
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Electrical & Computer Engineering Theses & 
Dissertations Electrical & Computer Engineering 

Fall 2023 

Framework for Implementing Advanced Radar Plotting Aid Framework for Implementing Advanced Radar Plotting Aid 

Capability for Small Maritime Vessels Capability for Small Maritime Vessels 

Jason Stark Harris 
Old Dominion University, jason_s_harris@outlook.com 

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds 

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Harris, Jason S.. "Framework for Implementing Advanced Radar Plotting Aid Capability for Small Maritime 
Vessels" (2023). Doctor of Philosophy (PhD), Dissertation, Electrical & Computer Engineering, Old 
Dominion University, DOI: 10.25777/1ys8-ba84 
https://digitalcommons.odu.edu/ece_etds/257 

This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU 
Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations 
by an authorized administrator of ODU Digital Commons. For more information, please contact 
digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.odu.edu%2Fece_etds%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/257?utm_source=digitalcommons.odu.edu%2Fece_etds%2F257&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


FRAMEWORK FOR IMPLEMENTING ADVANCED RADAR

PLOTTING AID CAPABILITY FOR SMALL MARITIME

VESSELS

by

Jason Stark Harris
M.S. August 2016, Old Dominion University
B.S. December 2014, Old Dominion University

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ELECTRICAL AND COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
December 2023

Approved by:

Dimitrie C. Popescu (Director)

Lee Belfore (Member)

Otilia Popescu (Member)

Chungsheng Xin (Member)



ABSTRACT

FRAMEWORK FOR IMPLEMENTING ADVANCED RADAR
PLOTTING AID CAPABILITY FOR SMALL MARITIME VESSELS

Jason Stark Harris
Old Dominion University, 2023

Director: Dr. Dimitrie C. Popescu

Every year in the United States many people are killed or injured when maritime vessels

collide with other vessels or fixed objects. According to the United States Coast Guard, the

top contributing factors to these collisions are operator inattention, operator inexperience

and an improper lookout. Larger commercial vessels are required to have RADAR systems

which support Automatic RADAR Plotting Aid (ARPA) which can automatically detect

collisions and alert an operator to change course. These systems can be very expensive

which put them out of reach of the average recreational boater. It is however possible to

implement a low cost ARPA like system which is enabled by commercial marine RADAR

and open source software. This dissertation presents a framework which can be used to

develop an ARPA like system. There are two main problems that would be encountered

that this dissertation addresses. The first problem is automatically extracting the targets

from a standard commercial RADAR. Most modern RADAR systems are network enabled

and send data back to a display using a standard Ethernet interface. All of the main vendors

transfer the data using proprietary formats. Some vendors offer software developer kits and

some open source projects, such as OpenCPN, have the ability to communicate with the

RADAR systems and decode the data streams. Once the data is received from the RADAR,

open source computer vision software such as OpenCV can be used to perform the target

extraction. A discussion about instrumentation needed to make sure that those targets

are appropriately converted to geographic coordinates is also performed. The second main

problem is how to implement the tracking algorithm. The state of the art for general pur-

pose tracking is the Multiple Hypothesis Tracking (MHT) algorithm. The MHT algorithm

requires a state estimator so that it can predict where a target will be in the future. The

predominate state estimator used by MHT has been the Kalman filter. This dissertation

explores the use of a Particle Filter along with the Kalman Filter. A scenario where two

boats pass by an observer vessel is conducted and results are analyzed and discussed.
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CHAPTER 1

INTRODUCTION

Operating a vessel on the water can be dangerous. High speeds combined with poor situ-

ational awareness lead to many accidents. In 2022, the United States Coast Guard stated

that there were 1,085 accidents where a vessel collided with a recreational vessel leading to

39 deaths and 512 injuries[3]. There were also 477 collisions between a vessel and a fixed

object leading to 57 deaths and 314 injuries[3]. The top three known primary contribut-

ing factors for accidents were operator inattention, operator inexperience, and an improper

lookout[3]. In total, these three primary factors were the cause of 1,453 accidents leading

to 136 deaths and 791 injuries[3]. While there is no 100% solution to reduce accidents on

the water, technology can be used to augment the skills and capabilities of boat operators.

A marine RADAR for small craft is a very important tool when it comes to safety. Small

Marine RADAR can be used to navigate on the water in adverse conditions such as fog or

torrential downpours when navigation by sight becomes no longer possible. One feature that

has been missing in small marine RADAR is the Automatic RADAR Plotting Aid (ARPA)

which is implemented on much larger ships and are typically called ARPA RADAR. ARPA

enables a RADAR to automatically detect nearby obstacles, plot their course, and warn an

operator in the event that it detects that a collision may occur. If this technology was more

available and affordable, it is theorized that more vessels would be equipped with them and

accidents on the water would be reduced.
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Small maritime vessels, such as personal watercraft, as defined in this dissertation are

approximately 60ft in length or less. These types of watercraft are generally owned by

individuals for recreational purposes and are able to be trailer-ed around the country. Com-

mercial off-the-shelf RADAR available for these types of watercraft, are much smaller, and

are only a few thousand dollars. What is missing with these RADAR is they do not have

the ability to perform the ARPA functionality to automatically detect targets and warn the

operator if a collision may occur. The purpose of this thesis is to describe a framework by

which this capability can be implemented.

1.1 SMALL VESSEL DYNAMICS

Implementing an ARPA capability on marine RADAR for small vessels is faced with

several challenges. One of the main challenges is being able to provide an accurate platform

heading to the tracking algorithm. The dynamic nature of the vessel operating on the

water leads to uncertainties regarding the vessel’s orientation with respect to the yaw axis.

These uncertainties end up being represented as noise in the tracking process which if not

suppressed can lead to failure of the tracking algorithm to successfully track targets.

Once targets are detected, maintaining tracks with a RADAR mounted on a vessel can

prove to be challenging. The reason for this is that movements of the craft on the water

due to wave action increase the co-variance matrix surrounding observations leading to

larger uncertainties about the precise location of detected targets. These effects are much

more problematic on smaller vessels and those that do not have high quality instruments to

take vessel bearing measurements. Solving these problems would lead to the ability to put

affordable small marine RADAR with collision detection capability on more vessels leading
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to a safer environment both inshore and at sea.

If the yaw rate rotation on a vessel is not adequately measured and incorporated correctly

into the system, this rotation can cause the RADAR system on board the craft to measure

targets relatively far away from their actual location. If this error becomes very large, the

tracking system will ultimately start to degrade resulting in extremely poor or unusable

performance.

There is very little published literature concerning the yaw rate of vessels on the water.

The primary reason for this is that Naval Architecture is primarily concerned with sea

keeping ability of a craft. A vessel has appropriate sea keeping ability if it is able to make

way in the desired maximum sea state and is more of a qualitative assessment. How a vessel’s

heading is changing at the sub second scale is considered irrelevant, but that is exactly what

needs to be known when working with a RADAR tracking system. One of the few papers

published with real world measurements was written by Nana Abankwa et al. and during

a particular wave slam their vessel experienced a yaw rate change of 45◦ per second [4].

Unfortunately, they didn’t describe any characteristics of the vessel which would have been

very useful, but it can be assumed that it was on the smaller size. Yaw measurements of

a buoy with an HF RADAR system installed on it were taken and discussed with respect

to correction for direction of arrival [5]. However, these measurements were taken over a

period of 5 minutes and could not be used as a basis to determine the motion of a vessel

under way.

To explore the effect of yaw rate variation on RADAR tracking performance this dis-

sertation simulates a vessel experience different yaw rate rotations. To do so a system will
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be developed using a Multiple Hypothesis Tracker. The yaw rate will be varied in degrees

and a Monte Carlo simulation will be employed to determine where the tracker is no longer

capable of maintaining a track.

1.2 HEADING SENSORS

While there is little empirical data which shows the yaw rate variations of a small vessel

operating on the water, this dissertation will discuss that inexpensive consumer grade MEMS

sensors are at the limit of being useable even on a non maneuvering platform.

It is important to note that this dissertation will focus primarily on micro-electromechanical

systems (MEMs) based sensors and not more advanced sensor types such as Fiber Optic

Gyroscope and Laser Ring Gyroscopes. This is due to the fact that MEMs based devices are

affordable to the point where they are in almost every cell phone. The latter type devices

are extremely expensive and would make the cost of implementation unreasonable.

MEMS sensors can be constructed using several different techniques and are considered

to be low cost devices[6]. MEMS technology started to become popular in the 1990s due

to their use in the automotive industry[6]. MEMS technology can be used to construct

accelerometers, gyroscopes, and magnetometers.[7]. The most basic diagrams of the con-

struction of these types of sensors is shown in Fig-1. The accelerometer is constructed by

using a mass supsended between two small springs. The mass acts as a capacitive plate and

as its relationship changes with respect to a fixed plate, the change in capacitance can be

converted to an acceleration value[8]. Two accelerometers can be used to form a gyroscope

where the acclerometer furthest from the center of rotation will register a larger acceleration.

A torsional magnetometer can be formed by building a plate with a coil suspended by a
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Fig. 1: Basic Diagrams of MEMS Accelerometers, Gyroscopes and Torsional Magnetometers

Fig. 2: Diagram of a Ring Laser Gyroscope and Fiber Optic Gyroscope

torsion bar. When a current is passed through the coil of wire, the Lorentz force will apply

a torsion to the plate altering the capacitance with respect to two fixed capacitive plates

underneath [9].

To determine orientation of an object such as a vessel or a gaming controller, low cost

Inertial Measurement Units (IMUs) are starting to reach relatively good performance [10].

An IMU is a device that packages together magnetometers, gyroscopes, and accelerometers
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Device Magnetometer Gyroscope

Update Rate Resolution Update Rate Resolution

MPU-9250 100 Hz 0.59 uT 8000 Hz 0.0076◦/s

ICM-20948 100 Hz 0.15 uT 9000 Hz 0.0076◦/s

BNO055 30 Hz 0.3 uT 400 Hz 0.0038◦/s

TABLE 1: Popular consumer grade Inertial Measurement Units and their Magnetometer

and Gyrsocope specifications.

together which are able to complement each other for determining orientation. Magne-

tometers are able to determine true measurement with respect to magnetic North, but they

are relatively slow and not very precise. Gyroscopes are incapable of determining where

magnetic North is, but they are faster and more precise. Accelerometers can be used to

determine orientation of the sensor platform. The specifications for some popular IMUs are

shown in Table-1.

Sensor Fusion algorithms are able to fuse the magnetometer, gyroscope, and accelerom-

eter data together to achieve an absolute heading resolution of approximately 1◦ rms[11].

The main limiting factor for getting accurate heading data is calibration of the sensors and

non proprietary open fusion algorithms such as Madgwick’s algorithm perform almost as

well as proprietary algorithms [11].

High end MEMS based IMUs are able to achieve static heading resolutions of 0.05◦ with

dynamic heading resolutions of around 1◦[7]. Ring Laser Gyroscopes (RLGs) and Fiber

Optic Gyroscopes (FOGs) have much better performance, but at a much higher cost[12].
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Fiber optic gyroscopes can have dynamic heading resolutions of 0.1◦[13].

RLGs and FOGs work on the same basic principle which is the Sagnac effect demon-

strated by Georges Sagnac in 1913 [14]. The Sagnac effect states that a rotation will induce

a phase change in two counterpropagating beams of light which can be measured using

an interferometer[14]. The first RLG was demonstrated in 1963 and the first FOG was

demonstrated in 1976 [14].

1.3 SIGNAL PROCESSING

In order to perform target detection on data from small marine RADAR and to display it

there are three functional blocks. The first function is the RADAR which works by sending

electromagnetic pulses out into the environment and listening for their echos. The second

function is the processing system which takes the received information from the RADAR

and analyzes it to find targets. The last function is the display function which would present

the results to the user. This functional architecture is shown in Fig. 3. Implementation of

these functions would allow the design of a system which is capable of detecting other vessels

and alerting the operator. A comparison of using Kalman Filtering vs Particle Filtering for

state estimation will also be performed to determine which may perform better for this

application.

Particle Filtering is a technique where a state estimate is formed by using a particle

model. Statistical calculations can be performed based on the particles characteristics to

determine the estimate of a state and to determine the uncertainty of a state. Each particle

is propagated through a state transition model to predict what the next state may be. These

propagated particles are then compared when a new real world observation is available. Some
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Fig. 3: Functional Architecture of the Proposed System

of the particles are removed if they likely no longer represent the state and new particles

are generated based off particles which more likely represent the state.

While Particle Filtering is discussed somewhat widely in literature, there are very few

discussions about how best to appropriately implement an advanced version of it. Elfring

et. al. does an excellent job in describing the steps that need to be taken and also the issues

that may arise when implementing a particle filter [15]. There are four main issues identified

that impact the analysis in this dissertation. They are Degeneracy, Sample Impoverishment,

Divergence, and selecting an proper Importance Density.

Degeneracy is where as the particle filter is operated, only one particle ends up being

effective and the rest of the particles become irrelevant. The solution to the degeneracy

problem is resampling the particles in the particle filter. The issue with resampling too

rapidly is that the filter may take awhile to converge and could fall apart. An example of

degeneracy is shown in Fig-4.

After resampling, the particle filter ends up with duplicate samples meaning that there
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Fig. 4: A Particle Filter Implementation Exhibiting Degeneracy

are again fewer opportunities to express the possible state which is called Sample Impov-

erishment. The solution to Sample Impoverishment is to apply process noise to all of the

particles in the particle filter on ever iteration. However, too much noise will cause the

particle filter to diverge. An example of this scenario is shown in Fig-5.

Divergence is where particles grow apart from the true state and then none of the particles

are able to be representative. This is due to too much noise or due to an improper state

transition equation. An illustration of a scenario where divergence occurs is Fig-6.

The Importance Density function determines how representative a particle represents the
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Fig. 5: A Particle Filter Implementation Exhibiting Sample Impoverishment

state. Choosing a sub-optimal importance density function leads to a lack of convergence

of the filter and ultimately the filter will collapse.

1.4 DISSERTATION ORGANIZATION AND CONTRIBUTIONS

This dissertation is composed of proposed solutions to two main problems encountered

when implementing ARPA style RADAR for small marine vessels. There is very little

literature discussing some of these topics and it is a goal to make this dissertation to be

able to be used as a reference for others who wish to expand and improve upon this area of

work.
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Fig. 6: A Particle Filter Implementation Exhibiting Divergence

The first problem that is encountered when trying to implement this system is how to

extract targets from the RADAR. Most marine RADAR present a raster display of their

output. This means instead of getting raw RADAR signal data, the data is output in spoke

format where an amplitude is given for every range possibility in a particular direction. This

becomes a computer vision problem and a proposed solution to extracting the targets from

the raster display is given in Chapter 3 which has been published[16].

The second problem that is encountered is how to track the extracted targets from

the RADAR data. When it comes to RADAR tracking, one of the most advanced tracking
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Fig. 7: A Particle Filter Implementation Exhibiting Issues with Improper Importance Den-

sity Function

algorithms is based on Multiple Hypothesis and is called Multiple Hypothesis Tracking. This

means that the tracker considers that every observation could be noise, could be the start

of a new track or could be part of an existing track. Multiple Hypothesis Tracking requires

the ability to be able to propagate tracks into the future. There are two techniques that are

considered more advance for performing these state estimations. The first is Kalman filtering

and the second is Particle filtering. The problem becomes which estimator is more accurate

and which estimator requires the least amount of computational complexity in order to be
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implemented at the lowest financial cost. The proposed solution to this second problem

which is how to do the target detection and tracking has been published[17] and is discussed

in Chapters 2, 4, and 5. Chapter 2 discusses how physical phenomena introduct noise

into the RADAR system. Chapter 4 discuses the Multiple Hypothesis Tracking algorithm

and underlying state estimation systems. Chapter 5 discusses the numerical results and

simulations. This dissertation concludes in Chapter 6 where a summary of the dissertation

contributions is made. Chapter 6 also discusses future work that could be built off of this

dissertation.
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CHAPTER 2

RADAR PRINCIPLES

To understand this dissertation, there are a few fundamental concepts that need to be

understood. The first concept is that by which a RADAR operates. This starts with an

understanding of how a RADAR is constructed physically and how it processes the signals

it receives. This fundamental concept is best understood in a perfect simulation. Once

that is understood there needs to be a discussion about the noise that will be present in all

RADAR systems.

Most modern RADAR systems for small craft today employ a solid state design instead of

a magnetron based design. In order to increase the probability of detection due to the lower

power levels, pulse compression is employed instead of a standard continuous wave pulse

which increases the coherent integration time. The particular method used is Frequency

Modulated Continuous Wave (FMCW) modulation. A FMCW RADAR transmits a signal

from frequency F1 to Frequency F2 over a period of time T . This would present itself on a

spectrum histogram similar to what is shown in Fig. 8. The Pulse Repetition Frequency is

calculated as

PRF =
1

T
(1)

and the bandwidth β can be calculated as

β = |F1 − F2| (2)
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Fig. 8: RADAR Transmitted Signal (t) and Reflection (td) as would be shown on a waterfall

spectrogram

A FMCW RADAR determines the range to the target by mixing its transmitted signal

(t) with its received signal (td). A target that is down range will reflect a signal that is

delayed by a certain amount of time (td). This delay manifests itself as a frequency offset

when the transmitted and received pulses are mixed together and corresponds to the range

of the target.

The offset frequency is a function of the chirp slope (K) and the distance to the target.

This offset frequency resembles a simple sine wave and can be calculated as

∆f = K
2d

c
(3)

Where K is the chirp slope and is defined as the product of the PRF and Bandwidth, d

is the distance to the target and c is the speed of light.

It is important to note that the range resolution is a function of bandwidth, so the

bandwidth must be increased to increase range resolution. In order to not violate Nyquist,

the resolution bandwidth (RBW) is equivalent to the PRF. This can be shown as
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RBW = K
2d

c
(4)

PRF = PRF ∗ β 2d
c

(5)

1 = β
2d

c
(6)

c

2d
= β (7)

d =
c

2 ∗ β
(8)

where d in Equation-8 becomes the range resolution.

The analytical expression for representing the waveform is

x(t) = sin

(
θ0 + 2π

(
Kt2

2
+ F1t

))
(9)

where θ0 is the starting phase of the waveform. K is the chirp slope and F1 is the starting

frequency.

Range processing can simply be performed by taking the Discrete Fourier Transform

(DFT) of the received signal. RADAR targets are then represented as impulses and the

frequency at which the impulse occurs is correlated with distance to the target. It is impor-

tant to note that some RADAR systems choose to use the Chirp-Z transform. The Chirp-Z

transform allows the RADAR to perform the range processing while decimating the output

so that it is more appropriate for further processing [18].



17

Fig. 9: Block Diagram of a Frequency Modulated Continuous Wave (FMCW) Marine

RADAR.

An example block diagram of a marine RADAR is shown in Fig. 9. A signal generator

creates the FMCW waveform. The waveform is sent to a splitter. One output of the splitter

connects to the power amplifier which amplifies the signal before sending it through the

circulator to the antenna. The other side of splitter connects to a mixer which mixes the

received signal with the generated signal. The output of the mixer is sent through a low

pass filter where it is then digitized and processed using an FFT.

2.1 ARRAY CONSTRUCTION

RADAR ultimately working by sending a signal out into the world and receiving the

reflection. In a perfect world, an almost infinite amount of power could be transmitted from
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the RADAR guaranteeing that a reflection would be received and processed. Unfortunately,

that is not possible so when designing a RADAR system it is important to design it properly.

The most cost effective way of increasing the probability of detection is by having a larger

RADAR aperture. The aperture of a RADAR ultimately dictates its size and is the amount

of collection area that the RADAR has for receiving reflections. Small marine RADAR

typically have an aperture which is designed out of a phased array. A phased array is

a structure which takes the inputs from multiple antennas and ensures those inputs are

added constructively allowing the RADAR to ultimately receive and signal with a higher

amplitude.

Phased arrays can be implemented via analog means and digital means. The simplest

phased arrays can be constructed out of monopole antennas and are called end fired arrays.

These types of phased arrays point in a specific direction and the larger the number of an-

tennas in the array, the more directional it becomes. They are constructed out of monopoles

spaced at quarter wavelength in a straight line. Delays are added to the feedlines so that the

signals add constructively and destructively to point in one direction. The resulting signals

from the antenna elements plus their delays are sent to a combine which adds them together

producing one resulting signal. An illustration of an end fire array is shown in Fig-10.

This basic structure can be adapted by changing the delays so that the array pattern

points broadside to the physical array. This type of array is simply called a broadside array.

In this case, the delays that are introduced between the elements and the combiner are set

to zero. A beam is formed which points both towards the front of the array and behind it.

An illustration of a broadside array is shown in Fig-11.
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Fig. 10: Simple End Fire Array

Fig. 11: Simple Broadside Array
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The broadside array is physically easier to implement when designing small marine

RADAR. The monopoles can also be swapped out for directional antennas such as slot-

ted waveguides which makes the array unidirectional.

The directivity D at a given angle for a uniform linear array of length N with elements

spaced d meters apart at a frequency with wavelength λ can be determined using Equation-

10[19, 20, 21].

D =
N∑

n=1

e(
sin(θ)nd2πj

λ ) (10)

The International Telecommunications Union has restricted X-Band radio navigation to

operate between 9200 MHz and 9500 MHz [22]. It appears most operate towards the higher

frequency portion of the spectrum around 9.4 GHz [23, 24].

The wavelength at 9.4 GHz is therefore approximately 3.19cm. A typical uniform lin-

ear array has elements spaced half a wavelength apart. Performance of the system can be

significantly increased if sea-clutter returns can be reduced. These returns are typically ver-

tically polarized. Using elements that are horizontally polarized and increasing the spacing

between elements decreases the cross-polarization level and increases isolation [25].

A wavelength spacing of 0.75λ was chosen for this model. Given a diameter of 24”

which most commercial small marine RADAR systems follow, 24 patch antenna elements

can be used for the array with an aperture size of around 22.6” and a half power array beam

width θbw of approximately 4◦. A plot of this implementation is shown in Figure-12. It is

important to note that many commercial marine RADAR use slotted waveguide antennas,

however they can be more complicated to design and analyze than an array made out of
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Fig. 12: Antenna Pattern of the Marine RADAR antenna.

patch antennas [26].

Small Marine RADAR systems typically have a vertical beam width of approximately

20◦ [24]. This becomes important because it, in some cases, can cause blind spots if the

RADAR is not mounted properly on the vessel and its view is obstructed.

2.2 RADAR EQUATION

The RADAR equation is used to understand how a RADAR system will radiate a target

and what the resulting received signal will be. If we assume in the simplest case that the
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RADAR is emitting power from an isotropic antenna which radiates equally in all directions,

then the power density is simply the transmitted power divided by a sphere of a certain

radius as shown in Eq-11[1].

Power density from isotropic antenna =
Pt

4πR2
(11)

From there, we can extend the formula to add a gain factor Gt if the antenna is designed

to radiate in a particular direction as shown in Eq-12[1].

Power density from directional antenna =
PtGt

4πR2
(12)

When the transmitted RADAR wave hits the target, it is going to reflect some of that

power back. The amount of power reflected back is the targets RADAR cross section which

uses the unit σ which has units power per square meter. Putting this together with the

power transmitted from a directional antenna results in the basic RADAR equation which

determines power received (Pr) given a transmitted power level, transmitted antenna gain

(Gt), receive antenna gain (Gr), distance (R), and radar cross section of the target (σ) as

shown in Eq-13[1].

Pr =
PtGtGrσ

(4π)2R4
(13)

The RADAR cross section of a target can theoretically be calculated by solving Maxwell’s

equations. However, in practice it is usually much easier to measure the RADAR cross

section [1]. For complex targets, such as boats, the RADAR cross section changes depending

upon its orientation with respect to the RADAR[1]. Some examples of RADAR cross
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Object Square meters

Bird 0.01

Small open boat 0.02

Human 1

Small pleasure boat 2

Cabin cruiser 2

Automobile 100

TABLE 2: RADAR Cross Sections at Microwave Frequencies as determined by Skolnik[1]

sections at microwave frequencies as determined by Skolnik are shown in Table-2.

The RADAR equation can be manipulated to determine the maximum range (Rmax)that

a given target can be detected. This is accomplished by setting the received power to the

minimum detected power level of the RADAR system and solving for the range which is

shown in Eq-14[1].

Rmax =

(
PtGtGrσ

(4π)2Pmin

) 1
4

(14)

The probability of detection of the RADAR system (Pd) is partially correlated to the

maximum range equation. Environmental factors, such as external noise, also influence the

probability of detection.

2.3 SYSTEM NOISE

There are two main sources of system noise that are present in RADAR systems. This
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noise causes uncertainties about where exactly detected targets are at any point in time and

ultimately must be properly presented to the user. The first main source of noise is from

the RADAR itself. This noise is generated from the signal processing and antenna system.

The second main source of noise is from the craft’s movement on the ocean.

The two components of noise in the RADAR system are noise in range and noise in

azimuth. The resolution bandwidth ultimately influences noise in the range and thus it is

important to have it as low as possible. Noise in azimuth is a result from the beam width

of the antenna. Performance of the system can be significantly increased if sea-clutter re-

turns can be reduced. These returns are typically vertically polarized. Thus using antenna

elements that are horizontally polarized and increasing the spacing between elements de-

creases the cross-polarization level and increases isolation [25]. Most small marine RADAR

antennas are made out of slotted waveguide antennas which are described in [26] and have

a beam width of only a few degrees [23, 24].

2.4 OCEAN MOVEMENT NOISE

Sea state is the term used to describe the dynamics of the ocean during a certain period

of time. Sea states can be determined by measuring the average height of the waves. There

are several different techniques for defining the sea state, however this dissertation will be

using the Beaufort Scale to specify sea state which is described in Table-3[2].

The sea state by itself is meaningless without knowing the wave period. A sea state of

5 with a period of 5 seconds would result in a very rough environment. However, a sea

state of 5 and a period of 30 seconds would not be anywhere near as bad. Ocean waves are

generated as a function of the wind and the depth of the water. Shallow seas are unable to
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Sea State Wave Height (ft) Wind Description

0 0ft Calm

1 0-1ft Light Air

2 1-2ft Light Breeze

3 2-4ft Gentle Breeze

4 3.5-6ft Moderate Breeze

5 6-10ft Fresh Breeze

6 9-13ft Strong Breeze

7 13-19ft Near Gale

8 18-25ft Gale

9 23-32ft Severe Gale

10 29-41ft Storm

11 37-52ft Violent Storm

12 46ft Hurricane

TABLE 3: Beaufort Sea State Scale as described by the United States National Oceanic

and Atmospheric Administration[2]
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generate large waves.

It is important to note that the characteristics of the sea state can have a major effect

on RADAR performance. In 1984 the National Oceanic and Atmospheric Administration

(NOAA) performed high sea state testing on a 29 foot boat [27]. During this test low sea

state 3 conditions were experienced and maximum pitch of the vessel reached 17.5◦. It is

important to note that if the vessel were to be smaller or the sea state larger, that is it

possible that the RADAR’s probability of detect would decrease due to not being able to

see the targets due to pointing either into the water or up to the sky.

This phenomena could be simulated. Ocean Waves cannot be adequately represented as

pure sine waves. Ocean Waves are best represented as trochoidal waves (also called Gertsner

waves) [28]. These types of waves have wider troughs and narrower peaks than standard

sine waves as shown in Fig. 13. The result for a small craft in larger seas is that the effect on

pitch (or roll if the craft is perpendicular to the waves) will be greater than that simulated

by a pure sine wave.

These waves are best simulated by setting up a grid of coordinates which become the

sampling location. From those sampling locations, a sine wave at a specific phase is added

to modify the X and Y coordinates as shown in Eq-15 and Eq-16. d is the distance between

the grid coordinates in unit less length and P is the wave period in unit less length. The

distance of the grid coordinates must not violate the Nyquist Theorem.

X[k] =
A

2
cos(2π

kd

P
) + kd (15)

Y [k] =
A

2
sin(2π

kd

P
) (16)
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Fig. 13: Comparison of a Sine Wave vs Trochoidal Wave with a Period of 10 seconds and

Height of 10 feet

The ocean can also contribute to noise in azimuth of the RADAR system. This is due to

rotations in the yaw axis of the RADAR on the vessel. A system of very accurate gyroscopes

must be used in order for the system to know exactly where spokes were pointing when the

signals were received. There is currently very little published research on this, however

there is some research related to High Frequency RADAR on marine platforms [29]. It is

the authors intentions to research this further and to do further analysis.

2.5 FUNDAMENTAL TRACKING ISSUES

In order for a RADAR tracker to track properly, it needs to be able to have an accurate

location of the object that it is tracking. RADAR tracking can be done using only an

angle from the observer to target, which is called bearings-only tracking. RADAR tracking
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Fig. 14: The uncertainties about the vessel’s heading add to the noise inherent in the

RADAR system itself which reduces RADAR tracking performance

can also be performed using a bearing angle and range which is what is most commonly

implemented.

RADAR tracking is less complex when the platform doing the sensing is fixed such as a

platform fixed on the ground. When the RADAR is fixed, the only noise in the system with

respect to determining a targets location is due to the noise of the RADAR itself. When the

RADAR platform is on a maneuvering platform such as a vessel or an airframe, then there

is also noise present due to uncertainties about the platforms orientation. A representation

of these two scenarios is shown in Figure-14.

If the noise that is generated inside of the RADAR tracking system is too great, then the

tracking algorithms will fail. Tracking algorithms have to make basic assumptions about

their targets and if their tracks exceed those assumptions they become discarded. One of

the most basic assumptions for a tracking algorithm is the speed of a target. If the tracking

algorithm detects an observation at one location and then at some later time detects another
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observation in the vicinity of the first, it will calculate the resulting speed. If the speed is

above a certain gating threshold, it will not associate the observations into a track. In the

case of a standard RADAR setup, that erroneous speed could have been generated by noise

a fraction of a degree in the azimuth to the target.
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CHAPTER 3

AUTOMATIC TARGET DETECTION

There has been much research done on marine RADAR and most of this work has been

done in various niches such as Ocean Wave analysis [30, 31] various types of target detection

[32, 33, 34, 23] and tracking algorithms[35, 36]. One of the topics which has been mostly

missing from previous literature is how to implement a system which can take RADAR

data from a commercial off the shelf (COTS) small marine RADAR so that the data may

be used for future research. One of the goals of this dissertation is to discuss a process by

which targets can be extracted from small marine RADAR to be used for further research

involving the development and implementation of novel tracking algorithms.

3.1 TARGET REPRESENTATION

In a perfect world, the RADAR would detect other craft and know their position pre-

cisely. Unfortunately, the noise described in the previous section prevents this. The best

method for presenting this information to the operator (or tracking algorithm) is as an

ellipse.

The major axis of the ellipse is the width of the beam at the specified range plus the

associate noise. The minor axis is dependent on the number of occupied range bins and the

resolution of the RADAR determined by the bandwidth plus the noise. The equation for

an ellipse is given as
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x2

a
+

y2

b
= 1 (17)

The variables h represent the translation in the X coordinate system and k represent

the translation in the Y coordinate system as shown.

(x− h)2

a
+

(y − k)2

b
= 1 (18)

The next step is to be able to rotate the ellipse. To do so, a change of variable variables

can be implemented and u and v will be used for this

u = x− h

v = y − k

(19)

Then a counter clockwise rotation matrix is used to rotate the ellipse as follows

cos(θ) − sin(θ)

sin(θ) cos(θ)


u
v

 =

u′

v′



=

u cos(θ)− v sin(θ)

u sin(θ) + v cos(θ)


(20)

Then back substitute the change of variables into the original equation to arrive at the

derivation for a ellipse that has been translated and rotated

((x− h) cos(θ)− (y − k) sin(θ))2

a

+
((x− h) sin(θ) + (y − k) cos(θ))2

b
= 1

(21)
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The equation can now be modified with parameters from the RADAR so that it can be

used for drawing ellipses which represent the target plus the noise. a which is the major

axis of of the ellipse can be substituted by d tan(θbw) which represents the beam width at

the specified distance from the RADAR. b which is the minor axis is equivalent to the range

resolution of the radar and would therefore be determined using Equation-8. Putting this

all together, the resulting equation is

((x− d cos(θ)) cos(θ)− (y − d sin(θ)) sin(θ))2

d tan(θbw)

+
((x− d cos(θ)) sin(θ) + (y − d sin(θ)) cos(θ))2

c
2∗β

= 1

(22)

If the two targets that were analyzed earlier are plotted using this equation, the result is

shown in Fig. 15. They are both 45◦ from the RADAR with a range of 1 nautical mile and

3.5 nautical miles. a represents the targets location in range including the noise. b represents

the targets location in azimuth plus the noise. d1 and d2 represent the respective distances

to target. θ1 and θ2 represent the respective azimuths. This could easily be prototyped into

a display that an operator could look at for situational awareness.

As far as implementing collision avoidance measures, these ellipses could be put through

a standard tracking system which could generate course and speed for each target. The

system could then warn the operator if a collision is possible and warn the operator with

an alarm.
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Fig. 15: The extracted targets from the Target Detection routine plotted using ellipses given

by Equation-22.

Fig. 16: RADAR spoke data is returned from the RADAR where a spoke corresponds to a

fraction of a degree in azimuth and range bins are used to specify distance. The value of

the cell indicates returned signal strength.
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3.2 TARGET EXTRACTION

A RADAR for small maritime vessels is typically only a few thousand dollars and of-

fers decent performance. Modern ones are typically network connected and are capable of

communicating over a standard Ethernet interface using standard Internet Protocol (IP)

packets. Most RADAR vendors support software development kits which can be used to

easily connect to the RADAR and access all of its capabilities[37]. Some of these RADAR

systems are supported by open source software packages such as the RADAR Pi plugin for

OpenCPN which is capable of communicating with some RADAR to retrieve its data[38].

The data is returned in the form of spoke data which is a vector at a given azimuth from

the vessel. The indices in the vector represent a distance from the vessel and the value for

each index represents the returned signal strength from the RADAR.

A RADAR scan is a full 360◦ of spoke data. A basic illustration of spoke data is shown

in Fig-16. Modern small RADAR systems return in some cases several thousand spokes per

revolution resulting in an angular resolution which can be on the order of a fraction of a

degree. As the signal processing system quantizes the returns into the spoke data (typically

as a result of a Fourier transform), power can sometimes be split between cells reducing the

overall signal-to-noise (SNR) ratio of a target [39, 18].

It is important to note that as a target gets further away from the radar, the target

appears larger on a polar display due to distortions from the polar projection. This is

demonstrated in Fig. 22 where two targets were generated with the same size, however,

the first target was 1 nautical mile away while the second target was 3.5 nautical miles

away. In Fig. 23, which is displayed in Cartesian, both targets appear to be the same size.
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Therefore, when processing the data for automatic target detection it is important to due

so in Cartesian format.

Once each RADAR scan is received, analysis needs to be done on the data to determine

targets. This can be performed using standard digital image processing techniques such

as blob detection. In order to do this detection, a toolkit such as OpenCV can be used.

OpenCV supports a function called SimpleBlobDetector which uses the findContours

function which is an implementation of the algorithm described by Satoshi Suzuki et. al

[40]. Ultimately, this algorithm works by detecting the change in gradient of an image to

detect borders. It then follows the border to see if the border forms an enclosed region.

Once a blob is detected, OpenCV can filter the results to only return blobs that meet area,

threshold, circularity, inertia or convexity requirements. To implement a target extraction

method, filtering based on threshold would allow OpenCV to only return blobs with a

certain signal strength. The findContours function can only work with grayscale images.

So, the first step in detecting the targets is to convert the image into a grayscale image.

Once the image has been converted to grayscale, the SimpleBlobDetector function operates

by detecting darker blobs.

The problem becomes how to set the thresholds for blob detection. If the threshold is

too high, then targets will not be detected in the RADAR data. However, if the threshold is

too low, then there will be too many targets detected which would increase the false alarm

rate to unacceptable levels. A 1dB change in threshold can result in three orders of magni-

tude change in the probability of false alarm, thus automatic target detection systems can

typically only handle less than a 1dB increase in noise level[1]. Systems that automatically
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adjust their thresholds are called Constant False Alarm Rate (CFAR) detectors[1].

CFAR detectors are typically implemented using a cell averaging technique. The value

of each cell in the RADAR display is compared against the surrounding cells. There is

typically a perimeter of guard cells immediately around the pixel under test, meaning that

the distance between the reference cell and the cell under test is typically at least 2. This

accommodates situations where the power may be split across two cells.

The OpenCV SimpleBlobDetector function requires two inputs for thresholding, the

minimum and maximum values. The function starts at the minimum threshold value and

steps its way up to the maximum threshold value. It then prunes detected blobs that were

inside of other blobs that were detected at a higher threshold value. This is very similar to

a gradient descent algorithm. The thresholding method proposed in this chapter is to set

the minimum threshold value to zero and set the maximum threshold value to two standard

deviations below the mean of the cell values in the RADAR return.

To simulate the system, a simulated target on a RADAR raster display was generated.

Spoke data was generated for a complete revolution of the RADAR up to 360◦ with a

resolution of 1◦. To enhance the legibility of this chapter, there were only 64 range bins

simulated which is considerably lower than would be found in an actual system. However,

the fundamental techniques would remain the same. A singular simulated RADAR return

used in this simulation is shown in Fig-17. The reflected power of the simulated target is

approximately 20 dB above the noise floor.

The raw RADAR image is then converted to an 8 bit grayscale image as shown in Fig-18.

This is accomplished using OpenCV’s built in image loading library. The next step is to
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invert the image colors. The SimpleBlobDetector function attempts to find blobs that are

darker. OpenCV provides a function called bitwise not which can do this conversion and

the result is shown in Fig-19.

The final step is to call the SimpleBlobDetector function which detects the blobs and

returns the pixel coordinates and other pieces of information about the blobs. OpenCV

provides an easy routine called drawKeypoints which allows for an easy display of the

resulting blobs as shown in Fig-20. An example of multiple targets being detected is shown

in Fig-21.

To determine how effective this technique is for automatic target extraction, a divide

and conquer algorithm was implemented which reduced the SNR of the simulated target. A

simulation was run and it was determined this technique works effectively when the target

signal is approximately 12 dB or more.

While this technique will work for basic cases, there are many improvements that can

be done. Work done by D. Yulian et. al. shows that accuracy of ship detection within a

range of 2 nautical miles can approach 97% [32].
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Fig. 17: Simulated RADAR target with full color display.

Fig. 18: The simulated RADAR target after is has been loaded using OpenCV and converted

to greyscale.
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Fig. 19: The simulated RADAR target after its colors have inverted immediately before

calling the SimpleBlobDetector function.

Fig. 20: Example of a single target being detected and being annotated with OpenCV’s

drawKeypoints function.
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Fig. 21: Example of multiples targets being detected and being annotated with OpenCV’s

drawKeypoints function.
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Fig. 22: This figure shows two targets of the same size, but at different distances from the

RADAR. When plotted in polar format, they appear as different sizes.

Fig. 23: When displayed in Cartesian format, RADAR targets look the same size regardless

how far they are from the RADAR.
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CHAPTER 4

MULTIPLE HYPOTHESIS TRACKING

The Multiple Hypothesis Tracking Algorithm was originally described by Donald B. Reid

in his paper ”An Algorithm for Tracking Multiple Targets”. Multiple Hypothesis Tracking

(MHT) is one of the best algorithms for target tracking due to the fact that it is one of the

few algorithms that works for multiple targets, missing measurements, false alarms, track

initiation, sensor data sets, multiple-scan correlation, clustering, and is recursive [41].

When it comes to tracking algorithms, one of the most advanced and modern is the MHT

algorithm. This tracking algorithm is capable of tracking multiple maneuvering targets. To

do so, it relies on a state estimation and prediction algorithm to estimate where a target is

based off of observations and where that target may be going. Most implementations of the

MHT algorithm rely on Kalman Filtering which is relatively computationally efficient. A

goal of this dissertation is to explore whether Particle Filtering performs as well as Kalman

Filtering and if the additional computational complexity is worth it.

The purpose for using a Multiple Hypothesis Tracker over simpler methods such as near-

est neighbor correlation algorithms is that nearest neighbor approaches experience frequent

miscorrelations which result in a serious degradation of track quality [42]. A Multiple Hy-

pothesis Tracker performs significantly better when dealing with dense target environments

and false alarms. This makes it an ideal algorithm for marine applications since it will work

in the dense cluttered target environments of a harbor as well as the open ocean.
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When a vessel is operating on the water, there are several motions that it experiences.

One of those motions is Directional Stability which is partially related to the yaw rate of the

vessel. As hydrodynamic effects act on the vessel, the heading of the vessel will change. If

these changes in heading are not recorded at a fast enough rate, then the vessel orientation

input into the Multiple Hypothesis Tracking algorithm will result in poor quality target

locations being used. This will ultimately lead to the tracker no longer being able to track

targets.

A RADAR mounted on a vessel detects targets at a specified bearing (η) and range (r).

These measurements need to be converted to measurements that the tracking algorithm can

use. Inside of η there are actually two measurements added together. One measurement is

the measured bearing to target ηm which has known variance and the other measurement

is the unknown offset ηu which has unknown variance.

ηu is created by the fact that the vessel may not know exactly where it is pointing at a

given instant. Most recreational craft have GPS systems that are only capable of updating

once per second (i.e. a 1Hz GPS). If they were to experience a large wave slam, this would

mean that the RADAR and tracking algorithm could be processing targets that are very

far away from where they actually are due to the unmeasured movement of the vessel. This

variance is Gaussian and can only be reduced by using a sensor with a higher and more

accurate update rate for vessel orientation.

4.1 MULTIPLE HYPOTHESIS TRACKING IMPLEMENTATION

The tracker is implemented as a Track-Oriented Multiple Hypothesis Tracker using either

a Kalman Filter or Particle Filter for target location estimation. A block diagram of this
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Fig. 24: Block Diagram of the Tracking Algorithm

system is shown in Fig. 24 where the observations are first given to the gating process. The

gating process informs the track initiation/association process. Then the track maintenance

process is performed where surviving tracks are given to the track prediction stage and the

confirmed tracks are output to the user.

When it comes to implementing Multiple Hypothesis Trackers, there are two main ap-

proaches. The first approach is the system that Reid described in his paper which is termed

Hypothesis-Oriented Multiple Hypothesis Tracking (HO-MHT) [43]. This method carries

hypothesis over from scan to scan until ultimately the hypothesis are pruned due to not

being associated with a track.

The second approach is termed Track-Oriented Multiple Hypothesis Tracking (TO-

MHT). This method converts the tracks from a previous scan into hypothesis, analyzes

them given the information from the latest scan and then converts the data back into tracks

which is much more efficient [43].

The first step in the process is gating. In this step, observations whose distances fall

below a certain threshold compared to a track’s predicted location are assigned to that
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track[44]. Measurements above the threshold are recorded as possible new tracks. The

distance is calculated as the Mahalanobis distance DM(x̄).

x̄ =

ykx
yky

 (23)

ū =

x̂
ŷ

 (24)

S =

P−11

k P−12

k

P−21

k P−22

k

 (25)

DM(x̄) =
√

(x̄− ū)TS−1(x̄− ū) (26)

It is possible for an observation to be assigned to more than one track. In this case, a

cluster is formed. The cluster contains all intersecting tracks. This means that if tracks T1

and T2 share an observation and T2 and T3 share an observation then a cluster is formed

containing T1, T2 and T3. These clusters form an assignment problem which can be solved

using an algorithm such as the Munkres Algorithm [42].

The track score Li at time k can be computed recursively as [43]

L(k) = L(k − 1) + ∆L(k) (27)

where the initial track score L(1) is calculated as the natural logarithm of the probability

of a new track over the probability of a false alarm. For tracks that are in progress, updates

are calculated as [43]
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∆L(k) =


ln[1− PD] no detection

ln

[
PD

(2π)M/2βFT

√
|S|

]
− DM (x)2

2
detection

(28)

where PD is the probability of detection and βFT is the false target density calculated as

the probability of false alarm over the measurement volume. M is the number of dimensions

which for this simulation is set to two since the tracker is only operating on two dimensions.

4.2 KALMAN FILTERING

To predict where a measurement for a track should be, a Kalman filter can be used

for state estimation and prediction. A Kalman Filter is the ideal estimator when dealing

with linear systems that have Gaussian noise. The Kalman filter takes in observations and

using a recursive algorithm is able to make an assessment of the noise in the system. The

Kalman filter can then adjust how much it weights the feedback from the observations vs

the feedback from the state estimation equations to provide a filtered output. The notation

the authors used for this section was taken from [45].

The state estimation and estimated co-variance matrix is calculated as

x−
k = Fk−1x

+
k−1 + wk−1 (29)

P−
k = Fk−1P

+
k−1F

T
k−1 +Qk−1 (30)

Where in this application both wk and Qk are set to zero.

The update equations are calculated as



47

Kk = P−
k HT

k (HkP
−
k−1H

T
k +Rk)

−1 (31)

x+
k = x−

k +Kk(yk −Hkx
−
k ) (32)

P+
k = (I −KkHk)P

−
k (33)

The state equations are

xk =



x̂

ŷ

ˆ̇x

ˆ̇y


(34)

where x̂ and ŷ are the coordinates in Cartesian format and ˆ̇x and ˆ̇y are the respective

velocities. The state transition matrix is

F =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


(35)

The observation model H is only capable of measuring location and is therefore

H =

1 0 0 0

0 1 0 0

 (36)
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The measurement noise in polar form would be given as

Rk =

σ2
r 0

0 σ2
ηm

 (37)

Where σ2
ηm is the variance due to the measurement of azimuth in the RADAR and σ2

R

is the uncertainty in the range resolution.

The issue then becomes how to convert the co-variance matrix in polar form to a co-

variance matrix in Cartesian form. The naive expansion is [42]

Rc =

 σ2
x0

σ2
x0y0

σ2
x0y0

σ2
y0

 (38)

where

σ2
x = σ2

r0
cos2 ηm + r2 sin(η)2σ2

ηm (39)

σ2
y = σ2

r0
sin2 ηm + r2 cos(η)2σ2

ηm (40)

σ2
xy =

1

2
sin2ηm

[
σ2
r − r2σ2

ηm

]
(41)

However, this leads to bias. Research done by Y. Bar-Shalom et al. has shown that

these measurements can be converted without introducing bias [46]. When this is done, the

co-variance matrix becomes

R11
k = −λ2

ηmr
2cos2ηm +

1

2
(r2 + σ2

r)(1 + λ
′

ηmcos2ηm) (42)
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R22
k = −λ2

ηmr
2 sin2 ηm +

1

2
(r2 + σ2

r)(1− λ
′

ηcos2ηm) (43)

R12
k = −λ2

ηmr
2cosηm sin ηm +

1

2
(r2 + σ2

r)λ
′

ηm sin 2ηm (44)

R21
k = R12

k (45)

where

ληm = E [cos υηm ] = e−σ2
ηm

/2 (46)

λ
′

ηm = E [cos 2υηm ] = e−2σ2
ηm (47)

when the bearing measurement error is Gaussian.

4.3 PARTICLE FILTERING

There are several different names that are synonymous with Particle Filtering. Some

of these names are sequential importance sampling, bootstrap filtering, the condensation

algorithm, interacting particle approximations, Monte Carlo Filtering, sequential Monte

Carlo (SMC) filtering, and survival of the fittest [45]. The method of particle filtering

implemented in this dissertation is sequential importance resampling. Particle Filtering

can be used to replace the Kalman Filter in the Track Prediction process of the Multiple

Hypothesis Tracker.
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Particle Filtering works by first designing a system equation xk where vk is an indepen-

dent white noise process with a known probability density functions.

xk+1 = fk(xk) + vk (48)

The first step is to generate N initial particles based off of the PDF of the initial state

p(x0). The particles are denoted x+
0,i(i = 1, .., N) where the complexity of the system is

dictated by N where the higher the value the more accurate the estimate.

The particles are originally generated based off of an estimate of the PDF of the noise

process. The estimate doesn’t have to be exact because perturbations are added to reduce

the degeneracy problem where only a few particles end up representing the PDF.

Once the particles are generated, they are then passed through fx(). The particles are

then compared to the measured value yk to determine their likelihood. The calculation N̂eff

is computed to determine the number of effective particles [47].

N̂eff =
1∑N

i=1(w
i
k)

2
(49)

A starting point for basic particle filters is to resample the particles if N̂eff is less than

N/2. In that case, a basic technique called multinomial resampling can be used to perform

the resampling of the particles.

The first step in multinomial resampling is to use an importance density function to

assign probabilistic weights wi
k. From there, the Cumulative Sum of Weights (CSW) vector

c is generated. For each N , a uniform random value between 0 and 1 is selected. These

are looked up in the vector c to select the corresponding particles out of xk. Ultimately
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what this does is selects particles that have a higher importance than those that do not.

The resulting resampled vector then statistically only includes particles that have a higher

weight and is used from that point on.

At any time, the expected value of particle filter can be taken by calculating the expected

value of xk. This is done by taking the summation of the particles xk multiplied by their

weights wi
k to determine the state estimate.

When an observation is made, the first thing that needs to be done is to generate a set

of particles that represent possibilities for the actual location of the observation. To do so,

Eq-42 and Eq-43 can be used to estimate the standard deviations for the particles. For this

simulation a simple Gaussian random number can be generated with the mean equivalent

to the observation’s location.

For each estimate, the particles are passed through fk() where the state transition matrix

is the same as in Eq-35 and a noise vector vk is added. The particles are then measured

against new correlated observations to determine an error. In this implementation, the im-

portance density function is the normal probability distribution function of the observation

against each particle. The result is then normalized to form the weights.

4.3.1 EXAMPLE PARTICLE FILTERING

To develop an understanding of how to implement a particle filter, we will work through

an extremely basic example. Suppose that there is a target which is traveling at a 45◦ angle

from the origin at 50 kilometers per hour. This equates to approximately 14 meters per

second. A plot showing the actual position of the target is shown in Fig-25.

Now, each of those observations is observed. Let’s say that these observations have noise
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Fig. 25: Results from the particle filter attempting to estimate the position of a moving

target.

in a Gaussian distribution of approximately 5 km/h which equates to around 1.7 meters per

second. A plot showing the actual position of the target and the measured observations of

the target is shown in Fig-25.

To build a particle filter estimator, we need to come up with the state transfer equations.

For this basic example, we will just state that the next state is the current state plus the

estimated velocity plus a position error. We can define this easily as
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x+ = x+ vx + nx (50)

y+ = y + vy + nx (51)

Inherent in the velocities vx and vy is some noise. So we will try to estimate those

velocities combined with the noise. To do so, we should generate some particles. If we

imagine that this target can move at a speed between 0 km/h and 100 km/h , then we could

generate 100 particles between those speeds as

velocity particles = [0, 0.2278, 0.5556, ..., 27.78]1×100 (52)

We now have a 100 element vector ranging from 0 to 27.78 m/s. Since we are initializing

the particle filter, we need to set the particle weights. At this point, we do not have any

ability to state which particles represent the system the most, so we set them all to be the

same probability which is 1/100.

velocity particle weights = [0.01, ..., 0.01]1×100 (53)

We can then make a decision to generate particles to represent the position error. We

can design the system so that we have 100 particles uniformly distributed between -5 meters

and 4.9 meters. This would be written as

position particles = [−5,−4.9, ..., 4.9]1×100 (54)

position particle weights = [0.01, ..., 0.01]1×100 (55)
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The next step is to choose our importance density function. For this example, we will

choose to evaluate the particles against a normal distribution compared to the measurement

values. We will choose the standard deviation to be 1.4 m/s.

When we receive the second observation, we can subtract its position from the original

observation to determine the measured velocity.

xmv = xm[2]− xm[1] (56)

ymv = ym[2]− ym[1] (57)

From there, we can start to update the weights. We can do so by evaluating the vec-

tor containing the weights against the equation for calculating the Guassian probability

distribution.

x velocity particle importance =
1

1.4
√
2π

e
− 1

2

(
x velocity particles−xmv

1.4

)2

(58)

y velocity particle importance =
1

1.4
√
2π

e
− 1

2

(
y velocity particles−xmv

1.4

)2

(59)

We can then multiply the velocity particle importance density by the values of the

velocity particles.

x velocity particles = x velocity particles× x velocity particle importance (60)

y velocity particles = y velocity particles× y velocity particle importance (61)
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Now, we can normalize the weights as follows

x velocity weights =
x velocity weights∑100

a=1 x velocity weights[a]
(62)

y velocity weights =
y velocity weights∑100

a=1 y velocity weights[a]
(63)

Once the weights are normalized, we can then estimate the velocities by multiplying the

values of the particles by their weights.

x estimated velocity =
100∑
a=1

x velocity particles[a]× x velocity weights[a] (64)

y estimated velocity =
100∑
a=1

y velocity particles[a]× y velocity weights[a] (65)

Once we determine the latest estimated velocity, we can estimate the position noise and

estimate a new position following the same process. We first start with the state transfer

equation

x estimate = x estimate+x estimated velocity+
100∑
a=1

x position particles[a]×x position weights[a]

(66)

y estimate = y estimate+y estimated velocity+
100∑
a=1

y position particles[a]×y position weights[a]

(67)

From there, we then proceed with the standard particle filtering process to come up with

a new estimate as
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x position particle importance =
1

1.4
√
2π

e−
1
2(

x position particles−x estimate
1.4 )

2

(68)

y position particle importance =
1

1.4
√
2π

e−
1
2(

y position particles−y estimate
1.4 )

2

(69)

x position weights = x position weights× x position particle importance (70)

y position weights = y position weights× y position particle importance (71)

x position weights =
x position weights∑100

a=1 x position weights[a]
(72)

y position weights =
y position weights∑100

a=1 y position weights[a]
(73)

We can now proceed with trying to estimate the system. For this example, the mea-

surements for the first 10 observations are shown in Table-4. As the particle filter iterates,

the filter weights particles that represent the system with higher probabilities. This is illus-

trated in Figures 26,27,28, and Fig-29 where you can see the distribution of the particles

with higher weights decreases at observation 10 compared to the 2nd observation.
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Observation X Y

1 14.7527 12.1102

2 30.5674 32.2489

3 38.8376 43.0156

4 57.2070 55.9117

5 70.4463 71.0006

6 82.1692 83.7130

7 97.3930 97.8262

8 112.4797 114.0856

9 131.0098 127.9726

10 143.8772 141.9841

TABLE 4: Observations for particle filtering example
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Fig. 26: Bar chart showing the X particle values and weights after the 2nd iteration.
X Velocity Particles After 10th Observation

0 5 10 15 20 25

0

0.05

0.1

0.15

0.2

0.25

Fig. 27: Bar chart showing the X particle values and weights after the 10th iteration.
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Y Velocity Particles After 2nd Observation
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Fig. 28: Bar chart showing the Y particle values and weights after the 2nd iteration.
Y Velocity Particles After 10th Observation
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Fig. 29: Bar chart showing the Y particle values and weights after the 10th iteration.
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CHAPTER 5

NUMERICAL RESULTS & SIMULATIONS

To test the effect of the noise (ηu) introduced by uncertainties regarding the vessels yaw

position on performance, a model was set up using three vessels. One vessel served as the

observation vessel and the other two vessels served as target craft as shown in Figure-30.

The observation vessel moved straight up the center of the simulated environment. Vessel 1

moved across from the port side to the starboard side of the observer vessel. Vessel 2 passed

by the observer vessel on the starboard side.

In the simulation, the observer vessel transited North at 20 knots, Vessel 1 transited to

the East at 20 knots and Vessel 2 transited to the South at 20 knots. The tracks for the two

different vessels were chosen so that they would generate different test cases for the tracker.

With respect to vessel 1, it is on a course which intersects with the observer vessel. The

bearing from the observer vessel to Vessel 1 remains the same until they intersect when it

changes as they then move away from each other. The bearing from the observer vessel to

Vessel 2 is constantly changing as they approach and then pass each other.

The revolutions per minute of the simulated RADAR on the observer vessel is was set to

be 48 RPM. The simulation time was 7.5 minutes which resulted in 563 observations of the

targets. A divide and conquer algorithm was used to try to find the maximum variance in

yaw rate before the tracker failed using both the Kalman Filter and Particle Filter for state

estimation. Each simulation had one hundred sub-simulations were run and the mean value
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of variances that didn’t break the track were recorded and calculated as one final simulation

value.

The way the divide and conquer algorithm in this simulation was implemented was to

first start with a yaw rate variation of 1◦. If the multiple hypothesis algorithm was not able

to maintain a track, the yaw rate variation was multiplied by half and tried again. If the

multiple hypothesis tracker successfully maintained the track, then it would be multiplied

by 150 percent. The Particle Filtering and Kalman Filtering state estimation aglorithms

were run using this divide and conquer algorithm to achieve 100 successful runs. The yaw

rate variations for those runs were logged and then the mean was taken on the results to

indicate how much yaw rate variation would cause the tracking algorithm to fail 50% of the

time.

To perform this analysis and determine the absolute best case scenarios the probability

of detection of the RADAR system was set to be 100%. This means that every simulated

observation was given to the tracker so that there would be no track propagations based

off of a pure estimation. Since in a frequency modulated continuous wave RADAR system

bandwidth determines range resolution, a bandwidth of 10 MHz was selected giving a range

resolution of approximately 15 meters. The beam width of the RADAR antenna was sim-

ulated to be approximately 4◦ which matches the beam width of an X-band RADAR with

about a 24 inch antenna aperture. For the particle filter implementation, the importance

density function was implemented as the probability distribution function with a standard

deviation set to the gating threshold. The gating threshold for this simulation was 30 meters

which would essentially gate any craft going over 60 knots.
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Fig. 30: Vessel starting positions and tracks throughout the simulated environment.

5.1 ANALYSIS OF RESULTS

When analyzing the performance of a tracking system, one of the most limiting factors

is the gating threshold. Typically the gating threshold is selected to rule out targets that

are moving too fast or too slow. The problem when there are uncertainties in bearing is

that the noise itself can cause targets to appear to be moving much faster which then puts

them outside of the gate. This leads to the tracker constantly creating new tracks and then

dropping them. The following equation can be used to determine maximum theoretical

variance given a gate threshold velocity Vg and expected velocity of target Vt at a given
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Fig. 31: Maximum Theoretical Variance allowed in Vessel Yaw Uncertainty for the simula-

tion

range r.

σ2
ηMAX

= arctan
Vg − Vt

r
(74)

When using the parameters in this simulation, which are 20 knots expected target ve-

locity and 60 knots gate threshold velocity, the maximum variance allowed quickly becomes

small as range increases as shown in Figure-31.

Four total simulations were run for the Kalman Filter and the Particle Filter as the state
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Track Theoretical Limit

Vessel 1 0.3335◦

Vessel 2 0.2340◦

TABLE 5: Theoretical limit of yaw uncertainty compared to the mean of the simulated

results where the tracker was still able to maintain a track and the tracker was using a

particle filter for estimation.

Kalman Filter Particle Filter

Simulation Vessel 1 Vessel 2 Vessel 1 Vessel 2

1 0.0656◦ 0.0167◦ 0.0263◦ 0.00265◦

2 0.0608◦ 0.0164◦ 0.0252◦ 0.00157◦

3 0.0626◦ 0.0147◦ 0.0266◦ 0.00232◦

4 0.0599◦ 0.0160◦ 0.0262◦ 0.00402◦

TABLE 6: Simulation results for showing the maximum variance in yaw for the Multiple

Hypothesis Tracker when using a Kalman Filter or Particle Filter for state estimation

estimation algorithms. These results are shown in Table-6.

The performance of the tracker is worse than the theoretical performance from the gating

process. The performance of vessel 2 appears to be significantly worse than that of vessel 1.

This can be attributed to the fact that the changes in angle to the observational vessel are

more rapid than those of vessel 1 due to the closer distance as it is passing by. Ultimately

what this means is that to track targets given a similar environment, orientation of the
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vessel must be known at all times and kept less than the limits that were measured during

the simulation. The only way that this can be achieved is to use a high accuracy gyroscope

that is capable of producing updates much faster than the 1Hz update rate typically found

with consumer GPS.

Fig-32 shows a comparison of the performance of the two filters showing the track of

Vessel 1. It takes several observations for both of the filters to start converging. In this

implementation, the Kalman Filter converges more quickly. The Particle Filter converges

very well when the observer vessel is close to Vessel 1, but has more noise the farther away

it is. Similar results are shown for Vessel 2 in Fig-33. Once the Kalman Filter converges it

stays converged through the entire duration where in this implementation the Particle Filter

grows more noisy the farther away the observer vessel is from the target. Ultimately, in this

specific set of simulations, the Kalman Filter was able to track Vessel 1 when the vessel’s

yaw uncertainty was about 2.5 times higher than what the Particle Filter could track. The

Kalman Filter was able to track Vessel 2 at rates of vessel yaw uncertainty being 6 times

worse than what the particle filter could track.

Performance of the Particle Filter in this implementation was not as good as expected.

This is likely due to sub-optimal resampling which could be improved using a technique

which has improved sample diversity such as the regularized particle filter or Markov Chain

Monte Carlo (MCMC) particle filter [47]. It is also possible that several of the common chal-

lenges with particle filtering such as Sample Impoverishment, Particle Filter Divergence and

issues with the Importance Density may have contributed to the suboptimal performance

[15].
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Fig. 32: Comparison of the track history of the Kalman Filter and Particle Filter when

observing Vessel 1.
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Fig. 33: Comparison of the track history of the Kalman Filter and Particle Filter when

observing Vessel 2.
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5.2 COMPUTATIONAL ANALYSIS

Kalman Filtering and Particle Filtering have different computational requirements. When

dealing with large numbers of tracks, such as being in a congested harbor, a RADAR tracking

system may encounter issues. This section will discuss the algorithms from a computational

complexity standpoint and from the minimum number of floating point operations.

It is important to note that the amount of processing power required for these tracking

algorithms is ultimately tied to the number of tracks the system is processing. The following

analysis focuses on the computational complexity for one track, but that computational

complexity would be then be multiplied by the total number of tracks. For a vessel far out

at sea, the number of tracks would be very minimal and could possibly be zero. For dense

environments, such as congested harbors, it is possible that the number of tracks is enough

to overwhelm the processing system. Thus a system would need to be designed which could

operate in the most dense track environments.

The absolute maximum worse case scenario for the number of tracks is the number of

range bins times the number of spokes. In this case, which would never be encountered

in the real world, every range bin in every spoke would be a possible target. Some of the

COTS marine RADAR systems currently on the market return up to 2048 spokes with 512

range bins resulting in over a million possible tracks. Again, it is highly unlikely this would

occur in real world operation due to the fact that the automatic target detection process

would likely assume that the noise level is very high and would not work appropriately due

to not being able to find an edge to perform the target detection.
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5.2.1 COMPUTATIONAL COMPLEXITY

Kalman Filtering consists mainly of matrix multiplications performed in a sequence.

Regardless of what the input values are, the Kalman filter will always perform the same

routine. The Kalman filter has a computational complexity expressed in Big O notation as

O(1).

The Particle filter if implemented as its most basic concept would also have a computa-

tional complexity of O(1). However, this system would rather quickly collapse. For realistic

implementations, it is going to perform some sort of resampling when the number of effective

particles have fallen below a certain value. If the importance density function is poorly cho-

sen or the dynamics of the system cause the number of effective particles to drop below the

threshold frequently, resampling may occur very often. The multinomial resampling algo-

rithm is described as pseudocode in Appendix A where the cumulative summation function

creates a vector corresponding to the summation of the weights. The last element in the

vector is thus one. Random numbers are chosen between zero and one and are searched

into the cumulative summation vector to determine the matching particle. This means that

particles that have higher weights are chosen more and end up being in the new vector

created to store the new particles chosen after resampling. This is illustrated in Fig-34.

As can be seen from the pseudocode in Appendix A, it is possible for the sampling

function to be expressed as O(N2) in the worst case scenario.

5.2.2 NUMBER OF MULTIPLICATIONS

Modern processors typically require multiple clock cycles to multiply two floating point
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Fig. 34: The resampling algorithm works by using a cumulative summation function to build

a vector. Random numbers are generated and searched inside the cumulative summation

vector to determine the new particles.

numbers even if they support hardware floating point units. As an example, the AMD Zen4

architecture (used in processors such as the Ryzen 5 7600) requires 7 clock cycles to multiply

two floating point numbers [48]. Low end processors may not possess a hardware floating

point unit which would require multiplication of floating point numbers to be emulated

using the supported integer operations. An example of this is the Raspberry Pi Pico which

does not have a hardware floating point unit and requires approximately 7,687 clock cycles

to multiply two floating point numbers[49] through a software technique. Ultimately, this

means that the larger the number of multiplications required, the more clock cycles are

required, and the more concerns there are regarding real time performance.

The implementation of the Kalman Filter for this two dimensional tracking implemen-

tation requires 376 multiplications in order to take a new observation, incorporate it, and
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generate a new estimate. For a similar three dimensional tracking implementation, this

number grows to 1,028 multiplications. Some of the matrices used by the Kalman Filter

will be sparse in real world implementations, which means that the number of multiplica-

tions can be reduced. Since the Kalman filter always performs the same number of steps, it

is easy to plan for the amount of computational time needed on a real time system.

The particle filter implementation for this dissertation requires 14 multiplications per

particle per dimension for track estimation purposes. This means a two dimensional tracking

implementation where 1,000 particles are used, such as in this dissertation, would require

approximately 28,000 multiplications. Using 1,000 particles in a similar three dimensional

implementation would require 42,000 multiplications per track update.

If we take the amount of time needed for a two dimensional state estimation filter to

run, we can start to estimate the number of tracks updates that a processor can compute

per second as shown in Table-7. At 48 revolutions per minute, new spoke data would be

received every 1.25 seconds. A system implemented on either an AMD RyzenTM 5 7600

(which uses the Zen4 architecture) or a Raspberry Pi Pico would be capable of operating

real time with only one track. The Raspberry Pi Pico would not be able to keep up with real

time execution of the Particle Filtering implementation with more than one track and the

Kalman Filter implementation would run into issues when dealing with around 54 tracks.

It is important to note that these are actually the most optimistic numbers due to the fact

that there will be overhead for program control and other operations.
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Processor
Clock

Speed

Multiplication

Time

Kalman Filter

updates/second

Particle Filter

updates/second

AMD RyzenTM 5 7600 3800MHz 1.84ns 1,443,769 38,775

Raspberry Pi Pico 125MHz 61.5us 43.25 1.16

TABLE 7: Estimates for the number of track updates per second that two selected processors

can perform using either the Kalman Filter or Particle Filter for state estimation and the

implementation described in this dissertation. It is important to note that this assumes

that floating point multiplication is the limiting factor and that time for process control

and other mathematical operations are negligible. The current price for a Ryzen 5 7600

processor only is around $200 and the current price for a Raspberry Pi Pico is $4.
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CHAPTER 6

CONCLUSIONS

This dissertation discusses how small marine RADAR with an automatic target detection

capability could be used to improve safety on the water. There are many accidents that

occur due to collisions between vessels and other objects. Using commercial off the shelf

RADAR, low cost sensors for vessel attitude determination, and open source software, an

affordable system could be built to automatically detect and warn operators of impending

collisions. This dissertation presents a framework for how to accomplish this task. It starts

by describing how RADAR data can be received from a commercial off the shelf (COTS)

small marine RADAR and processed in the OpenCV computer vision library to detect

targets. It then discusses how there is noise inherent in the system which arises from both

the RADAR signal processing as well as from the ocean itself which causes there to be

uncertainties related to where exactly targets may be. These uncertainties can be very

large on smaller vessels which can experience yaw rate variations due to wave slams. The

dissertation discusses how those targets plus their respective noises could be plotted as

ellipses and presented to the operator.

A discussion of the Multiple Hypothesis Tracking (MHT) algorithm was performed.

MHT requires the use of a state estimator which is implemented in the vast majority of

systems as a Kalman Filter due to its relatively low computational complexity. The state

estimator is used to predict the future location of a target so that in the event that an obser-

vation is lost, the Multiple Hypothesis Tracker can resume tracking if a future observation
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is made. Analysis was performed to see if the much more computationally complex particle

filtering state estimation algorithm would perform better. In the implementation used by

this dissertation, the particle filtering algorithm did not perform as well as the Kalman

Filtering algorithm. The computational complexity of the Kalman Filter and the Particle

Filter was discussed and some estimates of performance on a modern mid-range processor

and extreme low end processor were presented.

6.1 FUTURE WORK

The next steps for this work would be to actually implement the system. This could

begin by purchasing a commercial off the shelf marine RADAR and mounting it near a

waterway to start collecting data. Commercial vessels broadcast their locations using the

Automatic Identification System (AIS) at regular intervals on a radio-frequency channel.

This information could be used with the RADAR data to provide a ground truth location

for the received targets. This collected data could be used to determine better thresholds

for the automatic target detection process. An analysis of the detected targets and the

state estimation filters could lead to performance improvements. In the Kalman Filter

implementation, this would likely be a better selection for the initial value of the covariance

matrix. For the Particle Filter implementation, real world data could lead to a better

selection of the number of particles, the importance density functions as well as how much

process noise should be added. This resulting data could be published for others to analyze

and use in their own simulations. Once the performance parameters have been tuned, the

next step would be to move the system to a vessel.

Once the system is moved onto a vessel, one of the first things that should be analyzed
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is the yaw rate variation due to wave slams. There is currently almost no literature which

discusses these effects on small vessels. The data should be measured using low cost MEMs

devices such as the ones used in cell phones as well as tactical grade optical based systems

which would serve as a baseline. This data could be used to build a model which would

describe what the dynamic heading accuracy of different orientation filters. While in this

implementation, the Particle Filter didn’t perform as well as the Kalman Filter for state

estimation for MHT, it is possible that Particle Filtering may have benefits in navigation

filters due to the larger prevalence of nonlinearities.

Finally, newer types of navigation technology could also be explored. It is possible in the

near future that MEMS technology may be replaced with other types of technology. New

fabrication techniques may make Hemispheric Resonator Gyroscopes more available which

may provide better performance and reliability than traditional MEMS devices [50]. Others

are also exploring AI/ML techniques for inertial navigation which may lead to increased

performance for determination of vessel orientation[51].
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APPENDIX A

PARTICLE RESAMPLING PSEUDOCODE

c = cumsum(weights) ▷ Cumulative Summation Function

newParticles = zeros(1, N) ▷ Generate an all zero vector to store results

for i = 1, . . . , N do

rn = rand(1) ▷ Generate one random number between 0 and 1

index ← 1

for j = 1, . . . , N do ▷ Search for the index

if rn <= c[j] then

index ← j

break

end if

end for

newParticles[i] = oldParticles[index]

end for
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