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ABSTRACT

APPLICATION OF ADVANCED GRID GENERATION 
TECHNIQUES FOR FLOW FIELD COMPUTATIONS 

ABOUT COMPLEX CONFIGURATIONS

Monchai Kathong 
Old Dominion University, 1988 

Director: Dr. Surendra N. Tiwari

In the computation of flow fields about complex configurations, it is very 

difficult to construct a boundary-fitted coordinate system. An alternative approach 

is to use several grids at once, each of which is generated independently. This pro

cedure is called the “multiple grids” or “zonal grids” approach, and its applications 

axe investigated in this study. The method is a conservative approach and provides 

conservation of fluxes at grid interfaces. The Euler equations are solved numeri

cally on such grids for various configurations. The numerical scheme used is the 

finite-volume technique with a three-stage Runge-Kutta time integration. The code 

is vectorized and programmed to run on the CDC VPS-32 computer.

Steady state solutions of the Euler equations are presented and discussed. 

The solutions include: low speed flow over a sphere, high speed flow over a slender 

body, supersonic flows over a Butler-Wing at various Mach numbers and angles 

of attack, supersonic flow through a duct, and supersonic internal/external flow 

interaction for an aircraft configuration at various angles of attack. The results 

demonstrate that the multiple grids approach along with the conservative interfacing 

is capable of computing the flows about the complex configurations where the use 

of a single grid system is not possible.
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Chapter 1

INTRODUCTION

Basically, there are three approaches or methods which can be used to 

solve a problem in fluid mechanics and heat transfer. These methods are (1) Ex

perimental, (2) Theoretical, and (3) Numerical. The theoretical method is often 

referred to as an analytical approach while the terms numerical and computational 

axe used interchangeably.

In the experimental approach, a model is constructed and tested in a 

testing facility such as a wind tunnel. The flow variables, such as wall pressure 

and temperature can then be measured. In most cases, experiments are performed 

on a small-scale model since full-scale tests are prohibitively expensive and often 

impossible. These small-scale tests do not always simulate all the features of the 

full-scale tests. General rules for extrapolating the resulting information to full-scale 

are often unavailable. Also, there are serious difficulties of measurement in many 

situations, and the measuring instruments are not free from errors. Furthermore, 

the problem of producing required freestream conditions in the test section of the 

facility can be quite troublesome and time consuming. Since the facility, for example 

a wind tunnel, requires large amounts of energy for its operation, its operating costs 

«ire quite high. The experimental approach produces the most realistic answers for 

many flow problems; however, the costs are becoming greater everyday.

In the theoretical approach, assumptions are made in order to simplify 

the problem. A closed form solution is generally sought. The main advantage of

1
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2

this approach is that general information which is usually in formula form can be 

obtained. Its disadvantage is that the problem is restricted to simple geometry and 

physics.

In the numerical approach, a limited number of assumptions are made and 

a high-speed digital computer is used to solve the resulting governing fluid dynam

ics equations. The major advantage of this approach is that the problem is free of 

some of the constraints imposed on the experimental or theoretical approach. Thus, 

the numerical approach has the potential of providing information not available by 

other means. However, the approach does have some disadvantages. The storage 

and speed of present available computers pose limitations on the method. Other 

limitations arise due to the inability to understand and mathematically model cer

tain complex phenomena. In spite of these limitations, the numerical approach is 

becoming more popular. The developments of supercomputers and the reduction 

in computational costs have made the approach appealing.

A new methodology for attacking the complex problem in fluid mechanics 

and heat transfer has been developed and has become known as Computational 

Fluid Dynamics (CFD). Some of the ideas of this numerical approach are very old. 

CFD is a science of producing numerical solutions to a system of partial differen

tial equations which describe fluid flow. CFD is done by discrete methods and the 

purpose is to better understand qualitative and quantitative physical phenomena in 

the flow which then is often used to improve upon engineering design. CFD brings 

together a number of different traditional disciplines: fluid mechanics, the mathe

matical theory of partial differential equations, computational geometry, numerical 

analysis, and the computer science of programming algorithms and processing data 

structures. Good surveys on the approach can be found in [1-13]*. Also, the 

'The numbers in brackets indicate references.
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3

foundations upon which the whole field is built are now reasonably well covered in 

text books [14-25].

In the CFD calculation, the continuum problem of the differential equa

tions is projected to some finite-dimensional space for the dependent and indepen

dent variables. The resulting discrete equations are, then, solved for the final set of 

numbers. Thus, the first step in CFD is to discretize the domain of the flow by lay

ing out a network of points situated at a finite number of different locations of the 

independent variables. This brings about a technique called the “grid generation” 

procedure. A “grid” is conventionally defined as a set of grid points in a coordinate 

system. The word grid and mesh are also used interchangeably. Grid generation is 

an essential procedure in CFD. Accuracies and stabilities of the CFD calculations 

depend a great deal on the properties of these “grids”. Grid points are generally 

generated by letting some coordinate lines coincident with the boundaries of the 

domain. The purpose of generating these so-called “boundary-fitted” coordinates is 

to be able to apply boundary conditions directly when partial differential equations 

are solved on such grid. It is important that the boundary condition be represented 

accurately since the region in the intermediate vicinity of solid surfaces is generally 

dominant in determining the character of the flow. The procedure for generating 

a boundary-fitted coordinate system can be divided into two catagories. These are 

partial differential equation methods and algebraic methods. In the partial differ

ential equation methods, a set of partial differential equations, subjected to some 

boundary conditions, are solved to obtain a set of grid points. The partial differ

ential equations may be elliptic, hyperbolic or parabolic. The partial differential 

equation methods offer the smoothness to the resulting grid points but generally 

require large amounts of computational time. The algebraic methods are based on 

mathematical interpolation functions and do not require the solution of differential 

equations or the use of complex variables. The primary advantages of algebraic
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methods are speed and directness. Regardless of how grid points are generated, 

all CFD calculations are usually done on a rectangular domain with a square grid. 

This is done by transforming the set of partial differential equations of interest, and 

the associated boundary conditions, to the curvilinear system. The grid points in 

the physical domain are, thus, mapped into a set of equally spaced grid points in a 

rectangular region called the computational domain. With the transformation, the 

CFD calculations can be performed entirely on the fixed rectangular space regard

less of the geometry or motion of the boundaries. Thus, numerical grid generation 

is the process of establishing an ordered and strategic distribution of grid points in 

a physical coordinate system corresponding to a uniform distributions of grid points 

in a rectangular computational coordinate system. Details on the grid generation 

procedures are described in Chap. 2. Surveys of the methods including textbooks 

on grid generation procedure can also be found in [26-31],

It is obvious that a grid which maps the entire physical domain onto a 

“slab” in the computational domain is very desirable. This type of grid, called the 

single grid or single-block grid, offers a considerable simplicity to the CFD calcula

tion. However, for flow about complex configurations, the generation of a smooth 

and efficient single grid is very difficult. In some cases, especially those of config

urations with several components, it may not be possible to obtain this type of 

grid at all. An alternative approach to this problem is to use several grids at once, 

each in a different coordinate system. The entire physical domain is, thus, subdi

vided into several subdomains. The generation of grids in different subdomain is 

generally independent from each other. This approach called the “multiple grids” 

or “zonal grid” approach can be categorized into two groups: grid patching and 

grid overlapping. For the patched grid approach, the subdomain grids are joined or 

patched together along common boundaries. The subdomain grids are overlapped 

rather than joined in the grid overlapping approach. The multiple grids approach is
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becoming more common as the complexity of the configuration being considered in 

CFD is increased. However, the approach introduces new boundaries which are not 

the physical boundaries. Even though, the solution procedure is done separately in 

each subdomain, certain boundary conditions are needed at these fictitious bound

aries. The difficulty of the approach, thus, lies in the treatment of these boundary 

conditions. Since these boundaries are either joined or overlapped with other sub- 

domains, some information needs to be transferred between subdomains so that 

the computation of the entire physical domain is consistent. The interpolation of 

flow variables between subdomains seems to be the simplest choice. However, this 

procedure does not result in a computational scheme which is conservative. The 

conservation of a computational scheme is important when the flow being consid

ered contains discontinuities such as shock waves. A computational scheme is said 

to be conservative when it maintains the discretized version of the conservation law 

(conservation of mass, momentum and energy) exactly (except for round-off errors) 

for any grid size over an arbitrary finite region containing any number of grid points. 

For the multiple grids calculation the information needs to be transferred conserva

tively between subdomain grids. It has been suggested that fluxes rather than flow 

variables be transferred between subdomain grids, so that the resulting computa

tional scheme is conservative. It can be shown that the conservation is easier to 

enforce in the grid patching approach than in the grid overlapping approach. This 

study follows the grid patching approach along with the conservative treatment at 

the interfaces, i.e., places where two or more subdomain grids are joined together. 

The procedure in doing so is discussed in detail in Sec. 2.5.

The viscous Navier-Stokes equations are the ultimate equations to be 

solved in most CFD applications. However, the Navier-Stokes flow simulation are 

presently still in the stage of research. A success in the Navier-Stokes flow calcula

tions relies not only on the numerical methods but also on the turbulent modeling.
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Since this study focuses on the concept of multiple grids approach, the inviscid Eu

ler equations are sufficient to be used as the model equations. The Euler equations 

result from dropping the viscous terms from the Navier-Stokes equations. Thus, the 

problems of computer storage and computational time including the uncertainties 

of turbulent modeling that arise in the Navier-Stokes calculation can be eliminated. 

Solutions of the Euler equations, though inviscid, describe the correct phenomena 

for many flow problems. The integral form of the Euler equations is applied to 

this study. The integral form may be important for the correct capturing of dis

continuities in the flow. The discussion on the Euler equations is given in Sec. 

3.1. The Euler equations are discretized by means of the centered finite-volume 

method. The finite-volume formulation is obtained by applying the integral form of 

the Euler equations to each grid cell of a given grid. The finite-volume method is 

cell-oriented rather than grid points oriented. The main advantage of the method 

is that it can be applied to the general geometry without the need for a global 

coordinate transformation and it can tolerate the grid singularities since the flow 

equations are balanced only within the cells of the grid. The steady state solution 

is obtained by means of the time-dependent technique. The time derivative terms 

axe reintroduced to the Euler equations and the steady state solutions are reached 

by explicitly marching the solution procedure in time from the initially guessed 

solutions. The three-stage Runge-Kutta integration scheme is used to serve this 

purpose. Since the transient solutions are of no concern, the local time step scaling 

is applied to accelerate the solutions to the steady-state. The linear and non-linear 

artificial dissipation terms are also added to the discrete Euler equations. The pur

pose of adding these terms is to impose an entropy condition which is required 

to eliminate the non-physical shocks. Furthermore, the addition of the artificial 

dissipation terms helps elim inating  the oscillation of solutions which prevents the 

solutions from reaching the steady state. Boundary conditions are of four types:
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solid wall conditions, inflow/outflow conditions, interface conditions and coordinate 

cuts. The finite-volume discretization along with numerical time integration and 

boundary conditions is described in detail in Chap. 3. The concept of local time 

step scaling and artificial dissipation are also addressed. The application of the 

approach to the flow over a sphere at a low Mach number and to the flow over 

a slender body at the supersonic Mach number are discussed in Sec. 4.1. Sec

tion 4.2 describes the application of the multiple grids approach to the flow over 

a Butler-Wing configuration. Solutions for supersonic flow through a rectangular 

duct with 10° ramps are presented in Sec. 4.3. In Sec. 4.4, the application to the 

internal/external flow about a fighter aircraft configuration are described; solutions 

are shown at a supersonic speed and various angles of attack.
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Chapter 2

GRID GENERATION

2.1 Introduction

Grid generation is an important procedure in CFD calculation. The word 

“grid” is generally used as a label for a complete set of grid points. Even though 

it is felt that grid generation and solution procedure are separate and distinct op

erations, in practice, these two operations can never be totally independent. This 

is because the accuracy of solutions depends upon grids on which the partial dif

ferential equations are solved. In turn, the logistic structure of the data (such as 

grid spacing), the location of outer boundaries and the nature of coordinate cuts 

are influenced by the nature of solutions. Perhaps the greatest problem of grid gen

erations is not how to construct grids, rather, the problem is defining in sufficient 

detail what qualities and properties in a grid are desirable for a particular numerical 

method.

The representation of boundaries is best accomplished when the boundary 

is such that it is coincident with some coordinate line, for then the boundary can 

be made to pass through the points of a grid constructed on the coordinate lines. 

Different expressions at, and adjacent to, the boundary may then be applied us

ing only grid points (the intersection of coordinate lines) without the need for any 

interpolation between points of the grid. The avoidance of interpolation is particu

larly important for boundaries with strong curvature or slope discontinuities, both 

of which are common in physical applications. Likewise, interpolation between grid

8
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points not coincident with the boundaries is particularly inaccurate with differen

tial systems that produce large gradients in the vicinity of the boundaries, and the 

character of the solution may be significantly altered in such cases. In most partial 

differential equation systems the boundary conditions are the dominant influence 

on the character of the solution, and the use of grid points not coincident with the 

boundaries, thus, places the most inaccurate difference representation in precisely 

the region of greatest sensitivity. The generation of a curvilinear coordinate system 

with coordinate lines coincident with all boundaries, so-called “boundary-fitted” co

ordinate system (Fig. 2.1), is thus an essential part of a general numerical solution 

of a partial differential equation system.

Any partied differential equation system can be solved on the boundary- 

fitted coordinate system by transforming the set of partial differential equations of 

interest, and associated boundary conditions, to the curvilinear system. Since the 

boundary-fitted coordinate system has coordinate lines coincident with the surface 

contours of all bodies presented, all boundary conditions can be expressed at grid 

points. Normal derivatives on the bodies can be represented using only finite dif

ference between grid points on coordinate lines, without need of any interpolation. 

The transformed equations can then be approximated using finite difference ex

pressions and solved numerically in the transformed plane. Thus, regardless of the 

shape of the physical boundaries, and regardless of the spacing of the finite grid in 

physical field, all computations can be done on a rectangular field with a square grid 

with no interpolation required on the boundaries. Moreover, the physical bound

aries may even be time dependent without affecting the grid in the transformed 

region. Another major advantage of using boundary-fitted coordinates is that the 

computer software generated to approximate the solution of a given set of partial 

differential equation is completely independent of the physical geometry of the prob

lem. Numerical grid generation is thus the process of establishing an ordered and
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Fig. 2.1 Boundary-fitted coordinate system.
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strategic distribution of grid points in a physical coordinate system corresponding 

to a uniform distribution of grid points in a rectangular computational coordinate 

system. Some of the basic ideas of the use of boundary-fitted curvilinear coordinate 

systems in the numerical solution of partial differential equations are discussed in 

[32]. Examples of physical and computational domains are illustrated in Fig. 2.2.

Two primary categories for arbitrary coordinate generation have been de

veloped. These are algebraic methods and partial differential equation methods. 

The algebraic procedures include simple normalization of boundary curves, trans- 

finite interpolation from boundary surfaces, the use of intermediate interpolating 

surfaces, and various other techniques. The partial differential equation may be el

liptic, parabolic, or hyperbolic. Included in elliptic systems are both the conformal, 

and quasiconformal mappings, the former being orthogonal. Orthogonal systems 

do not have to be conformal, and may be generated from hyperbolic systems as well 

as from elliptic systems.

Algebraic transformations are attractive in that no numerical solution of a 

partial differential equation is involved. Thus, the primary advantages of algebraic 

methods are speed and directness. The major disadvantage of these methods is the 

lack of smoothness that results when an elliptic partial differential system is used to 

generate the grid and truncation errors may be significant in regions where the grid 

is not smooth [33]. For instance, the results of Shang [34] show kinks in the solution 

corresponding to regions of rapid grid spacing change radiating outward from the 

boundary. It should be noted that local controls in the multisurface transformation 

[35] can be used to prevent nonsmooth boundary behavior (e.g., slope disconti

nuities) from propagating inward. Transfinite interpolation described by Gordon 

and Hall [36] is a highly generalized algebraic grid generation method. Transfinite 

interpolation is applied through a series of univariate interpolations where blend

ing functions and the associated parameters (point position and/or derivatives)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12

z

(a) Physical domain

/

(b) Computational domain

Fig. 2.2 Physical versus Computational domain.
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determine a grid. For aerodynamic applications, Eriksson [37] and Rizzi and Eriks

son [38] have adopted the original transfinite interpolation formulation to use only 

exterior boundary descriptions and derivatives at certain boundaries. They have 

also incorporated exponentials into the blending functions to concentrate the grid 

near an exterior boundary. The multisurface method [31,35] provides formulas for 

grid definition based on grid descriptions of two boundary surfaces and an arbitrary 

number of intermediate control surfaces. Choosing interpolants (defined similar to 

blending functions) and the placement of the control surfaces determines grid shape 

and spacing. The multisurface method has been used by Eiseman in numerous ap

plications [39,40] but most notably for computing grids about turbine cascades. The 

two-boundary technique [41-43] is based on the description of two exterior bound

aries and the application of either linear or hermite cubic polynomial interpolation 

to compute the interior grid. For a cubic interpolation, the surface derivatives com

bined with magnitude coefficients control the orthogonality of the grid at and near 

the boundaries.

For the partial differential equation methods, a set of partial differential 

equations must be solved to obtain a coordinate system. The partial differential 

equations may be elliptic, hyperbolic or parabolic. The methods based on elliptic 

partial differential equations are more general (since all boundaries can be speci

fied), and more fully developed. Typically, a pair of Laplace equations is solved 

subject to the Cauchy-Riemann boundary conditions. The earliest successful devel

opment was formally reported by Winslow [44], who started with a Laplace system 

subjected to Dirichlet boundary conditions. Thompson, et al. [45] added periodic 

boundary condition to produce branch cuts for various topological configurations 

and suggested that control over the grid could be accomplished by altering the 

original Laplace system. The alteration is to consider a pair of Poisson equations 

by including specifications for the right-hand sides. These are called forcing terms

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

and are general functions of the curvilinear variables. The particular form to be 

used was established later by Thompson et al. [46]. Mastin and Thompson [47] 

have been able to show that the two-dimensional system without the forcing term 

analytically defined nonsingular transformation. Conformal mapping methods can 

also be included in the elliptic methods. Mehta and Lavan [48] have given a so

lution about a modified Joukowski airfoil accomplished by generating a coordinate 

system with a conformal Joukowski Transformation and solving the Navier-Stokes 

equations on the system. More examples of conformal mapping methods are given 

by Sampath [49], Wu et al.[50], and Napolitano et al. [51]. When only one physical 

boundary is specified, hyperbolic partial differential equations may be used to ob

tain a grid by spatial marching from the given boundary. The remaining boundaries 

are determined by the solution and are geometrically unimportant in cases such as 

the external flow about a single object. A fundamental development of the method 

has been given by Starius [52], and one which is well suited to body concavity has 

been presented by Stager and Sorenson [53]. The parabolic system can be applied 

to generate the grid between the two boundaries of a doubly-connected region with 

each of these boundaries specified [54-56]. The drawbacks of the hyperbolic scheme 

are: (1) the outer boundary can not be specified, (2) the scheme tends to propagate 

singularities of the boundary condition into the flow domain, and (3) the solution 

may become unstable unless an artificial viscosity term is adequately added to the 

equations. On the other hand, the major drawback of the parabolic scheme is that 

maintaining orthogonality of grid needs much effort. Nakamura and Suzuki [57] 

have combined these two schemes into a single scheme that takes advantages of the 

two but eliminates the drawbacks of each. They have illustrated the used of the 

scheme by generating grids around an airfoil, an automobile model, and buildings. 

Both hyperbolic and parabolic methods have the advantage of being generally faster 

than elliptic methods, but are applicable only to certain configurations.
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It has been shown that the partial differential equation approach produces 

the smoothest grids for general boundary point distributions while the algebraic 

approach is the fastest procedure. Regardless of which approach is taken, creation of 

a computational grid requires (1) defining an accurate mathematical description of 

all solid surfaces in the computational domain and (2) generating an “appropriate” 

grid around these surfaces according to some criterion, usually with a specified point 

distribution. Graphic facility is very useful when three dimensions are involved. An 

important feature is the ability to rotate and translate grid surfaces in real time for 

inspection.

Generally, the generation of the surface grid is a separate procedure. For 

simple configurations, such as those with well defined mathematical description, this 

procedure can be combined with the generation of grid points interior to the domain. 

For complex configurations, however, it is very difficult to do so. This is because 

the description of such a configuration is provided usually as a set of data points. 

It may not be possible to describe them by any mathematical formulation. Also, 

coordinate points on the configuration are, in general, not coincident with these data 

points. Moreover, the number of coordinate points are normally different from that 

of the given data points. These coordinate points must, somehow, be generated, 

in conjunction with a given data set, in such a way that they provide the correct 

description of the configuration. One way of doing this is to generate a parametric 

surface according to a mathematical description and, then, project it on to the 

surface defined by the given data point [58]. Another method is to use a bicubic 

spline procedure [59]. The procedure has a patch/plane intersection capability that 

makes it possible to “slice” any curved surface and find intersections between various 

independently defined surfaces. In this study, the method described in [59] is used 

to construct the surface grid of a fighter aircraft configuration (Sec. 4.4). Once a 

satisfactory surface grid is defined, the transfinite interpolation is used to extend
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this grid out into the flowfield. Some details of the transfinite interpolation are 

given in the next section.

2.2 Transfinite Interpolation

The idea of using interpolation as a means of constructing general curvi

linear coordinate systems stems from the fact that in most cases, the coordinates 

or grid points are known on several or on all of the boundaries of the computa

tional domain and the problem consists of extending this grid into the interior of 

the domain. Interpolation from the boundaries into the interior of the region can be 

accomplished by the so-called transfinite interpolation concept (sometimes referred 

to as the blending function method). Transfinite interpolation is a highly general

ized algebraic grid generation method. Transfinite interpolation is applied through 

a series of univariate interpolations where blending functions and the associated 

parameters (point position and/or derivatives) determine a grid. The concept was 

originally developed by Coons [60] and subsequently extended by Gordon [61]. One 

of the earliest 2D grid generation applications using transfinite interpolation is de

scribed by Gordon and Hall [36]. A few examples of 3D applications are provided 

in the works of Gerhard [62], Anderson and Spradley [63], and Spradley et al. [64]. 

In these applications, the transfinite interpolation in its simplest form is used, i.e. 

with no control of the normal derivatives of the grid coordinates at the boundaries. 

Eriksson [65] and Eriksson and Rizzi [66] have constructed a scheme which allows 

for the specification of any number of normal derivatives of the grid coordinates 

on the boundaries. The precise control of the resulting coordinate system or grid 

has made it possible to generate grids of advanced type that are both smooth and 

efficient in terms of resolution for a given number of grid points.

Apart from providing a good grid control, the transfinite interpolation con

cept offers speed and simplicity when implemented on computers. The speed factor
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is very important for 3D applications because the generation of a desirable grid for 

a given geometry is usually a process involving a series of grid generation runs with 

visual checks and adjustments in between. This fact is not always appreciated when 

evaluating the cost of grid generation. Naturally, a good graphics software package 

is an integral part of any 3D grid generation system.

The theory of transfinite interpolation is a very general concept of mulit- 

variate interpolation and is outlined here briefly. Let f (u ,v ,w )  =  [z(u, t;, tu), 

y(u,v,w),  z(u,v,w)] denote a vector-valued function of three parameters u,v,w  

defined on the region Ui < u < up,t>i < v < vq,Wi < w < wr. This function is 

known only on certain planes in the region, Fig. 2.3,

f ( u k,v,w) = ak{v,w) ; fc =  l,2 ,...,p

f ( u , v k,w) = bk(u,w) ; k = l ,2,. . .,q 

/(« , v, wk) = ck{u,v) ; k =  1, 2,..., r 

A set of univariate blending functions

<**(«) ; k = l , 2 , . . . , p

/?jt(v) ; k = l , 2 , . . . , q

7t(t«) ; k =  1, 2, ...,r

which satisfy the conditions

a t (u,) =  5U ; = 6U ;

where

f>u = 0 ! 6kl = 1 ; k = l

is needed to interpolate between these given planes.
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Fig. 2.3 A computational domain where /  is known on certain planes.
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The transfinite interpolation procedure then gives the interpolated func

tion f(u ,v ,w)  by the recursive algorithm

f i ( u , v , w )  =  £ a t ( u ) a k(v,w)
*=i

-  -  q -  
f 2 [v,v,w) =  A(u,v,tt/) +  £ & ( « )  • [bk{ti,w) -  f i{u ,vk,w)}

k=l
r

f {u ,v ,w ) =  f i[u,v,w)  +  • [c*(u,v) -  /a(u,v,u;*)] (2.1)
k= 1

The function /  now defines a transformation from the region u2 <  u < 

up,Vi < v < vq,Wi < w < wr in ri,v,w space to some arbitrarily shaped region 

in the x, y, z  space. It can be verified that if the specification of /  on the planes 

u =  ui,. . . ,up;v = vi,.. . ,vq ; and w =  u>i,...,wr is continuous at the intersections of 

these planes, the explicit order of the interpolation directions chosen in the three- 

step algorithm does not affect the interpolant.

The interpolation procedure just described can give any degree of control 

if a sufficient number of internal surfaces are specified, but the control is gener

ally poor if no internal surface is defined at all. In order to improve the control 

while maintaining the minimum input geometry data, a generalized transfinite in- 

terpolation procedure which uses derivatives of the function /  in the out-of-surface 

direction, in addition to the function itself, can be defined. The effect of specifying 

out-of-surface derivatives of f  (Fig. 2.4) is to introduce a direct control of the essen

tial properties of the mapping function in the vicinity of the surface. The specified 

data are written as

9 -/(« * , v,w) = 4 n) [v,w) ; ...du tk

- ^ f ( u , v k,w) = Pc]{u,w) ; JUo’,1,2....Qk

dw
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Fig. 2.4 An out-of-surface derivative of / .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

which is simply the specification of /  and a finite number of out-of-surface deriva- 

tives of /  on the outer surfaces of the region tti <  u <  uj,vi <  v <  t>2,u>i <  w < twj 

in u, v,w  space (Fig. 2.5). To interpolate /  into the interior of this parametric box, 

a  new set of univariate blending functions is defined as

4"V) » * = 1 , 2  n  =  1,2, ...,Pk

4 n)(w) 5 * =  1,2 n =  1, 2, . . . ,9 k

Tf*w)(w) i * =  1,2 n =  l , 2,...,r t

which have to satisfy the conditions

d 4 % )  =  Su Smn
du

am4 n)H  = M 1dv
dITO

dwm

The generalized transfinite interpolation algorithm is then written as

2 P i

A(u,u,u;) = X! £  4',)(«)4")(u»ti;)
Jt=l n=0

h{u,v,w) = fi(u,v,w) + X) Z )4 n)(u) •
fc=l n=0

/(« , 0, w) = f 2(u, v, w) +  X! E  4 n) H  • [4 n)(uiu) -  v> w*)l (2-2)
fc=l n= 0  OW

The function /  now defines a transformation from the region Ui < u < 

«2,vi < v < V2 ,wi < w < u/2 in u, v, w space to some arbitrarily shaped region of 

x, y, z  space. The algorithm given by Eq.(2.2) is also referred to as the “osculatory” 

transfinite interpolation scheme.

Generally speaking, the method of transfinite interpolation, is a very sim

ple and straight forward concept that offers virtually unlimited possibilities; but for 

any particular application, it is necessary to supply a certain amount of geometric
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Fig. 2.5 A computational domain where are specified on the outer surface.
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data to obtain a  certain degree of control of the transformation. It is up to the user 

to balance the requirements of the minimum input geometric data and maximum 

control.

2.3 Mapping Type and Singularities

It is clear from previous sections that the first stage of a grid generation 

procedure is the specification of grid coordinate data on the boundaries. Thus, the 

correspondence between the boundaries in the physical domain and the computa

tional domain has to be made clear. It is, then, necessary to determine the overall 

structure of the mapping between these domains. For a given geometry, there are 

generally several possible mapping types with different characteristics in terms of 

efficiency, coordinate cuts, singularities, etc. For example, there are at least six 

natural combination of mapping types for the exterior region of a typical airfoil 

(Fig. 2.6). All of these alternative mapping types give boundary-fitted coordinates 

but varies markedly in terms of grid efficiency, i.e. the resolution per grid point. 

It has been shown that the mapping type designated 0 -0  is the most efficient for 

such a configuration [67]. The notation 0 -0  is to be interpreted as “type O in 

the chordwise direction, type 0  in the spanwise direction” , using the 2D notation 

shown in Fig. 2.6. Figure 2.7 illustrates the 0 -0  mapping type of a wing-fuselage 

configuration. As shown in the figure, the entire wing is mapped to the bottom of 

the computational box, the entire outer boundary is mapped to the top and the 

combined plane of symmetry and fuselage is mapped to one of the side surfaces. 

The remaining three surfaces of the computational box constitute coordinate cuts, 

i.e. they correspond to interior surfaces in the physical domain across which the 

various flow properties are continuous.

Figure 2.8 shows that the 0 -0  mapping type gives rise to two singular 

lines extending from the two tip comers of the wing to the outer boundary. A
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Fig. 2.6 Mapping types for a 3D airfoil.
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Fig. 2.7 An 0 -0  mapping for a wing-fuselage configuration.
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Outer boundary
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Fig. 2.8 Singularity lines for the 0 -0  mapping.
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grid singularity is defined as a place in the physical domain where the Jacobian of 

transformation is zero or unbounded (depend upon how the Jacobian is defined). 

The grid singularities are undesirable but very often unavoidable and any practical 

finite scheme must be able to cope with them. If the physical information near a 

singularity is not of primary interest, the finite difference solutions can be obtained 

in this region provided the singular points themselves are excluded. Another prac

tical approach to dealing with singularities is to leave the boundary surfaces open 

(Fig. 2.9). However, this requires that assumptions be made about the physics that 

must be included in the solution procedure. This study follows the so-called finite- 

volume method, which is a conservative cell-oriented method, and can be shown to 

be stable regardless of the type of singularity involved. The discussion on the finite 

volume approach is given in Sec. 3.2.

Since singularities always associate with the mapping types, and some 

types of singularities are more severe than the others, it is important to seek the 

best type of mapping for a given geometry, both from the viewpoint of efficiency 

and accuracy. For example, the C-H mapping has been the most popular type for 

flow computations around wings, even though this mapping has the more severe 

kind of singular line along the wing tip. Also, it has been shown [67] that this type 

of mapping is not as efficient as other types of mapping (for example 0-0 type). 

The reason that the C-H mapping is popular is because it can be obtained by a 

simple “stacking” of 2D chordwise grids (C-types) in the spanwise direction, i.e. by 

a  “quasi-3D” method. From the discussion in this section, it may seem that the 

price to be paid for using such a simple grid generation technique is high.

2.4 Multiple Grids

The discussion so far have been limited to the topic of a single grid, 

i.e., the grid that maps the physical domain onto a “slab” in the computational
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Fig. 2.9 The boundary surface is opened to avoid dealing with singularities.
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domain. This type of mapping is very desirable due to its simplicity. However, 

for very complicated geometries it can be difficult to generate a single grid that is 

both reasonably smooth and efficient. An example of such a complex region is the 

exterior of a complete airplane with several lifting surfaces. Each component of an 

aircraft, in general, requires a grid system that is usually incompatible with the grid 

systems of the other components. Thus, the generation of a single boundary-fitted 

grid for the entire configuration is a difficult task, if it is possible at all. In such 

a global grid, control of grid point distribution, skewness and clustering will be 

difficult to achieve. For example, a grid which provides sufficient resolution of grid 

points in a region may result in an excessive number of grid points in other regions. 

Convergence of the solutions may not be achieved if the number of grid points is 

excessive. To simplify this problem, it is becoming more common to use several 

grids at once, each in a different coordinate system [68]. An example of this pro

cedure is illustrated in Fig. 2.10. This approach, called “multiple grids” or “zonal 

grids” approach (the terms “zone” or “block” is also used interchangeably), falls 

into two catagories: grid patching and grid overlapping (Fig.2.11). The approach 

subdivides a complicated domain into several subdomains which can accommodate 

easily generated grids. For the patched grid approach, the global grid is formed by 

patching together all the individual grids. The computed grid lines in adjacent grids 

may be made to align at the grid interface with complete continuity [69,70], or with 

continuous lines slope [71], or discontinuity in slope [72], or perhaps not align each 

other at all [73]. Rubbert and Lee [72] combine the subdomain grids in such a man

ner that the resultant global grid is continuous across patch boundaries. However, 

grid irregularities frequently occur at the comers of the subdomain and at surface 

perimeter lines. Such irregularities impose constraints upon the choice of the nu

merical algorithm used for solutions of the flow equations. Lasinski et al. [74] have 

demonstrated a patched grid technique for solution of the thin layer Navier-Stokes
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Fig. 2.10 Zoning of multiple-connected region.
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(a) Grid patching

(b) Grid overlapping

Fig. 2.11 Grid patching versus grid overlapping.
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equation. They solve the flow equations on each grid separately. The solutions are 

coupled by the transfer of boundary data at the coincident boundary points between 

grids. References 75-78 also illustrate the use of patched grid approach. The grid 

overlapping approach does not need common boundary between grids, but rather, 

the various subdomain grids are only required to overlap to provide communication 

among grids for flow solvers. The development and analysis of solution procedures 

on grid overlapping approach have been studied by Starius [79,80], Kreiss [81], and 

Mastin and McConnaughey [82]. The practical application of overlapping grids to 

the solution of problems in computational fluid dynamics has been demonstrated 

by Atta [68], Thompson [83], Steger and Buning [84], and Benek et al. [85]. Ste- 

ger et al. [86,87] have applied the grid overlapping technique to an airfoil/flap in 

incompressible flow [86] and in subsonic compressible flow [87]. Atta and Vadyak 

[88] have obtained a potential solution for a wing/nacelle geometry. These studies 

have demonstrated that the technique can be applied to subsonic flows. However, 

for the transonic flight regime Benek et al. [87] have found that their single trial 

solution resulted in an ill-defined shock wave at the grid boundaries and exhibited 

poor convergence. The studies by Dougherty [89] indicate that for a different grid 

geometry and algorithm, these problems may not be too severe. Early efforts to 

predict multiple-component configurations are based on the transonic small distur

bance formulation [91-92]. Efforts to predict the flow field about a complete aircraft 

configuration using a single grid approach have been made by Yu [93]. However, the 

requirement of exact boundary-fitted grids along certain boundary lines is relaxed. 

Thus, the exact implementation of boundary conditions is not obtained.

The multiple grids approach has a number of advantages. First, the diffi

culty in generating three-dimensional grids for different types of complex configura

tions can be eliminated. Second, the approach allows different types of grid topolo

gies to be implemented in each subdomain in order for grids to be mesh-efficient,
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i.e., more grid points near a solid body or shock and less grid points elsewhere. 

Since it is well known that skewness, rapid volume variation, and large cell aspect 

ratios degrade the convergence rate of an algorithm, it seems plausible that the 

enhanced grid point control afforded by the multiple grids approach will also result 

in an improved algorithm performance. Third, it may also be computationally effi

cient to solve different equation sets in the various subdomain grids, such as viscous 

Navier-Stokes equations near the body and inviscid potential equation in the outer 

field. Chanderjian and Steger [94] have demonstrated this idea by solving the Euler 

equations in one zone and the dual potential equations in the other for the transonic 

flow over a lifting airfoil. Finally, computer core memory required by the approach 

is less them that required if a single grid is used. Thus, the memory limitation on a 

particular computer can be overcome. This advantage may not be so great in the 

future, with the development of the supercomputers.

A common difficulty with the multiple grids approach is the construc

tion of a proper scheme for information exchange among the different subdomain 

grids. The information exchange has to be not only consistent with the govern

ing equations, but should also lead to a stable efficient scheme. These “interface 

conditions” are required to guarantee the convergence to a weak solution of the gov

erning equations if the algorithm converges. The multiple grids approach results in 

new boundaries within each subdomain grid, i.e., at the interfaces of various grids. 

Since these boundaries are not the physical boundaries, it is important to  treat grid 

points on the interfaces with care in order to transfer information from one grid to 

another accurately. The most obvious procedure is to interpolate the solutions in 

one grid to provide necessary boundary data for another. Since the classical inter

polation formulas were not derived with conservation properties in mind, their use 

in finite-difference approximation on multiple grids would result in the loss of an 

exact conservation property. Eberhardt and Banganoff [95] have shown that shock
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waves crossing overlapped grid boundaries can become ill defined and convergence is 

generally degraded when the interpolation procedure is used. They have shown also 

that the characteristic approach is superior but suggested that the use of conser

vative properties would be most desirable. For the existence of solutions to certain 

system of partial differential equations, some conservation laws must be satisfied 

accurately. The nonlinear nature of the equations of motion permits solutions with 

discontinuities such as shock and slip surfaces. In order that such discontinuities 

assume the right strength and physical location, it is imperative that the scheme 

used for the calculation be conservative [96]. In a multiple grid calculation, it is 

important that the interfaces are also treated in a conservative manner so that the 

discontinuities can move freely across the interfaces [97]. The need for conservative 

grid interfaces is also illustrated in [87].

The question of conservation when switching between two different grids 

or numerical schemes has been considered by several authors. Warming and Beam 

[98] have derived transition operators for switching conservatively between M c 

Cormack’s method and a second order upwind scheme. Hessenius and Pulliam [99] 

have applied this transition operator approach to derive the so-called zonal inter

face conditions; this however, resulted in a significant loss of accuracy at the zonal 

interfaces. Rai [100] has developed conservative zonal interface conditions for mul

tiple grids which share a common grid line, and has provided accurate calculations 

demonstrating the shock capturing ability of the multiple grids with a discontinuity 

crossing grids. Cambier et al. [101] have analyzed the zonal-boundary problem for 

a system of hyperbolic equations and used the compatibility equations to develop a 

zonal-boundary scheme. Reasonably good results were obtained for transonic chan

nel flow. However, the use of the compatibility equations results in a scheme that 

is not conservative and, hence, unsuitable for problems in which flow discontinuity 

move from one grid to another. Rai et al. [102] have presented results obtained
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metric discontinuous grids; the integration scheme used is the Osher upwind scheme. 

Reference 86 provides the results obtained on overlapping grids in conjunction with 

the stream function approach.

In the patched grid approach, conservation can be easily maintained at 

the patched interfaces. The extra computing time that is required to implement 

the zonal boundary condition is less than what is required for overlapping grids. 

This is because the necessary interpolations, that affect transfer between grids, are 

performed in a reduced number of spatial dimensions for patched grids. A problem 

in three dimensions only requires a two-dimensional interpolation procedure. This 

reduction in the number of dimensions in which the interpolation is performed does 

not occur for overlapping grids. On the other hand, overlapping grids provide more 

flexibility in generating grids because there axe fewer constraints on the choice of 

outer boundaries for the different grids. Other disadvantages of grid overlapping 

approach, beside that of interpolation, are: (i) it is difficult to maintain global 

conservation and (ii) the accuracy and convergence speed of the calculation seems 

to depend on the degree of overlapping of the grids and the relative size of each 

zone, thus introducing a certain amount of undesirable empiricism in the formula

tion. This study follows the grid patching approach in which the interfaces between 

subdomain grids are patched as plane interfaces. It can be shown that global con

servation can be easily maintained for this type of interface. The study follows the 

method for transferring a conserved quantity from one generalized grid to another 

which was first described by Dukowicz [103]. Ramshaw [104] has suggested a pro

cedure for doing so which is similar to the method of Dukowicz, but is simpler and 

more direct. A computer program following the Ramshaw’s procedure has been 

written and tested with various types of grids and variables. The program has 

been working well for simple test cases. The objective of this study is to establish
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whether or not the technique is feasible for applications to realistic aerodynamic 

configurations.

The grid generation procedure of multiple grids does not in principle differ 

from the generation of a single grid. The complete grid is computed by first dividing 

the entire domain into several subdomain grids and then “filling in” one subdomain 

grid after the other by transfinite interpolation. Eriksson [105] has obtained good 

solutions for the inviscid flow around an airplane by applying this concept. There, 

slope continuity (C1 continuity) between subdomain grids is obtained by using os- 

culatory interpolation, i.e., by using derivative information as well as grid point 

locations in the interpolation. The approach used in this study is different from 

that discussed in [105]. Although the surface must be common between two subdo

main grids, there is no restriction on grid slope or density across interfaces. This 

offers a great flexibility to the generation of each subdomain grid. The details on 

the treatment of the conditions at the interface are given in Sec. 3.4.4.

2.5 Brief Discussion on Conservative Rezoning 
Algorithm

A method for transferring a conserved quantity from one generalized mesh 

to another, when the volumetric density of the quantity is assumed to be uniform 

within each grid cell of the original mesh, is described briefly. This method was 

first described in [103]. Reference [104] suggested the procedure in doing so, which 

is similar in spirit but simpler and more direct. A computer program following this 

procedure has been written and is working well for example grids and a wide variety 

of choice of variables. The concept works equally well for any type of grid. However, 

only the arbitrary quadrilateral grid is demonstrated here. This is because it is the 

most common type of grids in practice and is convenient to work with since it has 

the same simple topological and logical structure as a square or rectangular grid.
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The basic concept of the algorithm is simple. Consider Fig. 2.12 where two 

grid surfaces are patched with each other in some fashion. The conserved quantities 

Qo;j of the original grid surface ( Ao{j is the area of each surface mesh) is to be 

transferred to another grid surface in which An{j is the area of each surface grid. 

Qffn is denoted as the transferred quantity in each of these latter surface grid. The 

quantity Q s{j can be computed by

Nno  a Ns o

Qnh = Y  (Qou) . =  Y  (2.3)
n=l "Oil n=1

where A sou is the portion of the area An^  which is contained in the area Aou and 

N so  is the number of the original surface grids contained in 4 v <y. The quantity 

qokt is given by qou =  where the volumetric density of Qou is assumed to 

be constant. From Fig. 2.12, it can be seen that the overlapped areas, Anou are 

polygons p whose sides are segments of both the old grid lines and the new grid 

lines. The number of sides of each type, and total number of sides, will be different 

for different overlapped areas. Each side of a polygon is common to two overlapped 

areas, the one on the left (L) and the one on the right [R], and these overlapped areas 

may be considered to be associated with the side. The objective is to apportion a 

conserved quantity Q, whose volumetric density q is considered uniform within each 

cell of the old grid, into the cells of the new grid. The task now, is to find A so kn 

the number of original surface grids contained in An{., and to associate them with 

the quantities QNij and Qokr The area of the polygon in 2D plane is given by [106]

Ap = I Y £P, {x‘iVz ~  Av l)  (2-4)
L »=i

where the summation is over all the sides of p, and ep is either +1 or -1 according to p 

lies to the left or right, respectively, of side s. The endpoint coordinates (xj,y() and 

(iJ,j/J) are considered to be associated with the side s and not with the particular 

polygon. It would be inefficient and difficult to automate in a computer and naively
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Fig. 2.12 Patched surfaces.
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compute the quantities QjftJ directly at a time. This is because the number of 

sides composing each polygon varies generally. Moreover the parameter Njfo for 

different Qff.. are different. Instead, Ramshaw [104] suggests to evaluate the same 

contributions by sweeping over the sides or segments s. The side or segment s is any 

side or segment of the polygon (overlapped area). The coordinate of the two end 

points of side s are denoted by (xj,yj) and (xj,y2). This can be done by sweeping 

over grid lines since the segment s is a part of either old or new grid lines.

If the side s is a segment of the old grid then the quantity Q in the new 

grid cell containing side s is to be incremented by an amount

A? =  ^ {qL -  Qr ) {x[y'2 -  x'2y[) (2.5)

If the side s is a segment of the new grid then the contribution to cell on the left is

A ? =  ^qo {x[y‘2 -  x‘2y[) (2.6)

while the contribution to the cell on its right is just — where qo is the volumetric 

density of the old grid cell in which side s lies.

Adding A f and for each of new grid cell yields the quantity Q con

tained in each of the new grid cell. The details on the implementation of the 

algorithm including the verification of these formulas are given in Appendix A.

2.6 Application to The Hyperbolic Equations

The first step toward the application of the technique to the CFD calcu

lation is to apply the technique to solve some partial differential equations. The 

hyperbolic equations have been chosen not only because of their simplicity but also 

because of their hyperbolic nature which is similar to the equations of motion in 

supersonic flow. The hyperbolic equations can be written in two dimensional space 

as

qt +  aqx +  bqv =  0 (2.7)
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and in three dimensional space as

qt + aqx +  bqy + cqz = 0 (2.8)

where a, b and c have been treated as Constances. If the initial conditions are given 

as q =  f(x ,y )  and q =  f[x ,y ,z ) ,  the exact solutions can be found as

q(x,y,t) = f { x - a t , y - b t )  ; 

q(x,y,z, t)  = f [ x  — at,y — bt,z — ct)

for the two and three dimensional space, respectively. In two dimensional case, the 

equation, along with the appropriate boundary conditions, has been solved on a 

two dimensional grid system which is changed into another grid system at some 

time. The procedure described in the previous section has been used to transfer 

the flux (in this case q itself is the “flux”) from one grid to another. The three 

dimensional equation is more suitable as the model equation of the equations of 

motion. In this case, the entire domain is divided into two subdomains which are 

independent from each other. Equation (2.8) along with the appropriate boundary 

conditions are solved in each subdomain separately. However, some information 

have to be transferred across the interface between the two subdomains in order 

that the entire computation is consistent. Again the technique described previously 

is used to transfer flux (which is aq, bq, or cq depending upon how the interface is 

oriented) across the interface. It should be mentioned that, in both cases, Eqs. (2.7) 

and (2.8) are discretized by mean of the centered finite-volume approach. The three- 

stage Runge-Kutta integration scheme is also used to integrate both equations in 

time. Results have been compared with the solutions from single grid calculations. 

Satisfactory results have been obtained. The details of this study can be found in 

[107|.
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Chapter 3

BASIC FORMULATION

The ultimate equations to be solved in most CFD studies axe the viscous 

Navier-Stokes equations. However, since solving these equations on modem day 

computers is still quite time consuming, they are often reduced to a simpler form. 

Solutions to these simpler equations, namely, stream function formulation [108], full 

potential equations [109-112], and Euler equations [113-118], have been obtained. 

The stream function formulation retains the generality contained in the full Euler 

equations. However, it is limited to two-dimensional or axisymmetric flows, and is 

made difficult by the fact that the density in the transonic regime is a double-valued 

function of the unknown stream function. The full potential equation has been used 

as a standard model and has proved to be a helpful tool in the design of aircraft. 

As with the stream function, the full potential equation can be solved by efficient 

relaxation techniques, and requires storage of only a single variable. Furthermore, 

it permits the solution of three-dimensional as well as two-dimensional flows. The 

primary disadvantages are the limitation to isentropic and irrotational flows. The 

isentropic assumption implies that shock waves captured in the transonic regime 

must be limited in Mach number to a value less than 1.3. The irrotationality 

conditions requires a uniform incoming flow in two-dimensional situations, and a 

free vortex condition in three-dimensional flows. The full potential equation will 

admit the existence of discontinuities in the flow field. However, these discontinuities 

we isentropic shocks, which do not represent true physical shock waves because they

41
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do not satisfy the Rankine-Hugoniot conditions. These shocks will be approximately 

of the proper strength and will exist in the proper portion in the flow held if the 

Mach number of the flow approaching the shock is less than or equal to 1.3.

In this study, the Euler equations are used as the model equations. Meth

ods based on the Euler model are useful tools in CFD since they offer more realism 

than potential methods and yet are simpler and more economical than methods 

based on the Navier-Stokes equations. A number of efficient and reliable numerical 

schemes have been developed for the Euler equations [113-118]. Even though vis

cous terms are neglected, certain solutions of the Euler equations agree well with the 

experimental results. Shock waves captured in this model agree with the Rankine- 

Hugoniot relations regardless of their strength. More importantly, the vortex sheets 

and vorticity can also be captured as weak and genuine solutions. The applications 

of numerical methods to solve the Euler equations range from the study of flow field 

around military aircrafts and missiles where shock waves are strong, to more com

plex non-uniform shear flows past wings. The details regarding the Euler equations 

are given in Sec. 3.1.

The solution procedure for the Euler equations used herein is based on a 

center finite-volume scheme with explicit Runge-Kutta time stepping [119]. This 

type of scheme was first used by Jameson et al. [120], but the present scheme differs 

significantly from the original scheme, mainly in the definition of the damping terms 

and the farfield boundary conditions. It has been extensively tested in both two 

and three space dimensions, for three different Euler models (the full equations, 

the constant-stagnation enthalpy model, and the artificial compressibility model for 

incompressible flow) and for both aerodynamics and turbomachinery applications 

[121-124]. The finite-volume scheme is described in Sec 3.2.

In most instances the solution to the first order steady state equations is 

desired. The steady state Euler equations change their character depending upon
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the local Mach number. In a totally supersonic flow some very efficient methods 

exist for their solution. The method of characteristics and a simple marching pro

cedure are two common approaches. In subsonic domain, however, no generally 

accepted method has yet been devised for solving this system. One approach used 

for subsonic or transonic flows is to reintroduce the time derivative terms to the 

equations. The resultant set of equations is everywhere hyperbolic. A steady state 

solution can be obtained by marching in time from some initial guessed flow field 

until an asymptotic steady state is achieved. However, the initial conditions give 

rise to perturbation waves which move through the field as the solution progresses 

in time. The Euler equations have no inherent dissipation and, therefore, these 

waves must either be radiated from open boundaries or absorbed by the addition 

of artificial damping terms. The second and fourth order damping terms are added 

to the Euler equations. The fourth order terms are global and linear whereas the 

pressure-controlled second order terms are non-linear and are only activated around 

shocks. Boundary conditions are mainly of four types: solid wall conditions, inter

face conditions, inflow/outflow (farfield) conditions and coordinate cuts. Sections 

3.3 and 3.4 describe the damping terms and numerical implementation of boundary 

conditions, respectively, in detail. The explicit three-stage Runge-Kutta integration 

scheme is also addressed in section 3.5. Generally, to reach a steady state, solution 

requires a large number of iterations and a long computational time [125]. Since 

only steady state solutions are desired, and true time accuracy is of no concern, the 

concept of local time stepping is used to accelerate the convergence to steady state 

solutions. This concept is introduced in Sec. 3.6.
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3.1 Governing Equations

The Euler equations describing three-dimensional, unsteady and compress' 

ible flows in conservation form can either be written in the differential form

dq dF dG dH

where

F  =

or in the integral form 

d

—  +    h —  +     =  0dt dx dy dz

9 =

P
pu
pv
pw
E

—  f  qdxdydz +  i  (hx - F  + hu -G + hz - H)ds =  0 
dt Jn Jan

(3.1)

pu pv pw
pu2 + p

, G =
puv puw

puv pv2 + p , H  = pvw
puw pvw pw2 + p

u{E + p) v(E + p) w{E +  p)

(3.2)

where

A =  arbitrary finite region.

The perfect gas equation of state is used to define the mean pressure P via the 

internal energy e:

P =  ('7 -  1 )pe

where 1 = ^  = specific heat ratio.

An assumption has been made, in writing Eqs. (3.1) and (3.2), that the fluid is not 

influenced by external body forces. It can be shown that the system of conservation 

laws given by Eqs. (3.1) or (3.2) is hyperbolic [15]. Thus, Eqs.(3.1) or (3.2) can 

be integrated in time in order to achieve a steady state solution (if such a solution 

exists). Equation (3.1) can be obtained by dividing Eq. (3.2) by fi and then
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shrinking it to a point. This leads to the system of the differential conservation 

laws valid at that point if the partial derivatives are continuous there. The integral 

approach may be important for the correct capturing of discontinuities in the flow 

since it formally does not exclude discontinuities from the interior of Cl. This study 

follows the integral approach in which the difference equation are written directly 

from the integral system. Therefore, the method is a cell concept rather than a 

grid-point concept. The discussion on the method is given in Sec. 3.2.

The nonlinear character of the Euler equations generally permits solutions 

with discontinuities (shocks) where the differential Eq. (3.1) is no longer valid. The 

equivalence between Eqs. (3.1) and (3.2) is restored by allowing weak solutions to 

Eq. (3.1). However, both equations can give rise to nonphysical shocks unless an 

entropy condition is added. A “small” amount of artificial viscosity is added to the 

inviscid model for this purpose [96]. This artificial viscosity should also mimic the 

physical viscosity and create a primary vortex for flow past a highly swept wing at 

an angle of attack. Although secondary vortices brought about by viscous effects, 

on the leeward side of the wing are not modeled, their effects on the primary vortices 

are small [126]. The Euler equations admit solutions with distributed vorticity but 

do not in principle contain any mechanism for generating vorticity. Any vorticity in 

the solution must be introduced either by boundary conditions or by shocks. Due to 

the extra entropy condition shocks will lead to an increase of entropy and therefore 

also generate vorticity according to the Crocco’s theorem [127]. If the boundary 

conditions at the inflow boundary are such that vorticity is implied, this vorticity 

will naturally be convected into the domain and eventually be convected out at 

the outflow boundary. Furthermore, a solid boundary with sharp edge can also 

generate vorticity since attached flow around such an edge gives rise to shocks and 

thus also vorticity. In principle, this mechanism would act as am “automatic” Kutta 

condition [128] for the flow around an airfoil with a sharp trailing edge. However,
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some numerical studies reveal that the combination of numerical errors and artificial 

viscosity will then produce vorticity and thus force the flow to separate at the edge. 

Section 3.3 discusses the artificial viscosity model in more detail.

For a finite domain it is necessary to construct suitable boundary condi

tions such that the desired steady state solution is obtained. The theory of absorbing 

conditions [129] is used in its simplest formulation. By linearizing the equations lo

cally along the boundary and computing the characteristic variables along surface 

normals, it is possible to give the physically correct boundary information while 

maintaining good absorption of the transient error waves. The latter property is 

especially important for internal flows where stationary conditions are usually more 

difficult to obtain them for external flows. A more detailed description of these 

absorbing boundary conditions as well as other boundary conditions is given in Sec. 

3.4.3.

3.2 Spatial Finite-Volume Discretization

A method to solve the 3D Euler equations has been developed in [130-132]. 

It is a time-dependent finite-volume approach that uses multistage explicit time 

integration schemes together with centered space differences. Significant features of 

this approach are integral conservation form, important for the correct capturing of 

shock waves and vortex sheets,its amenability to very general geometry without the 

need for a global coordinate transformation, and its toleration of grid singularities 

because the flow equations are balanced only within the cells of the grid [133], and 

not at the nodal point. It has been found that the time-dependent Euler equations 

permit solutions in which the flows separate from the leading edge of a sharp delta 

wing at angle of attack, without the implementation of the Kutta condition. In 

contrast, separated flows are obtained by space marching methods only if the Kutta 

condition is enforced.
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The simplest way to derive the centered finite volume spatial discretization 

is to apply the integral formulation, Eq.(3.2), of the Euler equations to each grid 

cell of a given grid (see Fig. 3.1), i.e.

■37 f  qdxdydz + <£ (hx • F  +  nv • G +  n« • H)ds =  0 (3.3)

where fl.j*  =  volume element (ij,k).

By using the mean-value theorem, Eq.(3.3) is expressed as

V O L ij t— qijt + SiFijk +  SjGijjc + 6jcHij,k =  0 (3.4)

where the undivided central-difference operators, 6j ,6j ,6k , are defined as

SjFiJtk = Fi+i j k -  F^ij t

6 j G iJtk =  G iJ+x ik -  G {j _ x  k

and,

^*+2j.* =  ’ Fi+±j,k +  S I Y i+i j k • G i+± j k

+SIZi+l:,k • Hi+i Jik

= • F{_ i j k + S IY i_±j k • G i_ i jk

+S IZ i - i Jik • H i_ ijk

=  SIXij+xtk • F{j +xik +  SIY ij+i  k ' Gij +± k 

+SIZi,:+ik ' R i j n *

~  "*■ S IY ij_ l  k • G{j_x k

+ S IZi j _ i k • H{j_ x ik
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k)t

Fig. 3.1 A typical volume element.
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• Fijtk+i +  SIY itjik+i  •

+ S I Z i j M i  ' H i j ,k + i

=  S I X i j , k - i  • F i j , k - i  +  S I Y i j , k - \  '  G i j , k - i

+ SIZ ij 'k . i  • H{j k_i .

Since qijtk is located in the center of the cell but the flux function, [^(g)],+i  ,• k,
2

must be expressed at its surface, some form of local interpolation of the neighboring 

discrete values must be devised. The simplest, and perhaps most natural, function 

is

[F{q}]i+ij,k = F M i+i j , k)

[Hflh+iJk = F M i j + j d

A $  \ t j M i  = P f a Z j M l )  M

Expressions similar to Eq.(3.5) are obtained for G and H. The average operator,

H ,  is defined as

+  1>ij,k)

AtJ^.j+1 1 =  f a j + h k  + ij,k)

Vk A j m I = \  WiJMi +  & j,*) • (3-6)

An alternative is to compute the flux function separately for each of the two neigh

boring dependent variables and then average the two results, i.e.

[^(9)l,j,fc+i =  (3.7)

and similar expressions are obtained for G and H.
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If the flux functions were linear, alternatives represented by Eqs.(3.5) and 

(3.7) would be equivalent. For a non-linear flux, only the scheme given by Eq.(3.7) 

provides the correct jump in q across the shock. Thus, in this study, each term in 

Eq.(3.4) is defined as

1 -

Similar expressions are obtained for G and H. Finally, the other terms are expressed 

as

~  2 ^ * +j J - 3't+ S _

•(2r<+ij+i.fc+i “  zi+\d-\,k-\)

(X*+2 J-  j.t+j ,̂+ 3 J+3>^+3^

^»'+2lJ+2,i+3

~  2 ^ Z,+ 3*J- 2>i+2 ~

'(X*+2 J+2’t+2 _  ■C«'+2‘J_2>t ~3^

- ( x.+i j-ik + i “

‘(x*'+ij'+5.t+| —

S IZ >+Uk = ~

^'+jj+3i*+2 «̂'+2ii_2, t - 2^

(^*+2>f~2>*+2 ^»+2>J+2i*+2^

(X«+rj'+'5,i+ i X*+2 J - 2i i - ,) )

2^^*+3 J+2>i - 2 ^‘- 2'J,+ 2'*+2^
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S I Y iJ + iJ t  = ^((2,+ij+l.t-i -  Z i - l j + l M x)

—(x*+£j +£,*~§ — x«'-^J+£,fc+^) 

‘(2'»+̂J+£.k+£ ~ Zi - ± j + * , k - j i ) )

S I Z i J + l k  =  (̂(*i+lj+l1*.A-*i-li#+ljk+i)

^*+j.i+2 |k+2 2’J+3't_ 3 ̂

(̂ *’+2 J+2.t~2 *̂- 2J+2ii+2^

•fo+ij+ifc+i “  X.- i j+ i* - i ) )

^^^ij,k+% ~  2 ( ^ , - 2’j+2>*+3 y*'+-§

X̂*’+3 J+ j i * + 2  Z*-2’i~2'l‘+2̂

~ ( Zi - $ j + $ , k + $  ~  Zi + ^ j - \ , k + $

(^*+5 J+ 2>̂ +2 jJ-j.fc+j))

^^ijtk+2  2 ^ 2<-2,,'+2’fc+a X*’+2 J - 2,*:+^)

*(*i+lj+it+i -  z.-lj-l.k+l)

“ ( M J + i M  -  x.+ ii-ifc+ i)

'(X«'+^J+£,*+^ — X*-^ji-^,k+^)) 

^ ^ Z*jtk+\ 2 ̂ X,_ 2 J+2>*+2 X*+2 J _ 2ik+2 ̂

•(y.+ij+i*+̂  - y.-ii-i,k+i)

(^•_ jJ+ 3i*+£ «̂+2 J_2,fc+â

•(x.+*,y+i*+-§ - x.-i.y-i,k+̂ ))-
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The verification of these formulas including the calculation of a cell volume are 

given in Appendix B.

From these formulas it is clear that the only quantities needed from the 

coordinate transformation are the x , y , z -  coordinates of the grid points. Equation 

(3.4) together with (3.7) leads to a spatial-difference operator completely centered 

in all three coordinate directions, which is second-order-accurate in space if the 

variation in grid size is reasonably smooth.

The finite-volume discretization bears some similarity to both the conven

tional finite-difference and finite element discretizations. Its formulation, like the 

finite-element procedure, begins with the integral equations. Its difference stencil is 

that of a finite-difference scheme, but it differs in that the cell-averaged quantities 

instead of point quantities are differenced, and this gives a significant distinction 

near a grid singularity. In the finite-volume formulation, the flux quantities can be 

defined and remain finite even in the presence of the grid singularity, since Eq.(3.4) 

is balanced in the interior of the cell where no coordinates are used. The usual grid- 

point methods may not yield this feature without special programing considerations. 

Eriksson [133] has concluded that without any modification the finite-volume tech

nique remains stable in the presence of a grid singularity, but its accuracy decreases 

to somewhere between first and second order in space. Without the alteration the 

finite-difference scheme is unstable even if the singularities are straddled. However, 

if a limiting form of the difference scheme is derived at the singularity point and 

implemented in the computer code, stability of the finite difference scheme can be 

restored. An important aspect of the finite-volume approach is that it is well suited 

for the conservative rezoning approach used in this study. This is true because 

fluxes are obtained as the average values at the center of the cell faces, i.e., no 

interpolation from grid points is needed. So, the order of the interpolation scheme 

does not play a role in the interface treatment.
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3.3 Artificial-Viscosity Model

The central difference schemes to solve the Euler equations are inherently 

dispersive and not dissipative. Even for linear problems, central-difference schemes 

admit as a solution so-called sawtooth waves. The non-linear nature of the Euler 

equations gives rise to an aliasing phenomenon whereby these short waves inter

act with each other, vanish, and reappear as distorted long waves. In nonlinear 

transport there is a mechanism by which energy migrates from long wavelength 

motion to progressively shorter and shorter scales until it is removed from the flow 

by molecular viscosity. The Euler equations possess no such viscosity so, in the dis

crete representation, this energy would migrate to the smallest scale resolvable on 

the grid and then returns to large-scale motion via aliasing, which is non-physical 

and would make a steady state unattainable [134]. In general, these defects could be 

dealt by digital filtering techniques. However, further deficiencies arise. The nonlin

ear conservation equations admit non-unique weak solutions when shocks axe to be 

captured. An entropy condition has to be supplied in order to obtain the physically 

correct weak solution [135]. A standard way to invoke an entropy condition is to 

model the true physical process inside a shock by the addition of a small dissipation 

term to the convective differences. This so-called artificial viscosity mimics the real 

physical viscosity not only by involving an entropy condition but also by removing 

the short-wave motion out of the flow.

A number of studies has been conducted on construction of such artificial 

viscosity models, but they vary in detail from method to method. The construction 

of the models is arbitrary except for the classification according to its order of 

magnitude in terms of grid spacing. In this study, the dissipation is introduced 

at the same time as the transport process. Its magnitude lies in or below the 

range of the truncation error of the discrete approximation. The total difference 

operator F(q) therefore consists of (l) the convective part Fc(q) that results from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



54

discretizing the Euler equations in space by the centered finite-volume scheme, and 

(ii) the dissipative part Fo(q). Thus, Eq.(3.4), can be written as

=  Fc {qijk) +  Foiqijk) =  F(qijk) (3.8)

The total discrete dissipative operator Fjjfak)  includes its own artificial 

boundary conditions, and comprises both linear and nonlinear terms according to 

Fo{qijk) = f{Cijk) +  Dqijk, where I? is a constant matrix. The nonlinear expression 

f(Cijk) is designed to provide dissipation at discontinuities, whereas the linear one 

is formulated to suppress spurious solutions (sawtooth waves) and to control the 

migration of energy from large to subgrid scales.

3.3.1 Nonlinear Artificial Viscosity

The nonlinear artificial viscosity in the interior of the domain is expressed

by

fijk =  xMSj(<?i;jfc)<$i] +  MSj(®,'k)6j] +  MSK(gijfc)^k]£'jfc (3.9)

where x is a constant and S j , S j  and Sk are coefficients that depend on the solution 

field through the pressure according to 

Sj =  \6}LPijk\,S j  =  \6}LPijk\, SK = \SlLPijk\, 

where 6},6j and are central difference operators,

Sjfcik = 'Pi+lJ.k ~ 20,-j.i + V’.-lj.t

tijfcjk =  'I’ij+i.k ~  2^ijjk + V’.j-i.k

&KVijk = ViJMl ~ 2Vij,k + V’ij.i-l

and LPijk =  log(p,,t). These coefficients are normalized by their maximum value so 

that their magnitudes lie between 0 and 1. Their purpose is to sense non-smooth

flow and increase the filtering of large gradients so that in effect an entropy condi

tion is enforced. At the boundaries, the coefficients Si ,S j , and Sk  are set to zero.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



55

3.3.2 Linear Artificial Viscosity

At all interior cells, the fourth-order difference operator is used and the 

linear artificial viscosity is expressed as

Dqijt =  (3.10)

where

Sifajk = 0.-2j,k ~ j,k + 60,j,* -  40,+i Jit +  0,+2j.t 

#0<i* =  0»j—S,t -  40fj_l,fc + 60,-j-t -  40iJ+lifc + 0«'j'+2,fc 

Sx̂ ijk = 0,J.fc-2 -  40,j,t-l +  60, j.i -  40,jii+l -I- 0,j,t+2

and 7 is a constant. The linear extrapolation is used at the boundary cells. For 

example, if i= l  denotes grid cells adjacent to a boundary, the linear extrapolation 

gives

<5/01jt =  01 J.t -  202j,i +  03J.4 

<5/02jJfc =  -2 0 1 j.t  +  502j.lt ~  403,;,t +  04j,t •

Similar expression can be written for the other boundaries.

Special consideration is given at the interfaces since they are not physical 

boundaries. The discussion on this topic is postponed until Sec. 3.4.4.

3.4 Boundary Conditions

For the computation of many fluid dynamic problems more difficulties are 

encountered in satisfying the boundary conditions than in balancing the differential 

equations at the interior points of the flow field. This is because on the boundary 

not all of the flow variables are specified by the boundary conditions, and there 

remain more unknowns than equations. While transformation to a boundary-fitted 

coordinate system does reduce to one the number of unspecified boundary vari

ables necessary for differencing the interior field, namely the pressure [136], still a
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method is needed to couple these unknown values of pressure to those in the interior 

in a manner consistent with the boundary conditions. Improper treatment of the 

boundary conditions can lead to serious errors and perhaps instability. In order to 

treat the flow exterior to a domain an artificial outer boundary must be introduced 

to produce a bounded domain. This is an artificial boundary in the sense that the 

actual flow in the physical domain is open, whereas, the computational space must, 

for practical reasons, be closed. The numerical conditions, therefore, should allow 

phenomenon generated in the computational domain to pass through the bound

ary without undergoing significant distortion and without influencing the interior 

solution. Thus, the maximum amount of transient energy can escape from the 

field so that the time-dependent solution converges to the steady state. Engquist 

and Majda [129] have presented a mathematical theory for the practical applica

tion of local absorbing boundary conditions at artificial boundaries. Their “First 

Approximation” is adapted in this study.

Four distinct types of boundary conditions: conditions at solid walls, peri

odic conditions across coordinate cuts, flow into or out of the artificial boundaries, 

and conditions at the interfaces, are discussed below.

3.4.1 Solid Walls

At a solid wall the mass flux is zero but the surface pressure contributes 

to the momentum flux. For this case, Eq.(3.3) is written as

f  [hx - F  +  hy • G + hz • H)ds = f  Sds (3-11)
J v a ll  J v a ll

where
0

S  =
n z ' P  
h y - p  

nx -p 
0
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Equation (3.11) is used to derive the contribution from those cell walls which co

incide with a solid wall. For example, if j  =  \  is denoted for these grid cell walls 

(Fig. 3.2), then Eq. (3.11) is approximated by

where

f  (nx ■ F + hv • G + hz • H)ds =
J va ll

S J X f i  k ' PiXk•» j i* *2 1

S J Z f X f P i X t

S J X f X t  — -((y ,+ i i  — y,_i i  i+ i)•»2» 9 2*2* 2 2*2’ 2

■(zi+x X  k + X  — Z,_I 1 jfc_i.)\ »T 2*2* 2 2*2* 2

i y i+x x M x -  V i-xx ^ x ) )

S J Y i , l , k  = \ { ( z i+± fc+i)

■(*i+iifc+l -

-(z .+ l X  *_! -  x,_l X  i+ l)' •• 2»2* 2 2*2* 2

■(z,+l 1 Jfc+i — Z,_l X k- x ) )' *T 2*2* 2 2*2* 2

S I Z i x k*i 2 *

(3.12)

= {̂{xi+xxtk_x -  Xi-xxMx) 

i y i+x x M x -  V i - x X ' k - x )  

-{ y i+x x tk-x ~  Vi.XX't+x) 

• ( x i + i , l k + i  - X i _ x x >k- x ) )  ,

and Pf i  fc is approximated by a linear extrapolation from the center of the interior 

cells, i.e.,

P i, \ ,k = 2 P i’1>k ~  2 Pi,2,k
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x

Fig. 3.2 A solid wall boundary.
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3.4.2 Coordinate Cuts

At a coordinate cut the physical space folds on to itself and the condition on 

the flow at the computational boundary is periodicity. This boundary, in fact, does 

not exist as a  physical boundary. It is a boundary only in a practical programing 

sense. Thus, it does not influence the solutions in the interior. An example of this 

type of boundary can be seen in Fig. 3.3.

3.4.3 Inflow/ Outflow Boundaries

As mentioned previously, these boundaries are artificial boundaries for 

practical reasons. The theory of absorbing boundary conditions [129] is applied to 

convert the transient energy out of the flow field so that the steady state solutions 

can be reached. This is done by linearizing the governing equation locally and 

computing the characteristic variables in the normal direction. Those characteristic 

variables which are advected into the domain are then fixed to the desired values

whereas those which are advected out of the domain are linearly extrapolated from

the interior to the boundary. The resulting complete set of characteristic variables is 

then transformed back to the primitive variables and used to compute the desired 

fluxes. The concept of Engquist and Majda’s ‘First approximation’ is described 

below.

A corresponding one-dimensional system of linear hyperbolic equation can 

be written in the characteristic form as

dq dq dF  . .
' a = t r  <313>

where q represent the characteristic variables and the Jacobian matrix A  can be
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Fig. 3.3 Coordinate cut boundaries.
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written as

A =

where

a (3
ac4 — uU + KaV2 a ( l  — k)u + U /?u — nav su — now

f3c2 — vU + k(3V2 av — k/3u /3(1 — k)v +  17 ev — k(3w

e<? — wU + keV 2 aw — keu (3w — kev e (l — k)w +  U

a  =  s • ex ; (3 =  s • e, ; e =  s • ex

U =  au  +  /3v +  ew ; V 2 =  V ■ V  ; k = 7 - 1

c is the local speed of sound and s is the surface area of the cell face which coincide 

with the artificial boundaries.

The eigenvalue A of A  can be found by solving det(A -  XI) =  0, as

where

Aj =  U, A 2 = U, A 3 = U - a +, X4 = U - a

a± =  \ kU ±  [ \k2U2 +  c2(a2 +  (32 +  e2)] * 
2 4

The left and right eigenvalues associated with these four eigenvalues make up the 

row and columns of the transformation matrices 21-1 and T  respectively which 

diagonalize Eq.(3.13) as

§  +  a | * = 0at ox
(3.14)

where

$  = T~xq , A =  T~lA T  =

Ai 0 0 0
0 A2 0 0
0 0 As 0

. 0 0 0 A*

After the intermediate variables,

U = (3u +  a v ,V  = —ev +  @w,W =  su — aw,

£ =  a2 + j32 +  e:2, Q± +  kU — a±,R± =  eQ± — $kw, P± = kwo± +  ec2
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have been defined for the sake of simplification, it can be found that 

kU 0 R+ R .

kvU -  P(kV 2 + c2) V uR+ +  aP+ uR.  +  aP-

—kuU +  cr(/eV2 + c2) W vR+ +  fiP+ vR- + (JP-

0 U wR+ -  k(ou +  j8v)a+ vdR- -  <c(au + 0v)a_

T =

- ( a 2 +  0V - ( a 2 + /?2)c2

and

T"1 =

gva-u a
di

- t W + B U
d\

t V —a t U
d\

a W - B V
di

[kw{IJ2 — £V2) [kw(-0U  + eW) [Kw (aU -eV) [-nw{aW -  0V)
+<?(eU -  £w)\/d2 —aec2\/d2 -0ec2]/d2 +(cc2 + 01)cv\/d2

*±di
H-
■37

^Va-(P+Q4-)Q4-
<*3

«fVa-(tr+g-)C-
dt

-it£u+aQ+
ds

—K(u+aQ-
2*

-* (v+fiQ+ 
di

- k ( v+ 0Q -  
34

The factor d2, d2, ds and dt in the dominators are normalizing coefficients so that 

T -1T equals the unit matrix. For the one-dimensional case it is well known that the 

number of conditions to be imposed in a cell at the outer boundary should equal 

the number of characteristic directions that enter the computational domain. Four 

typical cases are shown in Fig. 3.4. With subsonic inflow the implementation is to 

set the three ingoing characteristic variables <f>̂\<f>̂2\  and <f>W to their free-stream 

values, linearly extrapolate the fourth <f>W from the computational field, and then 

solve for the original unknowns q =  T<f>. At outflow it is that is given the 

values of the undisturbed flow, and (j>̂ \4>̂ 2\  and <fW are extrapolated from the 

computational field.

3.4.4 Interface Conditions

An interface, here, is referred to as a common boundary where two or more 

subdomain grids are patched together. As mentioned previously, these boundaries 

are not physical boundaries and may compose of grids of different topologies. Care 

must be taken in order to treat these boundary conditions which exist because the 

computation is done on each subdomain grid individually. This study follows a
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Fig. 3.4 Conditions at the inflow/outflow boundaries.
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conservative approach which offers the conservation of fluxes a t the interfaces. The 

conservative treatment at the interfaces is important for the correct capturing of 

discontinuities crossing them. The discussion on the conservative rezoning algorithm 

is given previously. An example of its application is described below.

Consider an interface between two subdomain grids as shown in Fig. 3.5. 

The application of the finite volume approach to the interface cells, denoted as 

(ij,NK -l), requires the integrated fluxes, H^JNK_X — h[1J NK_x • A.[1}̂NK_ ls where 

^4—vir i  are the cell surface areas at the interface. Recall from Sec. 3.2 that fluxes 

at the cell walls interior to the domain are computed by taking the average of the flux 

functions evaluated at the cell centers, i.e., +  fijjit+1). Thus, the

evaluation of requires the flux function hf-j^fK which is located outside the

domain (denoted as grid 1 in Fig. 3.5). They can be obtained by several ways. The 

simplest way is to extrapolate the quantities A ^ ’s from the interior of the domain. 

Another way is to interpolate the quantities A ^ ’s from the interior of the adjacent 

domain (grid 2 in Fig. 3.5). In this study, however, these interfaces are treated as 

inflow/outflow boundaries and the theory of Engquist and Majda [129] is applied. 

Thus, h\1)KK_ x are obtained through the combination of the extrapolation and• J tW A 2

interpolation procedures according to whether the flow is supersonic or subsonic 

at these interfaces. Here, the incoming characteristic variables are fixed at the 

interpolated values rather than freestream value as in the case of farfield boundaries.

To proceed the calculation on to the next subdomain grid (grid 2 in Fig. 

3.5), the integrated fluxes H ^ _ x are required for grid cells k = l. The fluxes S ^ )_ x 

must be obtained from h \1)kk. x conservatively in order to maintain the global con-tJ,jVA 2

servation. To see how this can be done, let’s consider a general interfaces as shown in 

Fig. 3.6. Here, solid lines represent grid lines at the interface of the subdomain grid 

(gridl) with known quantities, i.e., H ^ NK_X. The dash lines represent grid lines 

at the interface of the adjacent subdomain grid (grid 2) with unknown quantities,
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Fig. 3.5 A typical interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

j

( 2 ) 

H k l

--------- 1

k l i j

i

H
( 1)

«.j
( 1)

' . j

Fig. 3.6 A typical patched interface.
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i.e., H^)  , ,  to be obtained from , conservatively. In Fig. 3.6 ,

is written as H^1}  and H?) A as H $  to simplify the notation and to avoid the 

confusion (since the subscript ‘i j ’ appear in both quantities). The quantities A\lJ  

are the areas of the cell walls associated with f f j j  and Al$  are the areas associated 

with H y). The conservative treatment at the interface requires that the integrated 

fluxes going through an area Aj^ be the same for both grids, i.e., =  H $ .  From

Fig. 3.6, can be evaluated as

P r tjW j a W

=  S  " ■. % ) * *  <3-15>n=l J dAij

where A ^- is the portion of the area At-^ which contain in the area A$,  and P is 

the number of the areas A ^- contained in A $ .  For the finite-volume approach, H \f  

are constant within the area A,-^. Thus, Eq.(3.15) can be integrated and written as

p  ctW /jP) p
A k li j  _  y"

A(1) ”  in=i sijj n— 1

Equation (3.18) is in the same form as Eq.(2.3) where are known from the 

previous interface treatment for grid 1. Thus, the conservative rezoning algorithm 

can be applied to compute H® = .

Another method which can be used to compute H $  has been given by Hes- 

senius and Rai [137]. The method makes use of the modified Sutherland-Hodgeman 

clipping algorithm [138] borrowed from the field of computer graphics. They illus

trate the use of the method by computing the flow about a wing-canard combination. 

Recently, Walters et al.[l39] have applied the method to obtain the solutions for 

flow over the hypersonic aircraft and forebodies.

Boundary conditions must also be given for the artificial viscosity terms 

at the interfaces. Recall that at the regular boundaries, the coefficient S j,S j, and 

Sk  in the nonlinear terms are set to zero, and the linear extrapolation is used in 

the linear terms. The same procedure cannot be used at the interfaces. Several
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procedures have been investigated. The procedure described briefly below has been 

found as the best choice in terms of accuracy, stability, and efficiency. For the 

nonlinear terms quantities qijt and the coefficients Sj, Sj, S x  in Eq. (3.9) which is 

located outside the current subdomain grid are obtained through the interpolation 

of the quantities and coefficients from the other grids. The same can be done for the 

linear terms if only one term in Eq.(3.10) is outside the current subdomain grid. For 

illustration, recall from Sec. 3.3.2 that the fourth-order difference operator is used 

to obtain the linear artificial viscosity term. The fourth-order difference operator 

in I  direction is expressed as

-  W i - l J . k  +  6V U i -  4lf>i+lJ,k +  V\+2j,i- 

If the interface cells are denoted as ‘i = l \  it can be written

t j f o j k  =  'I’lN T l j . k  ~  ^ I p i j 'k  +  6V>2J ,k  ~  +  VUj.i

where 4>iNTij,k are the quantities interpolated from those in the adjacent subdomain 

grids. However, the use of the same procedure, at i= l, which results in the formula,

t f y l j k  =  1P lN T 2J,k  ~  l l p I N T l j .k  +  6^1 J,k  ~  ^ 2 J , k  +  ^3J ,k

where tj)iNT2 j,k are the other interpolated quantities, may lead to the unstable 

situation. This is because the use of the interpolation procedure more than once 

in each grid cells may result in a nonsmooth variation of the artificial viscosity 

from cell to cell. This, in effect, can amplify the magnitude of the oscillation of 

solutions instead of damping it, as desired by the purpose of adding these terms. 

In this study, the terms rl>iNT2 j,k are obtained via linear interpolation of ^iNTij.k 

and V’lj.fc- Thus, the above formula is written as

=  -ty iNTij.k  + SV’i.j.t — +  V’Sj.t-
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3.5 Numerical Time Integration

The complete semi-discrete scheme, Eq.(3.8), including all boundary con

ditions defines a unique system of nonlinear ordinary differential equations

«t =  F(u) ; u(0) =  tto (S*1?)

which must be integrated in time by numerical means. The explicit three-stage

Runge-Kutta scheme presented by Gary [140] is used in this study. This scheme is 

defined by the following algorithm:

u*(tn+1) =  u(f„) +  AtjP(u(tn))

tt**(*n+i) =  u(*n) +  ^AtF(u(t„)) +  iA « J ,(tt*(ifH.i))

u(tn+1) =  u(tn)+ ^ A tF (u ( tn) ) +  ^AtE(u**(tn+1)) (3.18)

It can be shown that this scheme, when applied to the semi-discretized Euler 

equations, Eqs.(3.8), is second-order accurate and is stable with a CFL (Courant- 

Friedrichs-Lewy) number of at most 2. The multistage two level schemes of the 

Runge-Kutta type have the advantage that they do not require any special start

ing procedure, in contrast to leap frog and Adam Bashforth methods, for example. 

The extra stages can be used either (1) to improve accuracy, or (2) to extend the 

stability region. Another advantage of this scheme is that its properties have been 

widely investigated, and are readily available in textbooks on ordinary differential 

equations.

3.6 Local Time Step Scaling

As mentioned previously, to reach a steady state solution by explicit meth

ods, generally, requires a large number of iteration and a long computational time. 

This is because the time step used in explicit methods is restricted to a maximum 

value according to the CFL condition [141]. The maximum time step is usually
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determined by the smallest grid spacing. On a highly stretched grid, this m axim um  

time step can be extremely small. In applications where only steady state solutions 

are desired, and true time accuracy is of no concern, it has been found that the use 

of the “local time step” scaling is highly beneficial to accelerate the convergence to 

steady state solutions [142]. The simplest way to derive this scaling is by a local 

Fourier analysis. This concept is outlined below.

To obtain a better understanding of the concept, let’s consider the Euler 

equations in two space dimensions:

ft +  Fz{q) +  Gv(q) =  0 (3.19)

Assuming that the mapping x(£,rj),y(Z,T)) between the physical x  — y space and 

the computational £ — rj space is smooth. Equation (3.19) can be transformed into 

the computational space as

[Jq)t +  (yrj-F5 ~  xnG)t +  +  x^G)ri (3.20)

where J =  Jacobian of transformation =  x^y,, — xvy^. Equation (3.20) is integrated

over the region and can be written as

4  / Y  di drl +  f  {{ye? ~  x tG)d£ +  (ynF  -  Xr,G)dri] =  0 (3.21)atJ JDij JdDi'j

The computational space has been discretized according to

6  =  & +  * ; m  =  Vo +  j  A»7

and some notation have been defined as

Xi,j =  X{£ilVj)  5 J/l'j =  y(£ii Vj) >

ft j  =  0{XiJ'>yiJt^) > Fi,j =  F [ q i j )  5 G i j  =  G (ftj) ,

^ftj = ft+ij ~  ft-f ,j > ^?ftj = “ Q iJ - \  >
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=  2 (^"+j j  =  2 ^ 'j+ i  *

Equation (3.21) can be approximated by

& H  j) + («e*u)(*A*)]
+  ~  =  0* (3.22)

Equation (3.22) is a semi-discrete centered scheme for the two dimensional Euler 

equation. To derive the local time step scaling for Eq. (3.22), first the transformation 

matrices are freezed at grid point (ij), i.e.

®f(£>y) ~  =  *£ i ~  £|}((t|f7j) =  i f f

&({,*?) «  ye(&,ff3) =  &  ; y * (Z ,n ) «  y „ ( 6 ,»?,) =  y , 

^ (f ,y )  =  ®£(^y)yf,(£,y) -  « r ,(^ y )y j(^ y )«  **y„ -  x„y€ =  J  

Thus, Eq.(3.22) becomes

-  iA f i id fij+ i -  % j- i)

+ ~  & j- i )

+  -A q y ^ ^ + ij  -  Fi-ij)

— —AT)x,i(Gi+ij — G,-_ij) =  0. (3.23)

Next, the flux functions F(g),G(g) are linearized around qij according to

^ ( 9) «  F tfi j)  + A  • [q -  fa )  ; G «  G(qij) +  B  • [ q -  qij)

A  =  § - J m  ; i  = ^ G (« J) , (3.24)

where A  and B  are the Jacobian matrices evaluated at qij. With the aid of

Eq.(3.24), Eq.(3.23) can be written as

+  “  ^ ^ { g i + u  -  qi-i,j) =  0 (3.25)
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which can be treated by the Fourier analysis. Let

fo p )  =  f c V ' v V ’)’' (3.26)

be the solution of Eq.(3.25). Substitution of Eq.(3.26) into Eq.(3.25) yields the 

eigenvalue problem

j5 / +  «ŝ i )  j - ^  ^  + *sm(fl2) + j * =  0
A A r j j

A nontrivial solution of Eq.(3.27) can be found only if 

det f (&>sin(gi) _  yg sin(g2) . -

A A q J  J

+ + (3.28)
A £ J  A t] J

Since the original conservation law, Eq. (3.19,) is hyperbolic, the matrices A  and 

B  by definition satisfy the condition

det(aA + p B  — XI) =  0; a,/? real => \>(<*>/?)p=1 d l  real (3.29)

Thus, the eigenvalues sp(0i,02) of Eq.(3.28) are all purely imaginary and given by

sp{6i , 02) = - iA p(a,/3) ; p =  l , ....,»  (3.30)

yn sin(fli) y£sin(02)a  =
A £J  A rjj

-j„sin(fli) ] j €sin(fl2)
A i J  ArjJ

For the Euler equations the Jacobian matrices A  and B  are known analytically as 

well as the eigenvalues Ap(a ,/?). Thus, the local spectral radius at the grid point

(ij)

PiJ = maXpfiu6i\Sp{Bu 62)\

can be estimated by analytic means. The “local time step” scaling of Eq.(3.22) is, 

then defined by

( /  f D. J d ^ p^ J t ^  +  ^ [ - ( % i j ) ( ^ j )  +  (^ j) ( /* f l^ ij) ]

+  6d{6nyij){dS ,:)  ~ = 0

(3.31)
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which evidently scales the problem so that the local spectral radius is equal to  1 

everywhere. It can be seen that this type of scaling does not affect a steady solution 

of the original scheme.
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Chapter 4

APPLICATION TO THE 
AERODYNAMIC BODIES

The procedure described in Chap. 3 has been applied to obtain steady- 

state solutions for inviscid flow about various configurations on the multiple grid 

systems. Basically, the entire domain is subdivided into several subdomains which 

are patched with each other at the common boundaries (called ‘interfaces’). The 

finite-volume method is used to discretize the Euler equations in each subdomain 

separately. The discretized Euler equations in each subdomain are integrated in 

time from the initially guessed solutions (free stream conditions) by the three- 

stage Runge-Kutta integration scheme. Steady state solutions are reached when the 

change in solutions between two consecutive time steps is very small (say 1 x 10-9 

). The calculation is performed separately in different subdomains. As mentioned 

previously, some information must be transferred at the interfaces of various sub- 

domains. This is accomplished by applying the interface conditions described in 

Sec. 3.4.4 at these interfaces. The interface conditions along with the other types 

of boundary conditions are implemented at every stage. Thus, the flow field of the 

entire domain is computed for each stage, though the calculation is performed in 

each subdomain at a time. The configurations are ranked from simple to complex 

ones. Since the method has not been applied to the aerodynamics calculation, it is 

a good idea to test the method before applying it to the complex problems. This 

purpose is fulfilled by considering the flows about simple configurations. This is
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because single grids can be constructed about them. Furthermore, the physics of 

flows about these configurations are relatively simple. Thus, solutions for flow about 

these configurations have also been obtained using the single grid systems with the 

procedure described in the previous chapter (finite-volume, etc.). Solutions from 

single grid calculations are also used as references to compare the solutions from 

multiple grids. The low speed flow over a sphere serves as the first application of 

the approach. Since the inviscid flow over a sphere at high speed does not give a 

realistic phenomena, flow over a slender body is, thus, considered next. Both flow 

over a sphere and flow over a slender body are discussed in Sec. 4.1. The capa

bility of the conservative rezoning algorithm to handle grids of different topologies 

is demonstrated in Sec. 4.2 where the multiple grids system is used to compute 

the flows over a Butler-Wing configuration. Here, grid topologies in different sub- 

domains are completely different. The supersonic flow through a rectangular duct 

with ten degree ramps considered in Sec. 4.3 demonstrates that strong discontinu

ities (shocks) can move from one subdomain to another without being distorted. 

Finally, the usefulness of the approach can be seen in Sec. 4.4 where it is used to 

obtain solutions for the internal/external flow about a fighter aircraft. In this case, 

the use of multiple grid system is necessary since it may not be possible to obtain 

a smooth continuity of grid lines at the interfaces between the interior and exterior 

grids. It may be disputed that the Euler equations are not suitable in some regions 

of the flow field considered in this study. Nonetheless, this study demonstrates that 

the difficulties in constructing the “boundary-fitted” coordinates about complex 

configurations can be overcome. Indeed, it is the main objective of this study to 

give such demonstration.

It is demonstrated in [103] that the conservative rezoning algorithm works 

well for grids with grid cells of comparative sizes. Furthermore, the algorithm yields 

smaller error when the information is transferred from a  finer grid to a coarse grid.
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However, this arrangement is not feasible in many applications. It should also be 

noted that the algorithm can be used only at the planar interfaces. For a non- 

planar interface, the formula for computing the area of a polygon does not have 

the associative property as in Eq.(2.4). Thus, it would not be advantage to  use it 

when sweeping through grid lines as done in Sec. 2.5. So far, a practical method for 

efficiently computing the conservative interface condition at the non-planar interface 

has not been discovered. Nevertheless, the planar interfaces can be found in many 

applications. Even with this restriction, the algorithm has been found to be quite 

useful in CFD applications. As discussed in the following sections, it brings CFD a 

step closer to reality.

4.1 Sphere and Slender Body

The inviscid flow over a sphere is chosen as the first application of the 

approach to the aerodynamic configurations. Since the approach has not been ap

plied to a physical aerodynamics problem, the first application should be somewhat 

straight forward so that only difficulty lies in the treatment of the interface condi

tions. The simplicity of the sphere, both from grid generation point of view and 

flowfield calculation, gives a better understanding of the approach. However, the 

Euler equations model is not suitable for the high speed flow over sphere. This is 

because such a flow separates somewhere downstream and the Navier-Stokes equa

tions have to be used. In order for the Euler equations to be applicable to high 

speed flow, and yet simplicity of the configuration is maintained, a slender body is 

also considered. The free stream Mach number for flow over sphere is 0.2 (nearly 

incompressible) while flow over the slender body has been investigated at a free 

stream Mach number of 1.5. Solutions for flows over the slender body have been 

obtained at zero-degree angle of attack. The entire flowfield is divided into two sub- 

domains at about the center of the configurations. Grids in both subdomains are of
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0-0 type with different number of grid points, i.e., 21 x 21 x 17 versus 33 x 33 x 17. 

Figures 4.1 and 4.2 illustrate grids used for the sphere and slender body, respec

tively. These figures show grid lines at the symmetry plane and at the interfaces. 

Discontinuity of grid lines at the interface is clearly seen. Singular lines resulting 

from the 0 -0  mapping type are also shown. As mentioned previously, they do 

not present a difficulty to the finite-volume method. Direction of the flows is also 

indicated in the two figures. As seen here, the flows move from the subdomain with 

a coarser grid to the subdomain with a finer grid. This should yield a larger errors 

than if they move in the opposite direction. This direction of flows is purposely 

chosen to demonstrate that the resulting errors do not considerably alter the solu

tions. As mentioned earlier, the purpose for the investigations of flow over these 

configurations is to see whether the approach is feasible when applied to the simple 

CFD calculation. Solutions to these problems can be obtained by using single grids. 

The use of single grids is probably more efficient. Thus, solutions from single grid 

calculations are used as references to compare the solutions obtained by multiple 

grids calculations.

Wall pressure coefficients at the center line are plotted and compared in 

Figs. 4.3 and 4.4. Good agreement can be clearly seen from the comparisons. 

Moreover, these figures show all expected features of the flows. The plots of pressure 

coefficient on the sphere (Fig. 4.3) have the same shape as the corresponding 

incompressible inviscid (ideal fluid) flow [143]. The high pressure at the stagnation 

point in Fig. 4.4 indicates that bow shock is formed in front of the slender body 

and there is a small subsonic region behind the shock. The flow, then, becomes 

supersonic downstream as seen in the classical flow over a blunt body [144]. The 

flow is compressed at the rear of the body and shock wave is formed. Even though 

these comparisons are made for only simple cases, confidence in using the concept 

of the multiple grids is increased. Indeed, solutions to flow over these configurations
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Fig. 4.1 Grid system for a sphere.
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Fig. 4.2 Grid system for a slender body.
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Fig. 4.3 The pressure coefficient on the surface of a sphere.
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Fig. 4.4 The pressure coefficient on the surface of a slender body.
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can be obtained for various flow conditions and number of grid points. The same 

agreement is expected from these results. However, it is felt that problems with 

higher level of difficulty should be pursued. Thus, the use of different grid topologies 

for different subdomain grids is considered next. A Butler-wing described in the 

next section suits this purpose well.

4.2 Butler Wing Configuration

A Butler wing is a delta wing which was proposed by D.S. Butler [145]. 

The planform of the body is an isosceles triangle, and the leading edges of the wing 

lay along the Mach lines of the unperturbed stream. The first 20% of the wing is 

conical and the last 80% of the wing has elliptical cross sections with increasing 

eccentricity along the x-axis. At the trailing edge, the elliptic cross section has 

infinite eccentricity and the last cross section is a straight line. Figure 4.5 shows a 

physical model of a Butler-Wing. The semi major and minor axes are given by

x _
major — axts =  — ; 0 <  x < L

x
minor — axts =  — ; 0 < x  < 0.2L

=  )1 ; 0.2L < x < L  (4.1)
/ r  v o.8x ' J ~  v '

where /?2 =  M£, — 1.

Butler [145] has compared the experimental results for surface pressure 

with the theoretical results using the slender-body theory approximation to simplify 

the inviscid equation of motion. Squire [146,147] has obtained experimental results 

for a Butler-Wing with varying Mach number and angle of attack. Abolhassani et al. 

[148] have obtained numerical solutions on a Butler-Wing by solving Navier-Stokes 

equations with the MacCormack time-split method. It should be mentioned that the 

experimental model is 120 mm. long and is constructed for M00 = 3.5. That is the 

semi-apex angle of the planform and of the initial conical nose is sin-1 =  16.602°.
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Fig. 4.5 Physical model of a Butler-Wing.
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The model is mounted in the tunnel by attaching a sting support of 12.5 mm. 

diameter to the lower surface.

Even though solutions can be obtained using a single grid system, multiple 

grids solutions on a Butler-Wing suit well for the purpose of this study. This is 

because a grid of O type is suitable for the front part of the configuration while a 

H-type grid seems to be a better choice near the edge. The multiple grids

system is composed of three subdomain grids with 41 x 41 x 35, 41 x 41 x 15, and 

41 x 41 x 15 number of grid points, as shown in Fig. 4.6. The H-type grid at 

the rear of the configuration is divided into two subdomain grids mainly to avoid 

programming difficulty. The O-type grid has a singular line emanating from the 

nose of the configuration as indicated in Fig. 4.6 a. Figures 4.6 b. and 4.6 c. 

clearly illustrate no continuity or even similarity of grid lines in each subdomain 

at the interface. The Butler-Wing configuration illustrates the capability of the 

multiple grids approach to deal with the problem where grid topology is changed 

from one subdomain grid to another.

The wall pressure coefficients at various flow conditions are plotted in Figs. 

4.7-4.11. In all figures, a solid line indicates the wall pressure coefficient obtained 

from multiple grids calculations. The wall pressure coefficient along the center line 

are shown in Fig. 4.7 for 3.5 Mach number and zero degree angle of attack. A High 

pressure at the front of the configuration indicates that an oblique shock wave is 

generated from the nose of the configuration. As expected, the pressure is constant 

over the conical section. Further downstream, the flow is expanded as seen from the 

decrease of pressure with the increase of the eccentricity in the elliptical section. 

In Fig. 4.7, comparisons are made with results of Refs. 145-148. Discrepancies 

near the nose region exist because the grid is not fine enough to obtain the correct 

conical solutions there. Discrepancies at the rear of the wing are believed to occur 

because of the negligence of viscous effect in the Euler equations. Squire [146]
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Fig. 4.6 Grid system used for a Butler-Wing.
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has made similar conclusion about these discrepancies. Good agreement for the 

comparison between multiple grids solutions and solutions obtained from a single 

grid calculation is shown in Fig. 4.8. This indicates that the use of multiple grids 

does not cause the discrepancies in Fig. 4.7.

The computed pressure coefficients for ten degrees angle of attack are 

plotted and compared with the results of Refs. 146 and 148 in Fig. 4.9. At 

17%, 30%, 50%, and 70%, chordwise positions, the pressure coefficients are plotted 

against the conical spanwise coordinate gt| ^ . Good agreement can be seen. On 

the thick sections near the nose, the pressure is highest on the centerline and falls 

toward the leading edge, whereas near the trailing edge the spanwise distribution is 

more ‘wing like’ with the maximum pressure at the leading edge. The changeover 

is shown by the pressure peaks in the pressure distributions at |  =  0.5 and 0.7 

(Fig.4.10). Some discrepancies with the experimental results may be due to the 

fact that the lower surface of the experimental model is distorted to include a sting 

support. Results for flow at 2.5 Mach number are shown and compared with results 

from Ref. 146 in Fig. 4.11 and 4.12. Figure 4.11 shows results at zero degree angle 

of attack, whereas, results at ten degrees angle of attack are shown in Fig.4.12. 

The same conclusions as in the case of 3.5 Mach number flow can be made for this 

case also.

The results obtained, thus far, demonstrate that the use of multiple grids 

approach is plausible and does not add significant error to the flow model equations 

even when grid topologies in subdomain grids are completely different. However, 

more complex problems should be investigated in order to be certain about the 

capabilities of the approach. The study, thus far, may not yet indicate the usefulness 

or necessities of the multiple grids approach, since the construction of a single grid 

system can be made in all cases. In some applications, however, the construction 

of such a single grid system to cover the entire domain may not be possible at all.
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4.3 Rectangular Duct with 10° Ramps

Thus far, the multiple grids approach has been applied only to external 

flows over some aerodynamic configurations. Originally, it was not intended to 

apply it to obtain a solution of flow inside a rectangular duct. This is because a 

single grid can be constructed easily to model the flow. Moreover, the physics of 

the flow is relatively simple. However, some consideration regarding internal flow is 

needed in order to  apply the approach to the internal/external flow interaction (Sec. 

4.4). Thus, a  supersonic flow inside a rectangular duct was chosen in order to verify 

the modified finite-volume code. This code has been modified from the original 

code which was written to solve the Euler flows external to some configurations. 

Two 10° ramps have been added to the front of the straight duct to compress the 

flow and create shock waves, since just a straight duct would not produce any 

interesting phenomena. Supersonic flows inside this duct have been simulated on 

a single grid. However, solutions would not converge to steady state if the solid 

boundaries where the ramps meet the straight portion are not smooth, no matter 

how smooth the interior grid lines are. Even though the problem could be solved 

by smoothing out this region or by some other means, it was suspected whether the 

use of multiple grids would also be an alternative. As a matter of fact, this problem 

becomes another good case to verify the technique. This is because the physics of 

the problem is well known. Moreover, shock waves generated by the ramps must go 

through the interface which is located where the ramps turn into a straight duct. It 

is seen from this case that the interface can tolerate these shocks without disturbing 

them.

Figure 4.13 shows the plane of symmetry and a solid wall of the multiple 

grids system used in this case. Here, the entire domain is divided into two different 

subdomains, one covers the ramp portion and another covers the straight portion 

of the duct with 26 x 49 x 11 and 21 x 41 x 41 number of grid points respectively.
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Interface

Fig. 4.13 Grid system for flow through a duct.
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Both grids are also concentrated in the region near the solid walls. Since grids in 

each subdomain contains different numbers of grid points, there is no continuity of 

grid points between them at the patched interface. It should be noted that grid 

points or even grid slope could easily be made continuous at this interface. Then, 

the use of the conservative rezoning algorithm would not be necessary and this 

investigation would be meaningless. Solutions have been obtained for the supersonic 

flow with various freestream Mach numbers and number of grid points. Since all 

of the solutions produce a  similar phenomena, only the case of freestream Mach 

number of 2 with the multiple grids system mentioned above is discussed here. 

Figure 4.14 shows contours of pressure coefficient at the plane of symmetry of the 

duct. The contours display all expected features of the flow such as shock waves 

emanating from the ramps, expansion waves generated at the comers where the 

ramps turn into straight duct. Shock waves meet at the center line about the 

location of the interface. These shocks reflect off each other and bounce off the 

walls, then meet again and so on. The pressure coefficients at the symmetry plane 

are illustrated in Fig. 4.15 along the upper wall and along the center line of the 

duct. All the features displayed in these figures are identical to those observed on 

the plots of solutions from single grid calculation. The results from this case indicate 

that the use of multiple grids along with the conservative rezoning algorithm can 

accommodate shock waves which pass through the interface without altering the 

solution. Moreover, it has been demonstrated that the multiple grids approach can 

avoid problems (convergence to steady state in this case) which may result from 

the use of just a single grid.
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Fig. 4.14 Cp contours inside a duct.
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4.4 Internal/External Flow About a Fighter
Aircraft Configuration

The applications, so far, have been to Sows about simple configurations 

where single grids could be used in each case. The next step is to consider the 

case in which the use of single grid to cover the entire domain may not be possible. 

In the recent years, significant improvements in numerical methods and computer 

technology have made it possible to solve inviscid compressible flow using the Eu

ler equations for moderately complex geometries such as the wing-fuselage [149] or 

wing-canard [122] configurations. The use of multiple grids approach for such ge

ometries are becoming popular, see for example Refs. 150 and 151. The approach 

is used in this study to investigate the internal/external flow about a fighter-like 

aircraft configuration (Fig. 4.16). The external flow over the same configuration has 

been studied by Eriksson et al. [152]. In Ref.152 the farfield boundary conditions 

are implemented at the inlet intake to simulate flow into the inlet. This study is an 

extension of the work available in Ref. 152. In this case, fluids are allowed to flow 

into the engine inlet and exit at the rear. Here, the interfaces between the interior 

and exterior grids do not require any continuity regarding grid density or slope (it 

may be even impossible to enforce any continuity at these interfaces). Flows over 

fighter aircraft configurations have been studied by several authors. For example, 

patched grid concepts have been recently used by Karman et al. [153] for a F-16 

fighter configuration and by Fritz and Leicher [154] for an EFA-fighter configura

tion. However, a large number of grid blocks are used in both applications. The 

exterior grid topology used here is completely different in order to minimize the 

number of grid blocks and the amount of grid skewness. Some ideas regarding grid
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topology of the exterior grid which have been discussed in [152] axe also given here 

for completeness.

Steady state solutions for supersonic flows have been obtained at a  free 

stream Mach number of 2. The method, however, works equally well for subsonic, 

transonic, and other supersonic flow conditions. Brief descriptions of steady state 

solutions for flows at various angles of attack are presented. For flows without the 

wake region (region behind the aircraft), results are obtained for 0°, 3.79°, 7°, and 

10° angles of attack. For the case of flow with the wake region, results are ob

tained for a 0° incidence. The computed flows are visualized in terms of pressure 

coefficient contours. Although no experimental results are available, the results 

shown here demonstrate that the flnite-volume scheme has no difficulties in deal

ing with singular lines. Furthermore, the interfaces between the exterior grids are 

completely “invisible” to the flow, due to the enforced continuity of all first-order 

metric quantities. Smooth variations of the pressure contours at the interface be

tween the interior and exterior grids are also shown. The results demonstrate that 

the method is capable of computing internal and external flows simultaneously even 

though interfaces between interior and exterior grids do not require any continuities 

in terms of the grid slope or grid points.

It should be noted that the boundary condition at the inlet intake in [152] 

are implemented as farfield conditions (zero order interpolation). Solutions in [152] 

are compared also with the corresponding results of a potential method [155] and of 

Euler solutions [156]. Solutions of the present study are compared with correspond

ing results from Ref. 152. The comparisons indicate the influence of flow inside the 

engine inlet and in the wake region on the flow around the airplane. It should also 

be pointed out that the exact description of the engine inlet is not modeled since it 

is not available. Here, the inlet description is modeled by applying the transfinite 

interpolation procedure to “fill in” the region between the inlet intake and the inlet
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exit plane. It is expected that inlet description can infiu ;nce the external flow at 

least in the region near the inlet. The interaction of the boundary layer diverter is 

not investigated in this study. Different results are presented here in a somewhat 

logical sequence.

4.4.1 Grid Generation Procedure

The configuration shown in Fig. 4.16 is composed of a  fuselage, a canard, a 

cranked delta wing, a vertical fin and an inlet [157]. The fuselage has an integrated 

canopy over the cockpit, the engine inlet is separated from the main part of the 

fuselage by a boundary layer diverter, and is area ruled for supersonic flow. The 

canards and wings are defined by parabolic arc streamwise sections and the cranked 

wing is swept 70° followed by a  20° sweep. The intersection of the wing leading edge 

and the fuselage is near the vertical center of the fuselage and the intersection of 

the wing trailing edge and the fuselage is near the top of the fuselage. The vertical 

fin intersects the fuselage in as much the same way as the canard except it is 

defined vertically rather than in the spanwise direction. The model is 32 inches 

long. The upper and lower walls of the engine inlet start at about 13 and 16 inches, 

respectively, from the nose of the airplane. The distance from the center line to 

the outer wing tip is 9.5 inches. The grid generation about this configuration is 

not a trivial matter. For the exterior grid, if only patched C1 continuous grids are 

considered and grid lines are required to conform to all wing edges, there are two 

basic alternative topologies (Fig. 4.17). The simplest approach (Alt.l) is to let 

the selected outgoing grid lines conform to the leading and trailing edges of both 

canard and wing. In the resulting single-block grid, with the third family of grid 

lines wrapping around the fuselage, both lifting surfaces can be represented as an 

interior slit. However, for a cranked delta wing with a highly swept inner region it 

is clear that this type of grid is not optimal. Not only is the grid highly skewed at
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the leading edge of the inner part of the wing, but its structure makes it difficult 

to concentrate grid points in a smooth fashion in the apex region of the wing. A 

different approach (Alt. 2) is to let the leading edge of the inner wing be represented 

by a grid line of the other family of lines, as shown in Fig. 4.17. This can be done by 

introducing an interior grid which only covers the inner wing region and its wake. 

In the resulting multiple grids, with the third family of grid lines wrapping around 

the fuselage, both lifting surfaces can again be represented as interior slits, with the 

inner wing slit in the inner grid and the canard and outer wing slits in the outer 

grid. It is clear that this topology gives a much less skewed grid and also gives a 

natural concentration of grid points in the apex region of the wing. This is very 

important since high resolution is needed in this region to capture vortical flow.

As mentioned previously, this study is an extension of the work available 

in [152] where the multiple grids have been used to obtain the Euler solutions for the 

external flow over the configuration in Fig. 4.16 (without wake region). In [152], the 

continuity of grid slope at the patched interface between subdomain grids is enforced 

by using the osculatory interpolation (Eq.(2.2)), i.e., by using derivative information 

as well as grid point location in the interpolation. In the present study, the flow 

domain is extended to include the wake region. A grid inside the engine inlet is 

also constructed to simulate the internal flow simultaneously with the external flow. 

The interior grid is only required to patch with the exterior grids at the inlet intake 

and at the exit plane. No continuity of grid slope or even grid points is enforced 

at the patched interfaces. Since the exact description of the inlet is not available, 

the interior grid is constructed simply by applying transfinite interpolation between 

these two planes. The extension of the exterior grids of Ref. 152 to include the wake 

region is achieved by the osculatory transfinite interpolation. However, the entire 

wake region is not covered by this extension. The void in this region is produced 

by the absence of the fuselage. It is filled in by the construction of a cylindrical
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grid. This grid has a singularity line at the axis of the cylinder since a solid wall is 

absent there. Slope continuity a t the interfaces between this grid and other exterior 

grids is, again, obtained by the osculatory transfinite interpolation. It is, however, 

not possible to have any kind of continuity at the interface between this grid and 

the interior grid since they sure of completely different topologies, i.e., O-type versus 

H-type.

The entire grid about the configuration is, thus, divided into six subdomain 

grids. The surface grid for the configuration is shown in Fig. 4.18. The bottom and 

top grids are dual-block grids as described above. Slope continuity at the interfaces 

between exterior grids is clearly visible in Fig. 4.19. Figure 4.20 shows an enlarged 

view of a cross-cut of grids in the wake region. Slope continuity at grid interfaces 

and the point of singularity are illustrated. Grid discontinuities at the interfaces 

between interior and exterior grids are clearly noticeable in Fig. 4.21 where grid 

lines are plotted at the symmetry plane. Grid lines extended to the outer boundary 

at the symmetry plane are shown in Fig. 4.22 (interior grid is not shown). Finally, 

Fig. 4.23 illustrates the connection of various computational subdomains. Grids are 

numbered as indicated in the figure. The entire domain is composed of 493,641 grid 

points. It should be mentioned that the surface grid is constructed by the method 

described in [59].

4.4.2 Zero Degree Angle of Attack(Without Wake Region)

Steady state solutions for a freestream Mach number of 2 and 0° angle of 

attack are shown in Figs. 4.24-4.27. These figures show contours of the pressure 

coefficient on the surface of the airplane, on the symmetry plane, and on various 

cross-cuts. The contours display all the expected features of the flows with shock 

emanating from the nose of the fuselage and from the leading edges of the lifting 

surfaces. The bulging (area ruling) of the fuselage behind the inlet intake gives rise
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Fig. 4.18 The surface grid for the fighter aircraft.
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Singular point

Cylindrical grid

Fig. 4.20 The enlarge view of a cross cut of grids in the wake region.
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Fig. 4.22 Grid lines as in Fig. 4.21 extended to the outer boundary.
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1 — Bottom inner grid
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3 — Bottom outer grid 
L — Top outer grid
5 — Inlet grid
6 — Grid in wake region

Outer boundary

Fig. 4.23 Computational domains for the aircraft.
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M® = 2
a =0° (Without Wake) 
ACp = 0.025

0.1
0.25
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Fig. 4.24 Cp contours on the top surface (a =  0°, no wake).
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M® = 2
a =0° (Without Wake) 
ACp = 0.025

Fig. 4.25 Cp contours on the bottom surface (a =  0°, no wake).
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to the high pressure in the region on the fuselage and on the bottom of the wing 

surface just downstream of the inlet intake. It will be seen (Sec. 4.3.3) that this 

high pressure region moves forward with increasing angle of attack. The flow enters 

the inlet region in a smooth manner, but there is a  considerable increase in pressure 

because of some chocking at the inlet.

The spanwise pressure distribution at a cross-section which cuts through 

the inlet intake is shown in Fig. 4.28. The solid line represents the solution from the 

present study, whereas the dash line represents the solution from the study of Ref. 

152. The top curves correspond to the pressure distribution on the bottom surface 

whereas the bottom curves represent the pressure distribution on the top surface. 

In the figure the horizontal distance is measured from the symmetry plane out to 

the wing tip. The distance is given as the real distance (inch) and the normalized 

distance. The normalized distance is based on the distance from the symmetry 

plane to the outer wing tip. The large pressure drops on the top curves , i.e., at the 

distance about 1.2 inches from the symmetry plane, correspond to the point where 

the wing starts on the bottom surface. The label ‘no inlet’ in the figure simply 

means no simulation of flow inside the inlet but the inlet itself is still attached. The 

comparison in the figure indicates differences between the two solutions at the inlet 

intake. This is because, in the present case, the flow is allowed to go through the 

inlet while only farfield condition (zero order extrapolation) is implemented in Ref. 

[152]. This demonstrates the influence of the inlet to the external flow near the 

inlet intake. It is expected that the flow in this region change with the description 

of the inlet.

Variations in the pressure coefficient at the symmetry plane of the inlet 

are shown in Fig. 4.29 for three different locations (top, center, and bottom). The 

horizontal axis (x-distance) is given in two different scales, one is the real scale 

in inches and the other is the normalized scale. The normalized scale is based on
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AT X=15.5  (X/L = 0 . 4 8 4 )

  W INLET
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Fig. 4.28 Spanwise pressure distribution at the inlet intake (a =  0°, no wake).
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Fig. 4.29 Pressure distribution inside the inlet (a =  0°, no wake).
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the total length of the model (32 inches from the nose to the rear end of the fuse

lage). The height of the inlet (z-distance) is normalized based on its height from 

the center line. The results show that the flow, in general, expands after it goes into 

the inlet. This is due to the inlet shape created by generation of the interior grid. 

However, the situation can be entirely different if another inlet shape is generated. 

The results also indicate that there exist shock waves which reflect from the inlet 

walls. These shocks lose their strength as the flow moves away from the inlet intake.

4.4.3 Different Angles of Attack (Without Wake Region)

Increasing angles of attack while holding the Mach number at 2 produces 

expected results. Pressure increases on the bottom surface and decreases on the 

top surface. The pressure coefficient contours on the top and bottom surfaces of 

the fuselage, canard, and wing are shown in Figs. 4.30 and 4.31 for flow at 3.79° 

angle of attack. Figures 4.32 and 4.33 show the corresponding contours of pressure 

coefficient at the plane of symmetry and at various cross-cuts. Again these figures 

show all the expected features of the flow such as high pressure in front of the 

canopy and low pressure behind it, low pressure along the upper leading edge of the 

inner wing and high pressure under the outer wing. An interesting feature is the 

continuation of the low pressure region along the top leading edge of the inner wing 

to the region between the outer and inner wing, downstream of the crank. This 

indicates that there is some vortex generation and thus entropy also increases in 

this region. There is also some chocking at the inlet (Fig. 4.32) as in the previous 

case. The comparison of the spanwise pressure distribution at a cross-section which 

cuts through the inlet intake (Fig. 4.34) also indicates pressure difference between 

the two solutions at the inlet intake. Plots of pressure coefficient at the symmetry 

plane of the inlet along three different locations are shown in Fig. 4.35. This figure
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ACp = 0.025
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Fig. 4.30 Cp contours on the top surface (a =  3.79°, no wake).
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Fig. 4.31 Cp contours on the bottom surface (a =  3.79°, no wake).
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AT X = 15.5 (X/L = 0.A84)

  W INLET

 W / 0  INLET
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HORIZONTAL DISTANCE

Fig. 4.34 Spanwise pressure distribution at the inlet intake (a =  3.79°, no wake).
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Fig. 4.35 Pressure distribution inside the inlet (a =  3.79°, no wake).
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illustrates the similar features as in the previous case. The expansion of the flow 

and the existence of shock waves inside the inlet are clearly visible.

Figures 4.36 and 4.37 display contours of pressure coefficient on the top 

and bottom surfaces for flow at 7° angle of attack. On the top wing surface, there is 

a strong indication of vortical flow in the pressure distribution. Also, on the bottom 

surface, the high pressure region resulting from the bulging has moved forward on 

the bottom of the wing. A high pressure due to chocking can be observed at the 

inlet intake (Fig. 4.38). This pressure is even higher than that of the previous 

two cases due to the higher angle of attack. Contours of the pressure coefficient 

on various cross-cuts are also shown in Fig. 4.39. The plots of spanwise pressure 

distribution (Fig. 4.40) indicate similar comparison as in the previous case.

The results for 10° angle of attack are shown in Figs. 4.41- 4.45. A vortical 

motion is evident on the top wing surface. The chocking of the flow at the inlet in

take is evident from the contour plots of Fig. 4.43. Figure 4.44 illustrates pressure 

coefficient contours on various cross-cuts. A comparison of the results presented in 

Fig. 4.45 also indicates the influence of the flow inside the inlet on the external flow 

in the region near the inlet intake. This demonstrates that the combination of the 

implementation of boundary conditions and the simulation of flow inside the inlet 

produces different results. In obtaining these results, numerical oscillations were 

noticed near the leading edge of the inner wing. Such oscillations were observed 

also in the study of Ref. 152. Convergence to a steady state solution appears to be 

normal at first. The residuals (difference of solution between two consecutive time 

steps) reach a minimum values and start a periodical phenomena. This phenomena 

prevents the solution from reaching a steady state. Further investigation indicates 

that the oscillation only occurs at a certain region, i.e., region just inside the top 

leading edge of the 70° swept portion of the wing. Elsewhere, the residuals are well 

below the convergence criterion. The investigation in [152] has shown that the use
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M . =  2 
a = 7°
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Fig. 4.36 Cp contours on the top surface (a =  7°, no wake).
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Moo = 2
a = 7°
ACp = 0.025

Fig. 4.37 Cp contours on the bottom surface (a =  7°, no wake).
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AT X = 15 . 5  (X/L = 0 . 4 8 4 )  H .  =2

 W INLET
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Fig. 4.40 Spanwise pressure distribution at the inlet intake (a =  7°, no wake.)
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Fig. 4.41 Cp contours on the top surface (a =  10°, no wake).
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M 00 = 2
a = 10°
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Fig. 4.42 Cp contours on the bottom surface (a =  10°, no wake).
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Fig. 4.43 Spanwise pressure distribution at the inlet intake (a =  10°, no wake).
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of minimum time step everywhere could solve this problem. The local time-step 

scaling, however, is still used to obtain all steady state solutions presented in this 

study. This is because the oscillation is not caused by the use of the conservative 

interface condition which is the primary objective of the present study. Moreover, 

the use of minimum time stepping is quite expensive. This periodical phenomenon 

has been clearly explained in [152] and will not be repeated here.

Variations in the pressure distribution inside the inlet a t the plane of sym

metry are illustrated in Figs. 4.46-4.48 for four different angles of attack along top 

walls, bottom walls, and center line of the inlet, respectively. These figures indicate 

similar features, such as the expansion of the flow and the existence of shocks inside 

the inlet, among flows at different angles of attack. The effect of increasing angle 

of attack is seen to increase the pressure inside the inlet. Variations in the pressure 

coefficient along the centerline of the symmetry plane from the free-stream to the 

exit plane of the inlet are shown in Fig. 4.49 for different angles of attack. The vari

ations indicate a similar pattern for each angle of attack. Shock waves generated at 

the nose of the aircraft and near the inlet intake (due to chocking) are clearly visible. 

The expansion of flows inside the inlet and interaction of shock waves from the walls 

we clearly evident. It is seen that pressure increases with increasing angle of attack.

4.4.4 Zero Degree Angle of Attack (With Wake Region)

The pressure coefficient contours on the top and bottom surfaces of the 

fuselage, canard, and wing are shown in Figs. 4.50 and 4.51. These contours are 

similar to those obtained for the case without the wake except near the end of the 

fuselage. A lower pressure (as compared to flows without wake region) is observed 

in this region due to simulation of the flow in wake region. The influence of flow in 

the wake region is clearly seen in Fig. 4.52. The spanwise pressure distribution from
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Fig. 4.46 Pressure distribution along top wall of the inlet.
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Fig. 4.47 Pressure distribution along center of the inlet.
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Fig. 4.48 Pressure distribution along bottom walls of the inlet.
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Fig. 4.49 Pressure distribution from freestream to exit plane of the inlet for various 
angles of attack.
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Fig. 4.50 Cp contours on the top surface (a =  0°, with wake).
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Fig. 4.51 Cp contours on the bottom surface (a  =  0°, with wake).
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Fig. 4.52 Spanwise pressure distribution near the end of the fuselage (a =  0°, with 
wake).
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three different solutions are compared at 98% of the configuration (x =  31.5 inch). 

The solid line represents the case of flow with the inlet and wake region. The other 

two curves represent the cases of flow without the wake region. The label ‘w inlet’ 

on the top right of the figure means with flow in the inlet but without flow in the 

wake region whereas ‘w/o inlet’ means without flow in the inlet or in the wake region 

[152]. The word ‘w inlet and wake’ simply means with flow in the inlet and in the 

wake region. At this particular location, the two solutions without flow in the wake 

region agree very well. However, they indicate a higher pressure than that obtained 

for the flow with wake region. This is because the outflow boundary condition has 

to be given right at the boundary of the domain (at the end of the fuselage for the 

case without wake region). As mentioned in Sec. 3.4.3, this condition arises because 

the computational domain has to be closed for practical reasons. The farther this 

boundary moves away from the configuration, the computational model is closer to 

the real situation. The primary reason that the previous studies do not extend the 

domain beyond the end of the fuselage is due to the difficulty in generating a grid 

in that region. Moreover, the condition at the exit plane of the inlet is unknown. 

The jet afterbody interaction can also influence the flow in the region near the rear 

fuselage. Indeed, it is the ultimate goal of this study to overcome such difficulties 

and to be able to model the flow as close to the real situation as possible. The 

pressure coefficient contours at the plane of symmetry (Fig. 4.53) and at various 

cross-cuts (Fig. 4.54) indicate a strong interaction between the jet and afterbody 

flows. Contours in the front of the configuration display the same features as seen 

in the case of flow without wake region (Sec.4.4.2). In the wake region, the flow 

coming out of the exit plane of the inlet (jet) has lower pressure but higher velocity 

than the external flow around the airplane (afterbody flow). As a result of this 

interaction, the internal flow gets compressed and the external flow is expanded. 

The shock waves emanating from the rear fuselage meet farther downstream and
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reflect off each other. The flows are not symmetric about the middle of the jet 

because the top of the configuration includes the wings and vertical fin. It should 

be mentioned that accuracies cannot be claimed for the solutions of flow in the 

wake region. Realistically, flow in this region becomes turbulent and the Navier- 

Stokes equations with an appropriate turbulent modeling must be used. This study, 

however, has taken a step toward that goal since it is now possible to generate grids 

to cover both internal and external regions.

The pressure coefficient variations at the plane of symmetry are illustrated 

in Fig. 4.55 for three different locations. The plots start at the inlet intake and end 

at the end of the domain in the wake region. Inside the inlet, i.e., 12 < x  < 32 (or 

0.4 < f  < 1.), the results are the same as those of the case without the grid in the 

wake region (Fig. 4.29). The flow expands and shock waves reflect from the inlet 

walls. At the exit plane of the inlet, the internal flow starts interacting with the 

external flow from the top and bottom of the inlet. The jet coming out of the center 

of the inlet, however, does not interact with the afterbody flow until a little farther 

distance downstream. These are indicated by the jumps of pressures. The flow 

enters the inlet supersonically and is accelerated as it goes through the inlet. Thus, 

the flow exits the inlet supersonically with a rather high velocity. This velocity 

is much higher than that of the afterbody flow. Thus, there exist oblique shock 

waves and vortical flow in this region. The shock waves meet farther downstream 

and produce a high pressure region behind them. Thus, the pressure jump at the 

center line occurs a little farther downstream and its magnitude is relatively higher. 

It should be noted that the flow in the wake region displays a similar feature as 

the classical free jet exhausting from a supersonic nozzle. Finally, the pressure 

distribution from the free-stream to the end of the domain in the wake region at 

the center of the symmetry plane is shown in Fig. 4.56. This shows the trend in 

pressure variation for the entire region.
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Fig. 4.55 Pressure distribution from the inlet intake to end of the wake region.
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Chapter 5

CONCLUSIONS

Solutions of Euler equations foi flows over aerodynamics configurations on 

multiple grids systems axe presented. Some details on grid generation techniques 

and solution procedures are discussed. The concept of conservative treatment at the 

interfaces of various subdomain grids is also addressed. The solutions obtained from 

this study illustrate a promising future for the multiple grids approach. It should 

be stressed, once more, that the main purpose of this study has been to determine 

whether the use of multiple grids approach is feasible on these configurations, not 

to determine the characteristics of the flows. The use of multiple grids approach, 

however, should give the correct characteristics of such flows, as this study indicates. 

Thus, a single grid system can be constructed to solve for solutions on some of the 

configurations considered in this study. The solutions obtained from a single grid 

calculation can be used as references to compare with those obtained from a multiple 

grids calculations. This fact should not under estimate the usefulness of multiple 

grids approach. In some instances, for example the fighter aircraft configuration 

(Sec. 4.4), the construction of a single grid system may not be possible at all. Even 

for simple configurations where a single grid system can be constructed, the use of 

multiple grids approach eliminates the difficulties that arise in the grid generation 

procedures. Also, experiences have shown that the use of multiple grids approach 

enhances the solution procedures. For example, the convergence to steady state 

of the solution to the equations of motion depends on many factors. One factor
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which is very important is the characteristics of a grid system, i.e., grid spacing, 

grid orthogonalities etc.. Good characteristics of a grid system are much easier 

to obtain in the multiple grids approach as compared to a single grid approach. 

Experience from this study has indicated that efforts made to obtain a converged 

solution with a multiple grids system is not as much as with a single grid system.

The achievements of this study can be summarized as the following. First, 

software for computing the conservative interface conditions has been developed. 

Then, the concept of multiple grids including the conservative interface conditions 

has been tested by obtaining the solutions to the hyperbolic equations. Satisfactory 

results have been obtained. The use of the approach to obtain the solutions for 

flows about simple configurations illustrates that no significant errors have been 

produced. Finally, the usefulness of the approach have been shown by applying it 

to obtain the solutions for flows about a complex configuration where the use of a 

single grid system may not be possible.

Many directions can be taken for future studies. One of the obvious ex

tension of this study is to consider the same configuration as that in Sec. 4.4 and 

obtain results for different flight regimes. Another possibility is to change the inlet 

description and put some objects, such as turbine blades, to model some kind of 

engine. An ambitious extension of this study will be to use the Navier-Stokes equa

tions with an appropriate turbulent model and obtain results for chemically reacting 

flows through the inlet. However, it is important to note that this suggestion does 

not imply that the use of the approach will solve all the problem encountered in 

obtaining solutions for these cases. Of course, to obtain a reasonable solution for 

any flow condition relies not only on a grid system but also the reasonable model 

equations. If the complex phenomenon is not modeled properly, it would not yield a 

reasonable solution no matter how good the grid system is. Nonetheless, this study 

offers a method which can be used to  eliminate one of many difficulties in CFD. It
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has been proved that the generation of grids about a geometrically complex config

uration is no longer a problem. The only restriction of the method is that it can 

only be applied to the planar interfaces. The method is not restricted to any flow 

phenomena. Thus, it can be used to obtain solutions for any flows. However, the 

realism of such solutions depends also on other factors, such as model equations, 

etc.. It should also be mentioned that the conservative rezoning algorithm was 

originally described to solve the problem in the Lagrangian coordinates. This study 

is believed to be the first to apply it to the problem in the Eulerian coordinates. 

Recently, others researchers have picked up the idea presented in this study to solve 

problems in the Eulerian coordinates. Hopefully, this study provide a significant 

contribution to the field of CFD.
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Appendix A

THE IMPLEMENTATION OF THE 
CONSERVATIVE REZONING 

ALGORITHM

In Sec. 2.5, the concept of the conservative rezoning algorithm is described 

only briefly. It is felt that more details of the algorithm including its implementation 

must also be given. This appendix is the appropriate place to do so. For illustration, 

consider a patched planar interface shown in Fig. A.I. The dash lines represent grid 

lines of the old grid cell with the known quantities, i.e., Qo%  which are constant 

within each grid cell. The solid lines represent grid lines of the new grid cell with 

the unknown quantities, i.e., Q s’s, to be obtained from Qo’s conservatively. It is 

clearly seen from Fig. A .l that the quantity within a particular new grid cell can 

be obtained conservatively according to the equation,

NP A NP
Qn  = = n q0')(ANOi) (A.l)

t = l  A Oi , = 1

where A so { is the portion of the area Ao{ which overlaps with the area A s-  The 

quantity Np is the number of A s o -'s that is contained in the airea A s ,  and go- =  t 2**1 1 ^Oj
It cam be seen that AsOi are polygons with various number of sides. According to 

Sec. 2.5 the area of a polygon in a two dimensional plane is given by

AP = -  x\y[) (A-2)
L  » = i

where (xj,yj) and (xj,yj) aure coordinates of the two end points of a particular line 

segment s, N is the number of sides of a particular polygon and ej is +1 or -1
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according to whether the polygon lies on the left or right, respectively, of the line 

segment s when one travels from (xj,y{) to (zj,yj). Thus, the quantity contained 

in the area An , shown in Fig. A .l, is obtained via Eq.(A.l) as

Qn =  QOiAnOx +  qOa-̂ ATOa +  ^Oj-̂ ATOj +  Q0 4 Ano4- (A.3)

Substituting Eq.(A.2) into Eq.(A.3) yields

Qn =  - x‘2 yl)(1)
z  *=1

+ e?,[x\yi -  Ay[){2)
L « = i

+  \q o s W i  -  4 y[)(3)

+ E  ̂  W i  ~  xiy ‘i){4) (A-4)L *=i

As mentioned in Sec. 2.4, it is practical and efficient to compute the quantity Qn 

by sweeping through grid lines. It can be seen that Qn is linearly dependent on the 

quantities go’s and the coordinate points (x,y). That is, Eq.(A.4) has a so-called 

‘associative’ property. As a consequence, it is immaterial whether QN is computed 

at once or it is computed by accumulating the contribution from each segment as 

grid lines are swept through. The contribution of each line segment to a particular 

quantity Qn can be computed as the following. Let’s assume that all intersection 

points among grid lines have been found and indicated by in Fig. A.l. As the 

old grid lines are swept through, the line segment “be” is the co-segment of the 

polygon Anoi on right and the polygon Ano 4 on its left. So, the contribution of 

“be” to the quantity Qn are - \ q 0 i{xbyc -  xcyb) and \qo 4 {xbye -  xcyb) according to 

the above convention regarding the parameter “e”. Thus, the contribution of “be” 

to the quantity Qn cam be written as

&bc = \i<lo4 - q o l){xbyc-xeyb) (A.5)
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Equation (A.5) is the same as Eq.(2.5) where qo4  and qox are written as qi and qR 

since they are on the left and right of the segment “be” respectively.

Let’s move on to sweeping through the new grid lines (solid lines in Fig. 

A .l). For example, it can be seen that the line segment “ab” and “de” belong to 

the polygons A so i and A so i respectively. The contribution of “ab” to the quantity 

Qn  is, thus,

=  -̂ qô XaVb -  xhya) (A.6)

since the polygon A noi lies on the right of “ab”. And the contribution of “de” to 

the quantity QN is

=  ^qo, {xdVe ~ xeyd) (A.7)

since the polygon Ano, lies on the left of “de”.

Equations (A.6) and (A.7) are the same as Eq.(2.6) in Sec. 2.5. Note that each 

new line segment is also a co-segment of two polygons, one is An , and another 

is a polygon to its right or left. Thus, by sweeping through a new grid line, the

contribution of each line segment, as in Eq.(A.6) or (A.7), can be added to two

polygons at the same time, but only with opposite sign of A^.

It is obvious that the tasks, now, are finding the intersection points of grid 

lines and locating a polygon to which each line segment belongs. These axe not 

trivial and can be done in several ways. Finding the intersection points may not 

seem to be quite involved since it can be done by solving a pair of equations of 

straight lines (note that a line segment can be approximated by a straight line). 

However, it can be a little complicated to cover all possible cases. These cases 

include a line of infinite slope (vertical line), two lines parallel to each other, two 

lines lie on top of each other, etc.. Note also that these grid lines have the finite 

length, not infinite length as in the general equations of straight lines. The next 

task, namely that of locating a polygon to which each line segment belongs, can also 

be accomplished by several methods. First of all, a line segment can be represented
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by its midpoint. Three distinct methods for determining whether a point is located 

within a particular polygon are given below. There are several other methods but 

these three methods have been experienced and extensively investigated by the 

author.

The first method is illustrated in Fig. A.2. Here, the particular polygon is 

assumed to be a  quadrilateral since it has the same topology as a regular grid cell. 

If a point P lie inside the polygon, the summation of all angles which P makes with 

the vertices of the polygon must be equal to 2x radian. If the summation is less 

than 2jt radian, the point P lie outside the polygon. These angles can be computed 

by using the law of cosine. This is the drawback of the method. This is because

computing a trigonometric function on a computer takes more time than performing

an arithmetic operation (plus, minus, e.t.c.). Moreover, ambiguity arises when the 

point P lies close to a side of the polygon.

The second method is borrowed from an interpolation procedure. Each 

quadrilateral can be divided into two triangles as shown in Fig. A.3. Each of these 

triangles can be mapped onto a unit triangle as seen in Fig. A.4. It can be shown 

that any point P(x,y) in the triangle can be represented by

x = xA + {xB -  xA)£ +  (xr, -  xA)r]

y  =  v a  +  [vb -  yx) Z +  (yi» -  v a )n  (a .s )

where 0 < £ < 1 , 0 <»7 < 1  and 0 < £ +  ij < 1.

Equation (A.8) can be written as

' (X B  -  X A )  (x D  -  XA )  '
' Z X - X x

. {vb -  Va ) (yn  -  yx) .
. n . . y  -  yx

If the conditions

0 < £ < l ; 0 < f 7 < l  and 0 < £ +  77 < 1, 

are met for either one of the two triangles, the point P (x,y) lies inside of the 

quadrilateral. Otherwise it lies outside of the quadrilateral.
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Fig. A.3 A quadrilateral is divided into two triangles.
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Fig. A.4 Mapping of a triangle onto a unit triangle.
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The third method makes use of a vector algebra approach. This method 

tells whether a point P(x,y) lies on the top, bottom, left, or right of a vertex of the 

quadrilateral. Thus, the first step is to locate a point (ij) which is the co-vertex 

of four quadrilaterals. This can be done by finding a shortest distant between the 

point P(x,y) and a grid point (ij) as illustrated in Fig. A.5. Even though the 

previous two methods do not require this procedure, it is a good idea to do so since 

it can save some computational time. Let

V =  VXi Z +  Vygy

Vi = vlxex +  vlviy 

V2  =  v2xi z +  v2 vev

denote three vectors emanating from the point (ij) to the point P(x,y) and to the 

other two vertices of the quadrilateral.

From vector algebra, a vector can be represented by a linear combination of any 

two vectors which lie on the same plane as that vector (Fig. A.6). So, it can be 

written as

V = a2Vi +  a2 V2  (A.10)

or

vxex +  vvey =  ai(vlzes +  vlyey) +  a2 (v2 sex +  r2yey) 

= (°iviz + + (ai«iy +  a2 v2y)ev.

Equation (A. 11) can be written in the matrix form as

(A .ll)

Viz t>2z a i Vx
Viy V2y a2

. v v .
(A.12)

Once ai *ind a2  are found, it can be determined whether the point P(x,y) lies on 

the top, bottom, left ,or right of the point (ij). This is illustrated in Fig. A.7.
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Fig. A.5 The shortest distance between a point P and a grid point (ij).
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*■

Fig. A.6 Three vectors emanating from a point (i j ) .
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Fig. A.7 Conditions that determine in which grid cell the point P lies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



182

The third method is generally faster than the other two methods since less 

arithmetic operations are performed. The only drawback of this method is that 

the point P(x,y) may not actually lie inside any of the four quadrilaterals found 

previously if grid lines have a large curvature. If this is the case, the method will 

indicate that the point P(x,y) lies in one of the quadrilaterals which is incorrect. 

However, this problem can be prevented when care is exercised. All three methods 

can be extended into three dimensions, but the third method is less complicated 

and requires much less computational time.

At this point, it may not be clear as how the algorithm is implemented. 

Nonetheless, it is seen that all necessary tools in doing so have been given. It is 

the matter of utilizing them. The implementation of the algorithm is given below. 

The following procedure is extracted from the author’s years of experience. There 

may be other ways to implement the algorithm more efficiently. However, it has 

been proven to the author, whose main background is in Mechanical Engineering 

(not in Computer Sciences), that the following procedure is sufficient and effective. 

The first step is to find all intersection points among grid lines. Thus, each grid 

line is divided into several line segments. The number of the line segments for each 

grid line varies according to the number of intersection it makes with the other grid 

lines. Then, each grid line is swept through. Each line segment is represented by its 

midpoint. For a line segment of the old grid line, a search routine is used to locate 

the area As-, in which the segment lies. Then the contribution A f as in Eq.(A.5) 

is added to the quantity Qsir  The quantities qi and qR in the formula are known 

quantities and can be identified simply by the index of this particular segment. For 

a line segment of the new grid line, a search routine is used to locate the area Ao in 

which the segment lies. This information tells which qo to be used in Eq.(A.6) for 

computing A^. The quantity A ^ is, then, added to the quantity Qn on the left of 

the line segment. At the same time the quantity Qn on its right is subtracted by
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A ^. These Qn 's can be easily identified by the index of the line segment. This way 

all the quantities Qn 's are filled by A? and A^ as all grid lines are swept through. 

It is immaterial whether the old or new grid lines are swept through first. It can 

be shown that the method works no matter how grid lines are oriented. So, it can 

be applied at the interfaces where two (or more) subdomain grids of completely 

different topologies meet. This statement is also confirmed by the results in Chap. 

4.

It should be mentioned that the conservative rezoning algorithm yields an 

ambiguous case if grid lines are coincident. This is because the method does not 

know which area An  to put A£ (Eq.(A.5)) into, when the old grid lines are swept 

through. Also, it is not sure of which quantity qo to use in Eq.(A.6) when the new 

grid lines are swept through. This case can be avoided by moving the grid lines 

which lie on top of each other a little apart (say 1 x 10-7). This does not add a 

significant error to the calculation.
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Appendix B

THE CALCULATION OF CELL 
SURFACE AREA AND VOLUME

In Sec. 3.2, it was noted that the finite volume approach requires the 

calculation of the volume of the cell element and its surface areas. A method of 

doing so is illustrated in this appendix. Although any arbitrary grid can be used, 

the hexahedral cells have been found the most practical and widely used. So, the 

procedure to compute the volume of a hexahedral and its surface area is described 

here. An example of a general hexahedral is shown in Fig.B.l where Sj, S j,  and 

Sr  are vectors of the three of its surface areas in the curvilinear (*, j ,  k) coordinate. 

Figure B.2 illustrates a surface of the hexahedral. If the four vertices defining the 

surface are coplanar, its area is given by one half the cross product of its diagonal 

line segments,

S  = - R $ i  x R 42 (B.l)

If the vectors U31 and R 4 2  are written as

R 31 = (zs -  x i ) ex + (y3 -  yi)e„ + (z3 -  Zi)e,

and

RAi = {xA-  x 2 )ex +  (yA -  y2)e„ +  (z4 -  z2 )ex ,
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Fig. B .l An arbitrary hexahedral.
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Fig. B.2 A surface of a hexahedral.
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the vector S  can be computed as,

* - k
( x j - x i )  (ys -  !/i) { z s - z i )  

(x4 - x 3) (y4 - y 2) (24- 22)
or

s  =  2 ^ y a  —  —  2 ^ )  —  (2T S  —  « i ) ( s /4 —  y 2 ) ] c *

-  \ [ ( X i  -  * l)(24 -  22) -  (2S -  21)(X4 -  ®2)]ey

+  ^[(23 -  21) (y4 -  y2) -  (ys -  yi)(24 -  x2)]ez

This can be written as

S  =  S I X e x + S IY e v + S IZ e t . (B-2)

If the index i , j , k  are used in Fig. B .l, the formulas for SIYijk, and SIZijk

in Sec. 3.2 can be verified. Note that Eq.(B.l) is still a good approximation for the 

surface area even if the surface is non-planar.

The volume of a hexahedral is computed in the following way. A general 

hexahedral is composed of five tetrahedra (Fig. B.3), each of whose volume is 

determined by one sixth of the triple product, e.g. (Fig.B.3),

^ 1 2 3 6  —  c ( - ^ 21 x  -^ 31 ) " ■^B1 •b

If the vectors R 2 1 , R 3 1 , and Rei are written as

-R21 = (22 -  Z ije*  +  (y2 -  yi)ev +  (2* -  2 i)e ,

-Rsi = (23 -  Xi)ex +  (y$ -  yi)e„ +  (z3 -  Zi)ez

•RbI =  (26 -  I l j e *  +  (ye -  yi)Cy +  (26 -  Zl)*z

it can be shown that

(B.3)

^1236 — T

(22 -  *i) (y2 -  yi) (22 -  22)

(23 -  ®i) (ys -  yi) (23 -  Zi)

(26 -  *i) (y6 -  yi) (26 -  Zi)
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Fig. B.3 A hexahedral is composed of five tetrahedra.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



189

X

Fig. B.4 An arbitrary tetrahedral.
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Thus, the volume of the hexahedral is the sum of the five constituent tetrahedra, 

i.e.,

V OL =  Vuse +  Vjgey +  Vs816 +  Viess +  î34« • (B.4)
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