal, 

Valence 

 

Physiolog-

ical: 

GSR, Facial 

EMG, BVP 

4 None Decision Trees  Low/High 

Arousal 

 

Pos./Neg. 

Valence 

Arousal: 

98.2% 

 

Valence: 

86.3% 
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TABLE 5. CONTINUED 

Year Author Data Set # of 

Feat. 

Feature 

Selection 

Classification 

Model 

Emotions 

Classified 

Results 

2014 Torres-

Valencia et 

al. [78] 

DEAP Raw 

Data 

None HMM Low/High 

Arousal 

 

Pos./Neg. 

Valence 

Arousal: 

55% ± 

3.9% 

 

Valence: 

58% ± 

3.9% 

2017 Wiem and 

Lachiri [79] 

MAHNOB-

HCI 

169 None SVM Low/High 

Arousal 

 

Pos./Neg. 

Valence 

Arousal: 

64.2% 

 

Valence: 

65.0% 

2017 Wiem and 

Lachiri [80] 

MAHNOB-

HCI 

2 None SVM w/ 

Gaussian 

Kernel 

Calm/ 

Medium/ 

Activated 

Arousal, 

 

Unpleasant/N

eutral/ 

Pleasant 

Valence 

Arousal: 

54.7% 

 

Valence: 

57.4% 

2017 Kawde and 

Verma [81] 

DEAP Raw 

Data 

None DNN High/Low 

Arousal 

 

Neg./Pos. 

Valence 

 

High/Low 

Dominance 

Arousal: 

70.7% 

 

Valence: 

75.8% 

 

Dominance

: 69.1% 

2017 Henia and 

Lachiri [82] 

MAHNOB-

HCI 

169 None SVM Calm/ 

Medium/ 

Activated 

Arousal, 

 

Unpleasant/N

eutral/ 

Pleasant 

Valence 

Arousal: 

59.6% 

 

Valence: 

57.4% 

2018 Choi and 

Kim [83] 

DEAP Raw 

Data 

None LSTM High/Low 

Arousal 

 

Neg./Pos. 

Valence 

Arousal:  

74.7% 

 

Valence:  

78% 

2018 Sarabadani 

et al. [84] 

ECG, GSR, 

Resp, Skin 

Temp 

23 None Ensemble of: 

KNN (k=3), 

LDA, 

SVM (linear), 

SVM (poly) 

SVM (RBF) 

HA/NV vs. 

HA/PV 

 

LA/NV vs. 

LA/PV 

HA/NV vs. 

HA/PV:  

78.1 ± 

11.7% 

 

LA/NV vs. 

LA/PV: 

84.5 ± 

9.8% 
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TABLE 5. CONTINUED 

Year Author Data Set # of 

Feat. 

Feature 

Selection 

Classification 

Model 

Emotions 

Classified 

Results 

2018 Ali et al. 

[85] 

MAHNOB 25 None Cellular Neural 

Network 

LA, HA, NV, 

PV 

4-class:  

89.4% 

2018 Ayata et al. 

[86] 

DEAP 22 mRMR Random 

Forest, SVM, 

Logistic 

Regression 

High/Low 

Arousal 

 

Neg./Pos. 

Valence 

Arousal:  

73.1% 

 

Valence:  

72.2% 

2019 Albraikan et 

al. [87] 

BVP, GSR, 

Skin Temp, 

and 

MAHNOB 

Raw 

Data 

None Weighted 

Multi-

Dimensional 

Dynamic Time 

Warping 

(WMD-DTW), 

KNN 

Arousal 

Calm/Mediu

m/Activated 

 

Valence 

Unpleasant/ 

Neutral/ 

Pleasant 

3-class 

Arousal:  

94% 

 

3-class 

Valence:  

93.6% 

2020 Liu et al. 

[71] 

GSR 6 None 3-Layer Neural 

Network 

Anger, 

Disgust, Fear, 

Happy, 

Surprise, Sad, 

Neutral 

High/Low 

Arousal:  

68.7% 

 

Pos./Neg. 

Valence:  

72.7% 

2020 Li et al. [88] AMIGOS LSTM

-RNN 

None DNN High/Low 

Arousal 

 

Neg./Pos. 

Valence 

Arousal:  

82.5%  

 

Valence:  

77.8% 

2020 Baghizadeh 

et al. [89] 

MAHNOB-

HCI 

Poin-

caré 

Map 

None KNN, SVM, 

MLP 

High/Low 

Arousal 

 

Neg./Pos. 

Valence 

Arousal:  

82.2 ± 

4.7%  

 

Valence:  

78.1 ± 

3.4% 

 

 

 

 

2.5.3 Arousal/Valence Regression 

The last category of emotion detection methodologies discussed in this literature review contains the 

least amount of research papers published and corresponds to using regression models to predict arousal 

and valence along continuous spectrums. Since regression models predict values continuously, accuracy 

cannot be used to determine the performance of the models. Root mean squared error (RMSE), mean 

squared error (MSE), and mean absolute error (MAE) are all metrics that give insight into the 

effectiveness of a regression model. In general, the lower the error value, the better the model predicts the 

dependent variables since the aggregated error between the predicted and true values is lower. In Table 6 
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below, the RMSE, MSE, and MAE metrics are given for research that explored regression for arousal and 

valence.  

A few studies in Table 6 detected emotions from data other than physiological signals, but they were 

included due to the similarity in methodology to the one presented in this work. Han et al. detected 

emotion in pop songs by mapping the discrete emotions labeled by the All Music Guide [90] to the 

arousal and valence two-dimensional space themselves [91]. This mapping was then used as ground truth 

arousal and valence values for training a support vector regressor (SVR) on features extracted from the 

songs to predict arousal and valence in cartesian or polar coordinates [91]. This predicted arousal and 

valence were then remapped back into discrete emotions and the accuracy of the original emotion labels 

versus the predicted emotions was 94.55% using SVR and polar arousal and valence coordinates [91]. 

Another study that used a similar methodology as the one presented in this work was by Nogueira et al. in 

classifying high/low arousal and negative/positive valence using predicted arousal and valence from 

regression models [77]. The regression results are presented in Table 6 below and the final classification 

accuracies are presented in Table 5 above. The most recent study in this review, written in 2021 by Oh et 

al., uses a similar method to the one explored in this work where they use a regression model to predict 

arousal and valence from facial expressions which are then used as input into a classification model for 

classifying discrete emotions [72]. The results of the final classification model are noted in Table 5 above.  

It is difficult to compare arousal and valence regression studies due to their use of different 

performance metrics such as RMSE, MSE, MAE, and R2. The only metric used by more than one study in 

the review in Table 6 below was MAE, and the best MAE for arousal was 1.49 ± 0.42 and for valence 

was 1.56 ± 0.36 both by Soleymani et al. [92].  

 

 

 

 
TABLE 6. AROUSAL/VALENCE REGRESSION RESEARCH REVIEW 

Year Author Data Set # of 

Feat. 

Feature 

Selection 

Regression 

Model 

Emotions 

Classified 

Results 

2009 Han et al. 

[91] 

Pop songs 

labeled with 

emotions (All 

Music Guide 

[90]) 

7 None Support Vector 

Regression 

(SVR) 

Distance from 

origin and 

Angle (polar 

coordinates) in 

Arousal/Vale-

nce space 

Distance:  

MSE: 

0.025 

Angle:  

MSE: 

0.098 
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TABLE 6. CONTINUED 

Year Author Data Set # of 

Feat. 

Feature 

Selection 

Classification 

Model 

Emotions 

Classified 

Results 

2011 Soleymani 

et al. [92] 

Self-report: 

Arousal, 

Valence,  

Dominance,  

Liking 

Physiological: 

EEG, EMG, 

BVP, GSR, 

Resp, Skin 

Temp 

177 None Linear Ridge 

Regressor 

Arousal 0-9, 

Valence 0-9, 

Liking 0-9,  

Dominance   

0-9 

Arousal: 

MAE: 1.49 

(0.42), 

Valence: 

MAE: 1.56 

(0.36),  

Liking:  

MAE: 1.51 

(0.49),  

Dominance:  

MAE: 1.66 

(0.46) 

2013 Nogueira et 

al. [77] 

Self-report: 

Arousal, 

Valence 

 

Physiological: 

GSR, Facial 

EMG, BVP 

4 None SC-Arousal: 

linear 

HR-Arousal: 

3rd-degree 

polynomial 

zEMG-Valence 

(positive): 3rd-

degree 

polynomial 

cEMG-Valence 

(negative): 

3rd-degree 

polynomial 

HR-Valence: 

3rd-degree 

polynomial 

SC-Arousal 

HR-Arousal 

zEMG-

Valence 

(positive) 

cEMG-

Valence 

(negative) 

HR-Valence 

SC-Arousal 

R2: 0.90 ± 

0.038 

HR-Arousal 

R2: 0.74 ± 

0.089 

zEMG-

Valence 

(positive) 

R2: 0.92 ± 

0.016 

cEMG-

Valence 

(negative) 

R2: 0.95 ± 

0.075 

HR-Valence 

R2: 0.96 ± 

0.064 

2014 Torres-

Valencia et 

al. [93] 

DEAP  16 Recursive 

Feature 

Eliminat-

ion (RFE) 

Multiple Output 

Support Vector 

Regression (M-

SVR) 

Arousal 

 

Valence 

Arousal: 

RMSE: 

0.240 ± 

0.024 

MAE: 

0.203 ± 

0.020 

Valence: 

RMSE: 

0.252 ± 

0.026 

MAE: 

0.213 ± 

0.021 

2021 Oh et al. 

[72] 

Facial 

Expression  

Raw 

Data 

(Feat. 

from 

DNN) 

None SE-ResNeXt Arousal 

 

Valence 

Arousal: 

RMSE: 

0.408 

Valence: 

RMSE: 

0.373 
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2.6 Limitations of Current Studies 

An important distinction when comparing emotion detection models is whether the model was trained 

and tested on data from multiple subjects rather than training and testing on data from a single subject. 

Most research performed early on in emotion detection only used a single subject’s data to create a model. 

This produces models which are not generalizable for use with other people, and thus the practicality of 

the models is greatly reduced. Even if a model is trained and tested on multiple subjects’ data, it is 

important to separate the subjects whose data is in the training set from the subjects whose data is in the 

testing set. This gives a more accurate indication of the generalizability of the model by determining the 

testing accuracy of the model on subjects whose data was never seen before by the model.  

Current emotion detection research has reached accuracies up to 97% for discrete emotion detection 

(3-class) by Dominguez-Jimenez et al. [63], 98.2% for discrete arousal (2-class) by Nogueira et al. [77], 

93.6% for valence classification (3-class) by Albraikan et al. [87], and 1.49 ± 0.42 MAE for arousal and 

1.56 ± 0.36 MAE for valence regression by Soleymani et al. [92] (although it is difficult to compare 

regression results due to the different metrics used among studies). The 97% 3-class accuracy in 

Dominguez-Jimenez et al. is impressive, but the models generated were subject-dependent meaning the 

models only provide that accuracy when used on the single subject it was trained on. The arousal and 

valence classification accuracies are also high with mid to high 90s percentages, but the practicality of 

using an arousal and valence classification is limited in applications of direct emotion feedback to a user 

due to the lesser-known emotion definitions of arousal and valence among the public. It can, however, be 

used in emotional feedback applications where a system is intending to improve a user’s affective state by 

detecting, for example, negative valence and responding to help the user feel more positive. In Nogueira 

et al., the end classification model is subject-independent, but the regression model used to generate the 

predicted arousal and valence features is subject-dependent which necessitates a “calibration procedure” 

where a new user would need to self-report arousal and valence for a period to retrain a regression model 

which would be specific to them [77]. The models produced by Albraikan et al. are subject-independent 

with relatively high accuracies for arousal and valence classification, but the utility of arousal and valence 

classification in real-world applications is limited. Arousal and valence regression have limitations similar 

to arousal and valence classification models, but they can also apply to emotional feedback applications.  

Most models use physiological sensors such as EEG, MEG, EMG, and NIRs which are difficult to 

implement in everyday situations outside of controlled lab settings with today’s technology. Another 

limitation in the affective research field, in general, is the lack of a standardized approach for describing 

emotions. This makes it difficult to compare results across different methodologies. The lack of publicly 

available, well-acquired emotion data is also a limitation, but this has improved recently in the past couple 

of years with the addition of a decent number of openly available datasets as described in Table 3 above. 
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These datasets, however, use different emotion description models from one another which reduces their 

practicality in terms of using data from multiple datasets in the same model. For example, if one dataset 

uses bored, relaxed, neutral, amused, and scared emotion labels, and another uses amusement, 

contentment, disgust, fear, neutral, and sadness emotion labels, it is up to the classification model 

designer to match emotion labels with each other from these two datasets if they would like to use data 

from both in their model training and testing. While these emotion labels are similar, they are not the 

same, and this introduces difficulty in using more than one dataset for model generation which effectively 

limits the amount of data available for model training even as more datasets are released.  

Another limitation in current studies involving self-reported emotion labeling is the inherent bias in 

the self-reporting of these values by the subjects. An example of this is a subject’s knowledge that a 

stimulus is “supposed” to elicit a certain emotion or reaction, so the subject is more inclined to self-report 

that response. This is a psychological phenomenon known as confirmation bias [94]. Another example is 

the desire to display socially acceptable behavior and responses such as when asked about emotions like 

erotica and charity [95]. The quality of the model is reflected in the quality and truthfulness of the self-

reporting by the subjects [87]. This is a difficult limitation to overcome since researcher-defined arousal 

and valence “ground truth” values are also limited by the subjective nature of emotion elicitation among 

subjects. There exists no “perfect” method for defining ground-truth emotion values, but improvements 

are being made to produce more accurate arousal and valence labeling techniques such as the method 

used in the CASE dataset with the Joystick-based Emotion Reporting Interface (JERI) annotation device 

whose data is utilized in this work [1, 96]. 
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CHAPTER 3 

3 MATERIALS AND METHODS 

Fig. 13 gives an overview of the emotion detection model generation process described in this work. 

Time-synced physiological data, continuously self-reported arousal and valence values, and emotion 

labels from the publicly available CASE dataset are used as inputs and target labels for generating the 

ensemble model. The physiological data is windowed into 10-second-long segments with a 1-second 

window stride, low-pass/band-pass filtered, and feature extracted to produce a feature set of physiological 

features. The arousal and valence labels are resampled to produce a single average value for arousal and 

valence for a single window, reordered into low-to-high arousal and negative-to-positive valence 

respectively, and transformed into a Gaussian distribution with the same mean and standard deviation as 

the predicted arousal and valence labels to separate the labels more distinctly. The physiological features 

and “true” arousal and valence labels were then used to train regression models for predicting arousal and 

valence respectively (one regression model for arousal and one regression model for valence). The 

predicted arousal and valence features are then concatenated with the physiological feature set to create 

the combined feature set used to train and test the classification model which classifies each feature vector 

in the feature set as one of five emotions: amused, bored, neutral, relaxed, and scared. 

 

 

 

 

 
 

Fig. 13. Emotion Detection Ensemble Model Generation Methodology. 
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3.1 Dataset 

The dataset chosen to train the emotion detection ensemble models, the Continuously Annotated 

Signals of Emotion (CASE) dataset, provides a uniquely labeled physiological dataset of elicited emotions 

since the device used to measure the subject’s arousal and valence continuously was a two-dimensional 

joystick with the arousal and valence coupled together in the two dimensions called Joystick-based 

Emotion Reporting Interface (JERI) [96]. This allowed the subjects to simultaneously report arousal and 

valence continuously throughout the emotion elicitation while physiological signals were being recorded. 

Fig. 14 below is from Sharma et al. in the CASE dataset paper and shows a subject using the JERI 

annotation device while watching an emotion stimulus [1, 96]. 

 

 

 

 

 

Fig. 14. Image from CASE Dataset Paper showing JERI Device for Continuous Arousal and Valence Annotation. 

Figure from [1] by Karam Sharma is licensed under CC BY 4.0. 

 

 

 

 

The CASE dataset consists of physiological data from 30 subjects as they watched multiple videos 

designed to elicit certain emotions. The physiological data recorded include electroencephalogram (ECG) 

in milliVolt, blood volume pulse (BVP) in percentage, galvanic skin response (GSR) in microSiemens, 

skin temperature in degree Celsius, electromyography (EMG) for the zygomaticus major, corrugator 

supercilii, and trapezius muscles in mV, and respiration rate. The emotion eliciting videos were meant to 

elicit amused, bored, neutral, relaxed, and scared discrete emotions. Blank blue screens were shown 

before and after each viewing session to gather data for a baseline of the subject.  

Due to the unique nature of this dataset, the arousal, valence, and discrete emotion labels are 

continuous and real-time. This allows the possibility of creating regression models which accurately 

predict arousal and valence using features generated from the physiological data as the independent 

variables. These regression models enable the creation of arousal and valence predictions from 

physiological data. The predicted arousal and valence can then be used along with the original 

physiological features to train classifiers on the discrete emotion labels of the CASE dataset. This method 

http://creativecommons.org/licenses/by/4.0/
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is enabled by the continuous and coupled nature of the arousal and valence labels along with the 

physiological data and discrete emotion labels in the CASE dataset.  

 

3.2 Labels Preprocessing 

The labels of the CASE dataset consist of the individual video labels consisting of an integer value for 

each video and the continuous arousal and valence data gathered using the JERI joystick from the subjects 

while they watched the videos. The impact of these preprocessing steps on the overall accuracy of the 

classification is shown in the Results section. 

 

3.2.1 Video Label Relabeling and Resampling 

Each video shown to the subjects in the CASE dataset was meant to elicit a certain emotion within the 

subjects. The elicited emotions were amused, bored, neutral, relaxed, and scared. The integer video labels 

were converted to emotion labels by grouping data from each video for a particular emotion together into 

the same label. Table 7 below shows the conversion from video labels to emotion labels.  

 

 

 

 
TABLE 7. CONVERSION FROM VIDEO TO 

EMOTION LABELS FROM CASE DATASET 

Video 

Label 

Emotion 

Label 

Emotion 

10 0 Neutral 

1 1 Amused 

2 1 Amused 

3 2 Bored 

4 2 Bored 

5 3 Relaxed 

6 3 Relaxed 

7 4 Scared 

8 4 Scared 

 

 

 

 

3.2.2 Arousal and Valence Resampling 

The arousal and valence data were sampled at 20 Hz and the physiological data was sampled at 1000 

Hz in the CASE dataset. Because of this, the arousal and valence were resampled to 1000 Hz using a 
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Fourier-domain moving window. Fig. 15 and Fig. 16 below show the resampled arousal and valence 

values compared to the original values.  

 

 

 

 

 

Fig. 15. Zoomed in View of Resampled versus Original Arousal Labels. 

 

 

 

 

 

Fig. 16. Zoomed in View of Resampled versus Original Valence Labels. 

 

 

 

 

3.2.3 Arousal and Valence Reordering 

The original order of the arousal and valence values are arbitrary based on the order of the emotion-

eliciting videos shown to the CASE subjects during the experiments. The arousal labels were thus 

reordered by emotion class so that the data is in lowest to highest arousal in the order: bored, relaxed, 

neutral, amused, scared. The valence labels were also reordered so that the labels are from negative to 
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positive valence: scared, bored, neutral, relaxed, amused. The reordering allows the regression model to 

fit the arousal and valence more easily since they are ordered from smallest to largest values respectively. 

The physiological features were also reordered to match the arousal ordering and valence ordering 

respectively so that they could be used as independent input variables to the regression arousal and 

valence regression models. After the regression is fit and the predicted arousal and valence values are 

created, these values are then ordered back into the original order of the datapoints in order to concatenate 

them to the original physiological feature set for input into the classification models. Fig. 17 and Fig. 18 

show the reordering of the preprocessed arousal and valence values annotated by the CASE subjects using 

the JERI device in the CASE dataset.  

 

 

 

 

 

Fig. 17. Reordering of Arousal Labels from Lowest to Highest Arousal. 

 

 

 

 

 

Fig. 18. Reordering of Valence Labels from Negative to Positive Valence. 

 

 

 

 

3.2.4 Arousal and Valence Gaussian Distribution 

A Gaussian distribution with the same mean and a fourth of the standard deviation of the arousal and 

valence labels was created to replace the original arousal and valence labels, respectively. This was done 

to artificially increase the separation between discrete emotion classes within the arousal and valence 
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labels since the original arousal and valence were self-annotated by the CASE subjects. By human nature, 

the self-annotation introduces noise into the arousal and valence ground truth values, so this method of 

converting the original annotated values into Gaussian distributions slightly increases the separation 

between classes as shown in Fig. 19 below. The results of this preprocessing method are shown in Fig. 62 

in the Results section. Fig. 19 shows the progression of the preprocessing of the self-annotated arousal 

and valence values in the CASE dataset into the datapoints used for regression model training.  

 

 

 

 

 

Fig. 19. True Arousal and Valence Preprocessing Steps before Inputting into Regression Models. 

 

 

 

 

3.2.5 Arousal and Valence Scaling 

Finally, the arousal and valence values were centered around zero and scaled from negative one to 

positive one to match the scaling of the physiological features. Fig. 20 below shows the scaling of the 

arousal and valence. 

 

 

 

 

 

Fig. 20. Arousal and Valence Feature Rescaling. 
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3.3 Physiological Data Preprocessing 

The physiological data from the CASE dataset used in this work include BVP, GSR, and skin 

temperature. These signals were each filtered to remove high and low-frequency noise for feature 

extraction in the next step. A 3rd-Order Butterworth zero-phase shift forward-backward filter was used to 

prevent a phase shift in the resulting filtered signal. The BVP signal was bandpass filtered between 0.25-3 

Hz, and the GSR and skin temperature signals were lowpass filtered at 1.5 Hz. Fig. 21, Fig. 22, and Fig. 

23 below compare the unfiltered and filtered physiological data using the filtering methods described.  

 

 

 

 

 
Fig. 21. BVP Signal Preprocessing. 

 

 

 

 

 
Fig. 22. GSR Signal Preprocessing. 
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Fig. 23. Skin Temperature Signal Preprocessing. 

 

 

 

 

3.4 Feature Extraction 

Seventeen features were extracted from the physiological data of the CASE dataset to use as input 

data for the regression and classification models. These features represent physical responses to the 

emotional stimuli in the videos shown to the CASE subjects. These features were extracted from three 

physiological signals: thirteen from BVP, two from GSR, and two from skin temperature windowed in 

ten-second moving windows with one-second stride.  

 

3.4.1 Windowing 

Features were extracted from the filtered BVP, GSR, and skin temperature signals using a ten-second 

moving window with a window stride or overlap of one second. Fig. 24 below shows the moving 

windows of data that are taken from the original dataset and used to create time-correlated feature vectors.  
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Fig. 24. Feature Extraction Windowing. 

 

 

 

 

3.4.2 BVP Features 

Blood Volume Pulse (BVP) is a measurement technique of heart function by using a photo-detector 

pair placed on the skin to detect the change in amplitude of infrared light reflections due to changes in the 

volume of blood as it circulates through blood vessels. It is a periodic signal representing the beating of a 

heart and is extensively used in medicine and recreation for gathering information about a heart’s health 

and function. To extract features from the BVP signal, an open-source python library was used: Heartpy 

[97]. This library extracts the following features from BVP by using peak detection to determine when the 

heart is beating from each signal as shown in Table 8 below. Fig. 25 shows the peak detection of the 

heartpy Python library on the BVP physiological data [97].  

 

 

 

 
TABLE 8. ECG AND BVP FEATURES EXTRACTED USING HEARTPY LIBRARY 

Abbreviation Name Description 

BPM Beats Per Minute Heart rate 
IBI Interbeat Interval Variability of heart rate 

SDNN Standard Deviation of RR Intervals Variability of R-R Intervals 
SDSD Standard Deviation of Successive 

Differences 
Variability of differences between adjacent N-
N distances in a time series. 

RMSSD Root Mean Square of Successive 
Differences of Intervals 

Normalized differences between adjacent N-N 
distances in a time series. 

pNN20 Proportion of Successive Differences 
above 20ms 

Ratio of differences between adjacent N-N 
distances in a time series above 20ms 

pNN50 Proportion of Successive Differences 
above 50ms 

Ratio of differences between adjacent N-N 
distances in a time series above 50ms 
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TABLE 8. CONTINUED 

Abbreviation Name Description 
MAD Median Absolute Deviation of RR 

Intervals 
Variability of R-R Intervals 

SD1 Standard Deviation Perpendicular to the 
Line of Identity in Poincaré Ellipse [98] 

Related to fast changes of heartbeats in data 
(high-frequency spectrum) 

SD2 Standard Deviation Parallel to the Line of 
Identity in Poincaré Ellipse [98] 

Long-term variations of R-R interval (low-
frequency spectrum) 

S Area of Poincaré Ellipse [98] Aggregate measure of low and high-frequency 
heart rate information  

SD1/SD2 Ratio of Poincaré Standard Deviations 
[98] 

Ratio of short and long variations in R-R 
interval 

Inferred 
Breathing Rate 

Estimated Breathing Rate based on Heart 
Rate 

Estimation of respiration rate from heart rate as 
defined in [99] 

 

 

 

 

 
Fig. 25. BVP Heart Rate Peak Detection for BVP Feature Extraction. 

 

 

 

 

3.4.3 GSR Features 

Two features were extracted from GSR: the average value within the window, and the slope of the 

signal as seen in Fig. 26. This represents the magnitude of the GSR signal and how much the signal is 

increasing or decreasing within the window. 
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Fig. 26. Features Extracted from GSR. 

 

 

 

 

3.4.4 Skin Temperature Features 

The skin temperature features represent the magnitude and rate of change with the average and slope 

of the signal within the 10-second window as seen in Fig. 27. 

 

 

 

 

 
Fig. 27. Features Extracted from Skin Temperature. 

 

 

 

 

3.5 Feature Set Statistical Analysis 

3.5.1 Feature Distribution 

To gain greater insight into the behavior of the features generated, the distribution of each feature was 

plotted for all 30 subjects. This was done to determine what kind of distribution each feature had such as 
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Gaussian, Poisson, single-modal, bimodal, multi-modal, or another type. Fig. 28 shows that most features 

follow a Gaussian and Poisson distribution while breathing rate follows a multi-modal distribution.  
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Fig. 28. Feature Distributions of ECG, BVP, GSR, and Skin Temperature Features before Oversampling. 

 

 

 

 

3.5.2 Statistical Significance 

A Mann-Whitney U test was used to determine the statistical significance of every emotion class 

compared to every other emotion class within that specific feature. In order to calculate the p-value and 

generate graphs visualizing the statistical significance between classes, the “seaborn” and “statannot” 

Python libraries were used [100, 101]. The p-value between each class is displayed on the graph through 

stars where more stars symbolize a lower p-value and thus a greater statistical significance according to 

Table 9 below. Fig. 29 graphically shows the statistical significance of the difference in each emotion 

class using each feature. Some features have statistically significant differences when comparing every 

class with one another meaning they are very information-rich, while other features have multiple classes 

which show no statistically significant difference meaning they are relatively information-poor. The 

symbols noted in Table 9 are shown in Fig. 29 indicating each classes’ p-value from one another using 

information from each feature.  

 

 

 

 
TABLE 9. P-VALUE ANNOTATION LEGEND 

Symbol P-Value Range 

ns (no significance) 5.00e-02 < p <= 1.00e+00 

* 1.00e-02 < p <= 5.00e-02 

** 1.00e-03 < p <= 1.00e-02 

*** 1.00e-04 < p <= 1.00e-03 

**** p <= 1.00e-04 
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Fig. 29. Mann-Whitney U-Test Statistical Significance Between Emotion Classes for Each Feature. 
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3.6 Feature Postprocessing 

3.6.1 Imbalanced Class Oversampling 

Since the datasets for each discrete emotion class were of different lengths in time, there were more 

feature vectors for some classes than for others. This was especially apparent in the “neutral” class which 

had only one video that the subjects watched instead of the two videos for the other emotion classes. Due 

to this, an oversampling method was implemented using the Borderline-SMOTE SVM method [102]. 

Using this method, feature vectors were generated so that each class contained the same number of 

feature vectors for training the classification model. This prevented any class imbalance issues commonly 

seen in classification models trained on highly imbalanced classes. Table 10 gives an idea of the class 

imbalance before and after Borderline-SMOTE SVM oversampling, and Fig. 30 graphically shows the 

results of oversampling on two example features: arousal and valence.  

 

 

 

 
TABLE 10. BORDERLINE-SMOTE SVM OVERSAMPLING RESULTS 

Emotion Duration (sec) 

(per subject) 

# of Feature Vectors 

(per subject) 

# of Feature Vectors 

(30 subjects) 

# of Feature Vectors 

Oversampled 

Amusing 358.7 348 10017 10017 

Boring 278.8 268 7673 10017 

Relaxed 291.9 281 8073 10017 

Scary 340.8 330 9560 10017 

Neutral 101.5 91 2735 10017 

 

 

 

 

 
Fig. 30. Example Feature Oversampling of Arousal and Valence Features using the Borderline-SMOTE SVM 

method. 
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3.6.2 Standardization 

Feature standardization serves multiple purposes. It scales the features all to the same range so that 

some models, such as the neural network, treat each feature equally in terms of affecting weights and 

errors during training. It also reduces the differences between subjects by normalizing the features to a set 

range.  

Each feature is standardized across all subjects by removing the mean and scaling to unit variance 

using the equation:  

 

 𝑧 =
𝑥 − 𝜇

𝜎
 (8) 

 

where z is the standardized feature value, x is the original feature value, µ is the mean of a feature, 

and σ is the standard deviation of the feature.  

 

3.7 Arousal and Valence Regression Model Training 

Multiple regression model methods were tested for creating arousal and valence prediction models. 

These regression models were used to create predicted arousal and valence values from the physiological 

features. One model was created for predicting arousal and another was created for predicting valence. 

The physiological features were used as independent variables and the arousal or valence labels from the 

CASE dataset were used as the dependent variable in training the models. The regression models tested 

were linear regression, random forest regressor, support vector regressor (SVR), AdaBoost, and XG 

Boost. These models were then used to predict arousal and valence from the physiological features. Doing 

this allowed the use of the physiological features to create two more features: predicted arousal and 

predicted valence. These new features can then be concatenated with the original physiological features to 

create a much more robust feature set for the classification models. Fig. 31 below shows the true 

arousal/valence values from the CASE dataset for each emotion class.  
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Fig. 31. True Arousal and Valence Features in 2D Circumplex Model Space. 

 

 

 

 

Fig. 32 below shows the entire regression process using the self-annotated arousal and valence labels 

from the CASE subjects, the physiological features extracted using the methods above in the Feature 

Extraction section, and the regression models trained on the arousal and valence labels using the 

physiological features as the input. It shows the arousal and valence preprocessing steps of reordering and 

Gaussian conversion as described in the Labels Preprocessing section. There are two separate models: one 

for arousal and another for valence. Each model is trained using 5-fold cross-validation and the predicted 

arousal/valence values from each fold is saved as features for inputting into the final classification model 

explained in the next section Emotion Classification.  
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Fig. 32. Arousal and Valence Preprocessing and Regression Workflow 

 

 

 

 

 

3.7.1 Linear Regression 

A linear regression model was created using the Python sklearn library and mean absolute error, mean 

squared error, and root mean squared error metrics were used as evaluation metrics [103]. An ordinary 

least squares regressor is used which minimizes the residual sum of squares between the observed and 

predicted values [103]. As seen in the Feature Distribution section, the distribution of the input features 

closely represents a Gaussian distribution, and the features were also post-processed to remove noise and 

rescaled using standardization as described in the Feature Postprocessing section. These steps help 

improve the prediction reliability of linear regression models and their effectiveness at improving the 

accuracy of the ensemble model as a whole is shown in the Results section. Fig. 33 below graphs the 

predicted 2D arousal and valence space from the output of the linear regression model.  
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Fig. 33. Predicted Arousal and Valence Features from Linear Regression. 

 

 

 

 

3.7.2 Random Forest Regressor 

A random forest regression model was created using the Python sklearn library and mean absolute 

error, mean squared error, and root mean squared error metrics were used as evaluation metrics [103]. 

Table 11 below shows the parameters used in the model and Fig. 34 below shows the predicted 2D 

arousal and valence space.  

 

 

 

 
TABLE 11. RANDOM FOREST REGRESSOR HYPERPARAMETER VALUES 

Hyperparameter Value 

NUMBER OF ESTIMATORS (TREES)  100 

 

CRITERION  ‘SQUARED ERROR’ 

 

MAX DEPTH  LESS THAN MIN SAMPLES SPLIT 

SAMPLES 

 

MIN SAMPLES SPLIT  2 
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Fig. 34. Predicted Arousal and Valence Features from Random Forest Regressor. 

 

 

 

 

3.7.3 Support Vector Regressor 

A support vector regressor model was created using the Python sklearn library and mean absolute 

error, mean squared error, and root mean squared error metrics were used as evaluation metrics [103]. 

Table 12 below shows the parameters used in the model and Fig. 35 below shows the predicted 2D 

arousal and valence space.  

 

 

 

 
 

TABLE 12. SVR HYPERPARAMETER VALUES 

Hyperparameter Value 

KERNEL  RBF 

 

DEGREE  3 

 

GAMMA  SCALE 

 

TOLERANCE 1E-3 

 

C 1.0 

 

EPSILON 0.1 

 



58 

 

Fig. 35. Predicted Arousal and Valence Features from Support Vector Regressor. 

 

 

 

 

3.7.4 Adaboost Regressor 

An Adaboost model was created using the Python sklearn library and mean absolute error, mean 

squared error, and root mean squared error metrics were used as evaluation metrics [103]. Table 13 below 

shows the parameters used in the model and Fig. 36 below shows the predicted 2D arousal and valence 

space.  

 

 

 

 
TABLE 13. ADABOOST HYPERPARAMETER VALUES 

Hyperparameter Value 

BASE ESTIMATOR  DECISION TREE REGRESSOR 

 

NUMBER OF ESTIMATORS (TREES)  50 

 

LEARNING RATE  1.0 

 

LOSS FUNCTION LINEAR 
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Fig. 36. Predicted Arousal and Valence Features from Adaboost Regressor. 

 

 

 

 

3.7.5 XG Boost Regressor 

An XG Boost model was created using the Python xgboost library and mean absolute error, mean 

squared error, and root mean squared error metrics were used as evaluation metrics [104]. Table 14 below 

shows the parameters used in the model and Fig. 37 below shows the predicted 2D arousal and valence 

space.  
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TABLE 14. XG BOOST HYPERPARAMETER VALUES 

Hyperparameter Value 

BASE ESTIMATOR  GRADIENT BOOST TREE REGRESSOR 

 

LEARNING RATE  0.3 

 

MIN SPLIT LOSS  0 

 

MAX DEPTH 6 

 

MIN CHILD WEIGHT 1 

 

MAX DELTA STEP 0 

 

SUBSAMPLE 1 

 

SAMPLING METHOD “UNIFORM” 

 

 

 

 

 

 

Fig. 37. Predicted Arousal and Valence Features from XG Boost Regressor. 
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3.8 Emotion Classification 

The predicted arousal and valence labels from the regression models were then concatenated with the 

original physiological features to create the full feature set used as the input to train the classification 

models. Classification models were also trained with the “true” arousal and valence labels from the CASE 

dataset concatenated with physiological features as input features as well as trained on just the 

physiological features as a control comparison with this new method. The classification models tested 

were shallow neural network, 1D convolutional neural network (CNN) based on the “Alexnet” 2D CNN, 

LSTM, hyperparameter-tuned random forest, and hyperparameter-tuned support vector machine. Each 

classification model was tested with predicted arousal and valence features from each regression model 

described in the previous section.  

Five-fold cross-validation was performed for each model, and the average and standard deviation of 

accuracy, AUC, F1 score, recall, and precision across the five folds are reported in the results section. The 

input features were not shuffled before the training and testing splits were created so that the data in the 

testing set contained data from subjects that the model had never seen before in training. This gives a 

better indication of the model’s performance and generalizability with data from subjects that it had never 

seen before. Fig. 38 below shows the training and testing splits used in the five-fold cross-validation 

model training.  

 

 

 

 

 
Fig. 38. 5-Fold Cross Validation Training and Testing Sets. 
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3.8.1 Neural Network (NN) 

A sequential neural network with 5 hidden layers was created using the Python Keras machine 

learning library [105]. Table 15 below describes the design of each sequential layer in the neural network.  

 

 

 

 
TABLE 15. NEURAL NETWORK MODEL ARCHITECTURE 

Layer (type) Input Shape Output Shape Activation Function 

Dense – Input Layer (1, #Features) (1, 64) ReLu 

20% Dropout (1, 64) (1, 52) N/A 

Dense (1, 52) (1, 64) ReLu 

Dense (1, 64) (1, 32) ReLu 

20% Dropout (1, 32) (1, 26) N/A 

Dense – Output Layer (1, 26) (1, #Classes) Softmax 

 

 

 

 

Two dropout layers with a 20% dropout rate are used within the model as a regularization method to 

reduce model overfitting. When compiling the model, the categorical cross-entropy loss function is used 

since the output is multi-class for the five emotion classes. The Adam optimization function is used to 

train the model, and the overall accuracy and categorical accuracy metrics are produced to evaluate the 

effectiveness of the model. Table 16 shows the training parameters for the model as well. 

 

 

 

 
TABLE 16. NEURAL NETWORK TRAINING PARAMETERS 

Training Parameter Values 

LOSS FUNCTION CATEGORICAL CROSS-

ENTROPY 

 

OPTIMIZER ADAM 

 

NUMBER OF EPOCHS  100 

 

BATCH SIZE  10 
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For each fold of the cross-validation, the model was recreated from scratch and trained for the number 

of epochs. For five-fold cross-validation, this created five separate models, one for each fold, trained for 

100 epochs on a different set of 80% of the subjects and tested on a different set of 20% of the subjects. 

The models were run on a CUDA-enabled GPU using the Tensorflow Python machine learning backend 

to save time during training.  

 

3.8.2 Random Forest (RF) 

The Random Forest model was hyperparameter tuned with the following values as shown in Table 

17. The hyperparameter-tuning and Random Forest model training were performed using the Python 

SKLearn library [103]. The hyperparameter grid was randomized and different combinations of 

hyperparameters were tried until a specified number of iterations is reached. For this work, 100 iterations 

– or combinations of hyperparameters – were tested, and each iteration contained 3-fold cross-validation. 

The best performing set of hyperparameters from the 100 randomized hyperparameter sets was then saved 

and is noted in the Results section.  

 

 

 

 
TABLE 17. RANDOM FOREST HYPERPARAMETER TUNING VALUES 

Hyperparameter Values 

NUMBER OF ESTIMATORS (TREES)  200, 400, 600, 800, 1000, 1200, 1400, 

1600, 1800, 2000 

 

CRITERION   ‘GINI IMPURITY’, ‘ENTROPY 

INFORMATION GAIN’ 

 

MAX FEATURES AUTO, SQUARE ROOT, LOG2  

 

MAX DEPTH  10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110 

 

MIN SAMPLES SPLIT  2, 5, 10 

 

 

 

 

 

 

3.8.3 Support Vector Machine (SVM) 

The SVM classifier model was also hyperparameter-tuned to determine the best model for detecting 

discrete emotions using the CASE dataset, and the hyperparameter grid is shown in Table 18. The 

hyperparameter-tuning and SVM model training was performed using the Python scikit-learn library 
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[103]. The hyperparameter grid was randomized and different combinations of hyperparameters were 

tried until a specified number of iterations is reached. For this work, 100 randomized iterations – or 

combinations of hyperparameters – were tested, and each iteration contained 3-fold cross-validation. The 

best performing set of hyperparameters from the 100 randomized hyperparameter sets was then noted and 

is given in the Results section.  

 

 

 

 

TABLE 18. RANDOM FOREST HYPERPARAMETER TUNING VALUES 

Hyperparameter Values 

KERNELS  LINEAR, RBF, POLYNOMIAL 

 

GAMMAS  0.1, 1, 10, 100 

 

C PARAMETER 0.1, 1, 10, 100, 1000 

 

DEGREES  0, 1, 2, 3, 4, 5, 6 

 

COEFFICIENT 0  0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

 

 

 

 

 

3.8.4 1D Convolutional Neural Network (1D-CNN) 

The CNN model in this work was constructed with the Python Keras library [105]. Table 19 below 

shows each layer with the corresponding layer type, input size, output size, and number of parameters for 

the data. The model was designed based on the Alexnet model converted into a 1D CNN instead of the 

original 2D CNN [106]. 

 

 

 

 
TABLE 19. 1D-CNN MODEL ARCHITECTURE 

Layer (type) Input Shape Output Shape Param # 

Conv1D (#Timesteps, #Features) (10, 96) 18048 

BatchNormalization (10, 96) (10, 96) 384 

Activation – ReLu (10, 96) (10, 96) 0 

MaxPooling1D (10, 96) (5, 96) 0 

Conv1D (5, 96) (5, 256) 123136 

BatchNormalization (5, 256) (5, 256) 1024 
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TABLE 19. CONTINUED 

Layer (type) Input Shape Output Shape Param # 

Activation – ReLu (5, 256) (5, 256) 0 

MaxPooling1D (5, 256) (2, 256) 0 

ZeroPadding1D (2, 256) (4, 256) 0 

Conv1D (4, 256) (4, 512) 393728 

BatchNormalization (4, 512) (4, 512) 2048 

Activation – ReLu (4, 512) (4, 512) 0 

MaxPooling1D (4, 512) (2, 512) 0 

ZeroPadding1D (2, 512) (4, 512) 0 

Conv1D (4, 512) (4, 1024) 1573888 

BatchNormalization (4, 1024) (4, 1024) 4096 

Activation – ReLu (4, 1024) (4, 1024) 0 

ZeroPadding1D (4, 1024) (6, 1024) 0 

Conv1D (6, 1024) (6, 1024) 3146752 

BatchNormalization (6, 1024) (6, 1024) 4096 

Activation  (6, 1024) (6, 1024) 0 

MaxPooling1D (6, 1024) (3, 1024) 0 

Flatten (3, 1024) (3072) 0 

Dense (3072) (3072) 9440256 

BatchNormalization (3072) (3072) 12288 

Activation (3072) (3072) 0 

Dropout (3072) (3072) 0 

Dense (3072) (4096) 12587008 

BatchNormalization (4096) (4096) 16384 

Activation (4096) (4096) 0 

Dropout (4096) (4096) 0 

Dense (4096) (5) 20485 

BatchNormalization (5) (5) 20 

Activation (5) (5) 0 

 

 

 

 

The input layer of this model uses L2 regularization on the layer kernel to calculate a least sum 

squares penalty on the loss function used to optimize this layer. Two 50% dropout layers are also used 

towards the end of the model to help reduce overfitting. Table 20 shows the training parameters for the 

model. 
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TABLE 20. “1D ALEXNET” CNN TRAINING PARAMETERS 

Training Parameter Values 

LOSS FUNCTION CATEGORICAL CROSS-

ENTROPY 

 

OPTIMIZER ADAM 

 

NUMBER OF EPOCHS  100 

 

BATCH SIZE  10 

 

 

 

 

 

For each fold of the cross-validation, the model was recreated from scratch and trained for the 

specified number of epochs. For five-fold cross-validation, this created five separate models – one for 

each fold – trained for 100 epochs on a different set of 80% of the subjects and tested on a different set of 

20% of the subjects. The models were run on a CUDA-enabled GPU using the Tensorflow Python 

machine learning backend to save time during training.  

 

3.8.5 Long Short-Term Memory (LSTM) 

The LSTM model was constructed with the Python Keras library [105]. Table 21 below shows each 

layer with the corresponding layer type, input size, output size, and number of parameters for each layer.  

 

 

 

 
TABLE 21. LSTM MODEL ARCHITECTURE 

Layer (type) Input Shape Output Shape Param # 

LSTM (#Timesteps, #Features) (10, 256) 280576 

LSTM (10, 96) (256) 525312 

Dense (10, 96) (256) 65792 

Dropout (10, 96) (256) 0 

Dense (5, 96) (64) 16448 

Dropout (5, 256) (64) 0 

Dense (5, 256) (64) 4160 

Dense (5, 256) (32) 2080 

Dropout (2, 256) (32) 0 

Dense (4, 256) (32) 1056 

Dense (4, 512) (5) 165 
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Two 20% and one 30% dropout layers were used throughout the model to help reduce overfitting. 

Table 22 shows the training hyperparameters for the model. 

 

 

 

 
TABLE 22. LSTM TRAINING HYPERPARAMETERS 

Training Parameter Values 

LOSS FUNCTION CATEGORICAL CROSS-

ENTROPY 

 

OPTIMIZER ADAM 

 

NUMBER OF EPOCHS  100 

 

BATCH SIZE  50 

 

 

 

 

 

For each fold of the cross-validation, the model was recreated from scratch and trained for the number 

of epochs. For five-fold cross-validation, this created five separate models trained for 100 epochs on a 

different set of 80% of the subjects and tested on a different set of 20% of the subjects. The batch size for 

this model was increased from 10 to 50 when compared to the NN and CNN models described earlier to 

reduce the training time of the model since LSTM layers are significantly more computationally 

expensive than a normal neural network. The models were run on a CUDA-enabled GPU using the 

Tensorflow Python machine learning backend to save time during training.  
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CHAPTER 4 

4 RESULTS 

4.1 Regression Errors 

Table 23 below shows the error results of each regression model. The table is broken up into sections 

representing the different steps of arousal and valence feature manipulation as described in the Labels 

Preprocessing section. The lower the error values of the regression model, the higher the performance of 

the model. In the table below, the error values are color-coded from red (high) to green (low) errors. As 

can be seen in Table 23, each step in the post-processing of the arousal and valence labels improved the 

performance of the regression models. The last section in the table: “Scaled Gaussian Oversample” was 

used in the final method to generate regression models used with the classification model to create the 

overall ensemble model. 

 

 

 

 
TABLE 23. COLOR-CODED REGRESSION ERROR RESULTS  

 
Regressor 

Valence Arousal 

MAE MSE RMSE MAE MSE RMSE 

Scaled 

Linear 0.134 0.033 0.181 0.123 0.027 0.163 

Random Forest 0.154 0.042 0.205 0.138 0.032 0.180 

SVM 0.149 0.040 0.201 0.134 0.031 0.177 

Adaboost 0.134 0.034 0.183 0.123 0.026 0.162 

XG Boost 0.164 0.047 0.218 0.147 0.036 0.190 

 

Scaled 

Gaussian    

Linear 0.140 0.033 0.181 0.128 0.027 0.165 

Random Forest 0.152 0.037 0.193 0.132 0.028 0.167 

SVM 0.149 0.037 0.192 0.135 0.030 0.173 

Adaboost 0.142 0.033 0.182 0.131 0.027 0.166 

XG Boost 0.150 0.037 0.193 0.140 0.032 0.178 

 

Scaled 

Gaussian 

Oversample  

Linear 0.133 0.030 0.173 0.124 0.026 0.160 

Random Forest 0.130 0.028 0.168 0.119 0.024 0.154 

SVM 0.132 0.030 0.173 0.124 0.026 0.161 

Adaboost 0.138 0.031 0.175 0.126 0.026 0.160 

XG Boost 0.131 0.029 0.171 0.121 0.024 0.156 
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4.2 Classification Accuracy 

Using the methodology explained above, the following graphs give results of multiple different 

classification models run with arousal and valence features generated from the various regression models 

above. The features used in each model were the predicted arousal and valence from the respective 

regressor concatenated with the original physiological features. The ground truth arousal and valence 

labels concatenated with the physiological feature set as well as just the physiological feature set without 

arousal and valence features are used as baselines to compare results to the predicted arousal and valence 

feature sets. The highest accuracy ensemble models among the types and combinations tried were the 

hyperparameter-tuned SVM classification with linear regression predicted arousal and valence ensemble 

model with an accuracy of 98.79% ± 0.29% and the neural network with linear regression predicted 

arousal and valence ensemble model with an accuracy of 98.33% ± 0.89%. There were multiple other 

models with similarly high accuracies of low to mid-90s as shown in Fig. 39 below as well. Multiple 

metrics are shown to give a more complete representation of the model performance including accuracy, 

AUC, F1 score, recall, and precision in Fig. 39, Fig. 40, Fig. 41, Fig. 42, and Fig. 43 below respectively. 

In the metrics, confusion matrix, histogram, learning curve, and other figures below, “No A/V (Only 

Physiological)” stands for only using the physiological feature set with no arousal or valence features, 

“True A/V + Phys” stands for the ground truth self-reported arousal and valence labels from the CASE 

dataset concatenated to the physiological feature set, “Linear Regression A/V + Phys” stands for the 

predicted arousal and valence values from the linear regressor concatenated to the physiological feature 

set, and following this convention the others correspond to each regressors’ predicted arousal and valence 

features concatenated with the physiological feature set respectively.  
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Fig. 39. Classification Model Accuracies w/ each Regressor Predicted Arousal/Valence. 

 

 

 

 

 
Fig. 40. Classification Model AUCs w/ each Regressor Predicted Arousal/Valence. 
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Fig. 41. Classification Model F1 Scores w/ each Regressor Predicted Arousal/Valence. 

 

 

 

 

 
Fig. 42. Classification Model Precisions w/ each Regressor Predicted Arousal/Valence. 
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Fig. 43. Classification Model Recalls w/ each Regressor Predicted Arousal/Valence. 

 

 

 

 

The best performing model, SVM with linear regressor arousal and valence prediction, was hyper-

parameter-tuned and Table 24 below shows the hyperparameters found to provide the best accuracy 

among the 100 randomly tried hyperparameter sets from the list of values in Table 18. The decision 

boundaries of the multiclass SVM as defined by the linear kernel is also shown below in Fig. 44. The 

SVM model used all 19 features for classification with a 19-dimensional hyperplane, but since it is 

difficult to visualize 19 dimensions and the two predicted arousal and valence features were the most 

information-rich, these features were chosen to help visualize the decision boundaries of the models in 

Fig. 44. 
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TABLE 24. SVM HYPERPARAMETER-TUNED VALUES FOR SVM 

WITH LINEAR REGRESSORS ENSEMBLE MODEL 

Hyperparameter Values 

KERNELS  LINEAR 

 

GAMMAS  1 

 

C PARAMETER 10 

 

DEGREES  5 

 

COEFFICIENT 0  0 

 

 

 

 

 

 

Fig. 44. SVM Decision Boundary with Linear Regressor Predicted Arousal and Valence. 

 

 

 

 

Fig. 45 below shows a comparison of results for the SVM classifier using different feature sets: 

predicted arousal and valence only (blue bars), physiological features only (grey bar), and predicted 

arousal and valence concatenated with physiological features (orange bars). As can be seen in Fig. 45, 

combining the predicted arousal and valence with the physiological features always produced a higher 

accuracy than just the predicted arousal and valence features by themselves. The grey bar showing the 

results of only using physiological features gives a baseline for comparison.  
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Fig. 45. Comparison of SVM Accuracy Across Different Feature Sets. 

 

 

 

 

4.2.1 Confusion Matrices 

Confusion matrices for each classification model trained and tested on each feature set are given 

below. The confusion matrices show the likelihood of misclassifications between each true and predicted 

class. The diagonal of the confusion matrix represents correct classification, so the darker the diagonal of 

a confusion matrix, the better performing the model is. Fig. 46, Fig. 47, Fig. 48, Fig. 49, and Fig. 50 show 

the confusion matrices for the neural network, random forest, SVM, 1D CNN, and LSTM models 

respectively for each regression model used to generate predicted arousal and valence features as well as 

the true arousal and valence from the CASE dataset and no arousal and valence (physiological features 

only) for baseline comparisons.  

 

 

 

 



75 

 

Fig. 46. Neural Network Confusion Matrices. 

 

 

 

 

 

Fig. 47.  Random Forest Confusion Matrices. 
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Fig. 48. SVM Confusion Matrices. 

 

 

 

 

 

Fig. 49. 1D CNN (1D Alexnet) Confusion Matrices. 
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Fig. 50. LSTM Confusion Matrices. 

 

 

 

 

4.2.2 Predicted Class Probability Histograms  

For each classification model, the predicted probability values for each prediction of the test dataset 

were obtained from the corresponding Python library. These class prediction probabilities were then 

graphed as a histogram for each test dataset in each cross-validation fold to visualize and give insight into 

the model’s “confidence” in its class predictions. In general, the more predictions with a probability 

greater than 90%, the more accurate the model. Histograms give an idea of the model’s confidence in its 

correct prediction of the class by binning the prediction probability of all windows’ features into ten bins 

and graphing the number of predictions per bin into a histogram. As can be seen in the histograms below, 

the highest performing ensemble models, neural network with linear regressor and SVM with linear 

regressor, have almost all predictions in the greater than 90% prediction probability bins. Fig. 51, Fig. 52, 

Fig. 53, Fig. 54, and Fig. 55 show the histograms of model prediction probability for neural network, 

random forest, SVM, 1D CNN, and LSTM respectively for each regression model’s feature set as well as 

the self-reported arousal and valence from the CASE dataset and no arousal and valence (physiological 

features only) for baseline comparisons.  
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Fig. 51. Neural Network Predicted Class Probability Histogram. 

 

 

 

 

 

Fig. 52. Random Forest Predicted Class Probability Histogram. 
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Fig. 53. SVM Predicted Class Probability Histogram. 

 

 

 

 

 

Fig. 54. 1D CNN (1D Alexnet) Predicted Class Probability Histogram. 
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Fig. 55. LSTM Predicted Class Probability Histogram. 

 

 

 

 

4.2.3 Learning Curves 

The following graphs for the neural network, 1D CNN, and LSTM models in Fig. 56, Fig. 59, and 

Fig. 60 show the training accuracy in blue and loss from the corresponding loss function in yellow for 

each fold in the five-fold cross-validation. The “sixth” fold in the graphs corresponds to a separate model 

trained on all CASE subjects’ data for use in real-time applications. For the random forest and SVM 

models in Fig. 57 and Fig. 58, three graphs are given for each model. The top graph shows training and 

cross-validation accuracies, the middle graph gives an idea of the scalability of the model, and the bottom 

graph gives an idea of the model’s performance.  
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Fig. 56. Neural Network Learning Curves. 
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Fig. 57. Random Forest Learning Curves. 
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Fig. 58. SVM Learning Curves. 
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Fig. 59. 1D CNN (1D Alexnet) Learning Curves. 

 

 

 

 

 

Fig. 60. LSTM Learning Curves. 

 

 

 

 

4.2.4 SVM Decision Boundaries 

SVM Decision boundaries along the two dimensions of the arousal and valence features were graphed 

to provide a visual indication of the model’s decision-making processes in the features’ two-dimensional 
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separation. The SVM model which only used physiological features is not graphed since it did not contain 

the arousal and valence features. The SVM model used all 19 features for classification with a 19-

dimensional hyperplane, but since it is difficult to visualize 19 dimensions and the two predicted arousal 

and valence features were the most information-rich, these features were chosen to help visualize the 

decision boundaries of the models. The decision boundaries using these two features generated by each 

regression model as well as self-annotated arousal and valence for baseline comparison are shown in Fig. 

61 below.  

 

 

 

 

 

 

Fig. 61. SVM Decision Boundaries for Models Trained on all Feature Sets. 

 

 

 

 

4.2.5 Preprocessing Method Accuracy Comparisons 

To determine the effectiveness of the preprocessing methods employed in this work, ensemble 

models were trained with various preprocessing steps taken out to compare overall accuracies. These 

were all trained on the CNN described in the Convolutional Neural Network (CNN) section with a linear 

regressor to compare just the preprocessing steps and the accuracy results are shown below in Fig. 62. A 

two-dimensional representation of the CNN’s output layer is also shown with the accuracies using t-SNE 
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dimensionality reduction in order to visually see the increase in separation among the five different 

emotion classes when using the arousal and valence preprocessing methods described in the Labels 

Preprocessing section. 

 

 

 

 

 

Fig. 62. t-SNE Two-dimensional Representation of CNN Outputs with 5-fold Cross 

Validation Accuracies to Compare Arousal and Valence Preprocessing Methods. 

 

 

 

 

4.3 Real-time Emotion Detection 

The real-time emotion detection pipeline uses the same methodology as the model generation pipeline 

by windowing the data, filtering the windows, extracting physiological features, predicting arousal and 

valence using the regressors, and using the combined arousal and valence with the physiological features 

as inputs to the classifier for predicting discrete emotion labels. The real-time data is acquired from an 

Empatica E4 physiological sensing device and buffered for 10 seconds with a 1-second window stride. 

The entire real-time emotion detection workflow using an Empatica E4 device is shown below in Fig. 63. 



87 

 
 

Fig. 63. Real-time Emotion Detection Workflow. 
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CHAPTER 5 

5 DISCUSSION 

A method for detecting five discrete emotions with high accuracy using only signals which are 

available in affordable, non-invasive, commercial devices has been presented in this work. By using 

traditional features extracted from physiological data to predict arousal and valence through regression 

and concatenating the new arousal and valence features with the original physiological features, a much 

more information-rich feature set can be created. Using the arousal and valence regression models 

generated in training, only physiological data is needed to create this information-rich feature set in real-

world applications of real-time emotion detection. There have been studies found to use regression to 

create predicted arousal and valence features for emotion classification, but these studies used a different 

modality (facial expression) to create the arousal and valence features which were then used with 

physiological features [72] or classified arousal and valence instead of discrete emotion labels [77]. The 

method developed in this work uses the same physiological data to extract the much more information-

rich arousal and valence features than the relatively information-poor physiological features that are 

traditionally extracted. This is particularly useful because an end-use application would only need the 

easily attainable physiological data to utilize these models in a real-time environment. A device such as a 

small smartwatch could easily provide these physiological signals and process the data through the 

classification methodology with today’s technology. Just in this past year, new commercially available 

devices which detect these three signals have come to the market [107]. It would be fairly simple to 

develop an app for a smartwatch platform that uses this model as a backend and monitors emotional states 

in real-time for the user. Similar apps are available today using currently available devices that are used to 

monitor stress, sleep patterns, and even medical quantities such as heart health using physiological signals 

from wearable devices.  

Table 25 below compares the results from this work to the current state-of-the-art studies in emotion 

detection.  
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TABLE 25. ACCURACY COMPARISON WITH CURRENT STATE-OF-THE-ART ALGORITHMS 

Reference Data Classes Model Generalizability Accuracy 

2000, Healey 

[11] 

EMG, BVP, ECG, 

Respiration, EMG 

8-class K-Nearest 

Neighbors  

(KNN) 

Subject-dependent 

(single subject) 

81.3% 

2005, Herbelin 

et al. [65] 

GSR, BVP, EMG, 

Respiration, Skin 

Temperature, 

Arousal/Valence 

self-report 

5-class Fisher LDA 

feature 

reduction with 

kNN 

Subject-dependent 

(single subject) 

24% 

2005, Wagner 

et al. [64] 

EMG, ECG, GSR, 

Resp 

4-class Linear 

Discriminant 

Function 

(LDF) 

Subject-dependent 

(single subject) 

92.1% 

2014, Verma 

and Tiwary 

[67] 

EEG, GSR, BVP, 

Respiration, Skin 

Temperature, 

EMG, EOG 

2-class (Leave 

one out binary 

classification 

of multiple 

emotions) 

SVM  Subject-

independent 

77.65% to 

85.46%  

(Best – 

Depressing 

Emotion) 

2019, 

Albraikan et al. 

[87] 

MAHNOB-HCI 5-class WMD-DTW 

and kNN 

Subject-

independent 

65.6% 

2020, Liu et al. 

[71] 

GSR 7-class 3-layer Neural 

Network (NN) 

Subject-

independent 

42.08% 

2020, Domín-

guez-Jiménez 

[63] 

BVP, GSR 3-class SVM Subject-dependent 97% 

2021, Oh et al. 

[72] 

AffectNet (Facial 

Expressions) and 

GSR 

8-class Deep Neural 

Network 

(DNN) 

Subject-dependent 89% 

This Work BVP, GSR, Skin 

Temperature 

5-class SVM classifier 

with Linear 

Regressor 

Subject-

independent 

98.79% 

 

 

 

 

To the author’s knowledge, there has not been a method published that uses continuously annotated 

arousal and valence values to train regression models on physiological features to create predicted arousal 

and valence features which are then concatenated back to the physiological features to classify discrete 

emotional states. The achieved accuracies of 98.79% ± 0.29% is also the highest accuracy achieved for 

subject-independent, five-class discrete emotion classification to the author’s knowledge. Other metrics 

including AUC, F1 score, precision, and recall were calculated to confirm the validity of the accuracy 

results of the models, and each metric showed that the models’ performances are valid. A next step would 

be to test the model on other physiological datasets, but this introduces the challenges of using different 

emotion models and discrete emotion labels used across datasets as described in the Related Work 

section. Another next step would be to create more data where the same five emotions are stimulated and 

test the model using the real-time setup described in the Real-time Emotion Detection section. 



90 

There are several notable contributions to the field of affective computing presented in this work. The 

main contribution is the methodology itself which obtains high accuracies of ~98% with multiple versions 

of the ensemble model while also being subject-independent and thus generalizable to users outside of the 

training dataset. Since all testing data for the model contained subjects whose data was never seen during 

training in each cross-validation fold, the reported accuracy of the model is an accurate indicator of the 

models’ subject independence and generalizability of data acquired outside the CASE dataset. This is a 

very important distinction since most affective computing research to date has created subject-dependent 

models which have limited use in real-world applications. As can be seen in the results, the models 

consistently predicted emotion accurately across all cross-validation folds while being tested on data from 

subjects that the model had never seen before. The model is also easily implementable in real-world 

applications since the physiological signals used – BVP, GSR, and skin temperature – can all be acquired 

through small, non-invasive, commercially available devices. Since the model is a single multi-class 

model for the five emotion classes, the processing power needed is minimal as well further increasing its 

utility for use with real-world applications. 

A limitation of this model is the demographics of the subjects in the CASE dataset. There is good 

representation across male and female subjects, but the ages of the subjects are not very dispersed with all 

subjects being in their 20s and 30s. Also, a potential disadvantage of using discrete emotion labels instead 

of a continuous emotion space is the phenomenon referred to as emotional “blending” – feeling multiple 

emotions at the same time [108]. Discrete emotion classification does not adequately represent the 

complexity of human emotional feelings, so a more nuanced approach may need to be developed in the 

future for emotion detection problems where the output is able to “blend” emotions instead of placing a 

single emotional label on a windowed range of time. The continuously predicted arousal and valence 

features described in this work can be used as more nuanced emotion categorization themselves or used as 

inputs to more sophisticated “blended” output emotional models. These are ideas for future work 

presented by the author for the reader to consider.  

A potential application of this model is in an environmental emotion feedback system that responds to 

detected emotions to create a better-suited environment for the occupant. Environments like this have 

been proposed in other research with various methodologies and use-cases [13-16]. Among other use-

cases, an environment like this could help enable differently-abled individuals to live independently and 

support happier, healthier interactions with their environment. An example interaction could be the 

system detecting a scared emotional state and outputting soothing music, outputting soothing scents, and 

dimming the lights. Such a system could help individuals with autism better cope with anxiety associated 

with bright lights, loud sounds, or other alarming stimuli. An interactive environment such as this could 

help remove some of the barriers to independent living for differently-abled people.    
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CHAPTER 6 

6 CONCLUSIONS 

This work outlines a method of passive emotion detection using easily acquired, commercially 

available physiological signals including BVP, GSR, and skin temperature. The model is trained and 

tested using physiological data, self-reported continuously annotated arousal and valence labels, and 

emotion labels tied to video stimuli from the CASE dataset [1]. 17  features were extracted from the three 

physiological signals: thirteen from blood volume pulse (BVP), two from galvanic skin response (GSR), 

and two from skin temperature. The resulting physiological feature set is used as dependent variables to 

train two regression models: one for predicting arousal using the self-reported arousal labels, and the 

other for predicting valence using the self-reported valence labels acquired with the JERI device [96]. The 

predicted arousal and valence values are then concatenated back to the original physiological feature set 

to create an aggregated feature set which is used to train and test a classification model for discrete 

emotion prediction based on the emotion labels from the CASE video stimuli. The regression and 

classification models together constitute the ensemble model presented in this work. Data from 30 

subjects were used for training and testing the ensemble model, and five-fold cross-validation where each 

fold does not share data from the subjects it contains is used to ensure that the results given are indicative 

of the accuracy expected of the model from subjects that it has never seen before. The model is a multi-

class predictor that classifies the windowed data into five emotion classes: amused, bored, neutral, 

relaxed, and scared. The best performing model is the SVM classifier using a linear regressor for the 

arousal and valence prediction features with a five-fold cross-validation accuracy of 98.79% ± 0.29%. A 

real-time implementation of this system is also presented for use with future work utilizing the Empatica 

E4 device.  

Some possible future work with this model could be recording data from more subjects with the same 

emotion eliciting videos as was used in the CASE dataset with different populations including differently-

abled populations. This model can also be used in an emotion feedback environment which could be 

particularly useful for differently-abled individuals to help enable them to live independent, healthy, and 

happy lives. 
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APPENDICES 

APPENDIX A: FULL CLASSIFICATION RESULTS 

TABLE 26. 5-FOLD CROSS VALIDATION ACCURACY FOR EACH MODEL AND FEATURE SET 

 
 

 

 

 
TABLE 27. 5-FOLD CROSS VALIDATION AUC FOR EACH MODEL AND FEATURE SET 

 
 

 

 

 
TABLE 28. 5-FOLD CROSS VALIDATION F1 SCORE FOR EACH MODEL AND FEATURE SET 

 
 

 

 

 
TABLE 29. 5-FOLD CROSS VALIDATION PRECISION FOR EACH MODEL AND FEATURE SET 

 
 

 

 

  

Feature Set Accuracy Accuracy SD Accuracy Accuracy SD Accuracy Accuracy SD Accuracy Accuracy SD Accuracy Accuracy SD

No A/V (Only Physiological) 0.4844 0.0508 0.6534 0.0240 0.6087 0.0346 0.3692 0.0502 0.3652 0.0684

True A/V (CASE Dataset) + Physiological 0.9178 0.0028 0.9475 0.0038 0.8766 0.0031 0.9296 0.1088 0.7321 0.0493

Linear Regression A/V + Physiological 0.9833 0.0089 0.9388 0.0217 0.9879 0.0029 0.9207 0.0510 0.5980 0.0533

Random Forest Regression A/V + Physiological 0.6633 0.0298 0.7802 0.0087 0.6557 0.0125 0.5251 0.0430 0.5062 0.0658

SVM Regression A/V + Physiological 0.7549 0.0207 0.8224 0.0145 0.8217 0.0221 0.6505 0.0499 0.5192 0.1023

AdaBoost Regression A/V + Physiological 0.9249 0.0175 0.9667 0.0147 0.8574 0.0181 0.7879 0.0517 0.6328 0.0414

XGBoost Regression A/V + Physiological 0.6398 0.0353 0.7549 0.0137 0.6471 0.0149 0.5221 0.0562 0.5044 0.0644

Neural Net Random Forest SVM 1D CNN LSTM

Feature Set AUC AUC SD AUC AUC SD AUC AUC SD AUC AUC SD AUC AUC SD

No A/V (Only Physiological) 0.7542 0.0391 0.8856 0.0165 0.7554 0.0216 0.6559 0.0515 0.6792 0.0685

True A/V (CASE Dataset) + Physiological 0.9910 0.0010 0.9962 0.0007 0.9229 0.0019 0.9783 0.0301 0.9303 0.0296

Linear Regression A/V + Physiological 0.9990 0.0011 0.9963 0.0015 0.9994 0.0002 0.9888 0.0116 0.8795 0.0189

Random Forest Regression A/V + Physiological 0.8912 0.0174 0.9593 0.0061 0.7848 0.0078 0.7960 0.0353 0.7798 0.0589

SVM Regression A/V + Physiological 0.9381 0.0088 0.9700 0.0044 0.8886 0.0138 0.8724 0.0388 0.7913 0.0859

AdaBoost Regression A/V + Physiological 0.9880 0.0060 0.9992 0.0005 0.9109 0.0113 0.9286 0.0308 0.8826 0.0411

XGBoost Regression A/V + Physiological 0.8794 0.0184 0.9501 0.0079 0.7794 0.0093 0.7788 0.0496 0.7936 0.0578

Neural Net Random Forest SVM 1D CNN LSTM

Feature Set F1 Score F1 Score SD F1 Score F1 Score SD F1 Score F1 Score SD F1 Score F1 Score SD F1 Score F1 Score SD

No A/V (Only Physiological) 0.4551 0.2066 0.6111 0.2241 0.5772 0.2461 0.3341 0.2186 0.3339 0.2251

True A/V (CASE Dataset) + Physiological 0.9180 0.0539 0.9474 0.0372 0.8760 0.1169 0.9244 0.1388 0.7113 0.2244

Linear Regression A/V + Physiological 0.9833 0.0152 0.9370 0.0614 0.9879 0.0098 0.9150 0.1302 0.5595 0.2864

Random Forest Regression A/V + Physiological 0.6492 0.1583 0.7643 0.1446 0.6386 0.1656 0.5024 0.2209 0.4835 0.2215

SVM Regression A/V + Physiological 0.7502 0.1396 0.8125 0.1279 0.8169 0.1040 0.6309 0.2291 0.4969 0.2392

AdaBoost Regression A/V + Physiological 0.9245 0.0566 0.9662 0.0365 0.8561 0.0925 0.7748 0.2146 0.6110 0.2516

XGBoost Regression A/V + Physiological 0.6269 0.1467 0.7373 0.1493 0.6297 0.1615 0.4977 0.2145 0.4802 0.2073

Neural Net Random Forest SVM 1D CNN LSTM

Feature Set Precision Precision SD Precision Precision SD Precision Precision SD Precision Precision SD Precision Precision SD

No A/V (Only Physiological) 0.4470 0.1537 0.6283 0.1050 0.5757 0.1797 0.3512 0.1902 0.3592 0.1943

True A/V (CASE Dataset) + Physiological 0.9223 0.0704 0.9483 0.0395 0.8765 0.1134 0.9496 0.1088 0.7281 0.1893

Linear Regression A/V + Physiological 0.9833 0.0152 0.9437 0.0603 0.9882 0.0160 0.9358 0.0980 0.6538 0.2688

Random Forest Regression A/V + Physiological 0.6734 0.1322 0.7940 0.0969 0.6564 0.1284 0.5376 0.2106 0.5196 0.2311

SVM Regression A/V + Physiological 0.7753 0.1438 0.8340 0.0965 0.8376 0.1050 0.6510 0.2096 0.5344 0.2617

AdaBoost Regression A/V + Physiological 0.9309 0.0714 0.9690 0.0408 0.8663 0.1017 0.8055 0.1770 0.6432 0.2255

XGBoost Regression A/V + Physiological 0.6440 0.1179 0.7662 0.0919 0.6476 0.1207 0.5292 0.2044 0.5258 0.2064

Neural Net Random Forest SVM 1D CNN LSTM
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TABLE 30. 5-FOLD CROSS VALIDATION RECALL FOR EACH MODEL AND FEATURE SET 

 
  

Feature Set Recall Recall SD Recall Recall SD Recall Recall SD Recall Recall SD Recall Recall SD

No A/V (Only Physiological) 0.4844 0.2671 0.6534 0.2980 0.6087 0.2829 0.3652 0.2854 0.3610 0.2927

True A/V (CASE Dataset) + Physiological 0.9178 0.0656 0.9476 0.0458 0.8766 0.1226 0.9307 0.1737 0.7311 0.2787

Linear Regression A/V + Physiological 0.9833 0.0220 0.9388 0.0972 0.9879 0.0098 0.9213 0.1649 0.5974 0.3352

Random Forest Regression A/V + Physiological 0.6633 0.2182 0.7802 0.2159 0.6557 0.2279 0.5223 0.2808 0.5031 0.2811

SVM Regression A/V + Physiological 0.7549 0.1803 0.8224 0.1881 0.8217 0.1559 0.6489 0.2753 0.5162 0.2773

AdaBoost Regression A/V + Physiological 0.9249 0.0795 0.9667 0.0609 0.8574 0.1208 0.7876 0.2485 0.6314 0.2973

XGBoost Regression A/V + Physiological 0.6398 0.2080 0.7549 0.2213 0.6471 0.2275 0.5194 0.2810 0.5014 0.2703

Neural Net Random Forest SVM 1D CNN LSTM
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