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ABSTRACT  

One of the major neuropathological consequences of traumatic brain injury (TBI) is intracranial hemorrhage (ICH), 

which requires swift diagnosis to avert perilous outcomes. We present a new automatic hemorrhage segmentation 

technique via curriculum-based semi-supervised learning. It employs a pre-trained lightweight encoder-decoder 

framework (MobileNetV2) on labeled and unlabeled data. The model integrates consistency regularization for 

improved generalization, offering steady predictions from original and augmented versions of unlabeled data. The 

training procedure employs curriculum learning to progressively train the model at diverse complexity levels. We 

utilize the PhysioNet dataset to train and evaluate the proposed approach. The performance results surpass those of 

supervised model with an average Dice coefficient and Jaccard index of 0.573 and 0.428, respectively. Additionally, 

the method achieves 87.86% accuracy in hemorrhage classification and Cohen's Kappa value of 0.81, indicating 

substantial agreement with ground truth. 

Keywords: Traumatic Brain Injury, Intracranial Hemorrhage, Brain CT Scans, Hemorrhage Segmentation, Semi-

Supervised Learning, Curriculum Learning  

 

1. INTRODUCTION  

Traumatic brain injury (TBI) is a serious neurological emergency with high morbidity and mortality rates worldwide. 

In the United States, around 1.7 million people suffer annually from this silent endemic with expected total medical 

expenses of approximately $76.5 billion [1]. Primary brain injuries may result in temporary or permanent 

neuropathological deficits such as intracranial hemorrhage (ICH). Timely diagnosis of brain hemorrhage is extremely 

critical for mitigating possible complications due to delayed diagnosis. Manual segmentation of brain hemorrhages is 

a time-consuming and labor-intensive task for radiologists and medical professionals. It takes a lot of effort to 

manually visualize and inspect hemorrhage, especially in clinical emergencies. Automating this process with 

predictive modeling can save valuable time and resources, while allowing for timely intervention and treatment 

particularly in geographic areas with limited access to professional medical facilities. 

Traditional machine learning approaches heavily rely on handcrafted features and rule-based methods, often struggling 

to adapt to the inherent complexity and variability of intracranial hemorrhages. Deep-learning-oriented [2,3] 

algorithms have proven to be highly useful due to their ability to automatically learn and extract intricate patterns and 

features from complex medical images. In particular, convolutional neural networks (CNNs) have been a paradigm 

shift towards data-driven methodologies that demonstrate reasonable performance in capturing intrinsic patterns and 

features associated with brain hemorrhages.  
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In the context of brain hemorrhage segmentation, the U-Net [4] architecture has emerged as a widely employed 

framework that has proven effective in accurate image segmentation. However, training deep learning models for 

image segmentation typically requires large and statistically diverse labeled datasets. Endowing large datasets with 

pixel level annotation can be expensive, especially when the task requires expert knowledge and/or manual 

verification. To address this issue, semi-supervised machine learning emerges as a valuable approach by combining 

both labeled and unlabeled data. Besides labeled data, a portion of unlabeled data can additionally provide valuable 

information about the underlying data distribution and statistical relationships between different data points. For 

instance, Yap et al. [5] proposed a semi-supervised learning approach for lesion segmentation, leveraging cut-paste 

augmentation and consistency regularization. For semi-supervised gross target volume segmentation, Luo et al. [6] 

introduced a technique focused on learning from multi-scale consistency between outputs from different scales for 

semi-supervised gross target volume segmentation.  Furthermore, Wang et al. [7] proposed a modified U-Net and 

curriculum learning strategy, integrated into a multi-task semi-supervised attention-based model for intracranial 

hemorrhage (ICH) segmentation. 

In response to these challenges, the purpose of this work is to develop and present an automatic brain hemorrhage 

segmentation approach by utilizing curriculum-based semi-supervised learning. We incorporate consistency 

regularization which helps our model leverage the information contained in unlabeled data effectively, leading to 

better generalization and performance. Curriculum learning [8] can help the model learn from simpler examples first 

and then gradually tackle more challenging ones, potentially leading to improved convergence and generalization. To 

assess the efficacy of the training strategy, we evaluate the developed model with pixel-level segmentation accuracy 

as well as slice-level classification accuracy. 

2. METHOD 

The overall methodology is based on the semi-supervised learning paradigm, where both labeled (𝐷𝑙) and unlabeled 

(𝐷𝑢)  data are utilized to improve the model performance. An augmented version of unlabeled (𝐷𝑢′) data is created 

for incorporating the consistency regularization. As a base model, we employ an encoder-decoder framework 

(MobUNet) where the encoder part captures context and reduces the spatial dimensions of the input image, while the 

decoder part recovers the spatial resolution and generates the segmentation mask. The consistency regularization 

technique encourages the model to produce consistent predictions for both original and augmented versions of 

unlabeled data, which enhances model’s generalization capability. We computed consistency loss (𝐿𝑐) by computing 

the difference between the predictions on unlabeled and augmented version of the unlabeled data. The total loss (𝐿𝑇) 

is utilized to train the framework by combining the supervised loss (𝐿𝑠) and the consistency loss (𝐿𝑐). Instead of 

randomly sampling training examples, we use curriculum learning to introduce the training sample to the model in a 

systematic way. The overall framework is shown in Figure 1. 

 

2.1 Data Preparation 

In this study, the data preparation process incorporates both labeled and unlabeled samples. A fraction of the dataset 

(80%) is used for labeled data which consists of pairs of brain images and their corresponding masks. The remaining 

portion (20%) of the dataset is used for unlabeled data. We use the PhysioNet [9] dataset which has 82 CT brain scans 

(46 male, 36 female), 36 of which are diagnosed with intracranial hemorrhage (ICH). For every CT scan, there exists 

a corresponding mask that contains annotations of a specific region of the hemorrhage. The image values for the raw 

CT scans are defined over a broad range of Housefield Units (HU) [10]. Hence, we used a windowing [11] technique 

to pre-process raw CT scans. This approach takes a CT scan as input and applies windowing to adjust the contrast in 

the range between 0 to 255 and transforms the images to grayscale. The dimension of the resulting images, which 

were further used for training the model, is 256 × 256.  

2.2 Model Architecture 

We chose a symmetric encoder-decoder architecture (displayed in Figure 1) named MobUNet. The model architecture 

is basically a U-Net [4] variant, commonly used for semantic segmentation tasks. The encoder part of the model is 

based on a pre-trained MobileNetV2 [12], a lightweight convolutional neural network (CNN), to extract features from 

input images. To minimize the domain shift problem, the encoder MobileNetV2 has been trained on the RSNA dataset 

[13] before being utilized for the present image segmentation task. This helps the encoder capture more meaningful 

features specific to hemorrhage segmentation tasks. We trained the decoder part starting with the bottleneck layer’s 

output from the encoder and gradually upsampled the feature maps while concatenating them with corresponding 

feature maps from the skip connections. This process helps retain high-resolution details lost during downsampling. 
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Skip connections are established between specific layers of the encoder and corresponding decoder layers. These 

connections allow information from different scales to be combined during the decoding process, resulting in more 

accurate segmentation. Residual connections are introduced between the upsampling layers to enable the model to 

learn residual representations and mitigate the vanishing gradient problem effectively. The usual 𝑙2 regularization is 

applied to the convolutional layers, which helps prevent overfitting during the training stage. 

 

Figure 1. Schematic illustration of the proposed method, where the supervised branch generates segmentation probabilities, while 

the unsupervised branch computes the consistency utilizing the unlabeled data.  

2.3 Consistency Regularization 

Consistency regularization is a technique used to leverage unlabeled data by encouraging the model to produce 

consistent predictions under small perturbations of the input data. The data augmentation is performed using random 

horizontal flips, rotations, and zooms. We compute the consistency loss as the difference between the predictions on 

the original and augmented data using the (empirical) mean squared error (MSE): 

𝐿𝑐 =
1

𝑛
∑ (𝑝̂𝑢𝑖

− 𝑝̂𝑢𝑖
′)

2
𝑛

𝑖=1

 
                                           

(1) 

 

where  𝑝̂𝑢 , 𝑝̂𝑢′ denote the predictions for original and augmented unlabeled data, respectively, and n stands for the 

number of data points. The expression 𝐿𝑐 quantifies the discrepancy between model's predictions on the original and 

augmented data, encouraging the model to maintain consistency in predictions despite the perturbations introduced. 

2.4 Curriculum Learning 

We employ curriculum learning to present training examples in a meaningful order, gradually increasing the 

complexity or difficulty of the examples as the model learns. In the curriculum learning setup, we calculate the 

difficulty of each image based on its average pixel intensity: 

𝜏 =
1

𝑀 × 𝑁
∑ 𝛪(𝑖, 𝑗) 

                                          

(2) 
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where, I(i, j) represents the pixel intensity value at location (i, j) in the image, while M and N stand for the number of 

rows and columns in the image, respectively.  

 

 
Figure 2. Easier samples to relatively complex samples (left to right) based on the average intensity value  

During the training process, we progressively present the model with these curriculum datasets, starting from the 

easiest subsets and moving toward more challenging ones (depicted in Figure 2). Larger average pixel intensity values 

imply that the image is generally brighter or has higher overall pixel values so that we consider them an “easier” 

subset. This progressive learning paradigm prevents the model from becoming overwhelmed by a barrage of difficult 

cases right from the start. 

2.5 Evaluation Metrics 

To assess the efficacy of the proposed framework, we employed both Dice coefficient [14] and Jaccard index [15]. 

These metrics are widely used metrics for quantifying the similarity or overlap between two sets, with the 

segmentation task specifically compares the predicted binary mask and the ground truth binary mask. We define the 

Dice coefficient and Jaccard index in Equations (3) and (4), respectively: 

Dice = 2 ×
|𝑝 ∩ 𝑝̂|

|𝑝| + |𝑝̂| +  𝜀
 , 

                                          

(3) 

 

Jaccard =
|𝑝 ∩ 𝑝̂|

|𝑝 ∪ 𝑝̂| +  𝜀
 , 

(4) 

where 𝑝 denotes the ground truth mask and 𝑝̂ represents the predicted mask. In scenarios where both predicted 
and ground truth masks are void of positive elements, we introduce a small positive value, 𝜀, to ensure the 
metrics are always well-defined. 

2.6 Model Training 

The overall training approach involves optimizing a segmentation model with a combination of supervised and 

consistency losses using a curriculum learning mechanism. For each batch of labeled data, the supervised loss between 

the model prediction and the ground truth mask is calculated based on the Dice loss. The model leverages unlabeled 

data with consistency regularization. The consistency loss is computed based on the mean squared error (MSE) 

between the model predictions on original and augmented data. The combined loss (𝐿𝑇), which is the sum of the 

supervised and consistency losses, is used to compute the gradients during backpropagation and update model weights 

via the Adam optimizer. We utilized a workstation equipped with Intel® Core i7-12700F, 2100 MHz, 12 Cores; 

NVIDIA GeForce RTX™ 3050, 4 GB GDDR6 for training the model. 

3. RESULTS 

We used the 5-fold cross-validation, where three folds were used for training, one for the validation and the remaining 

hold-out set to test the method. Once trained, the model was evaluated empirically using the Dice coefficient and 

Jaccard index, which are widely employed for quantitative evaluation in medical imaging. In the fully supervised 

approach within the 100% labeled data setting (see Table 1), the MobUNet-based method outperforms the UNet-based 

approach, achieving higher values in terms of both the Jaccard index and the Dice coefficient. Proceeding to semi-

supervised methods, we introduce the proportion of unlabeled data to evaluate the potential benefits of using mixed 

(80% labeled and 20% unlabeled) data.  
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 Table 1. Comparison of Dice coefficients (%) and Jaccard indices (%) amongst the methods on the PhysioNet dataset across 

different ratios of labeled examples  

 

The results listed in Table 1 indicate that incorporating unlabeled data improves the performance of both models 

significantly, as reflected in the increased indices values compared to their fully supervised counterparts. The proposed 

semi-supervised approach combining MobUNet with curriculum-based training attains the highest Jaccard index and 

Dice coefficient values among all competing methods. Our proposed method achieved an average Dice coefficient 

and Jaccard index values of 57.3% and 42.8%, respectively, for hemorrhage segmentation. In addition, the proposed 

approach is able to classify brain hemorrhage with an overall accuracy of 87.86% (see Table 2).  

 
Table 2. Slice-level accuracy on the PhysioNet dataset with 80% labeled data 

The Cohen’s Kappa [16] value of 0.81 indicates that there is a substantial agreement between the model’s predictions 

and ground truth labels. Moreover, the assessment of model concordance is measured through the Area Under Curve, 

commonly referred to as AUC. The AUC curve provides a holistic representation of the trade-off between true positive 

rates and false positive rates. The Area Under the Curve (AUC) value of 0.89 suggests that the model has a good 

discriminatory capacity, efficiently distinguishing between positive and negative instances (displayed in Figure 3). At 

Method Data Proportion Metrics 

Baseline Architecture Labeled Data 

[%] 

Unlabeled Data 

[%] 

Jaccard Index Dice Coefficient 

Supervised UNet 100% - 0.275 ± 0.02 0.398 ± 0.04 

Supervised MobUNet 100% - 0.292 ± 0.01 0.410 ± 0.03 

Semi-Supervised UNet 80% 20% 0.368 ± 0.02 0.496 ± 0.05 

Semi-Supervised MobUNet 

 

80% 20% 0.410 ± 0.04 0.542 ± 0.02 

Semi-Supervised 

[Proposed] 

MobUNet  

+ 

Curriculum 

80% 20% 0.428 ± 0.02 0.573 ± 0.01 

Baseline Architecture Sensitivity Specificity Accuracy [%] Cohen’s 

Kappa 

Semi-supervised 
[Proposed] 

MobUNet 
+ 

Curriculum 

0.7186 0.8860 87.86% 0.8106 

 
Figure 3. Receiver operating characteristic (ROC) curve 
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the same time, as depicted in Figure 4, there is a reasonable visual agreement between predicted and the ground truth 

segmentation masks. 

 

 
Figure 4. Comparison between predicted masks under our proposed model and ground truth 

4. DISCUSSION 

Our findings highlight the efficacy of the proposed approach, demonstrating its ability to surpass supervised 

counterparts in terms of both the Dice coefficient and the Jaccard index. In Figure 4, we present four randomly chosen 

segmentation outcomes from the proposed model which showcase a spectrum of accuracy levels. Notably, the first 

case demonstrates high segmentation accuracy, reflecting model's proficiency in precisely delineating object 

boundaries and capturing detailed features. Furthermore, the second case presents correct identification of negative 

instances in segmentation. By effectively discerning between positive and negative instances, the proposed model 

becomes more dependable in distinguishing relevant features. However, it is imperative to acknowledge the cases 

where the segmentation accuracy was moderate. In the third case, the model exhibited a relatively ambiguous 

performance, encountering challenges in accurately segmenting certain regions. This underscores the need for further 

research to enhance model's adaptability to diverse image characteristics. Lastly, the fourth case exhibits reasonable 

performance in segmenting the hemorrhage area. While the proposed model encountered challenges with segmenting 

some of the bone regions, somewhat better segmentation accuracy in tissue regions was achieved. 

5. CONCLUSION 

The proposed methodology adopts the semi-supervised learning paradigm, where both labeled and unlabeled data are 

utilized to improve model performance. As a base model, we employ an encoder-decoder framework where the 

encoder part captures context and reduces spatial dimensions of the input image, while the decoder part recovers the 

spatial resolution and generates a segmentation mask. The consistency regularization technique encourages the model 

to produce consistent predictions for both original and augmented versions of unlabeled data, which enhances model’s 

generalization capability. Our findings offer valuable insights into advantages and limitations in the realm of automatic 

hemorrhage detection. Our future efforts will include more sophisticated deep learning architectures and more 

comprehensive datasets to improve segmentation accuracy and robustness for clinical applications. Other aspects such 

as intracranial pressure (ICP) and midline shift (MLS) will also be considered.   
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