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Effects of climate oscillations on wildland fire
potential in the continental United States
Shelby A. Mason1 , Peter E. Hamlington1 , Benjamin D. Hamlington2, W. Matt Jolly3,
and Chad M. Hoffman4

1Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, USA, 2Department of Ocean, Earth and
Atmospheric Sciences, Old Dominion University, Norfolk, Virginia, USA, 3U.S. Forest Service, Rocky Mountain Research
Station, Fire Sciences Laboratory, Missoula, Montana, USA, 4Department of Forest and Rangeland Stewardship, Colorado
State University, Fort Collins, Colorado, USA

Abstract The effects of climate oscillations on spatial and temporal variations in wildland fire potential
in the continental U.S. are examined from 1979 to 2015 using cyclostationary empirical orthogonal
functions (CSEOFs). The CSEOF analysis isolates effects associated with the modulated annual cycle and
the El Niño–Southern Oscillation (ENSO). The results show that, in early summer, wildland fire potential is
reduced in the southwest during El Niño but is increased in the northwest, with opposite trends for
La Niña. In late summer, El Niño is associated with increased wildland fire potential in the southwest.
Relative to the mean, the largest impacts of ENSO are observed in the northwest and southeast.
Climate impacts on fire potential due to ENSO are found to be most closely associated with variations in
relative humidity. The connections established here between fire potential and climate oscillations
could result in improved wildland fire risk assessment and resource allocation.

1. Introduction

It is anticipated that, over the coming decades, climate change will contribute to increased wildland fire
activity, particularly in the western U.S. [Westerling et al., 2006; McKenzie et al., 2004]. Due to the negative
environmental and human impacts resulting from such an increase, firemanagement agencies are now using
seasonal climate forecasts for planning, long-range fire behavior prediction, resource allocation, and risk
assessment [Garfin and Morehouse, 2001]. These forecasts depend heavily, however, on predictions of inter-
nal climate oscillations, including the modulated annual cycle (MAC) [Wu et al., 2008], which describes the
interannual variability in the seasonal cycle, and the El Niño–Southern Oscillation (ENSO) [Ropelewski and
Halpert, 1986; Ropelewski and Halpert, 1987]. The MAC is associated with variations in the strength of the
seasonal cycle and is due to interannual phenomena such as changes in solar intensity. These and other oscil-
lations influence the climate in a variety of ways, resulting in subsequent impacts on wildland fire risk and
potential [Gershunov and Barnett, 1998; Barbero et al., 2015; Morgan et al., 2008]. The primary objective of
the present study is to better understand impacts of the MAC and ENSO on fire potential in the
continental U.S.

Substantial prior research has addressed the connection between climate signals and wildland fires. For
example, linkages have been made between wildland fires and the combined effects of ENSO and the
Pacific Decadal Oscillation [Crimmins, 2010; Hessl et al., 2004; Heyerdahl et al., 2008]. The effects of longer-term
climate change have also been examined [Brown et al., 2004; Trouet et al., 2006; Fauria et al., 2010; Flannigan
et al., 2009; Jolly et al., 2015;Williams and Abatzoglou, 2016]. In the U.S., Beckage et al. [2003] found that ENSO
affects wildland fires in the Florida Everglades by changing the amount of dry-season rainfall and by influen-
cing the frequency of lightning strikes. Brenner [1991] also analyzed ENSO effects in Florida, finding a relation-
ship between acres burned and anomalous sea surface temperature and sea level pressure in the central and
eastern Pacific. In the southwest U.S., Swetnam and Betancourt [1990] found that wildland fires were larger
and more frequent in summers immediately following the dry phase associated with La Niña winters
(although the same trends may not be present at fuel-limited lower elevations). Similarly, Brown et al.
[2008] found that there were more wildland fires in Utah during La Niña events and fewer fires during El
Niño events. Paleoecological data and fire-scarred tree ring reconstructions generally support the observa-
tion that climate variability is a dominant factor affecting large wildfires in the western U.S. [McKenzie et al.,
2004; Kitzberger et al., 2007].
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Despite this prior work, there is still considerable uncertainty regarding the specific impacts of different
climate oscillations on wildland fire potential for the entire continental U.S. Although previous studies have
related the MAC to wind resource variability [Hamlington et al., 2015] and surface air temperature [Qian
et al., 2011], both of which are relevant to wildland fire potential, little understanding exists of the connection
between the MAC and wildland fires. It is also difficult to separate the specific impacts of simultaneously
occurring climate oscillations, each with different phases and periods. Moreover, many previous studies of
climate oscillations, and ENSO in particular, have been based on focused regional observational campaigns
that are unable to provide simultaneous information about climate effects on wildland fire potential for
the entire continental U.S.

In order to more effectively determine the spatial and temporal variability of wildland fire potential due to the
MAC and ENSO in the continental U.S., cyclostationary empirical orthogonal functions (CSEOFs) [Kim et al.,
2015] are used here to analyze the U.S. Burning Index (BI). The BI quantifies fire danger related to potential
flame length and depends on environmental factors such as temperature, precipitation, relative humidity,
and wind speed. When combined with site descriptions, these factors control the moisture content of wild-
land fuels, which strongly affects fire spread rate and the energy released by burning [Bradshaw et al., 1984;
Flannigan et al., 2015]. Although the BI is positively associated with wildland fire occurrence [Preisler et al.,
2004] and the seasonal BI is positively associated with area burned [Abatzoglous and Kolden, 2013], the BI
is strictly a measure of anticipated wildland fire potential and the difficulty of fire containment. The BI is also
largely based on atmospheric conditions and does not account for fuel abundance or accumulation. The BI
has been used previously to relate climate effects and fire season length [Jolly et al., 2015], and it is used here
to determine specific impacts of the MAC and ENSO on wildland fire potential.

2. Data and Methods

The present CSEOF analysis is based on monthly-averaged BI values calculated for the continental U.S. using
data from the National Centers for Environmental Prediction North American Regional Reanalysis (NARR)
weather data set, which covers the time period from 1979 to 2015 [Mesinger et al., 2006]. This data set
provides wind speed, relative humidity, temperature, and precipitation 8 times per day with 0.3° spatial
resolution. Using these data, spatial maps of the BI are calculated and then averaged monthly to obtain
the analysis data set. Although this approach precludes examination of diurnal variations in the BI,
monthly-averaged data are sufficient for examining longer term interannual climate oscillations, which are
the focus of this study.

2.1. Burning Index Calculation

Four types of data are used to calculate the BI: (i) static site descriptions, (ii) daily observations, (iii) 24 h obser-
vations, and (iv) carry-over values [Bradshaw et al., 1984]. Site descriptions include the fuel model, slope class,
live fuel types, climate class, latitude, and annual average precipitation for the site. The temperature, relative
humidity, cloud cover, and wind speed measured at 1300 LST are input for the daily observations. The 24 h
observations includemaxima andminima of temperature and relative humidity, as well as precipitation dura-
tion. Carry-over values of heavy dead fuel moistures from the previous 7 days are also input to the system.
Daily means and extremes of temperature and humidity, daily precipitation duration, and maximum daily
wind speed are derived from the NARR data set to provide both daily and 24 h observations for all calcula-
tions. Fuel model G is used at all locations to provide a standard fire danger metric across the study area
[Jolly et al., 2015]. Carry-over values are maintained internally for all daily calculations. All of these inputs
are used to calculate the fuel moisture for 1, 10, 100, and 1000 h dead down woody time lag fuel classes
[Fosberg et al., 1970]. These general classes are commonly used in fire management as descriptors of poten-
tial fire behavior and are based on the rates of drying associated with fuel components of various sizes. The
resulting fuel moistures are used to calculate the BI, which is linearly related to the potential flame length at
the head of the fire and represents the difficulty of fire containment [Bradshaw et al., 1984].

2.2. Cyclostationary Empirical Orthogonal Function Analysis

Using time-resolved spatial maps of BI with monthly resolution, a CSEOF analysis is performed in order to
extract the variability associated with the MAC and ENSO. As described in previous work [Hamlington et al.,
2011; Hamlington et al., 2015], the CSEOF method decomposes space-time data into a series of modes
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consisting of a spatial component (known hereafter as the loading vector (LV)) and a corresponding temporal
component (known as the principal component time series (PCTS)). The LVs represent spatial patterns of
variability of the BI, and the PCTS represents temporal variations of these patterns. Complete spatial-temporal
CSEOF modes are obtained by multiplying the LVs and the nondimensional PCTS. Substantial additional
detail on the CSEOF method is provided in Kim et al. [2015] and is also described at length in Hamlington
et al. [2011].

The primary difference between the CSEOF technique and traditional eigenvalue analyses is that CSEOFs
have time-dependent LVs that are constrained to be periodic with a set nested period. The nested period
is selected based on physical understanding of the data being analyzed. In this way, the LVs are spatial maps
that capture the temporal evolution of the BI within the specified nested period. The corresponding PCTS
explains the amplitude of the LVs through time. As an example, when studying the annual cycle in monthly
data, a 1 year nested period would be selected. Each LV would consist of 12 maps (one for each month)
describing the 1 year oscillation, and the corresponding PCTS would show changes in strength of the annual
cycle from year to year. CSEOFs avoid the assumption of stationarity in the decomposed spatial patterns and
reduce the mixing of physical signals across several modes, as frequently occurs in more traditional analyses
based on empirical orthogonal functions (EOFs). Although the formalism of the EOF approach is similar to the
CSEOF method used herein, mode mixing in EOF approaches precludes an unambiguous identification of
different climate signal effects on the BI. The ability to isolate specific cyclostationary climate signals from
Earth system data is the primary advantage of the CSEOF method as compared to EOF methods.

The present study is the first to use CSEOFs for the analysis of climate oscillation impacts on wildland fires
across the continental U.S. Previous studies, such as those by Gedalof et al. [2005], Page et al. [2008], and
Riaño et al. [2007], have used EOF analysis when looking at area burned. However, the effects of climate oscil-
lations are expected to vary both spatially and temporally, and understanding these variations requires the
use of the CSEOF approach.

3. CSEOF Burning Index Analysis

Following previous CSEOF studies of climate oscillations [Hamlington et al., 2011, Hamlington et al., 2015], a
1 year nested period has been selected for the CSEOF analysis in order to target the variability associated with
the MAC and ENSO. While this choice is obvious for studying the MAC, particularly given the 1 year periodicity
of the annual cycle, the use of a 1 year nested period to capture ENSO variability is less obvious. Using a 1 year
nested period, the ENSO-related LVs show the strengthening and weakening of ENSO effects that are known
to occur over the course of a year, while the PCTS represents the occurrence of ENSO events. The analysis is
specifically focused on anomalies in the BI, which are obtained by first removing mean and linear trends
computed over the full data record at each spatial location. The magnitudes of the anomalies, representing
departures from themean BI at each location, are then captured by the CSEOFmodes. Linear trend removal is
necessary because, using the relatively short data record examined here, linear trends will be split across
multiple CSEOF modes, thereby making the physical interpretation of each mode more difficult. Although
the linear trend in the BI may be of interest for understanding the effects of climate change on the BI, con-
necting climate change to the BI using such a short data record is a challenge and not the focus of this paper.

CSEOF LVs are computed, providing a map for each of the 12 months within the 1 year nested period and
then averaged over four seasons. These seasonal LVs and the corresponding PCTS for the first CSEOF mode
are shown in Figure 1. This mode was found to represent 31% of the total observed variability in the BI anom-
aly. The four seasons, each spanning 3 months, are referred to here as late winter (January-February-March),
early summer (April-May-June), late summer (July-August-September), and early winter (October-November-
December). The PCTS in Figure 1 is strictly positive, which indicates that the physical period of the first-mode
signal is fully described by the temporal variation of the LVs contained within the 1 year nested period
[Hamlington et al., 2011]. This allows the first mode to be identified as the MAC, which specifically indicates
the strength of the seasonal cycle from year to year. As a result, when the MAC is at a maximum, there will be
greater differences between summer and winter, as compared to years with a weaker MAC signal.

The LVs in Figure 1 show that, in the western U.S., BI anomalies are greatest (i.e., most positive) during both
early and late summer, with the smallest (i.e., most negative) BI anomalies occurring during late winter. These
results are consistent with annual temperature patterns, which have significant impacts on the BI calculation.
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There is also a significant increase in the BI anomaly in the southwest during early summer, and this increase
expands to cover much of the western U.S. by late summer. More significantly for the purpose of
understanding future BI variability, the PCTS reveals variations in the strength of this pattern from year to
year. In particular, variations in the MAC from the mean approach 20%, indicating a strengthening of the
seasonal cycle in some years (e.g., in 2008) and a weakening of the seasonal cycle in other years (e.g., in
2005). Since BI is a strictly positive quantity, it is likely that these variations are most directly associated
with changes in the BI during the peak of fire season. There also appears to be a roughly 2 year period of
variations due to the MAC.

In previous CSEOF studies of Earth system data, for example those focused on wind resource [Hamlington
et al., 2015] and sea level [Hamlington et al., 2011] variability, the second CSEOF mode was found to be asso-
ciated most closely with ENSO. The present results follow these prior studies, with the second mode closely
matching the concurrent Multivariate ENSO Index (MEI) [Wolter and Timlin, 2011]. The MEI characterizes the
intensity and phase of ENSO, where positive values represent El Niño events and negative values represent La
Niña events. As noted previously [Wolter and Timlin, 2011], El Niño events represent larger positive values of
the MEI as compared to the negative values for La Niña events.

In order to further improve the representation of ENSO impacts on the BI, the CSEOF modes are regressed
onto the MEI using a technique described in Hamlington et al. [2011] and Hamlington et al. [2015]. This regres-
sion of the CSEOF modes reduces mode mixing and improves the representation of ENSO variability within a
single mode, mitigating the challenges normally associated with a relatively short data record. The resulting
regressed second CSEOF mode is shown along with the unregressed second mode PCTS and MEI in Figure 2.
The unregressed second CSEOF mode explains 5% of the total variability in the BI anomaly, while the
regressed mode likely explains roughly 10% of the total variability. Positive values of the PCTS in Figure 2
correspond to El Niño events and produce an increase in the BI when combined with a positive value in
the LV maps and a decrease in the BI when combined with a negative value. The opposite is true for a La
Niña event, which is associated with negative values of the PCTS and MEI. The bottom panel of Figure 2

Figure 1. Mode 1 of the CSEOF decomposition, explaining the MAC, after removing the long-term trend for the BI so that
the CSEOF analysis is performed on the BI anomaly. (top and middle rows) LVs for the dimensionless BI and the (bottom
row) dimensionless PCTS, representing the interannual amplitude modulation of the annual cycle. The LVs are averaged
monthly according to the labels to produce one map for each season.
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indicates that both the regressed and unregressed second mode PCTS are in relatively good agreement with
the MEI, with correlations of 0.85 and 0.61, respectively.

The LVs in Figure 2 show that, during an El Niño (i.e., when the PCTS is positive), BI anomalies are negative in
the southwest and positive in the northwest in early summer (note that such anomalies are obtained by
multiplying the LVs by the corresponding value of the PCTS). This indicates greater wildfire potential in the
northwest and lesser potential in the southwest during early summer in El Niño years. These general regional
trends then shift in late summer, with positive BI anomalies in the southwest and negative anomalies in the
northwest. The opposite effect is observed during La Niña events, where negative values of the PCTS are
multiplied by the LVs to obtain positive BI anomalies in the southwest and negative anomalies in the
northwest during early summer. This indicates greater wildfire potential in the southwest and reduced poten-
tial in the northwest during early summer in La Niña years. Once again, these regional effects switch during
late summer, with negative BI anomalies in the southwest and positive anomalies in the northwest.

Furthermore, Figure 2 shows that much of the U.S. experiences negative BI anomalies during early winter of El
Niño years, indicating reduced wildland fire potential. These negative anomalies are more pronounced in the
southern half of the U.S. in late winter. There are similar negative anomalies in early summer in the southern
U.S., which are paired with positive anomalies in the northern U.S., creating a north-south dividing line of zero
BI anomaly. Opposite effects are observed during La Niña events, where the southern U.S. experiences posi-
tive BI anomalies in all but the late summer season. These anomalies, and the associated changes in wildland
fire potential, are likely to have the greatest real-world impacts during early and late summer when wildland
fire ignition is more common.

In order to further understand the possible range of influence resulting from MAC and ENSO variability, the
maximum percentage increase and decrease in the BI relative to the long-term mean are shown in Figure 3
for both climate oscillations. These results are obtained by computing the largest and smallest values of the BI
anomaly at each location for the first and second mode CSEOFs, and then normalizing by the mean value of

Figure 2. Regressedmode of the CSEOF decomposition, explaining the ENSO, after removing the long-term trend for the BI
so that the CSEOF analysis is performed on the BI anomaly. (top and middle rows) LVs for the dimensionless BI and the
(bottom row) dimensionless PCTS. The LVs are averaged monthly according to the labels to produce one map for each
season. The Multivariate ENSO Index (MEI; black dashed) is plotted with the non-regressed PCTS (red) and the regressed
PCTS (blue) to demonstrate the relationship between the mode and ENSO. The LV maps depict the positive phase of ENSO.
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the BI at the same location. The largest increases and decreases in the BI due to the MAC occur in the western
U.S. and in Florida, indicating that these are the regions most affected by changes in the strength of
the seasonal cycle. By contrast, the greatest changes relative to the mean due to ENSO are observed in the
northwest and southeast U.S. Comparison with Figure 2 indicates that ENSO-related increases in the
northwest are associated with El Niño and increases in the southeast are most associated with La Niña.
Changes relative to the mean are, overall, roughly twice as large for the MAC as compared to ENSO, and
changes as large as 100% of the mean are seen for the MAC (that is, MAC-induced increases in the BI can
be twice as large as the mean).

4. Discussion

In order to provide an explanation for the observed results, the same CSEOF regression analysis was
performed on each of the variables from the NARR data set used in the calculation of the BI (i.e., temperature,
precipitation, relative humidity, and wind speed). Each of these analysis results is shown in the supporting
information. The results for the relative humidity and total precipitation were found to be most similar to
the BI results in Figure 2. In particular, regional patterns and seasonal variability for the relative humidity
closely match results for the BI in Figure 2. In this case, the second mode relative humidity PCTS closely
matches the MEI.

These results suggest that the effects of ENSO on relative humidity and total precipitation have leading
roles in determining ENSO-related spatial and temporal variability of the BI. This connection is not surpris-
ing; wildland fire potential is heavily dependent on fuel moisture and several prior studies have noted the
impacts of variability in precipitation on wildland fires [Flannigan et al., 2015; Holden et al., 2007;
Ropelewski and Halpert, 1986]. Increases in relative humidity and precipitation relative to the mean cause
an increase in the fuel moisture content, which leads to a decrease in the BI. ENSO has also been shown to
cause variability in the North American monsoon system [Grantz et al., 2007], which heavily affects
precipitation amounts in the southwest U.S. This relationship could explain the monthly reversal in the
BI seen in the LVs, which is potentially caused by seasonal shifts in the North American monsoon and
its accompanying precipitation.

In order to validate the trends obtained from the CSEOF analysis, observational statistics for acres burned in
the areas of highest BI anomaly have been analyzed. Data for fire location and number of acres burned were
obtained from the Monitoring Trends in Burn Severity (MTBS) burned area boundaries data set [Eidenshink
et al., 2007]. This data set spans the time period from 1984 to 2014 and leverages 30 m resolution images
from the U.S. Geological Survey Landsat to map and characterize wildland fires. Acres burned is the preferred
metric for evaluating BI results, since the BI represents the difficulty of containment of an already-ignited fire
and so has no relation to fire occurrence itself. In this way, an ignited fire in an area with a relatively high BI
will be more difficult to contain and therefore will be more likely to consume a larger number of acres.

Figure 3. Maximum percentage (left column) increase and (right column) decrease in the BI anomaly relative to the long-
term mean for the MAC (top row) and ENSO (bottom row), as given by the modes shown in Figures 1 and 2.
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Acres burned per fire in the southwest and northwest, averaged over each season, are shown in Figure 4 for
both positive and negative MEI, corresponding to El Niño and La Niña conditions, respectively. Consistent
with the BI results from the CSEOF analysis, there are smaller fires during early summer in the southwest
for positive MEI years, as compared with negative MEI years. This relationship reverses in late summer, with
positive MEI years producing comparatively larger fires. For the northwest in late summer, there are, on
average, smaller fires during positive MEI years as compared with negative MEI years. This is again consistent
with the CSEOF results, which predict low (high) BI values during positive (negative) MEI years. Higher BI
values, such as those observed for the northwest in late summer during negative MEI years, indicate a more
difficult to contain and therefore larger, fire per occurrence.

The impact of the MAC is also visible in Figure 4. Regardless of the phase of the MEI, there is a significant
increase in acres burned in early summer for the southwest and in late summer in the northwest relative
to the other seasons. This is consistent with the LVs shown in Figure 1. The increase seen in early (late)
summer for the southwest (northwest) during La Niña conditions demonstrates the manner in which the
MAC and ENSO can constructively combine to dramatically increase wildfire potential.

Once again, it is important to note that the BI does not take into account the ignition probability of wildland
fires and thus has no direct relation to fire occurrence. Rather, the BI describes fire potential and difficulty of
containment of an already-ignited fire. In this way, a location can have a high BI, but with no source of igni-
tion, a fire will not occur. Similarly, a location can have a low BI yet still have multiple fires due to multiple
ignition sources, although these fires will be relatively easier to contain.

5. Conclusions

Using CSEOFs, the effects of MAC and ENSO climate signals on the BI in the continental U.S. have been iso-
lated. Burning index anomalies associated with the MAC follow annual temperature variations, with relative
increases in the western U.S. during early and late summer. As a result of ENSO variability, the northwest and
southwest U.S. experience a seasonal reversal in BI anomalies between early and late summer. During an El
Niño phase in early summer, the southwest experiences a decrease from the mean BI and the northwest
experiences an increase. These regional variabilities reverse as the year progresses into late summer. This
seasonal shift is echoed in relative humidity and precipitation variations and is in good agreement with
observational statistics of area burned.

Prediction of the BI based on the current strength and stage of a long-term climate cycle could result in
improved wildland fire risk assessment and resource allocation. Given longer data records, the same
CSEOF analysis presented here could also be used to separate decadal and multidecadal variability from
long-term climate trends in the BI. It should be noted that while this study analyzes the BI, accurate and
long-term fire ignition data could be used to further investigate fire occurrence. Further validation of the
method and results presented herein are also necessary using additional data sets; the MTBS data set used

Figure 4. Statistics for acres burned at (left panel) southwest and (right panel) northwest locations, as indicated in the
insets. Average acres burned for each season are shown for positive MEI months and negative MEI months.
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here considers only large fires where many acres are burned. Additionally, a more extensive and representa-
tive fuel model could be used to further research BI linkages to climate within specific ecoregions. Additional
research is also required to more fully explain why variations in the BI occur due to the ENSO and MAC.
Furthermore, while the present study utilizes a 1 year nested period, the same CSEOF analysis with a 2 year
nested period could be used in future work to further examine the BI anomalies during the transition
between El Niño and La Niña phases.
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