






high backscatter, whereas the homogeneous regions have
relatively weak acoustic returns.
[9] The spatial structure of the turbulence was best resolved

by the high‐frequency conductivity sensors. The variance
of high‐pass filtered conductivity (frequencies 10–100 Hz)
is indicated by color‐coded dots and superimposed on the
density structure in Figure 4 (middle). The variance in this
band is within the inertial‐convective and viscous‐convective
subranges of the salinity spectrum; thus it provides a quali-
tative indication of where turbulent mixing of salt is occur-
ring. The high conductivity variance is almost exclusively
localized to the braids of the instabilities, with much lower
values of conductivity variance within the cores. The spatial
distribution of conductivity variance is consistent with the
acoustic backscatter distribution, which shows quiet condi-
tions within the cores (indicated by “C” in Figure 4) and
intense backscatter in the braids (indicated by “B”). Although
the local gradients were highest in the center of the braid, the
high‐frequency variations of salinity indicate that most of the
mixing occurred in the downstream extension of the braid
(marked as “M”). These mixing zones appeared to be more
extensive in the upper limb of the braid; however this is due to
the greater relative motion in the upper water column. The
turbulence analysis presented below indicates that the tur-
bulence levels were comparable.
[10] The magnitude of the dissipation of scalar variance of

salinity cs and dissipation of turbulent kinetic energy " were
estimated for 10–15 second intervals (shown in Figure 4,

middle) within the instability, in order to characterize the
intensity of turbulence within the cores and the braids. Fol-
lowing Shaw and Trowbridge [2001], " was estimated from
the inertial subrange of vertical velocity variance, and cs

was estimated based on the inertial subrange and viscous‐
convective subrange of salinity variance (note that virtually
all of the conductivity variance is due to salinity in this
environment). The result of this analysis (Table 1) show that
cs is considerably elevated in the braid mixing zones relative
to the cores. The center of the braid (Interval 2) shows a more
modest elevation in dissipation rates, but that segment
extends into the cores on either side, reducing the average
rates for that interval (note that shorter data segments would
not yield statistically significant estimates). Estimates of "
do not show the marked reduction in the cores that are seen
in cs—apparently turbulence continues within the weakly
stratified cores after the salinity has been homogenized, but
the cs distributions clearly indicate that the mixing of salt
occurs almost exclusively in the braids.
[11] Estimates of the Ozmidov scale Lo = ("/N3)1/2 (where

N is the local buoyancy frequency) are also shown in Table 1,
providing an indication of the scales of the turbulent eddies.
TheOzmidov scale is only 5 cmwithin the braid, and it ranges
from 10 to 30 cm in the braid mixing zone—much smaller
than the overall scale of the primary instabilities, consistent

Figure 3. Detail of shear instabilities in (a) inner transect
and (b) outer transect. (c and d) Salinity, relative velocity
and Ri profiles at roughly 5‐m intervals are shown for two
images. Ri profiles are based on 5‐s (roughly 5‐m) averages
of shear and stratification. Dashed lines indicate the center of
the instabilities (based on the inflection point of the braid).

Figure 4. (top) Comparison of acoustic imagery to in situ
measurements of the salinity structure, shown as (middle)
contours and as (bottom) timeseries plots, within instabilities
observed at the anchor station. The intensity of high‐passed
(10–200 Hz) salinity variance is indicated by colored dots
superimposed on the salinity contours in Figure 4 (middle)
(red > 0.1 psu2, blue < 0.01psu2). In all of the plots, the “B”
symbols indicate the approximate center of the braid; “C”
indicates the core, and “M” indicates the mixing zone
“downstream” of the braid in a coordinate system moving
with the instability. The three intervals for calculation of
turbulence quantities are shown between Figures 4 (middle)
and 4 (bottom).
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with the hypothesis of localized mixing within the braids.
Only within the cores is the stratification weak enough that
the Ozmidov scale approaches that scale. The most intense
mixing occurs “downstream” of the inflection point of the
braid, considering a reference frame that moves with the
instability. Mixing develops on both the upward and lower
limb of the braid, and becomes most intense about 1=2 wave-
length downstream. The mixing appears to be initiated by
secondary instabilities, which are evident as fluctuations
with roughly 1‐m wavelength on the braids (evident both in
the echo‐sounder data and the timeseries of salinity). The
wavelengths of the observed secondary instabilities are con-
sistent with a braid thickness of around 20 cm. Given the
overall velocity difference of about 1 m/s, the local shear rate
within the braid should have been 5 s−1. This amplification of
shear is consistent with Smyth’s [2003] 2‐dimensional
simulations of high Re instabilities. Defining Rio as the
overall value of Ri and Rib as its minimum value in the braid,
Rib /Rio= db /do, so Rib ∼ 0.05, yielding near maximal growth
rates (within ∼20%) for the secondary instabilities. An
approximate advective timescale between the center of the
braid and the end of the mixing zone is Ta = lb /2(Du/4)
(where lb /2 is half the wavelength of the primary instability,
and Du/4 is the approximate advective speed of the fluid on
either side of the braid relative to the stagnation point). For
these observations, this advective timescale is 15–20 seconds,
or 75 to 100 shear timescales (based on the shear within the
braid). This is approximately the non‐dimensional timescale
required for the full development and collapse of shear
instabilities [Thorpe, 1973; Smyth et al., 2001] —thus there
is adequate time within the dimensions of the primary
instabilities for secondary instabilities to grow, collapse and
mix. This “life‐cycle” of secondary instability occurs on
either side of the core, and the core is continually supplied
mixed water by the secondary instabilities.

4. Discussion

[12] The most likely explanation for the difference in the
structure of the instabilities in this study relative to prior
laboratory studies and numerical simulations is the influence
of Reynolds number. Re = 500,000 for these observations—
several orders of magnitude higher than the highest values
observed in the laboratory [Thorpe, 1973;Koop and Browand,
1979] or simulated in three‐dimensional DNS calculations

[Caulfield and Peltier, 2000; Smyth et al., 2001]. Although
turbulence does occur as low as Re = 1000 [Thorpe, 1973], at
these low values the braids remain laminar until engulfed by
the turbulence originating in the cores. In order for the
braids to become turbulent, the Reynolds number at the scale
of the braids needs to be adequately large. For stratified tur-
bulent flows, the “buoyancy Reynolds number” Reb = "/nN2

must exceed 20–30 in order for turbulence to be maintained
[Stillinger et al., 1983]. Based on an estimated braid thickness
of 20 cm, Reb = 100 –500 for these observations, far above
the turbulence threshold. If we assume dynamic similarity,
the turbulence threshold within the braids should occur when
overall Reynolds number is around 50,000 (i.e., an order of
magnitude less than its value in these observations). This is
still a factor of 5 to 10 greater than the most energetic lab-
oratory experiments and numerical simulations, but well
within the range of Re expected in the ocean and atmosphere.
[13] The secondary instabilities responsible for the mixing

at high Re occur much faster than the three‐dimensional
instabilities that occur at low Re, based on roughly a five‐fold
amplification of shear rate in the braid. The fully developed
billows closely resemble the 2‐dimensional simulations of
Staquet [1995], but they differ in their subsequent evolution
in that they do not exhibit collapse, but rather appear to stop
evolving after the secondary instabilities develop. The sec-
ondary instabilities may provide a significant energy sink that
arrests the growth of the primary instabilities, as originally
hypothesized byCorcos and Sherman [1976]. The long trains
of waves of large but nearly constant amplitude (Figure 2b),
with no indication of either growth, pairing or collapse, may
be the result of the “viscous” influence of the secondary
instabilities.
[14] These observations suggest that, in analogy to

unstratified, high Re flows, the kinematics appear to be
self‐similar at a range of scales set by the size of Re. The
secondary instabilities rolling up within the braids appear to
be of similar structure to the primary instabilities, and if Re
is high enough, they should contain tertiary instabilities of
similar form. Only at the scale that the braids become laminar
should the structure of the instabilities revert to the familiar
form observed in prior low‐Re studies and sketched in
Figure 1a. This smallest scale, embedded within the braids of
the primary and secondary instabilities, is where mixing
actually occurs. Based on this hypothesized self‐similarity,
the efficiency of mixing would not be expected to vary
with Re.

[15] Acknowledgments. This research was supported by NSF grant
OCE‐0824871 and ONR grant N00014‐0810495.
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