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A changing rate of N2 fixation is the sole remaining mechanism
with the potential to explain the cycles in FB-� 15N at this site in the
SCS. We conclude that the� 15N of the shallow thermocline nitrate
was lowered less by N2 fixation during glacials, due to an ice age re-
duction in the rate of this process. The amplitude of the SCS� 15N
rise in the glacials is similar to that observed in the tropical western
North Atlantic (13, 14), where N2 fixation also has a strong imprint
on thermocline nitrate � 15N (20). The 3‰ amplitude of the glacial/
interglacial FB-� 15N change in the SCS is comparable to the largest
regional declines in ocean nitrate� 15N attributed to N2 fixation in
the modern ocean (44, 45); this suggests that the ice age decline in
N2 fixation rate was dramatic, most likely to less than half of the
modern rate based on a two end-member mixing calculation (Es-
timate for Glacial–Interglacial Changes in N2 Fixation Rate).

A question that arises is how FB-� 15N glacialŠinterglacial
variations of � 3‰ could result when the modern nitrate� 15N
decline from � 500 m depth into the shallow SCS thermocline is
only 1 to 2‰ (Fig. 1B). First, the Holocene does not represent
the minimum observed FB-� 15N, so shallow thermocline nitrate
� 15N is reconstructed to have been still lower during previous
interglacials. Second, the role of N2 fixation in lowering the � 15N
of subsurface nitrate is greater than indicated by the local ver-
tical gradient in nitrate � 15N alone, as low� 15N N from N 2 fix-
ation spreads horizontally and vertically, as nitrate and sinking
particulate nitrogen (45). This latter point also reinforces the
arguments above against a hydrographic (e.g., vertical mixing)
explanation for the observed FB-� 15N changes.

At all nine glacial terminations covered by our FB-� 15N re-
cord, a reconstructed increase in N2 fixation in the SCS coincides
with decreases in planktonic and benthic� 18Oc, a rise in sea level
and thus an increase in shelf area (Fig. 4 andFigs. S4and S5), a
rise in SST, and an apparent deglacial increase in water column
denitrification in the eastern tropical Pacific (Figs. 3 and 4). The
length of the SCS FB-� 15N record allows for the use of time
series analysis to identify the correlations that are most consis-
tent with a causal connection.

Variability in SST is highly coherent with that in FB-� 15N (Fig.
5A). However, FB-� 15N lags SST by more than 4 ky in the dominant
41- and 100-ky bands for the latter half of the record (Fig. 5A).
Because the physiological and biochemical response of N2 fixers to
SST would be effectively instantaneous, the lag argues against SST
as the driver of the greatest FB-� 15N variations. Moreover, based
on observed sensitivities (15), the reconstructed SCS SSTs fall into
the optimal range for N2 fixation, and a 3 °C cooling would be far
too small to explain the dramatic reduction in N2 fixation during
glacials. Dust fluxes are lowest when reconstructed N2 fixation is
highest, arguing against iron supply as the explanation for the
reconstructed N2 fixation changes (Fig. 4F). This lack of positive
correlation between N2 fixation and dust supply is consistent with
high iron availability in the SCS even during interglacials, both from
the margins and from atmospheric deposition.

There are three bulk sediment� 15N records from near water
column zones of suboxia and that are adequately long to compare
with our SCS FB-� 15N record (Figs. 4CŠE and 5B). These envi-
ronments are characterized by highexport production and relatively
good preservation of sedimentary organic matter, such that the
potential of bulk sediment � 15N to robustly record the � 15N of N
export is greater than in most other ocean regions (46). Of these
records, only ODP Site 1012 (37) from the California margin shows
significant coherency (Figs. 4C and 5B). The anticorrelation of the
records might be taken to suggest that enhanced water column de-
nitrification in the eastern tropical North Pacific during interglacials
was responsible for coincident N2 fixation in the SCS. However, the
coherency is limited to periods near 100 ky, suggesting that observed
similarities in the records reflect independent but similarly timed
responses to glacial cycles.

The SCS FB-� 15N and � 18Oc records are similar in large-scale
structure (Figs. 3B and C), suggesting a connection between N2
fixation and sea level. A stack of sea level records (47–49) shows
high coherency with the SCS FB-� 15N over a wide range of fre-
quencies (Fig. 5C; significant against red noise with 95% confi-
dence), as strong as the coherency between independent sea level
reconstructions (Figs. S6ŠS8). Thus, the reconstructed glacial/in-
terglacial changes in N2 fixation appear to require a mechanism that
involves ice volume and/or sea level change. The correlation of
markers of terrigenous input with FB-� 15N in MD972142, with
greater terrigenous material when FB-� 15N is high (29), provides
additional support for this interpretation (Fig. S3D). As no rela-
tively direct, low-lag connection between ice volume and N2 fixation
appears plausible for the SCS, the data argue for sea level as the
dominant driver of N2 fixation change.
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Fig. 5. Cross-wavelet coherence and phase relationship among records of N 2

fixation, sea level, sea surface temperature, and water column denitrification.
Squared wavelet coherence between two time series was computed using the
methods of ref. 68. The 95% confidence level against red noise was calculated
using the Monte Carlo method and is shown as a thick contour that encloses
the significant sections. The light shading indicates the region possibly influ-
enced by edge effects. Black arrows indicate the phase relationship between
the two time series, with in-phase pointing right, FB- � 15N leading a given cli-
mate variable pointing down, and FB- � 15N lagging pointing up. The different
records have been interpolated to an evenly spaced time series of 2 ky before
the spectral analysis. (A) The SST record (29) from the same sediment core has
high coherency with, but leads, the FB- � 15N of O. universa by around 4 ky
during the last 400 ky at the dominant 41- and 100-ky bands, as indicated by
the direction of the arrows, which is inconsistent with a causal connection in
this case. (B) The bulk � 15N record from California margin (37) is coherent with
FB-� 15N in the SCS at the period near 100 ky. ( C) The sea level record stack (47–
49) shows high coherency with FB- � 15N at a wide range of frequencies.
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The extensive continental shelf area of the tropical western
North Pacific adjacent to the SCS, the Sunda shelf in particular,
appears to be an important locus of benthic denitrification (8).
This shelf area was nearly completely lost during peak glacials
(Fig. 1A). The reduction in shelf area has been proposed to reduce
shelf sedimentary denitrification in the glacials (7), which, in turn,
would lead to higher N/P (less excess P) in the upper water col-
umn. This change would have discouraged N2 fixation in the SCS
and neighboring regions, explaining the remarkable coherency of
the sea level records and our SCS FB-δ15N record (Fig. 6).
The SCS FB-δ15N record thus provides the most direct evidence

to date for the long-hypothesized scenario in which sea level drives
glacial cycles in benthic N loss along the continental margins. Such a
mechanism implies that SCS N2 fixation responded to changes in
nearby shelf area, as changes in N loss on distant shelves should
have been compensated by N2 fixation in those regions. N2 fixation
compensation for N loss might be confounded by changes in iron
availability in other tropical/subtropical ocean regions. However, for
regions such as the SCS that are characterized by high iron supply,
local compensation for N loss changes is arguably to be expected.
Continental slopes are known to deposit substantial quantities

of margin-derived organic matter at their base (50), and the
resulting accumulation drives denitrification on the slope (31, 51,
52). It is possible that this process was accelerated during ice
ages and, in part, replaced the sedimentary denitrification on the
continental shelves. N loss on the slope may not lead to syn-
chronous changes in N2 fixation because the N deficit would
accumulate in deep water, not directly affecting the N/P of the
nutrient supply to the locally overlying surface ocean. However,
the funneling of organic matter into the deep ocean prevents the
upper ocean nutrient recycling and other processes that render N
loss so rapid on the shelves. Therefore, any increased N loss by
denitrification on the slope is unlikely to have substantially
compensated for the reduced N loss on the shallow margins.
N2 fixation slowed substantially during ice ages, as recon-

structed here for the western tropical Pacific and previously for
the North Atlantic, in both cases consistent with the response of
N2 fixation to excess P supply as the dominant driver of the
changes (13, 14). The correlation between SCS N2 fixation and
sea level provides data-based support for the hypothesis of re-
duced sedimentary denitrification during ice ages (7, 53, 54), and
bulk sediment δ15N records argue for reductions in water column
denitrification as well (5, 6). With these lower rates of both input
and loss, the residence time of fixed N in the ocean [currently
∼3 ky (55, 56)] would have become longer and thus less distinct
from the residence time of phosphorus [15 ky to 40 ky (57)],
although the latter may also have changed over glacial cycles.
Benthic N loss on the continental margins reflects the high flux of

organic matter to the coastal seabed (50–52), a consequence of both
the shallow continental shelf and the high productivity of the coastal
water column (Fig. 6). The high productivity is, in turn, supported by
the shelf, which traps sinking organic matter and quickly returns
nutrients to the sunlit surface ocean. Thus, the reduction in benthic
N loss during ice ages implies a net decline in the organic matter
supply to coastal ecosystems, especially those organisms that rely on
the benthos. In part because of their extraordinarily high productivity
and benthic activity, the modern continental shelves have tremen-
dous importance for seafloor fauna, fish, and marine mammals. The
reconstructed biogeochemical changes imply that these higher tro-
phic levels would have suffered a notable decline in food supply
during the low sea level stands of ice ages (Fig. 6), potentially
impacting the evolution and current characteristics of coastal species
and ecosystems (e.g., ref. 58).

Methods
FB-δ15N Analyses. The protocol follows and is modified from that of refs. 13 and
14. The individual foraminifera species (250- to 425-μm-size fraction, ∼5 mg per
sample) are picked manually and gently crushed under a dissecting microscope.

Samples are first sonicated for 5 min in an ultrasonic bath using 2% poly-
phosphate solution to remove clay particles. To remove metal coatings,
bicarbonate-buffered dithionite−citric acid solution is then added to each
sample, and the samples are placed in a water bath at 80 °C for 1 h. The final
cleaning step is oxidative: Basic potassium persulfate solution is added to each
sample, and the samples are autoclaved (at 121 °C) for 1 h. The cleaned samples
are rinsed in deionized water and dried overnight at 55 °C. This cleaning pro-
tocol typically preserves 60 to 75% of the initial foraminifera weight.

Cleaned foraminifera (∼3 mg to 4 mg per sample) are weighed into a
previously combusted glass vial and dissolved in 3N HCl. To convert the re-
leased organic N to nitrate, purified basic potassium persulfate oxidizing
solution is added to the vials, which are then autoclaved for 1 h on a slow-
vent setting. To lower the N blank associated with the oxidizing solution, the
potassium persulfate is recrystallized three times. At the time of processing,
0.8 g of NaOH and 0.5 g of potassium persulfate are dissolved in 100 mL of
deionized water. Organic standards are used to constrain the δ15N of the
persulfate reagent blank. Three different organic standards were used: US
Geological Survey (USGS) 40 (δ15N = −4.5‰ vs. air), USGS 41 (δ15N = 47.6‰
vs. air), and a laboratory standard made of a mixture of 6-aminocaproic acid

Fig. 6. Inferred glacial/interglacial changes along the SCS margin. (A) Dur-
ing interglacial high sea level stands, organic matter decomposition on the
shallow shelf promotes high coastal ocean productivity and rapid shelf de-
nitrification. The denitrification, by consuming fixed N, causes the shelf
water to have excess P. When this water is transported into the open SCS,
phytoplankton growth draws down its nutrients, and its excess P causes N to
become depleted before P. The availability of P in the absence of N enhances
N2 fixation, which is reflected in a lowering of thermocline nitrate δ15N and
thus lower FB-δ15N. (B) The sea level-driven loss of the shallow shelf during
glacials reduces productivity and sedimentary denitrification along the
margin. The reduction in sedimentary denitrification rate is compensated by
slower offshore N2 fixation, causing thermocline nitrate δ15N and FB-δ15N to
rise. Along the margin, the glacial reduction in shallow seafloor nutrient
recycling and thus phytoplankton production would impact the upper trophic
levels that thrive on the modern (interglacial) shelf. This mechanism, which
explains the observed coupled changes in sea level and N2 fixation in the SCS,
should also apply along other ocean margins.
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and glycine (δ15N = 5.4‰ vs. air). A minimum of 18 organic standards and
three to five blanks were analyzed per batch of samples.

To determine the N content of the samples, nitrate concentration is
measured in the oxidation solution after autoclaving. The nitrate analysis is
by reduction to nitric oxide using vanadium (III) followed by chem-
iluminescence detection (59). The blank is also quantified in this way. Con-
sistent with our previous findings, O. universa and G. ruber had an average
N content of 3 mmol to 4 mmol N per gram of cleaned calcite, yielding ni-
trate concentrations in the oxidation solutions of 10 μM to 20 μM, whereas
the nitrate concentration of the blanks ranged between 0.3 μM and 0.7 μM
(less than 5%, typically less than 2%, of the total N per sample).

The δ15N of the samples is determined using the denitrifier method in
conjunction with gas chromatography and isotope ratio mass spectrometry
(60, 61). The denitrifier method involves the transformation of dissolved
nitrate and nitrite into nitrous oxide gas (N2O) via a naturally occurring
denitrifying bacterial strain that lacks an active form of the enzyme N2O
reductase. Before adding the foraminifera samples to the bacteria, the
sample solution is acidified to pH 3 to 7. The denitrifier Pseudomonas
chlororaphis was used for this work. Normally, 5-nmol samples are added to
1.5 mL of bacterial concentrate after degassing of the bacteria. Along with
the samples, the organic standards as well as replicate analyses of nitrate
reference material International Atomic Energy Agency NO3 reference
(IAEA-N3) (δ15N = 4.7‰ vs. air) and a bacterial blank are also measured. The
IAEA-N3 standards are used to monitor the bacterial conversion and the
stability of the mass spectrometry, and the oxidation standards are used to
correct for the oxidation blanks. If possible, samples were oxidized in du-
plicate, and oxidized samples were also sometimes analyzed by the de-
nitrifier method in duplicate. The denitrifier method typically has a SD (1σ)
of less than 0.1‰ and is not reported here. The reported error is the SD
estimated from the means of separate oxidations of cleaned foraminiferal
material, which averaged 0.22‰ (57% were less than 0.2‰, and 93% were
less than 0.5‰).

The data reported in this work will be accessible at National Centers for
Environmental Information (NOAA) once the paper is published online.

The δ18O Analyses on Cibicidoides wuellerstorfi. Approximately 15 Cibicidoides
wuellerstorfi individuals were picked from each sample. The samples were
ultrasonicated first in 1 mL of deionized water for 3 s to 5 s, then in 0.2 mL of
methanol for 3 s to 5 s. The samples were rinsed with deionized water two to

three times and dried in an oven at 60 °C overnight. The cleaned forami-
nifera samples were crushed, and 35 mg to 80 mg weighed into 4.5-mL vials.
The δ18O were analyzed with a Thermo GasBench II coupled to a Thermo
Delta V Plus mass spectrometer at Eidgenössische Technische Hochschule
Zürich (62). The average of the SD of single δ18O measurements is ∼0.04%.

Nitrate Sampling and δ15N Analyses at the South East Asian Time-Series Station
and in the Open Western Pacific. The South East Asian Time-Series (SEATS)
station is located at 18°N and 116°E (Fig. 1A) in about 3,800 m of water. It
was sampled four times between August 2012 and December 2013 in ap-
proximately seasonal intervals aboard R/V Ocean Researcher I. Two casts
during August 2012 and eight casts from each of the other three cruises
were sampled for nitrate δ15N analyses. The western subtropical Pacific
transect is located along 23.5°N from 122.25°E to 126°E. Discrete water
samples were collected from five open ocean stations in 2013 July on R/V
Ocean Research V. All water samples were collected with General Oceanics
GO-FLO bottles bottles mounted onto a Rosette sampling assembly. From
each depth, seawater was collected unfiltered in a rinsed 60-mL high-density
polyethylene bottle and immediately frozen at −20 °C.

The concentration of nitrate plus nitritewas analyzed by reduction to nitric
oxide using vanadium (III) followed by chemiluminescence detection (59). The
δ15N of nitrate was determined using the denitrifier method, as described
above. We use two international nitrate isotope reference materials, IAEA-
N3 (δ15N = 4.7‰ vs. air) and USGS-34 (δ15N = −1.8‰ vs. air), to correct the
data. The analytical precision for δ15N was 0.08‰. The error bars in Fig. 1C
represent 1 SD of the nitrate δ15N analyzed at the same depth from the
different casts, which averaged 0.20‰.
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