Old Dominion University
ODU Digital Commons

OES Theses and Dissertations

Ocean & Earth Sciences

Fall 1985

Leachate Monitoring in Naturally Saline Groundwater Chesapeake Landfill Chesapeake Virginia

T. Britt McMillan Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/oeas_etds

Part of the Geochemistry Commons, Geology Commons, Oceanography Commons, and the Water Resource Management Commons

Recommended Citation

McMillan, T. B.. "Leachate Monitoring in Naturally Saline Groundwater Chesapeake Landfill Chesapeake Virginia" (1985). Master of Science (MS), Thesis, Ocean & Earth Sciences, Old Dominion University, DOI: 10.25777/55fa-0q32

https://digitalcommons.odu.edu/oeas_etds/258

This Thesis is brought to you for free and open access by the Ocean & Earth Sciences at ODU Digital Commons. It has been accepted for inclusion in OES Theses and Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

LEACHATE MONITORING IN NATURALLY SALINE GROUNDWATER, CHESAPEAKE LANDFILL,

CHESAPEAKE, VIRGINIA

by

T. Britt McMillan B.A. May 1981, Old Dominion University

A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

GEOLOGY

OLD DOMINION UNIVERSITY December, 1985

Approved by:

Dr./J. H. Rule

Dennis A. Darby

G. Richard Whittecar

ABSTRACT

LEACHATE MONITORING IN NATURALLY SALINE GROUNDWATER, CHESAPEAKE LANDFILL, CHESAPEAKE, VIRGINIA

T. Britt McMillan Old Dominion University, 1985 Director: Dr. J. H. Rule

Groundwater chemistry around the Chesapeake municipal landfill was monitored over a one year period. Ten sample sites as well as two surface water sites were used to monitor water quality. Two wells, one at 3 m and the other at 10 m were located at each site. Surface water samples were taken from the Elizabeth River, north of the landfill, and a tidal channel, west of the landfill. Seven groundwater sites were downgradient of the landfill and three sites were upgradient (control sites).

The landfill overlies a tidal marsh, approximately 100 m south of the intracoastal waterway (Elizabeth River). Dredge spoils overlying a marsh clay-muck separate the landfill from the waterway to the north. To the east and south is a sandy loam soil and to the west is a tidal marsh. The underlying aquifer is fairly homogeneous vertically and horizontally, consisting of medium to fine, moderately sorted sand which is strongly fine-skewed leptokurtic. Groundwater and surface water samples were monitored for pH, Eh, temperature, conductivity, salinity, hardness, NO₃, NO₂, TKN, TPO₄, OPO₄, SO₄, Cl, Na, K, Ca, Mg, Fe, Mn, and Zn. ANOVA and factor analysis aided in identifying sources of variance in the parameters measured. Conductivity, salinity, hardness, sulfate, sodium, chloride, and magnesium, though present in high concentrations in the leachate, were most indicative of the surface water. Potassium, total and orthophosphate, and TKN best characterized the leachate.

Tidal fluctuation had no observable impact on the groundwater chemistry, though there did appear to be some seasonal influence on the leachate concentration.

ACKNOWLEDGEMENTS

I would like to express my appreciation to all the people who gave guidance and assistance during this investigation. I would like to thank Dr. Joseph H. Rule, my thesis director, without his invaluable supervision and direction this work would never have been completed. To Dr. G. Richard Whittecar, his assistance, both in the field and in the office is greatly appreciated. His insight and suggestions on many aspects of this work was especially helpful. Dr. Dennis A. Darby's careful review, and his valuable criticisms and suggestions regarding this work has been most appreciated.

I would like to thank the City of Chesapeake for funding the installation of monitoring wells, and thanks to Mr. Jim Garrett for assistance in the drilling operation.

I would like to express my gratitude to the faculty, staff, and graduate students of the Geological Science Department, especially those who, at one time or another, aided me with my field or laboratory work. Special thanks to Mr. Charlie Fox, Ms. Jean Ashmore, and Ms. Linda Ruf for their assistance over the years.

I am greatly indebted to my parents for their unwavering support they have given me. I can never express my full gratitude for all they have done.

To my wife, Velja McMillan, who not only has tolerated the long hours I have devoted to this research, but has actively participated in all of its aspects. She has

i1

enthusiastically worked both in the field and laboratory with me, and is the typist of this document. Her willingness to take on many of the responsibilities of running a household enabled me to have more time to work on my research is a sign of her love and committment to me.

TABLE OF CONTENTS

	PAGE
Acknowledgements	ii
List of Tables	vi
List of Figures	vii
Introduction Federal Regulations Purpose Study Site Previous Studies	1 5 6 7 10
Methods and Procedures Field Methods and Laboratory Procedures Statistical Methods	16 16 20
Results and Discussion Stratigraphy and Hydrogeology Chemical Analyses pH Eh Temperature Conductivity and Salinity Nitrate and Nitrite Total Kjeldahal Nitrogen Total and Orthophosphate Sulfate Sodium and Chloride Potassium Calcium Magnesium Iron and Manganese Zinc Factor Analysis Factor Two Factor Three Factor Four Factor Four Factor Five Factor Analysis Summary Regression Summary and Recommendations	$\begin{array}{c} 24\\ 24\\ 32\\ 33\\ 35\\ 37\\ 99\\ 34\\ 44\\ 99\\ 12\\ 25\\ 55\\ 56\\ 66\\ 66\\ 69\\ \end{array}$
Conclusions	74
References	76

TABLE OF CONTENTS (CONT'D)

PAGE

Appendixes

A.	Well logs taken from wash borings and measured water levels for all well sites	80
В.	Data from previous research, Chesapeake Landfill	85
c.	Total data set for all parameters and sample sites, Chesapeake Landfill	92
D.	General descriptive statistics for all parameters by sample Site, Chesapeake Landfill	111
		T T T

LIST OF TABLES

TABLE	TITLE	PAGE
1	Leachate indicators (Fenn and Cocozza, 1977)	3
2	Table of eigenvalues for the principal components method, before and after VARIMAX rotation	53
3	Table of factor loadings for the principal components method, before and after VARIMAX rotation	54
4	Coefficients of determination (r^2) for five multiple regression models (depth, distance, seasonal, tidal, and total)	66

``

LIST OF FIGURES

FIGURE	TITLE	PAGE
1	Map of study area in relation to the regional geography	8
2	Map of landfill and adjacent areas showing the distribution of the soil types (from Henry et al., 1958)	9
3	Sample locations used by Rule (1979)	11
4	Sample locations from preliminary monitoring study by McMillan (1981)	14
5	Locations of well sites and surface water sites	17
6	Generalized fence diagram connecting all boreholes around the Chesapeake Landfill	25
7	Sand size distribution from two wells drilled north of the landfill	26
8	Three dimensional hydrogeologic cross secion of the head distribution north of the Chesapeake Landfill	29
9	Fluctuation in measured water levels over a thirty hour period for wells A_1 , C_1 , and I_1 .	30
10	Bar graph of site means for pH, vertical lines represent 95% confidence ranges	33
11	Bar graphs of site means for Eh and tem- perature, vertical lines represent 95% confidence ranges	35
12	Bar graphs of site means for conductivity and salinity, vertical lines represent 95% confidence ranges	37
13	Bar graphs of site means for nitrate and nitrite, vertical lines represent 95% confidence ranges	39
14	Bar graph of site means for total Kjeldahal nitrogen, vertical lines represent 95% confidence ranges	41
15	Bar graphs of site means for total phosphate and orthophosphate, vertical lines represnt 95% confidence ranges	42

LIST OF FIGURES (CONT'D)

FIGURE	TITLE	PAGE
16	Bar graph of site means for sulfate, vertical lines represent 95% confidence ranges	44
17	Bar graphs of site means for sodium and chloride, vertical lines represent 95% confidence ranges	46
18	Bar graph of site means for potassium, vertical lines represent 95% confidence ranges	48
19	Bar graphs of calcium and magnesium, vertical lines represent 95% confidence ranges	50
20	Bar graphs of factor loadings and score means by site for Factor 1, vertical lines represent 95% confidence ranges	56
21	Bar graphs of factor loadings and score means by site for Factor 2, vertical lines represent 95% confidence ranges	58
22	Bar graphs of factor loadings and score means by site for Factor 3, vertical lines represent 95% confidence ranges	60
23	Bar graphs of factor loadings and score means by site for Factor 4, vertical lines represent 95% confidence ranges	62
24	Bar graphs of factor loadings and score means by site for Factor 5, vertical lines represent 95% confidence ranges	64
25	Graphs of tidal fluctuation and conductivity with time for wells A1 and A2	69

INTRODUCTION

Sanitary landfills and open dumps have been and still are the most widely used methods for disposal of municipal solid waste (MSW). The sanitary landfill, introduced in the 1930's, is considered the safest, most efficient method for land-based disposal of solid waste. However, many studies in recent years have demonstrated the landfill's potential for degradation of groundwater quality around the landfill (Qasim and Burchinal, 1970; Fungaroli, 1971; Chain and DeWalle, 1976; Johansen and Cocozza, 1977; Landreth, 1978; Gibb et al., 1981; Lu et al., 1981). The majority of these studies involved landfills with their bases in the unsaturated zone, which tends to restrict movement of the leachate.

Composition and volume of leachate generated by landfills is highly unpredictable due to variations in landfill design, operation, and stabilization. The following factors are most important in determining the composition and volume of leachate generated:

- 1. landfill age
- 2. waste composition
- 3. landfill design and operation
- 4. local climate
- 5. local hydrologic conditions
- 6. characteristics of the underlying soil or sediment

Of these factors, landfill age has the greatest influence on leacheate composition (Qasim and Burchinal, 1970; Chain and

DeWalle, 1976; Johnansen and Carlson, 1976; Lu et al., 1981).

The major constitutents of most MSW disposal facilities are paper and other wood products, vegetable matter, animal wastes, metal, glass, and ash. The principle pollutants from these wastes are soluble organic and nitrogenous compounds. These contaminants are typically measured as Biological Oxygen Pemand (BOD), or Total Organic Carbon (TOC) plus Chemical Oxygen Demand (COD), and Total Kjeldahl Nitrogen (TKN). In addition to the organic compounds, a host of inorganic ions are commonly found in leachate. Ions of relatively low toxicity include: Na, K, Ca, Mg, Mn, Zn, Fe, NH₄, Cl, SO₄, PO₄, and HCO₃. Pb, Ni, Cu, Cd, Ba, Hg, Cr, B, CN, F, NO₃, As, and Se are ions of relatively high toxicity (many of which are site specific). A complete listing of parameters used as leachate indicators is in Table 1.

Effects of landfill age for several of these parameters are well summarized by Chain and DeWalle, (1976, 1977). Decreases in ratios of COD/TOC, BOD/TOC, and SO₄/Cl with age reflect changes in organic matter composition. These decreasing ratio trends and increases in pH and Eh result from rapid biodegration of free volatile fatty acids, leaving relatively stable, high molecular weight carbohydrate complexes and inorganic ions.

TABLE 1. Leachate Indicators (Fenn and Cocozza, 1977)

•

PHYSICAL	CHEMICAL		BIOLOGICAL	
Appearance pH Oxidation-Reduction Potential Conductivity Color Turbidity Temperature Odor	ORGANIC Phenols Chemical Oxygen Demand (ODD) Total Organic Carbon (TOC) Volatile Acids Tannins, Lignins Organic-N Ether Soluble (oil & grease) MBAS Organic Functional Groups as Required Chlorinated Hydrocarbons	<u>INORGANIC</u> Total Bicarbonate Solids (TSS, TDS) Volatile Solids Chloride Sulfate Phosphate Alkalinity and Acidity Nitrate-N Nitrite-N Ammonia-N Sodium Potassium Calcium Magnesium Hardness Heavy Metals (Pb, Cu, Ni, Cr, Zn, Cd, Fe, Mn, Si, Hg, As, Se, Ba, Ag) Cyanide Fluoride	Biochemical Oxygen Demand (BOD) Coliform Bacteria (Total, fecal; fecal streptococcus Standard Plate Count	

•

.

.

consequence, landfills in these regions are often located in or adjacent to coastal marshlands. These site locations present a monitoring problem as well as causing degradation of groundwater and estuarine waters (MacGregor et al., 1980; Lee et al., 1982).

Complications arise when pH and chloride are used as leachate indicators in a tidal marsh situation. Change in pH or increase in Cl from ambient groundwater concentrations due to leachate would be indistinguishable from intrusion of saline water from the ocean or tidal channels. Little, if any, research has been published on the movement and effects of leachate in coastal marshlands.

FEDERAL REGULATIONS

Until recently, wetlands (both fresh and saline) were either filled with dredge spoil to make the land suitable for development or used as an economically attractive site for disposal of both solid and liquid wastes. Much of the nation's wetlands has been destroyed or adversly impacted by such use. Land use within or adjacent to wetlands has been only loosely regulated at the Federal, State, and local levels. However, in the past 20 years, all levels of government have begun to show increasing concern over the nation's wetlands. One of the most significant steps at the federal level to regulate land use around wetlands was passage of the Resource Conservation and Recovery Act (RCRA) in 1976. The RCRA provides for direct, centralized regulation of all solid waste disposal in the United States

under joint Federal and State control. This act is to be administered by the Environmental Protection Agency (EPA) pending completion of regulations and guidelines. Another major step toward regulation of landuse around wetlands was the 1977 revision of Section 404 of the Clean Water Act. In this revision, jurisdiction over permits for dredging and filling in wetlands was granted to the U.S. Army Corps Implementation of the 404 permit program is of Engineers. presently pending completion of the EPA's wetland impact assessment. Problems yet to be resolved are prediction of landuse impacts on wetlands, individually as well as in conjunction with other activities; assessment of impacts on an area-wide versus site-specific basis; and assessment of impacts from exempt or unregulated activities around wetlands (Thibodeau, 1981; U.S. EPA, 1979; MacGregor et al., 1980; Nelson, 1983).

PURPOSE

The objective of this study is to establish the suitability of pH and chloride as leachate indicators in groundwaters with naturally high salinities. If these parameters prove to be unsuitable, applicability of other selected parameters will be evaluated. Those which best fit the criteria stated in the introduction for potential leachate indicators will be considered the most viable alternatives to pH and chloride for routine monitoring purposes.

In order to meet this objective, factors in addition to groundwater geochemistry surrounding the Chesapeake Landfill are considered. An approximation of the transmissivity and direction of groundwater flow as well as grain size and thickness of the aquifer influenced by the landfill were evaluated. Tidal fluctuation and seasonal change were examined, as well, in order to evaluate their influence on those parameters studied.

STUDY SITE

The Chesapeake Landfill is a municipal solid waste disposal facility located in the southeastern coastal plain of Virginia and has been in operation since the mid 1960's. The site overlies a tidal marsh, approximately 100 meters south of the Intracoastal Waterway. Dredge spoils separate the landfill from the waterway to the north. To the east and south is a sandy loam soil and to the west is a tidal marsh (Figure 1 & 2). The dredge spoil is a medium-sorted, fine sand directly overlying the marsh clay-muck. An abundance of shell fragments and a high concentration of iron oxide-coated sand are found adjacent to the landfill. The dredge material is two meters thick wear the landfill tapers to one meter toward the waterway. A berm consisting of boulders and dredge spoil lines a portion of the river bank.

The water table aquifer ranges from less than a meter to three meters below the surface and extends seven to ten meters in depth where it contacts the Chowan River Formation.

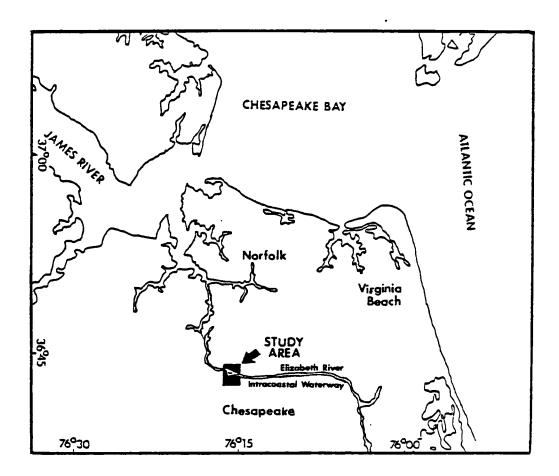


Figure 1. Map of Study Area in relation to the regional geography.

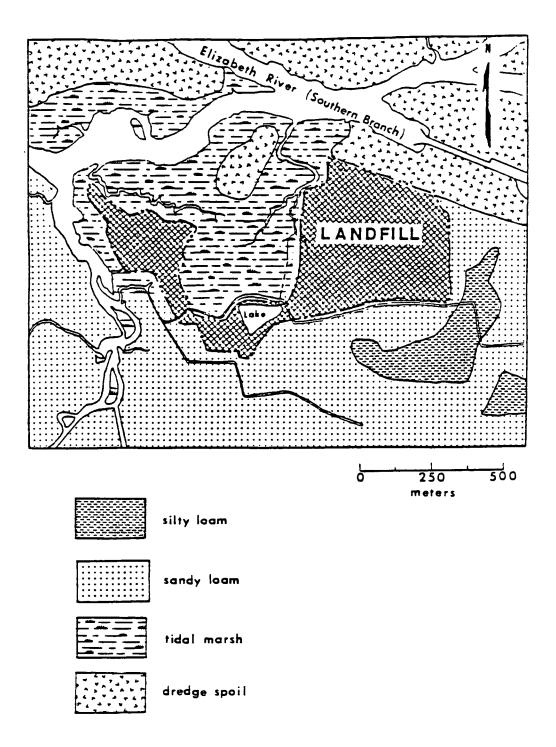


Figure 2. Map of landfill and adjacent areas showing the distribution of the soil types (from Henry et al 1958).

Between the landfill and waterway this aquifer is semiconfined, separated from the dredge spoil by marsh clay. General direction of groundwater flow is north, toward the waterway. The water table aquifer consists of fine to medium sand, generally increasing in size with depth (Appendix A). Shells are abundant in this unit, with greater concentrations toward the base. Transmissivity values for this aquifer range from 1,400 gpd/ft to 2,600 gpd/ft (Siudyla et al., 1981).

The landfill base is located several feet beneath the water table. The original mode of operation was to trench and dewater while refuse was deposited and compacted. Initial dumping was in the eastern portion of the landfill, with progressive filling toward the west. Presently, refuse is being placed over the older portion of the landfill. Two wells, placed at 7 1/2 meters depth, are currently being monitored by the city at irregular intervals for leachate. The parameters measured for these wells are pH and Cl. Several studies have suggested that salt water intrusion from the waterway may tend to mask high chloride levels due to leachate in the groundwater (Virginia State Water Control Board, unpublished data; Rule, 1979; Rule, unpublished data; McMillan, 1981).

PREVIOUS STUDIES

Studies of the Chesapeake Landfill conducted by Rule (1979) involved eight sample sites (Figure 3). The samples were taken by peristaltic pump and tygon tubing. Levels of

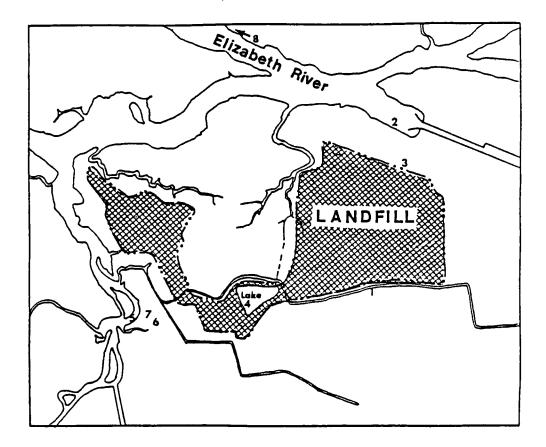
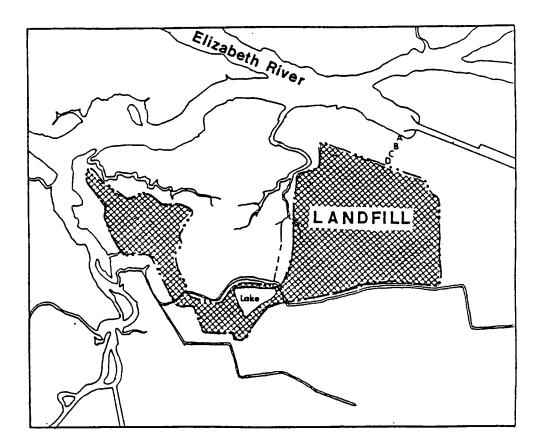
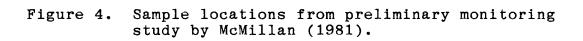


Figure 3. Sample locations used by Rule (1979).

pH and Eh were determined in the field and the samples for metal analysis were field-filtered through a 0.45 micron membrane, then acidified with 1:1 HNO3. Coliform samples were cooled on ice and planted within six hours after The samples for metals analysis were digested in sampling. the lab using distilled HNO3 and reagent grade HCL, in accordance with EPA methods (U.S. Environmental Protection Agency, 1974). Thirteen parameters were measured: pH, Eh, total and dissolved solids, total and fecal coliforms, Cl, Cd, Cr, Cu, Ni, Pb, and Zn. For the metals, both total and dissolved concentrations were determined. The results of the analyses indicated several monitoring problems. The monitoring wells were cased in galvanized metal, which could potentially produce anomalously high metal concentrations (note concentration of Zn, Appendix B, sites 1 The study also showed high Cl levels near the and 3). canal indicating possible saltwater intrusion (Appendix B, site 3). If the salinity of the groundwater was greater than the leachate, a density-separated flow would result in which leachate would flow above the monitoring well points. In addition, naturally high Cl levels in the groundwater would tend to mask Cl levels in the leachate.

The vertical positions of the wells (sites 1 and 3) within the aquifer may also present problems in leachate monitoring. The well points were placed at a depth of 8 meters. A well log is not available, so the positions of


the well points relative to the base of the aquifer are unknown.


ſ

Preliminary research conducted by McMillan (1981) involved installation of eight pressure-vaccuum lysimeters in a transect between the landfill and waterway. Two lysimeters were installed at each well site, at depths of one and three meters (Figure 4). No control wells were used in this study. The wells were all hand-augered. Due to hydraulic pressure and incompetency of the sand it was impossible to auger deeper than three meters. The three meter well at site D did not penetrate through the clay layer, so no sample could be obtained from this lysimeter. There were five sampling periods from March through July 1981. Eh, pH, conductivity and salinity were determined in the field. Samples taken for metal analysis were fieldpreserved with 1:1 HNO3, the other samples received either no preservative or H_2SO_4 , and were cooled to four degrees centigrade. All analyses were conducted in accordance with EPA Methods (U.S. Environmental Protection Agency, 1974). The parameters measured in this study were pH, Eh, conductivity, salinity, TKN, NO3, NO2, Cl, total PO4, and metals (Na, K, Ca, Mg, Fe, Mn, Cu, and Pb).

The following parameters showed distinctive trends (Appendix B):

1. Conductivity, salinity, Na, Cl, and Mg concentrations for the upper wells showed a general decrease away from the waterway, increasing again toward the landfill. The concentrations increased from the Elizabeth River toward the landfill for the deeper wells.

- 2. Concentrations of TKN, K, Fe, and Ca increased toward the landfill for both upper and deeper wells.
- 3. NO₂ increased by several orders of magnitude toward the landfill for the one meter wells. The only significant concentration for the three meter wells is at site C (no sample was obtained at three meters for site D).
- 4. PO₄ was the only parameter to decrease in concentration toward the landfill for the one meter wells. Concentrations for the three meter wells were insignificant when compared with the one meter wells.

Results from the preliminary study by McMillan, (1981), tentatively indicated that influence from the canal resulted in high salinity, conductivity, Na, Cl, and Mg in the dredge spoil. In addition to the parameters above, leachate from the landfill appeared to contribute high TKN, K, Fe, NO3 and Ca concentrations for both the dredge spoil and the water table aquifer. A portion of the Ca concentration for the upper wells may be attributed to the shell fragments present in the sediment at sites C and D. However, no shells were found in the water table aquifer even though high Ca concentrations were present.

METHODS AND PROCEDURES

FIELD METHODS AND LABORATORY PROCEDURES

The monitoring wells for the present study consist of 1-1/4 inch PVC pipe with a three foot fine screened well point. These wells were installed by a wash boring rig, backfilled with sand from the aquifer and sealed at the top with bentonite. Due to problems with collapsing sand, the ten meter wells were jetted in and as a result are not capped at the bottom of the screen. Logs were taken for each well site (Appendix A). Elevations of the top of all wells were measured by transit and stadia rod.

Each site has a well positioned at the upper (three meters depth) and lower (ten meters depth) boundary of the aquifer. Upper wells are designated by a subscripted 1 and lower wells by a subscripted 2. Two parallel transects are located to the north of the landfill (Figure 5). Three well sites per transect are spaced at approximately twenty five meter intervals, from river to landfill. An additional monitoring site is installed to the west of the older portion of the landfill (site G), as well as three control sites (H, I, J) to the east and south. Additional water samples were taken from the tidal creek adjacent to site G and from the river, near site A.

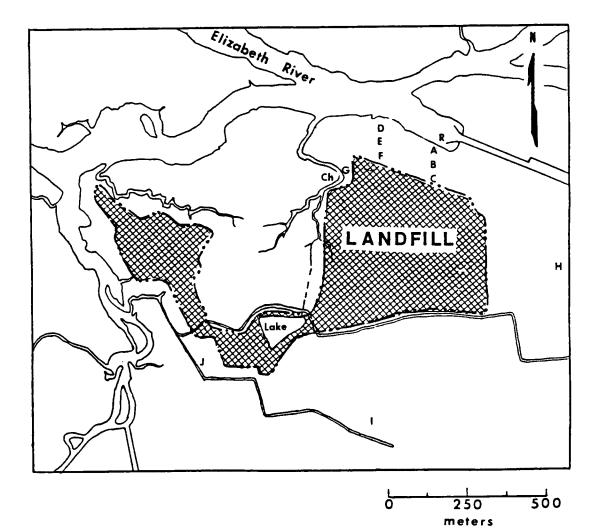


Figure 5. Locations of well sites and surface water sites.

Changes in hydraulic head, conductivity, salinity, and temperature for sites A, C, and I were measured hourly over a 30 hour period in October 1982. Water levels in all wells were measured in October 1982 and August 1983.

Sample collection and preservation were conducted in accordance with EPA recommended procedures (Fenn et al., 1977; U.S. EPA, 1979; Gibb et at., 1981). Samples were withdrawn using a peristaltic pump, after drawing off at least 15 liters from each well to insure a fresh sample. Due to very slow recharge for wells E_2 and I_2 , there was no initial flushing of these wells. Samples were stored in one-liter linear polyethylene (LPE) bottles and immediately placed on ice. Separate samples in 60 ml bottles were taken for pH and Eh and measured on site. Conductivity, salinity, and temperature were taken by lowering a conductivity cell and temperature thermistor probe in each well after samples were obtained. Within 24 hours after sampling, the samples were centrifuged at 6,000 rpm for five minutes to remove suspended particles. Samples for metal analysis were then stored in 150 ml LPE bottles and preserved with redistilled reagent grade HNO3 at a pH of less than 2. Samples to be analyzed for phosphates, nitrate, and Total Kjeldahl Nitrogen (TKN) were stored in 250 ml bottles and preserved with reagent grade H_2SO_4 at a pH of less than 2. Samples preserved with either H_2SO_4 or no preservative were stored at a temperature of 4 degrees centigrade.

The parameters measured were pH, Eh, conductivity, salinity, hardness, temperature, TPO4, OPO4, NO3, NO2, TKN, SO₄, Cl, and metals (Ca, Na, Mg, Mn, K, Zn, and Fe). Samples were taken on a monthly basis from August 1982 through October 1983, for a total of twelve sampling periods. A Ag Ag/Cl combination electrode was used to measure pH; a platinum redox electrode for Eh; and conductivity, salinity, and temperature was measured by a YSI model 33 SCT meter. Both total and orthophosphate were determined by the ascorbic acid method, with a persulfate digestion prior to addition of the coloring reagent for total phosphate. Nitrate was measured by the brucine method, nitrite by the sulfanilamide method, TKN by digestion and ammonia probe, sulfate through the barium chloride turbidometric method, and chloride by either solid state electrode or argento-Metals were determined with a Perkin Elmer metric method. 603 atomic absorption spectrophotometer.

The most ubiquitous interferences were highly colored samples from sites C_1 , F_1 , G_1 , and G_2 and colloidal suspension (primarily from sites E_2 and I_2). Parameters which relied on spectrophotometric methods (nitrate, nitrite, total phosphate, and orthophosphate) or turbidimetric methods (sulfate) in determining their concentrations were affected most. To correct for these interferences for nitrate, duplicate samples were digested without the coloring reagent, and used as blanks. For nitrite, total phosphate, and orthophosphate, initial absorbances were

read before addition of the coloring reagents and used as blanks. Interferences from color and colloids were corrected for sulfate by initial absorbance readings, after addition to the conditioning reagent and before addition of the barium chloride. The standard addition method was used for several samples during most analyses to verify that any interferences present were not significant. In addition to standard additions, EPA quality control samples were used for most parameters for at least one sampling period.

Samples were stored and preserved in accordance with EPA recommended procedures (U.S. Environmental Protection Agency, 1979). All analyses were conducted in accordance with Standard Methods (APHA-AWWA-APCF, 1975) and within the alloted sample holding time as specificed by EPA methods.

STATISTICAL METHODS

Statistical evaluation of the data was divided into three parts. First, variance within the data was discussed utilizing descriptive statistics and one-way analysis of variance (ANOVA). Second, multiple regression was used to examine any possible relationship between tidal fluctuation and variance within a parameter. If tidal fluctuation was found to significantly influence a parameter, the regression equation was used to correct for this influence. Third, factor analysis was used to summarize the interrelationships among the variables, condensing the variance within the original data into a few variables (factors) as an aid in conceptualization. The statistical package SAS (Statistical

Analysis System) compiled by SAS Institute Inc., was used to obtain solutions to the ANOVA, multiple regression, and factor models.

Before results from the ANOVA could be interpreted, potential failure of two basic assumptions had to be considered: within-cell observations are normally distributed about the mean; and variance between cell means is homogeneous. The Barlett-Box F-statistic was used to test homogeneity of variance. Often, when non-normal distributions occur, heterogeneity of variance between means (heteroscedastcity) also occur (Cochran, 1947). This non-normal distribution and heterogeneity of variance errors are usually a direct function of the cell's mean value $(S^2=m+S^2_m)$. A lognormal transformation may be used to correct this failure. Barlett (1947) considered this to be the appropriate transformation for non-normal sample variances. If the lognormal transform significantly improves the distribution of error terms, then the transformed data would be used in all subsequent analyses. This transformation has been widely used in geochemistry to correct for pseudo lognormal distributions, however, application of this method is still in dispute (Link and Koch, 1975, Chapman, 1976; 1977; Miesh, 1977).

Because the data for the ANOVA model was not a balanced design, a general linear model was used. This model is considered a good alternative to the more traditional method of mean square ratios where the cell block design is

unbalanced (Wesolowsky, 1976; Snedecor and Cochran, 1980). Tukey's range test was used to aid in identifying anomalously high or low cells (sample sites or dates) for parameters where the null hypothesis was rejected.

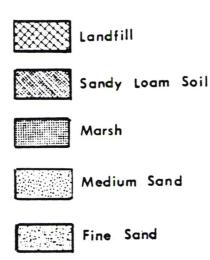
The independent variables used for the multiple regression analysis was tidal fluctuation, seasonal variation, and horizontal and vertical distance. Tidal levels were taken from tide tables for Sewells Point, Norfolk, and corrected for the Great Bridge locks. Tidal fluctuation was recorded as a fraction ranging from 0.0 to 1.0, with 0.0 representing low tide; 1.0 equal to high tide; and 0.5 as slack tide. Seasonal variation (summer, winter, spring, and fall) was represented by three dummy variables. Distances were also recorded as dummy variables, two for depth (upper wells, lower wells, and surface water) and four for horizontal distance (surface water, adjacent to landfill, adjacent to surface water, between landfill and surface water, and control wells).

The SAS procedure REG was used for a least-squares fit to the regression models. All independent variables were used as regressors in the first model. Subsequent models used separate dummy variable groups (seasonal variation, vertical distance, and horizontal distance) as the regressor variables.

The approach to factor analysis of the groundwater data was to use the most simplistic model (principal components) and derive principal factors (or axes) and scores for the

total data set. The loadings for each factor were then compared to the corresponding score groupings. If separation of the scores into groups was geologically interpretable in relation to their loadings, a higher level of factor analysis was employed. The method chosen was a principle axes solution with varimax rotation (vector analysis). Results from this analysis were then compared with the principle component solution to see if it increased resolution without changing the basic distribution of the factor scores.

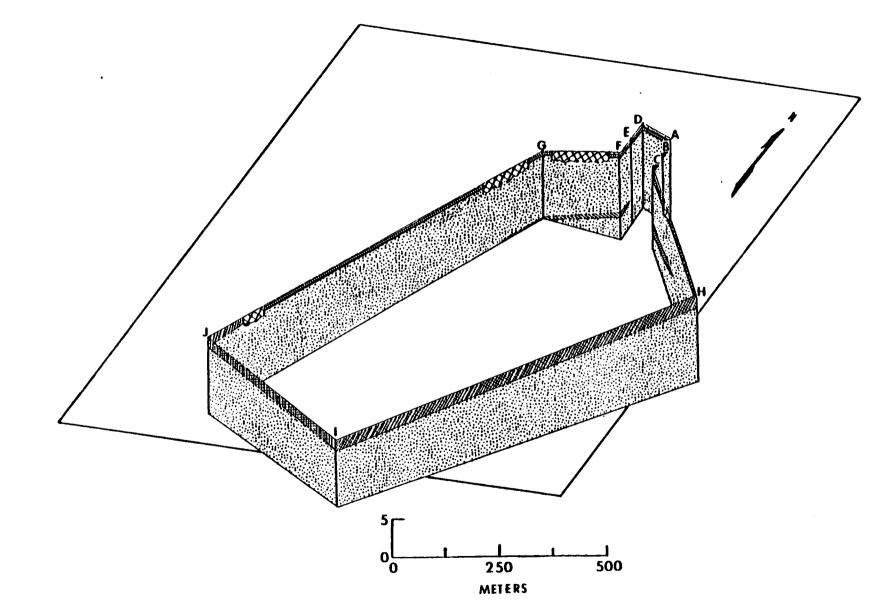
Standarized data was used to calculate factor scores, therefore the sum of all observations for each variable has a mean of zero and unit variance. The scores were grouped according to their original sample sites and plotted as bargraphs with 95% confidence bands for each site.

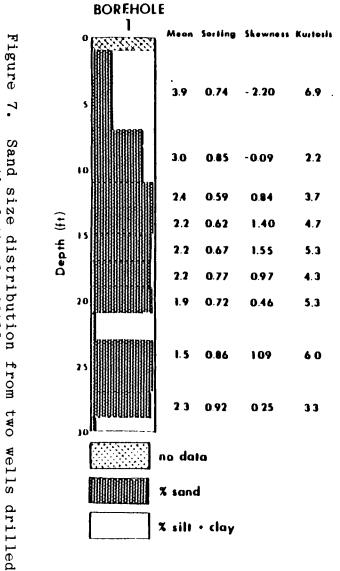

Pairwise deletion of observations was used to produce the correlation matrix. For calculating factor scores, only observations with missing variables contributing to less than 10% of the vector's magnitude were used. Missing values for included observations were replaced by sample means. Since these values have little influence on the resulting score, this method was considered best for retaining a maximum amount of information with mininal sacrifice to error.

RESULTS AND DISCUSSION

STRATIGRAPHY AND HYDROGEOLOGY

The landfill overlies tidal marsh deposits approximately 100m south of the intracoastal waterway (southern branch of the Elizabeth River). Dredge spoils overlying a marsh clay-much separate the landfill from the waterway to the north. To the east and south is a sandy loam soil and to the west is a tidal marsh. The stratigraphy of the water table aquifer is known from wash boring logs taken when the monitoring wells were installed and from particle size analyses of sediments taken from two sites north of the landfill. These data form the basis for a generalized fence diagram (Figure 6) and a more detailed cross-section (Figure 7).


The underlying aquifer is fairly homogeneous both vertically and horizontally. It consists of medium to fine, moderately sorted sand and is strongly fine-skewed and leptokurtic. Parallel to the northern edge of the landfill and extending no more than 50m north of the landfill is a 30 to 60 cm thick silt-clay lens at a depth of seven meters. This lens was recorded in well logs at sites C, F and G, and borehole 1 (Figures 6 and 7). Shell fragments are noticeably more abundant with depth. From the well logs, sediments around control wells H, I and J


Clay

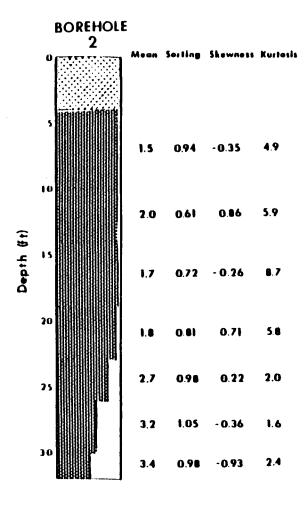
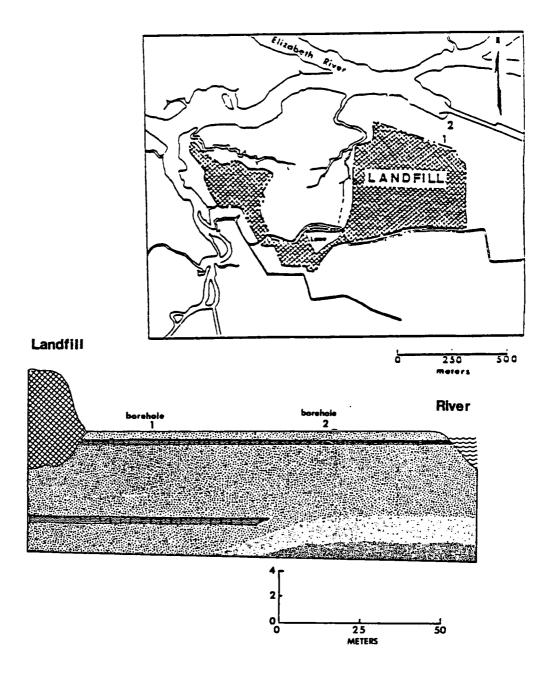

ill(:'lt

Figure 6. Generalized fence diagram connecting all boreholes around the Chesapeake Landfill.

.



7. Sand s north S of the distribution he landfill. wells

from two

•

appear to be homogeneous both vertically and horizontally, consisting of medium-fine sand.

Water levels in the wells seem to reflect the degree of variability in sediment textures. For example, most wells refilled with water almost instantly when purged during water sampling. Also, differences in water levels between upper and lower wells (verical hydraulic gradient) was constant and relatively small (0.01) between most well sites. Both of these observations indicaate that the aquifer is reasonably homogeneous with a high permeability. Not all well sites, however, are so uniform. At wells I2 and E2, refill rates are much slower than at other sites and there is a greater decrease in hydraulic head from upper (3 meters) to lower well (10 meters). Well F_1 also refilled noticably slower than most wells, though not to the same extent as E_2 and I_2 . The slow refill rates at wells E_2 and I_2 and the high vertical gradients at these sites are most likely due to a decrease in grain size with depth. This would indicate heterogeneity in the sediment texture is greater than indicated by the wash boring logs.

Due to the general lack of regional topographic relief and the gentle, broad slopes of coastal terraces in the area, it was assumed prior to this study that groundwater flow is generally north and the hydraulic gradient is low. In order to test this assumption, water levels were measured for all wells in October, 1982 at the same point in the tidal cycle (Appendix A). Wells along the N-S transect A-I

were monitored semi-hourly over a 30 hour period in October, Use of piezometers rather than wells screened through 1982. the entire aquifer presented a problem in evaluating the overall horizontal gradient in that the measured water levels were influenced by vertical hydraulic gradients in addition to horizontal gradients. The horizontal gradient for the upper wells is generally north (NW to NE), toward the river, averaging around 0.005. There is almost no horizontal gradient for the lower (10 meter) wells (<0.001). The vertical gradient for all sites (except J) decreased with depth. A three dimensional hydrologic cross-section shows the head distributuion in the aquifer north of the landfill (Figure 8). Effects of groundwater mounding in the eastern half of the landfill and the apparent decrease in grain size toward the west is primarily responsible for the cone, or plume shaped distribution centered around transect A-C. The higher mounding along transect A-C is due to the topographically higher (5 to 7 meters) elevation of the eastern portion of the landfill over the western half. This area is also currently active (unvegetated), with sandy dredge spoil used for cover.

Water levels measured semi-hourly over a thirty hour period along the north-south transect A-I show a decrease in the hydraulic gradient toward the river (Figure 9). The lateral gradient is much higher north of the landfill than elsewhere due to effects of groundwater mounding in the landfill. Tidal fluctuation in the adjacent river

 $\mathbf{28}$



Figure 8. Three dimensional hydrogeologic cross section of the head distribution north of the Chesapeake Landfill.

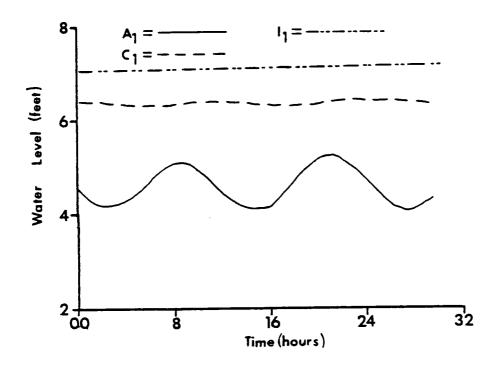


Figure 9. Fluctuation in measured water levels over a thirty hour period for wells A_1 , C_1 , and I_1 .

•

significantly affected the water levels measured at site A, and to a lesser extent influenced water heights measured at well C_1 . This fluctuation in the hydraulic head along transect A-C resulted in a regular fluctuation of the gradient along that transect. The gradient toward the river was at a minimum at high tide (0.004) and at a maximum at low tide (0.008). At no point in the tidal cycles did the gradient reverse itself. From these data, it appears that the rate of groundwater flow toward the river will change over a tidal cycle. It also appears that throughout a complete tidal cycle, net flow of groundwater remains in a northerly direction.

CHEMICAL ANALYSES

Simple statistics such as means and standard deviations, as well as one way ANOVAs, are used as an aid in interpreting the results. All ANOVA tests used F=0.01 as the rejection limit for the null hypothesis. Heterogeneity of variance between sample sites for every variable was the most serious failure of an assumption for ANOVA. This non-normal distribution of errors was a direct function of its mean value $(S^2=m+S^2_m)$. In an attempt to correct for this failure, a lognormal transformation was used for each variable. After the data was lognormally transformed, homogeniety of variance was improved, though not enough for the variance to be normally distributed (Barlett-Box F statistic). Using lognormally transformed data did not signifcantly change results of the F statistic for ANOVA

over the original data. The original data set was used in subsequent discussions because of the controversy over applying a lognormal transform to a pseudo lognormal distribution; the failure of the lognormal transform to significantly improve homogeneity of variance; and the unbiased estimate provided by non-transformed data for sample means and standard deviations. Use of nontransformed data, even though the assumptions of homogenety of error variance and normally distributed error failed, is supported (in a qualified way) by Cochran (1947). Cochran noted that non-normality and heterogenity of errors often do not greatly effect the validity of the F-test. He does point out, though, that the results should be regarded as approximative rather than exact.

<u>рН</u>

Values for pH varied significantly between sites, ranging from 4.70 at well I_1 to 7.45 in the channel. From Figure 10, an obvious pattern of increasing pH with depth for every well site can be seen. To test if this increase was significant, a series of Student's T-tests were used, comparing the upper wells with their corresponding lower well. For every site (excluding B and C) the null hypothesis that the two means were equal was rejected at the 0.01 significance level. The increase in pH as well as higher concentrations of Ca with depth (see calcium, pg. 43) was probably caused by increased shelly material with depth. The higher pH at sites B and C relative to the

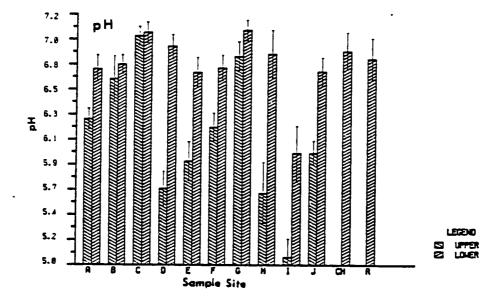


Figure 10. Bar graph of site means for pH, vertical lines represent 95% confidence ranges.

corresponding lower wells was likely due to leachate movement from the landfill. The clay lens separating upper from lower well at site C would prevent movement of leachate vertically.

Well B₁ appears to show some seasonal cyclicity in pH; higher in the summer months and lower in the winter. The cause of cyclicity (also observed in several other parameters at B_1) is attributed to leachate migration. Microbial decomposition of organic wastes would increase due to the rise in temperature and rainfall during the summer months. The sandy nature of the landfill cover allows for quick infiltration of rainwater, and the high water table (above the landfill's base) allows for direct contact between the leachate and groundwater. Rapid infiltration of rainwater and the high water table appears to overide the effects of increased evapotranspiration. This suggestion cannot be confirmed until water budget approximations are made for the area around the landfill.

Eh

Eh ranged from -210mv at site G_2 to +255mv at site I_1 . Both sample means and means by sample period (date) varied significantly. Samples taken during the period between June and July appear to be significantly more oxidizing than the other dates (Figure 11). Winter samples are on the average more reducing, with a minimum for the December

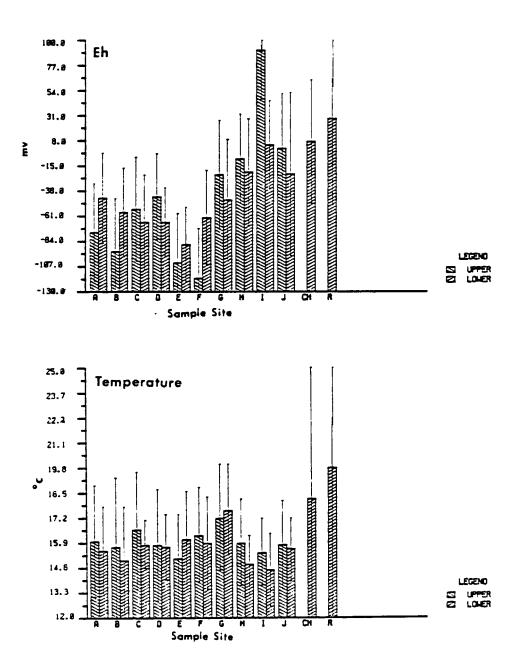


Figure 11. Bar graphs of site means for Eh and temperature, vertical lines represent 95% confidence ranges.

sampling. Site I_1 is the most oxidized site (X=91 \pm 71mv) and F_1 the most reduced (X=-118 \pm 68mv).

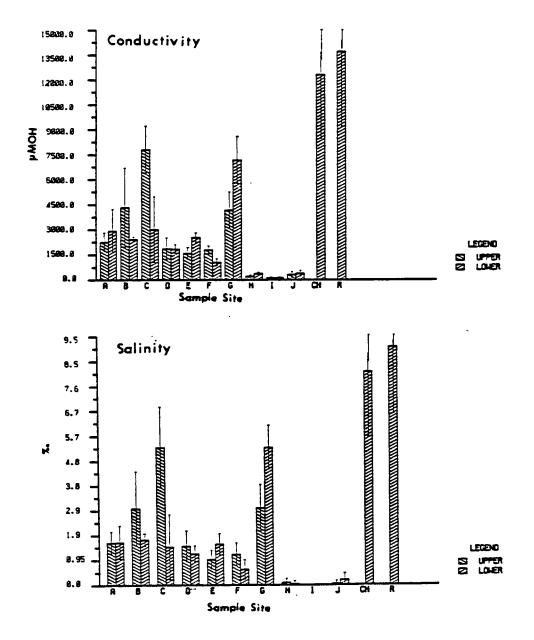
Temperature

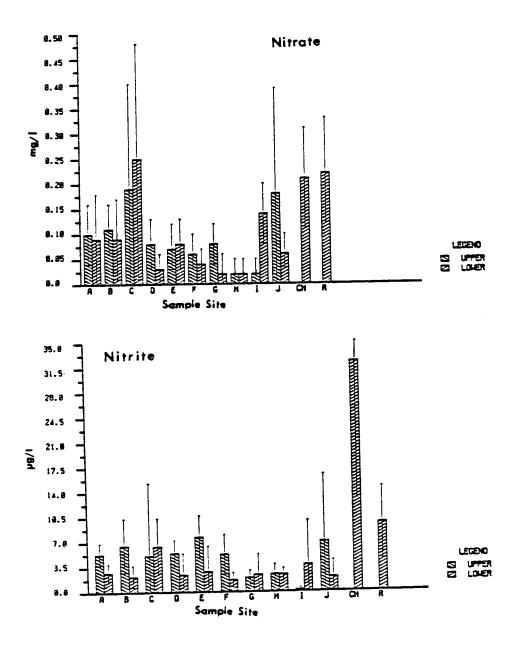
Temperature, though not considered to be a very sensitive measure for presence of leachate, was included early (10-28-82) in the research only because it was required for determining salinity and was already available. Data missing for the period 12-20-82 was due to instrument problems, resulting in the additional loss of conductivity and salinity measurements.

Temperature for the well sites varied from $9^{\circ}C$ for sites B_1 and F_1 in January, and B_2 in March to $25^{\circ}C$ at site C_1 in July. The surface water sites, as expected, had a larger range, from $6^{\circ}C$ in January to $31^{\circ}C$ in July. There was significant variation in both site and sample period means. Temperature for the upper wells were generally higher than lower wells, though not significantly. Variation in temperature by date was seasonally cyclic, with a low of 11°C and a high of 21°C (Figure 11).

Conductivity and Salinity

There was a wide variation in conductivity between sites, ranging from 100 ymohs at site I_1 and I_2 to 22,000 mohs in the river. Salinity varied from % for the control wells to 14% in the surface water. Mean conductivities and salinities are graphed on Figure 12. Site means for both conductivity and salinity were significantly different. The control wells all have mean conductivities at least an




Figure 12. Bar graphs of site means for conductivity and salinity, vertical lines represent 95% confidence ranges.

order of magnitude less than the other sites. There is a significantly sharp decrease in salinity and conductivity away from the landfill for transect A_1-C_1 and a slight U-shaped trend along transect D_1-F_1 , decreasing away from both landfill and river. Though this decrease along transect D_1-F_1 is not statistically significant, locally it does suggest both brackish surface water and leachate might influence groundwater salinity and conductivity. Well G_2 had a significantly higher concentration than G_1 , probably due to a density-separated flow of leachate from the landfill. The large variation in salinity and conductivity at B_1 results from seasonal influence on the leachate plume. Concentrations for the summer months are significantly higher than for the winter months.

Nitrate and Nitrite

. .

Both nitrate and nitrite were present in low concentrations. Nitrate varied from a maximum of 1.0 mg/l at J_1 in October to BDL (<0.1 mg/l) for all sites. Nitrite had a maximum concentration of 85 ug/l for the channel in October and a minimum of BDL (<1 ug/l) at most sites. Nitrate's mean by site was less than 0.3 mg/l and nitrite's was less than 10 ug/l (except the channel, with a mean of 32 ug/l). Nitrate tended to be higher in concentration for sites C_1 and C_2 , I_2 , J_1 , and surface water (Figure 13). Nitrite on the other hand was much higher in the channel (with a correspondingly larger variance).

•

Figure 13. Bar graphs of site means for nitrate and nitrite, vertical lines represent 95% confidence ranges.

Total Kjeldahal Nitrogen

Total Kjeldahal Nitrogen (TKN) varied by over three orders of magnitude between sites (Figure 14). TKN decreased significantly away from the landfill for both transects A_1-C_1 and D_1-F_1 . Site C_1 (adjacent to the active portion of the landfill) had by far the highest concentration of TKN, followed by G_2 then G_1 . The higher concentration in the lower well (G_2) at site G supports the idea of a density separated flow of leachate from the landfill. Concentration of TKN in all surface waters was negligable. Well C2 had a relatively high mean (58 mg/l) due to the anomalously high concentration from the first sample date. This anomalous value resulted from leakage through the clay lense separating C_1 from C_2 , while drilling well C_2 in August 1982. Site B1 may show seasonal variability in TKN, but unfortunately, the data set is incomplete. Data missing for dates 10-28-82, 6-3-83, and 8-28-83 was the result of problems with the ammonia probe. The analysis for 3-6-83 was not conducted within the alloted holding time.

Total and Orthophosphate

Orthophosphate accounted for a majority of the phosphate in the ground and surface waters (Figure 15), averaging greater than 50% for all sites. Total phosphate, however, was low for all surface and groundwater sites, ranging from less than 0.01 to 2.4 mg/l at C_1 . Sites most likely to be influenced by leachate (C_1 and G_2) had the highest averages

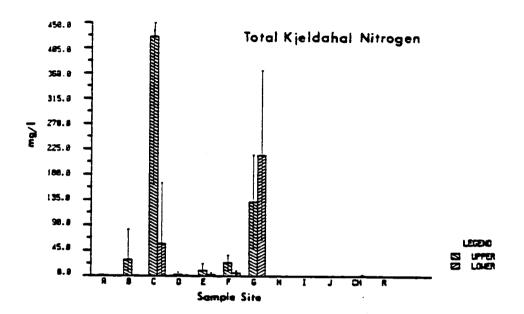


Figure 14. Bar graph of site means for total kjeldahal nitrogen, vertical lines represent 95% confidence ranges.

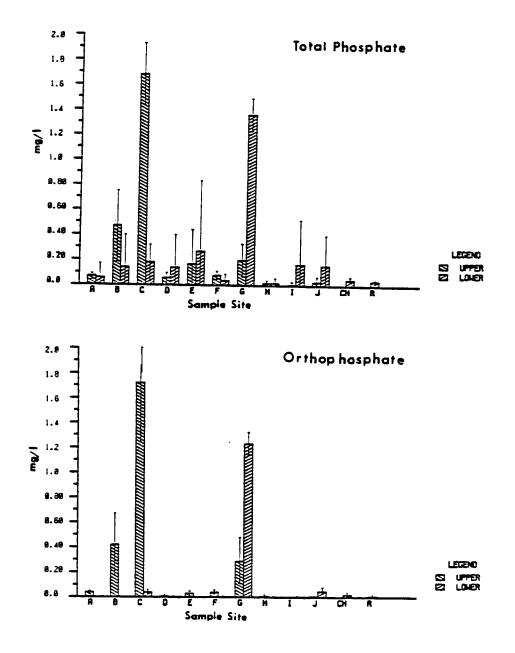


Figure 15. Bar graphs of site means for total phosphate and orthophosphate, vertical lines represent 95% confidence ranges.

of all sites, in most cases at least an order of magnitude greater than the other sites.

ANOVA indicated at least one site mean was significantly different from all others. Tukey's Studentized range test by site separated C_1 and G_2 from the other sites for both total and orthophosphate. B_1 and G_1 separated from other sites, with very little overlap, for orthophosphate.

Site B_1 has a relatively high mean and standard deviation (Appendix D), and on inspection of the total data set, there may be some seasonal variations at this site for both total and orthophosphate. Student's T-test for the summer samples (July and August) against the other dates indicated that the summer concentrations were significantly higher than winter concentrations. This increase in phosphate at site B_1 is interpreted as an increase in leachate production during the summer months.

Phosphate was found in significantly greater concentrations at sites C_1 , G_2 , B_1 and G_1 . The higher concentration for the lower well at site G may indicate a density separated flow of leachate from the landfill. Phosphate in the surface waters was low (averaging less than 0.01 mg/l).

Sulfate

Sulfate concentrations were relatively low for the groundwater samples, averaging 15 mg/l, while surface water sites were over an order of magnitude higher, averaging 454 mg/l (Figure 16).

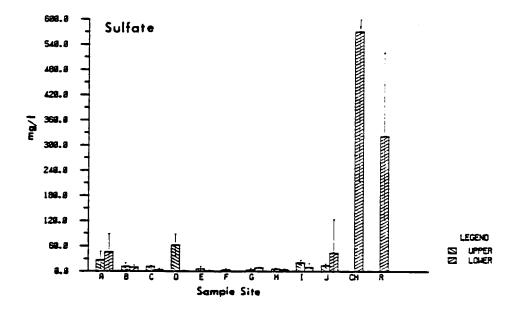


Figure 16. Bar graph of site means for sulfate, vertical lines represent 95% confidence ranges.

.

ANOVA rejected the null hypothesis that all site means were equal, and Tukey's range test significantly separated surface water from groundwater sites. The range test also separated the channel and river sites. Separation of the channel site from the river site was due to the anomalously large difference in measured sulfate concentrations for the sample taken on 10-30-83. Removal of this sample resulted in no significant difference between the channel and river sites. The heterogeneity within the channel and river sites may result from tidal fluctuations or use of the locks. This source of variance in the surface water samples was not supported by regression analysis.

Sites adjacent to the river (A_1, A_2, D_1) had higher concentrations of sulfate than the other groundwater sites, indicating influence from the surface water. Sites I and J also had elevated sulfate concentrations with the source possibly from nearby drainage ditches. The increased sulfate concentrations are not statistically significant, indicating only a trend toward higher concentrations.

Sodium and Chloride

Sodium concentration equaled chloride concentration for all sites (Figure 17; Appendix D). Site means were significantly different, with Tukey's range test separating surface from groundwater for both sodium and chloride. Groundwater sites down gradient of the landfill had much higher concentrations (at least an order of magnitude) than sites up gradient (control sites) of the landfill. Sodium

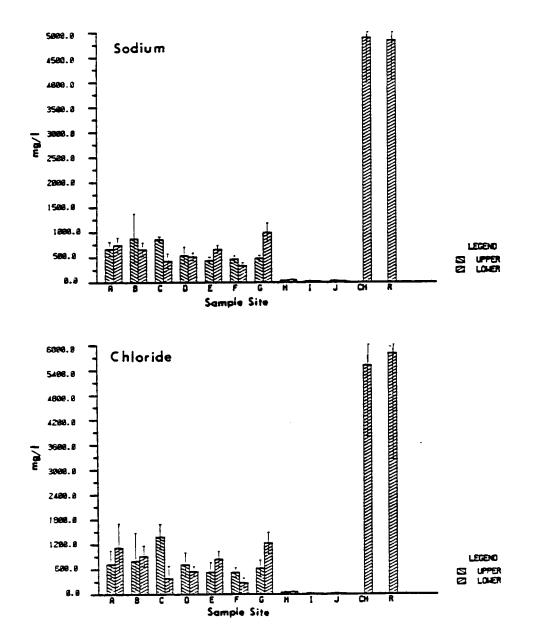


Figure 17. Bar graphs of site means for sodium and chloride, vertical lines represent 95% confidence ranges.

and chloride concentrations between the river (and channel) and landfill appear to be influenced by both the surface water and leachate. This dual influence is best illustrated along transect A-C (river to landfill) where the chloride concentration decreases toward the landfill for lower wells and increases for upper wells. The large variability at site B₁ is probably seasonally influenced, with higher concentrations in the summer months and lower concentrations in the fall through spring months (total data, Appendix C). This variability is probably due to increased leachate movement, since the surface water does not appear to significantly increase seasonally. The inverse relationship (also seen in conductivity and salinity) between upper and lower wells along transect A-C possibly represents a density separated flow, in which a denser saline wedge from the surface water extends toward the landfill and a less dense leachate plume overides the saline wedge.

Potassium

Potassium varied considerably from site to site, with a minimum of 1 mg/l at site H_1 to a maximum of 1530 mg/l at site C_1 in August. Site means varied significantly, and Tukey's range test separated C_1 and G_2 , then G_1 and B_1 from the other sites. All other sites fell within the same range, including surface waters (Figure 18). Sites adjacent to and down gradient (A-G) of the landfill have means at least an order of magnitude greater than the other sites. Variability at B_1 is almost certainly seasonal, increasing

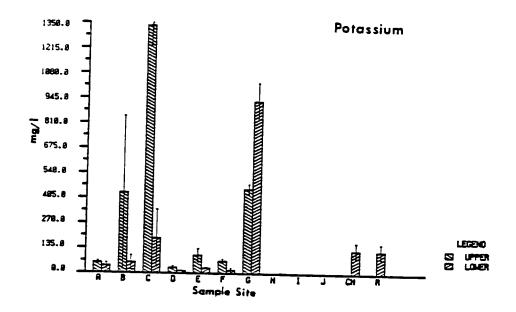


Figure 18. Bar graph of site means for potassium, vertical lines represent 95% confidence ranges.

by over an order of magnitude in the summer months (July and August). An increase in June and decrease in September and October is also apparent (Appendix (C)).

The sharp decrease in potassium along transect A-C is undoubtably due to movement of leachate. Higher levels of potassium for the lower well G would result from a density separated flow of leachate.

Calcium

Calcium varied significantly between upper and lower well means (based on Student's T test). The upper wells mean was 54 ± 36 mg/l; the lower wells mean was 108 ± 55 mg/l, and that of the surface waters was 121 ± 45 mg/l. For every groundwater site, the lower well had a higher concentration of calcium (Figure 19). This increase in calcium with depth is caused, in part, by the increase in shell material with depth. The upper wells have higher concentrations of calcium downgradient of the landfill (sites A-G) than upgradient (control sites H-J). The higher concentration of calcium at these sites may be influenced by a combination of leachate and surface water.

Though Tukey's range test did not separate any groups without overlap (except site F_2), the general trendency was for surface waters and lower well sites together with higher means, while upper well sites had lower means.

Magnesium

The concentration of magnesium is significantly higher (Student's T test) for surface waters than groundwaters.

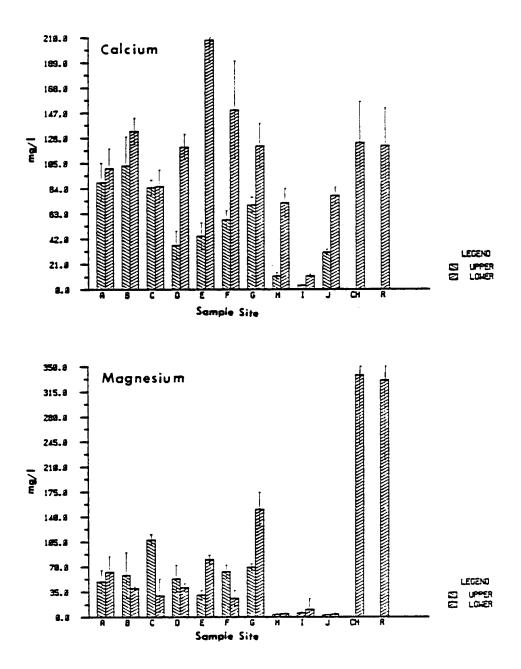


Figure 19. Bar graphs of site means for calcium and magnesium, vertical lines represent 95% confidence ranges.

Surface waters had a mean concentration of 335 ± 137 mg/l, while the groundwater samples had a mean of 46 ± 48 mg/l (Figure 19). Tukey's range test separated surface waters from groundwater without overlap. Within the groundwater sites, G₂ and C₁ separated from the other sites with very little overlap. Although the control wells did not separate from the other sites without overlap for Tukey's range test, they all had much lower means. The inversely trending concentrations between upper and lower wells along transect A-C for Na and Cl was also true for magnesium.

Iron and Manganese

Neither iron or manganese varied significantly between sites. However, iron did vary significantly over time. From inspection of the total data set (Appendix C), it can quickly be seen that for several sites (F_1 , A_2 , D_2 , F_2 , G_2 , I_2 especially), the measured concentration for the first sampling period was several orders of magnitude greater than the following dates. These anomously high concentrations were the result of an inadvertent partial acid extraction of sediment not filtered out of the samples. Suspended particulates in subsequent samples were removed by centrifuging.

By removing the first sample date for both iron and manganese, variance between sites became significant, whereas variance between dates was no longer significant. Although there is no strong trends for either element, the upper wells generally have higher concentrations, with the

exception of sites E_2 and I_2 . High iron and manganese concentrations at these two sites is attributed to limited flushing of the well prior to sampling necessitated by low recharge rates.

<u>Zinc</u>

Zinc concentrations varied significantly by site. The null hypothesis was not rejected for ANOVA by site. Because the same sites which had anomously high iron and manganese concentrations (F₁, A₂, D₂, F₂, G₂ and I₂) also had high zinc concentrations, the first sample date was removed and ANOVA reexecuted. Site A wells (both upper and lower) give the only two mean concentrations significantly different from the others. A₁ had a higher concentration due to the value for date 3-6-83 (0.39 mg/1), while A₂ had consistantly higher concentrations than the other sites. A₂ was the only site to separate from the other sites by Tukey's range test.

FACTOR ANALYSIS

Principal components analysis was initially run on the data. Out of the twenty vectors extracted, five accounted for over 80% of the variance in the data, and seven accounted for over 90% of the variance (Table 2). Next, a principal axes solution was applied to the correlation matrix. Because of high communalities for several variables, the diagonal element was not replaced by communality estimates. A varimax procedure was used to

Table 2. Table of eigenvalues for the principal components method, before and after VARIMAX rotation.

EIGENVALUES

PC METHOD WITHOUT ROTATIONPC METHOD WITH VARIMAX ROTATIONFactorEigenvalue% Variance17.1335.623.6118.123.6118.1

2	3.61	18.1	2	4.02	24.1
3	3.14	15.7	3	3.14	18.8
4	1.53	7.6	4	1.60	9.6
5	1.28	6.4	5	1.36	8.2
6	0.89	4.4			
7	0.71	3.6			
8	0.56	2.8			
9	0.33	1.7			
10	0.30	1.5			
11	0.24	1.2			
12	0.15	0.8			
13	0.14	0.7			
14	0.12	0.6			
15	0.09	0.4			
16	0.05	0.3			
17	0.01	0.0			
18	0.01	0.0			
19	0.00	0.0			
20	0.00	0.0			

TABLE 3. Table of factor loadings for the principal components method, before and after VARIMAX rotation.

Factor Loadings without Rotation

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5
На	0.48848	0.23613	-0.02371	-0.53357	-0.06337
Ēh	0.07866	-0.12842	-0.15457	0.77137	-0.15606
Temp.	0.33984	0.05149	-0.18296	0.45865	-0.54977
Cond.	0.96210	-0.02097	-0.11753	0.02325	-0.08918
Salinity	0.93170	-0.19536	0.28923	-0.05591	-0.11537
Hardness	0.93269	0.00849	-0.14416	-0.05022	0.03423
Nitrate	0.23753	-0.05450	-0.02442	0.12665	0.76846
Nitrite	0.37629	-0.38677	-0.11920	0.14343	0.47015
TKN	0.36238	0.82120	-0.18222	0.20239	0.13607
Total Phos.0.41982 0		0.81427	0.00520	0.01455	0.09201
Orthophos. 0.40601		0.88760	-0.11783	0.11025	0.00032
Sulfate	0.63358	-0.48822	-0.13977	0.18833	0.05991
Chloride	0.89196	-0.37167	-0.12518	-0.03448	0.04581
Sodium	0.85062	-0.36327	-0.14273	-0.01791	0.00579
Potassium	0.50231	0.78812	-0.14929	0.00459	0.07471
Calcium	0.55797	-0.03387	0.37384	-0.46923	-0.24279
Magnesium	0.94130	-0.24791	0.01382	0.03153	-0.05998
Iron	0.10263	0.06098	0.95844	0.18620	0.06261
Manganese	0.17661	0.15547	0.92691	0.15902	-0.02354
Zinc	0.14616	0.01845	0.95272	0.14842	0.08425

Rotated Factor Loadings

	FACTOR 1	FACTOR 2	FACTOR 3	FACTOR 4	FACTOR 5
На	0.39236	0.33161	-0.05172	-0.54363	-0.14672
Ēh	0.12054	0.00320	-0.00991	0.80703	0.00045
Temp.	0.35399	0.19646	-0.06496	0.55046	-0.43942
Cond.	0.91188	0.34094	-0.00257	0.02150	-0.01204
Salinity	0.92349	0.10508	0.36102	-0.09852	-0.04908
Hardness	0.86458	0.36362	-0.03986	-0.06857	0.09195
Nitrate	0.14829	0.12226	0.04682	-0.01355	0.79199
Nitrite	0.43694	-0.14192	-0.05907	0.10148	0.56759
TKN	0.02643	0.93865	-0.03357	0.09856	0.07601
Total Phos.0.08001		0.90336	0.11809	-0.10761	-0.00193
Orthophos.	0.05663	0.98410	0.01744	0.01412	-0.08104
Sulfate	0.75745	-0.16966	-0.06048	0.22131	0.20791
Chloride	0.96171	0.00272	-0.05029	-0.01613	0.15810
Sodium	0.92582	-0.00403	-0.06962	0.01062	0.11884
Potassium	0.17901	0.92775	-0.02682	-0.08865	-0.00242
Calcium	0.54370	0.04830	0.32999	-0.49056	-0.28962
Magnesium	0.95191	0.11243	0.10874	0.02747	0.04238
Iron	-0.01076	-0.01061	0.98495	-0.00368	0.03291
Manganese	0.03619	0.09595	0.96200	-0.02245	-0.06257
Zinc	0.04407	-0.03499	0.97490	-0.04010	0.05749

rotate the vectors, reducing the number of factors representing the data's variance from twenty to five loadings. These factors were then compared to loadings of the corresponding factors from principal components analysis. Since there was no major change in factor loadings and scores, the rotated matrix solution was used.

Factor One (Surface Water - Ground Water)

Variance accounted for by factor one was mostly between groundwater and surface water sites representing 39% of total variance in the data. Loadings, or variables, most important in determining the direction of the vector (i.e.: largest magnitude) would exhibit the most variance between the groundwater and surface water. These loadings were conductivity, salinity, hardness, chloride, sodium, and magnesium. Scores for factor one were calculated and grouped according to site (Figure 20).

The channel and river sites had significantly higher score means than the total score mean and any of the ground water sites. All ground water sites, with the exception of G_2 , had means below the total mean. Because all maximum loadings were positive, it would be safe to assume that conductivity, salinity, hardness, chloride, sodium, and magnesium are present in much higher concentrations in the surface water than ground water. This observation is supported by the raw data for these parameters.

Also worth noting is the inversely related trends between upper and lower wells along transect A-C. This

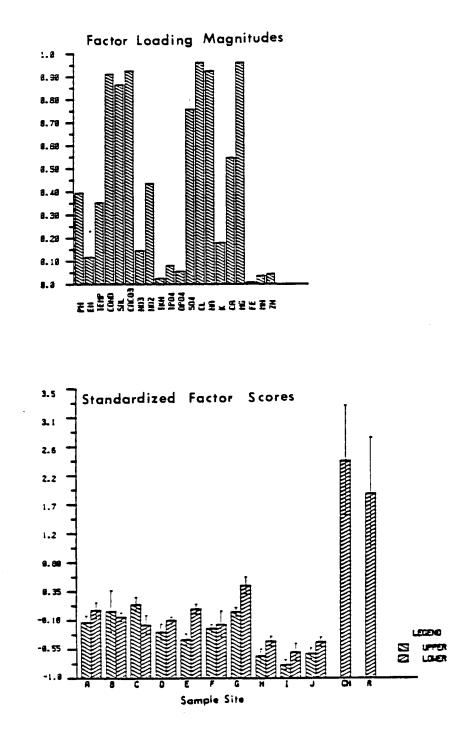


Figure 20. Bar graphs of factor loadings and score means by site for Factor 1, vertical lines represent 95% confidence ranges.

general increase in concentrations away from the river for the upper wells and decrease away from the river for the lower wells was present for many of the parameters listed earlier (hardness, sodium, chloride, and magnesium). The control wells (H, I, and J) all had the lowest mean scores among all sites.

Factor Two (Leachate Influence)

Factor two delineated those parameters most indicative of leachate from the landfill. Variables with the greatest magnitude along factor two were TKN, total phosphate, orthophosphate, and potassium. These four variables account for, approximately, 24% of the variance in the data.

Those sites expected to be influenced most by leachate $(C_1 \text{ and } G_2)$ had significantly higher mean scores (Figure 21). Score means for B_1 and G_2 were also, as expected, higher than the average.

Channel and river sites grouped with the other ground water sites, with mean site scores well below the total score mean. The large variance at B_1 is due to seasonality with summer samples (June-August) having much higher scores than the fall through spring scores.

TKN, total phosphate, orthophosphate and potassium are found in high concentrations in the leachate and in much lower concentrations in the surrounding ground and surface waters.

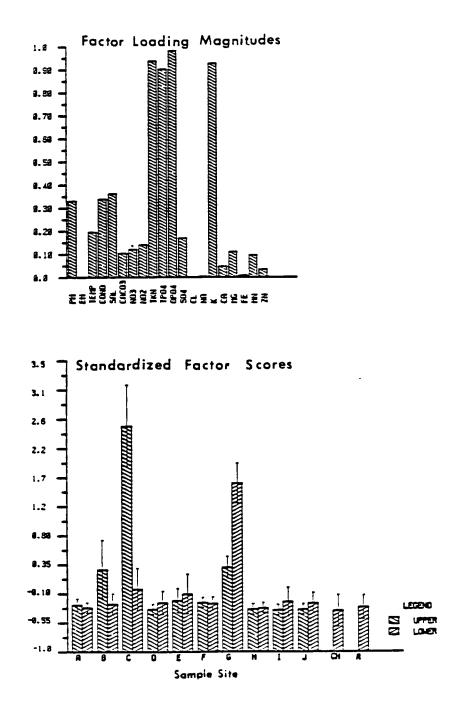


Figure 21. Bar graphs of factor loadings and score means by site for Factor 2, vertical lines represent 95% confidence ranges.

Factor Three (Sample Technique)

Factor three reflected a problem encountered in the first sampling period (9-2-82). A portion of the samples were field preserved with 1:1 HNO₃ for metal analysis. Several sites had a large amount of suspended particulates (especially F₂ and I₂), and consequently, the particulates were partially extracted by the acid. This resulted in anomalously high metal concentrations (particularly iron, manganese, and zinc) for the first sample period. For subsequent sampling, suspended material was removed by centrifugation prior to addition of the acid.

Since these anomalously high metal concentrations constituted a known source of error in the data, it was of interest to investigate how much variability was added by inclusion of the first sampling period. This would supply a qualitative estimate of the actual importance of other sources of variance. This source of error was later removed and the data re-analyzed with the principal factor technique.

The variables with high loadings for factor three were iron, manganese, zinc and to a lesser extent calcium and hardness (Figure 22). Sites F_2 and I_2 had, expectedly, very large variances due to the suspended sediment in the sample for the first date. Sites which typically had the least amount of sediment had the smallest variances.

Because this source of variance was due to sampling technique, analyses for the first date was removed from the data and factor analysis rerun. The result was to shift the

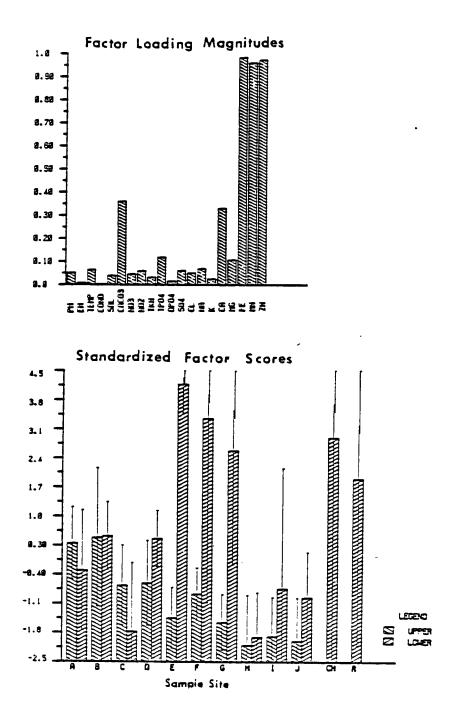


Figure 22. Bar graphs of factor loadings and score means by site for Factor 3, vertical lines represent 95% confidence ranges.

variance explained by factors four and five to factors three and four, with little change in factors one and two. With the removal of factor three, which accounted for 19% of the total variance, factors one and two increase in proportion of variance from 39% to 44% and 24% to 27% respectively. Factors four and five increased by less than 1% of total variance explained. The large increase in variance accounted for by factors 1 and 2 (13% for each factor) emphasizes the importance of these two factors over the remaining factor.

Factor Four (Site Depth)

Factor four accounted for 10% of the total variance and separated upper (3 meter) from lower (10 meter) wells. Eh, pH, temperature, and calcium had the largest magnitudes along this vector (Figure 23). Calcium and pH were negative loadings, indicating an inversely related trend between the original data and corresponding factor scores. In all cases, on a site by site basis, the upper well mean was greater than the lower well. However, this can only be considered a trend, as the difference between upper and lower wells was not significant for all sites. This trend suggests a general increase in pH and calcium and decrease in temperature and Eh (more reducing) with depth.

Factor Five (Remaining Variance)

Factor five accounted for the remainder of the variance in the data. Nitrate and nitrite were the principal sources

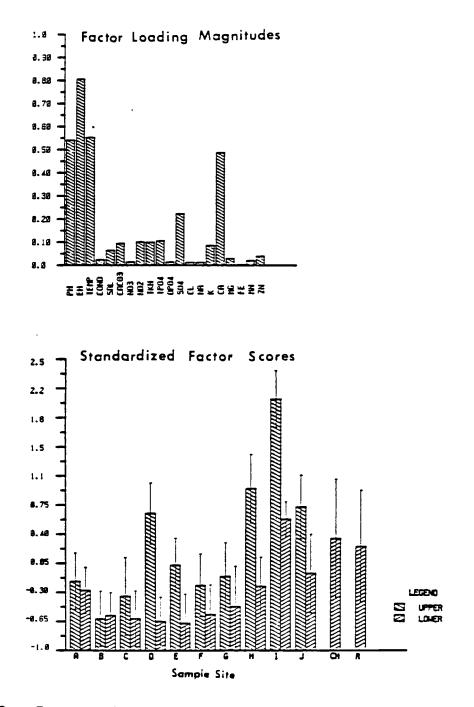


Figure 23. Bar graphs of factor loadings and score means by site for Factor 4, vertical lines represent 95% confidence ranges.

of variance, reflecting the lower means at sites D_2 , E_2 , F_2 and G_2 . This factor also accounted for large amount of variance within surface water sites as well as sites A_2 , B, C and J_1 for nitrate and nitrite (Figure 24).

The variance accounted for by factor five is relatively minor (8% of the total variance) and is not as well reflected by the original data as the other four factors. Therefore, only factors one through four (excluding three for sample handling error) accounted for geochemically interpretable variance. Factor five accounts for the remaining, relatively minor, variance in the data.

Factor Analysis Summary

Sixty-three percent of variance in the data was attributed to influence from surface water (39%) and leachate (24%). Conductivity, salinity, hardness, chloride, sodium, and magnesium had significantly higher concentrations in the surface water than ground water. These parameters were also present in elevated concentrations in the leachate. Leachate,

however, was best characterized by high concentrations of TKN, total phosphate, orthophosphate, and potassium. TKN, phosphates, and potassium were present in much lower concentrations in the surface water and ground water. Calcium and pH increased with well depth due to an increase in shell material.

Figure 24. Bar graphs of factor loadings and score means by site for Factor 5, vertical lines represent 95% confidence ranges.

REGRESSION

Regression analysis was used to investigate the influence of tidal fluctuation, seasonal variation, depth, and horizontal distance on the parameters measured in this study. The model including all independent variables accounted for greater than 50% of the total variance for only a few dependent variables (Table 4). These were (in order of importance) chloride, sodium, magnesium, conductivity, temperature, hardness, calcium and salinity. Only chloride accounted for greater than 75% of the total variance.

Tidal fluctuation, independent of the other variables, accounted for less than 10% of the total variance for all dependent variables. Depth as the independent variable accounted for greater than 50% of total variance for chloride, sodium, and magnesium. Temperature was the only dependent variable which seasonal variation accounted for greater than 50% of the variance. Depth was the best estimator (regressor) for chloride, sodium, magnesium, conductivity, hardness and salinity; accounting for 70%, 62%, 54%, 45%, and 40% of the variance, respectively. Seasonal variation was the best estimator for temperature (55%) and horizontal distance for calcium (33%).

The variables best estimated by the independent (regressor) variables closely matched the variables with high loadings along factor one (surface water/groundwater). Only temperature and calcium did not have high loadings for

TABLE 4. Coefficient of determination (r^2) for five multiple regression models (depth, distance, seasonal, tidal, and total)

PARAMETER	DEPTH	DISTANCE	SEASONAL	TIDAL TOTAL
рH	0.3038	0.2636	0.0039	0.0148 0.5730
Eh	0.0339	0.1614	0.1436	0.0071 0.3649
Conductivity	0.4644	0.3554	0.0289	0.0126 0.6435
Temperature	0.0497	0.0333	0.5512	0.0999 0.6403
Salinity	0.4447	0.3323	0.0142	0.0099 0.5649
Hardness	0.4033	0.3392	0.0136	0.0257 0.6245
Nitrate	0.0495	0.0736	0.0080	0.0012 0.0895
Nitrite	0.2544	0.1908	0.0302	0.0369 0.3236
TKN	0.3285	0.2629	0.0423	0.0122 0.3285
Total Phosphate	0.0125	0.2099	0.0354	0.0001 0.2695
Orthophosphate	0.0276	0.2676	0.0158	0.0110 0.3131
Sulfate	0.4630	0.3073	0.0054	0.0101 0.4772
Chloride	0.6966	0.4742	0.0225	0.0066 0.7622
Sodium	0.6150	0.4297	0.0115	0.0090 0.6787
Potassium	0.0284	0.3051	0.0096	0.0063 0.3758
Calcium	0.2721	0.3255	0.0093	0.0221 0.5816
Magnesium	0.5369	0.3616	0.0059	0.0198 0.6446
Iron	0.0108	0.0060	0.0349	0.0058 0.0532
Manganese	0.0107	0.0207	0.0207	0.0113 0.0524
Zinc	0.0223	0.0104	0.0205	0.0009 0.0569
Factor 1	0.6104	0.4326	0.0191	0.0290 0.7265
Factor 2	0.0405	0.3328	0.0066	0.0025 0.3738
Factor 3	0.1933	0.1422	0.2183	0.0172 0.5888
Factor 4	0.1284	0.2766	0.0095	0.0111 0.3845
Factor 5	0.1531	0.0878	0.0682	0.0104 0.2676

•

factor one. All the variables with high factor loadings (conductivity, salinity, hardness, sulfate, chloride, sodium, and magnesium) were most dependent on depth as a regressor variable(s). Since the three depths possible were surface water, 3 meter wells, and 10 meter wells, this dependency was not surprising.

As a check for this observed relationship between the dummy variables for depth and high loadings along factor one, all independent variables together, as well as separately, were regressed against the factor scores for factors one and two. The independent variables together accounted for 73% of the variance in factor one, with depth responsible for 61% of the variance. For factor two (leachate/groundwater-surface water), 37% of the variance was accounted for by the regressor variables. Horizontal distance was responsible for 33% of the variance in factor two scores. Variables with high loadings along factor two (TKN, TPO₄, OPO₄ and K) were influenced most by horizontal distance. With the greatest decrease in leachate concentration occuring horizontally between the landfill and river (transect A-C), the relationship between factor two scores and horizontal distance was expected.

The independent variable of particular interest in this regression analysis (tidal fluctuation) was neither statistically or geochemically significant. To further investigate possible tidal influence on the groundwater geochemistry, conductivities and water levels were measured

hourly along transect A-C for one complete tidal cycle. There was a slight correlation between conductivity and water level for the upper wells, and no correlation for the lower wells. At site A (adjacent to the river), the upper well (A₁) had a correlation of 0.63 and the lower well (A₂) had a correlation of 0.05 (Figure 25). Conductivity correlated with water level at 0.48 for well C_1 and at <0.01 for well C2. The slight correlation for the upper wells $(A_1$ and C_1) suggests there may be some minimal influence from tidal fluctuation. When conductivity was correlated with tidal level over the entire year at A_1 , there was no significant inter-relationship (r=0.03). Although tidal fluctuation has no significant long term impact on the parameters measured, correlation between conductivity and water level at well A_1 is additional evidence that may be some intrusion of brackish water from the river.

SUMMARY AND RECOMMENDATIONS

The Chesapeake landfill appears to be typical of many municipal landfills in coastal plain and other low-lying areas. The landfill is located in, and bounded to the north and west by a tidal marsh. The Chesapeake landfill first began operation in the mid to late sixties, and is therefore a relatively old (mature) landfill. The original mode of operation was to trench and dewater while the trash was deposited and compacted. Presently, refuse is being redepositted over the oldest portion of the landfill

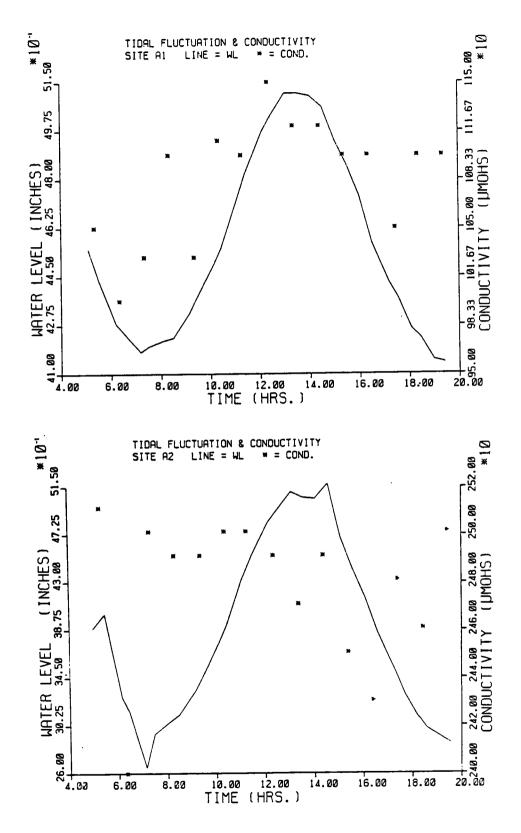


Figure 25. Graphs of tidal fluctuation and conductivity with time for wells A1 and A2.

(eastern edge), extending as far west as transect A-C (Figure 5, p. 12).

The water table is high in this area, as evidenced by the adjacent marsh, and the landfill's base is in a medium to fine sand which underlies the marsh clay. Since no liner, clay or otherwise, was initially used, it would be safe to assume the landfill is at least partially saturated with groundwater. Cover for the landfill is of local material and usually sandy in nature. The refuse is primarily from residential and small industrial sources, with the largest industrial input being wood and wood by-products. With no real physical impediment for leachate flow from the landfill, the low hydraulic gradient would be the primary restrictor of leachate movement. The leachate plume is concentrated north of the landfill, centered arount transect A-C and paralleling the hydrologic head distribution (Figure 8). Leachate found to the west, at site G, is due to the close proximity of the surface water (which abuts the landfill at high tide). Net flow of groundwater around site G is probably west. Any detrimental effect from leachate on the surrounding ground and surface waters would be from nutrient enrichment of the adjacent marsh and waterway. It has been suggested, however, that the marsh may serve as both a nutrient source and sink, especially for nitrogen and phosphorus (Heinel and Flemer, 1976; Valeela et al., 1978; Wolaver et al., 1983; Wolaver and Zieman, 1984). If this is true, the leachate may have

little detrimental influence on the adjacent surface water. Interaction of leachate with the marshland deserves further study.

The source of variance in many parameters measured in this study was traced back to either surface water or leachate influence. Higher concentrations for hardness, sodium, chloride, magnesium, and sulfate, as well as, high conductivity and salinity was indicative of the surface water. These seven variables (except sulfate) were also present in high concentrations in the leachate, relative to the ambient groundwater. Well sites adjacent to the surface water had elevated concentrations for hardness, sulfate, sodium, chloride, and magnesium. This is probably due to some recharge from the river.

Total kjeldahl nitrogen, phosphate (total and ortho), and leachate than ambient groundwater and surface water. Concentrations for these parameters did not differ significantly between the ground and surface water.

Organic nitrogen and phosphates are very common byproducts of biochemical-chemical degredation of municipal refuse. They possess qualities desirable for a good leachate indicator (high concentration in the leachate and mobile). However, because of interferences with the analysis of phosphates and nitrogen, a great deal of care must be taken in the labratory procedures. Total kjeldhal nitrogen was particularly difficult to measure.

Potassium, on the other hand, is also present in leachate in high concentrations and is relatively mobile with few, and minor, interferences. The ease in preservation and long holding time makes potassium additionally attractive as a leachate indicator. It also is a common by-product of organic waste degredation and has been recognized as a primary constituent of leachate, especially during generation and stabilization of the fill (Chain and De Walle, 1975; Johansen and Carlson, 1976; Fenn et al., 1977; Ellis, 1979; Lu et al., 1981; Tredoux, 1984).

Temperature, Eh, pH, and calcium varied most with depth. Temperature decreased and Eh became more reducing while calcium and pH increased with depth. The decrease in temperature and Eh with depth follows the expected natural trend for a water table aquifer. The increase in calcium and pH was due, at least in part, to an increase in calcareous shell material with depth.

While tidal fluctuation had no observable influence on the groundwater geochemistry, there did appear to be a significant seasonal influence for most parameters measured. Salinity, conductivity, pH, total kjeldhal nitrogen, total and orthophosphate, chloride, sodium, potassium, calcium, and magnesium increased sharply during the summer months for site B_1 (midway between the landfill and river). Ideally the wells should be monitored monthly for the summers (June through August) and seasonally for the remaining year (fall, winter, and spring) in order to

establish the exact affect of seasonal change on leachate variability. A rain gauge should be installed to monitor local precipitation, and evapotranspiration estimated for water budget approximations. In order to accurately predict seasonal influence, monitoring would have to take place over several complete seasonal cycles. Parameters recommended for measurement in such a study are pH, conductivity, orthophosphate, sodium (or chloride), potassium, and calcium.

CONCLUSIONS

Variation in most parameters measured in this study was due to either leachate influence or surface water influence. Leachate was characterized best by significantly higher concentrations of potassium, total phosphate, orthophosphate, and total kjeldahl nitrogen over the ambient groundwater and surface water. Conductivity, salinity, hardness, sodium, chloride, and magnesium were also present in leachate at significantly higher levels than the ambient groundwater. Although higher pH and calcium values were also indicatative of leachate, the major source of variance for these parameters was apparently due to an increase in calcareous shell material with depth.

Parameters found in significantly higher levels in the surface water over leachate and groundwater were conductivity, salinity, hardness, sodium, chloride, magnesium, and sulfate. Groundwater samples taken adjacent to the surface water had elevated concentrations for hardness, sulfate, sodium, chloride, and magnesium. This is most likely due to intrusion of brackish water from the river.

Because of influence from sources other than landfill leachate, parameters traditionally used for routinely monitoring leachate (pH, chloride, and conductivity) are not appropriate for sites in, or adjacent to naturally

brackish water. Potassium appears to be the most promising parameter for routine monitoring in coastal marshlands and estuaries, in that it is:

- 1) present in leachate in much higher concentrations than the ambient groundwater
- 2) easily stored, preserved, and analyzed
- 3) relatively free of interferences

Total phosphate and orthophosphate are also good candidates for use in routine monitoring, although greater care must be taken to correct for interferences for these analyses. TKN, though present in much higher levels in the leachate, is too time consuming to measure to be used routinely.

Tidal fluctuation had no apparent influence on the groundwater geochemistry. Seasonal variation, however, did affect salinity, conductivity, pH, total kjeldhal nitrogen, potassium, calcium, and magnesium at site B_1 (midway between the landfill and river). These parameters increased significantly during the summer months (July through Additional monitoring is required to accurately August). evaluate the effect of seasonal variation on the leachate. Lateral variation in groundwater mounding under the landfill and heterogeneity in grain size distribution in the aquifer significantly influenced the position of the leachate plume over a short areal distance. This emphasizes the need for a rigourous hydrologic evaluation of the aquifer in contact with the landfill before installation of wells for routine monitoring.

REFERENCES

- Anderson, T. W. (1958), <u>An Introduction to</u> <u>Multivariate</u> Statistical Analysis. Wiley, New York, N.Y., 374 pp.
- APHA (1975) <u>Standard Methods for the Examination of Water</u> <u>and Waste Water</u>. American Public Health Assoc., Washington D.C.
- Barlett, M.S. (1947) The Use of Transformations. <u>Biometrics</u>, IS-V3, pgs. 39-53.
- Chian, E. S. K. and DeWalle, F. B. (1975) Compilation of Methodology for Measuring Pollution Parameters of Landfill Leachate. U.S. Environmental Protection Agency, EPA-60013-75-011.
- Chian, E. S. K. and DeWalle, F. B. (1976) Sanitary Landfill Leachates and Their Treatment. Journal of the Environmental Engineering Division, pgs. 411-429.
- Chian, E. S. K. and DeWalle, F. B. (1977) Characterization of Soluble Organic Matter in Leachate. Env. Sci. and Tech., Vol. 11, No. 2, pgs. 158-162.
- Chapman, R. P. (1976) Some Consequences of Applying Lognormal Theory to Pseudolognormal Distributions. <u>Journal Math.</u> Geology, Vol. 8, No. 2, 1976.
- Chapman, R. P. (1977) Reply to Log Transformations in Exploration Geochemistry. <u>Journal Math. Geology</u>, Vol. 9, No. 2, 1977.
- Cochran, W. G. (1947) Some Consequences When the Assumptions for the Analysis of Variance are not satisfied. <u>Biometries</u>, Vol. 3, p. 22-38.
- Davis, J. C. (1973) <u>Statistics and Data Analysis in Geology</u>. Wiley, New York, N.Y., pg. 550.
- Ellis, J. (1979) A Convenient Parameter for Tracing Leachate from Sanitary Landfills. <u>Water Research</u>, Vol. 14, pgs. 1283-1287.
- Fenn, D., Cocozza E., Isbister, J., Braids, O., Yare, B., Roux, P. (1977), Procedures Manual for Ground Water Monitoring at Solid Waste Disposal Facilities. U.S. Environmental Protection Agency, EPA-600/9-77-0029.

- Fungaroli, A. A. (1971) Pollution of Subsurface Water by Sanitary Landfills. U.S. Environmental Protection Agency EP-000162.
- Gibb, J. P., Schuller, R. M., Griffin, R. A. (1981), Collection of Representative Water Quality Data from Monitoring Wells.
 In: Land Disposal: Municipal Solid Waste, Proceedings of the Seventh Annual Research Symposium, D. W. Shultz (Editor).
 U.S. Environmental Protection Agency, EPA-60019-81-0029.
- Heinle, D. R. and Flemer, D. A. (1976) Flows of Materials Between Pourly Flooded Tidal Marshes and an Estuary. Marine Biology, Vol. 35, p. 359-373.
- Henry, E. F., Chudobajdi, Porter, H. C. (1958), Soil Survey of Norfolk County, Virginia. U.S. Govt. Print Office, Washington, D.C., pg. 53.
- Imbrie, J. (1963) Factor and Vector Analysis Programs for Analyzing Geologic Data. Office Naval Research Tech. Rept. 6, Geography Branch, pg. 83.
- Imbrie, J. and Van Andel, T. (1964) Vector Analysis of Heavy-Mineral Data. GSA Bull., Vol. 75, pgs. 1131-1156.
- Johansen, O. J. and Carlson, D. A. (1976) Characterization of Sanitary Landfill Leachates. Water Research, Vol. 10, pgs. 1129-1134.
- Landreth, R. E. (1978) Chemical and Physical Effects of Municipal Landfills on Underlying Soils and Groundwater. U.S. Environmental Protection Agency, EPA-60012-78-096, pg. 140.
- Lee, C. R., Folsom, B. L., (1982), Plant Uptake of Heavy Metals. Environmental International, Vol. 7, No. 2, pgs. 65 - 71.
- Link, R. F. and Koch, G. S. (1975) Some Consequences of Applying Lognormal Theory to Pseudolognormal Distributions. Journal Math. Geology, Vol. 7, No. 2, pgs. 117-128.
- Lu, J. C. S., Morrison, R. D., Stearns, R. J., (1981)
 Leachate Production and Management from Municipal Landfills: Summary and Assessment. In: Land Disposal: Municipal Solid
 Waste, Proceedings of the Seventh Annual Research Symposium, D. W. Shultz (Editor), U.S. Environmental Protection Agency, EPA 600/9-81-002a, pgs. 1-16.
- MacGregor, K. A., Klein, M. S., Bazzulo, J. S., Delaney, M. E. (1980) Municipal Solid Waste Disposal in Estuaries and Coastal Marshlands. U.S. Environmental Protection Agency, EPA-600/2-80-212, pg. 172.

- Miesch, A. T. (1977) Log Transformations in Geochemistry. Journal Math. Geology, Vol. 9, No. 2, pgs. 191-194.
- Nelson, R. W. (1983) Wetland Impact Assessment: Problems Under the Clean Water Act, Env. Impact Assessment Review, Vol. 4, No. 1, pgs. 25-40.
- Qasim, S. R. and Burchinal, J. C. (1970) Leaching from Simulated Landfills. Journal WPCF, Vol. 42, No. 3, pgs. 371-379.
- Rule, J. H. (1979) Municipal Landfill Leachate in the Ground and Surface Water, Chesapeake, Virginia. Heavy Metals. Journal Environmental Health, Vol. 42, No. 2, Pgs. 60-63.
- SAS Institute Inc. (1982) SAS User's Guide: Statistics, SAS Institute Inc., Cary, NC, 584pp.
- Siudyla, E. A., May, A. E., Hawthorne, D. W. (1981) Groundwater Resources of the Four Cities Area, Virginia. State Water Control Board, PB-331, pg. 90.
- Snedecor, G. W., Cochran, W. G. (1980) Statistical Methods. Iowa State University Press, Ames, Iowa, pg. 507.
- Thibodeau, F. R. (1981) An Economic Analysis of Wetland Protection. Journal Environmental Management, Vol. 12, pgs. 19-30.
- Tredoux, G. (1984) The Groundwater Pollution Hazard in the Cape Flats. Water Pollution Control, Vol. 56, pgs. 473-483.
- U.S. Environmental Protection Agency (1974) Methods for Chemical Analysis of Water and Wastes. U.S. EPA Environmental Monitoring and Support Laboratory, Cincinnati, OH, EPA-625/6-74-003a.
- U.S. Environmental Protection Agency (1979) Methods for Chemical Analysis of Water and Wastes. U.S. EPA Environmental Monitoring and Support Laboratory, Cincinnati, OH, EPA-600/4-79-020.
- Valiela, F., Teal, J. M., Volkman, S., Shafer, D., Carpenter, E. J. (1978) Nutrient and Particulate Fluxes in Salt Marsh Exosystem: Tidal Exchanges and Inputs by Precipitation and Groundwater. <u>Limnology and Oceanography</u>, Vol. 23, pgs. 798-812.
- Wesolowsky, G. O. (1976) Multiple Regression and Analysis of Variance. John Wiley & Sons, New York, N. Y., pg. 292.

Wolaver, T. G., Zieman, J. C., Wetzel, R., Webb, K. L. (1983) Tidal Exchange of Nitrogen and Phosphorus Between a Mesohaline Vegetated Marsh and the surrounding Estuary in the Lower Chesapeake Bay. <u>Estuarine Coastal and Shelf</u> <u>Sci</u>., Vol. 16, No. 3, pgs. 321-332.

.

Appendix A. Well logs taken from wash borings and measured water levels for all well sites.

SITE A

Depth	Description
0-7' 8' 8-28' 28-31' 31'	dredge spoil, poorly sorted white sand organic clay (thin layer) medium to fine lt. gray sand fine gray sand, with increasing shell fragments clay
SITE B	
Depth	Description
0-6' 8-9' 9-25' 25-30'	dredge spoil, poorly sorted white sand organic clay medium to fine gray sand medium gray sand, increasing shell fragments
SITE C	
Depth	Description
0-10' 10-11' 11' 11-20' 20-23' 23-29'	dredge spoil, rust colored, poorly sorted sand organic clay lt. gray clay medium to fine lt. gray sand clay ? (no sample taken) medium to fine gray sand with increase in shell fragment
SITE D	
Depth	Description
0-3' 3-5' 5-6' 6-30'	dredge spoil, poorly sorted white sand organic clay lt. gray clay medium to fine gray sand
SITE E	
Depth	Description
0-2' 2-6' 6-28'	dredge spoil, poorly sorted white sand organic clay medium to fine gray sand with increase in shell fragments

1 . e

SITE F

Depth	Description
0-8'	dredge spoil, poorly sorted rust to dark red stained sand
8-11' 11-18'	organic clay medium lt. gray sand
18-20'	clay ? (no sample taken)
20-29'	medium to fine gray sand
<u>SITE G</u>	
Depth	Description
0-4' 5-6'	organic clay lt. gray clay
8-20 '	medium to fine gray sand
20'	clay
<u>SITE H</u>	
Depth	Description
0-7' 7-10'	loamy soil clean fine white sand
10-20'	fine gray sand fine gray sand with shell fragments
20-30' 30-33'	medium to fine gray sand with increasing
33'	shell fragments clay
SITE I	
Depth	Description
0-8'	loamy soil
8–20 ' 20–25 '	lt. brown to red, medium to fine sand dk. brown to gray, medium to fine sand
25 '	dk. gray clay
<u>SITE J</u>	
Depth	Description
0-3'	sandy loam soil
3-10' 10-13'	lt. gray to white medium sand lt. gray to brown medium sand
13-18' 18'	dk brown to gray medium sand clay

CONDUCTIVITIES AND WATER LEVELS MEASURED HOURLY TO SEMIHOURLY FOR WELL SITESD A AND C, OCTOBER 6-7, 1982

WELL SITE A

Conductivity (uMOH)

WELL SITE C

Well 2 Well 1 Time 1050 2510 1720 2400 1000 1820 2500 1920 1030 1100 2490 2020 1030 2490 2120 2220 1110 2500 1100 2500 2320 1150 2490 2420 2470 0120 1120 0220 1120 24901100 2450 0320 2430 1100 0420 1050 2480 0520 0620 1100 2460 1100 2500 0720

Time	<u>Well 1</u>	<u>Well 2</u>
0815	3800	5100
0910	3890	5200
1015	3900	5300
1115	3900	5500
1205	3890	5200
1310	3900	5100
1410	3880	5100
1510	4650	5100
1605	4220	5100
1710	4130	5100
1810	3950	5100
1915	3980	5100
2010	4000	5100
2115	4150	5100
2215	3910	5100

Water Levels (in)

Well 2 Time Well 1 Time Time Well 1 Time Well 2 0807 3.03 0806 6.35 3.87 4.55 1703 1706 3.06 6.33 0838 0835 4.44 4.00 1730 1732 3.18 6.33 0907 0908 4.28 1713 3.27 1812 3.34 6.30 0935 0935 4.25 1831 3.14 1830 3.58 1015 4.18 2.65 1012 6.32 1911 1910 3.82 1037 1035 6.31 2.95 1930 4.20 1931 4.13 1108 6.32 1109 3.05 4.22 2006 2005 4.36 1132 6.35 1133 4.23 3.12 2032 2030 4.62 6.32 1202 3.33 1201 2109 4.32 2112 4.86 6.34 1235 3.46 1233 4.38 2129 2130 5.07 6.36 1306 4.49 2209 3.75 1305 2207 5.19 3.90 1336 6.41 1337 4.55 2227 2226 5.24 1406 6.42 1407 4.29 4.71 2301 2303 6.41 1434 5.20 1433 4.50 4.82 2327 2325 5.10 1506 4.80 1505 6.44 4.97 2406 2408 4.93 6.45 1537 1535 2428 5.03 2430 4.91 4.77 6.45 1604 5.07 1603 0102 5.11 0104 1635 4.53 1634 6.47 5.02 5.11 0131 0130 4.27 6.43 1709 5.01 1708 5.10 0202 0201 6.44 1737 4.06 1736 0231 5.06 0233 5.14 3.79 6.42 1806 1805 4.66 0301 4.94 0303 3.54 6.43 1836 1835 4.85 0331 4.39 0330 3.34 1912 4.14 1911 6.43 4.74 0401 0400

Water Levels (in)

Conductivity (uMOH)

Water Levels (in) (Cont'd)

Time	<u>Well 1</u>	Time	<u>Well 2</u>	Time	<u>Well 1</u>	<u>Time</u>	<u>Well 2</u>
0430 0510 0533 0605 0626 0658 0724	$\begin{array}{r} 4.57 \\ 4.43 \\ 4.37 \\ 4.26 \\ 4.23 \\ 4.15 \\ 4.14 \end{array}$	0431 0513 0536 0606 0628 0659 0725	3.83 3.49 3.29 3.10 2.99 2.92 2.86	1935 2006 2035 2108 2138 2211 2235	6.43 6.40 6.38 6.39 6.36 6.36	1937 2007 2036 2110 2140 2212 2226	3.10 3.05 3.05 3.09 3.20 3.29 3.41

WATER LEVELS MEASURED FOR ALL WELL SITES

OCTOBER 23, 1982

<u>Well</u>	Water Level (ft)	<u>Well</u>	Water Level (ft)
A1	5.69	A2	5.43
B1	6.02	B2	5.51
C1	7.07	C2	5.41
D1	5.70	D2	5.55
E1	5.96	E2	4.42
F1	6.03	F2	5.67
G1	5.99	G2	5.88
H1	5.14	H2	4.28
I1	7.39	12	2.57
J1	6.19	J2	6.45

Appendix B. Data from previous research, Chesapeake Landfill.

CHESAPEAKE LANDFILL DATA (Rule, 1979)

NON-METAL PARAMETERS (July, 1978)							
Station	<u>pH</u>	Eh(mv)	<u>Cl-(mg/1)</u>				
1 2 3 4	6.6 6.8 7.0 7.2	+194 +364 +384 +394	17 4600 410 4100				

NON-METAL PARAMETERS (August, 1978)

				Solids(mg/1)		Coliforms	
Station	pH	Eh(mv)	<u>Cl-(mg/l)</u>	<u>T.S.</u>	<u>T.D.S.</u>	Total	Fecal
1	6.1	+214	10	220	202	>8000	190
2	7.0	+304	6400	11,574	11,494	>8000	120
3	7.0	+304	780	1,996	2,006	20	20
4	7.2	+374	6200	10,902	10,906	>8000	740
5	7.0	+304	7200	13,502	13,482	>8000	160
6	7.1	+234	34	332		0	0
7	7.2	+344	32	335		1	0
8	7.2	+314	9700	16,400	16,396	>8000	970

CHESAPEAKE LANDFILL DATA (Rule, 1979)

METAL CONCENTRATIONS (mg/l) (July, 1978)

Statio	<u>Cd</u> <u>m T* D**</u>	<u> </u>	<u>T</u> D	<u>T</u> <u>D</u>	$\frac{\underline{Pb}}{\underline{T}}$ <u>D</u>	$\underline{\underline{Zn}}$ $\underline{\underline{T}}$ $\underline{\underline{D}}$
					.020 <.005 <.005 <.005	
3	.002 .001	.05 .05	.013 .001	.005 .005	.056 .017 <.005 <.005	30 10

METAL CONCENTRATIONS (mg/l) (August, 1978)

	Cc	1		<u>Cr</u>	<u>(</u>	<u>Cu</u>	1	<u>Vi</u>	Pt	<u>)</u>	Zr	<u>1</u>
Station	<u>T*</u>	<u>D**</u>	$\underline{\mathbf{T}}$	<u>D</u>	<u>T</u>	<u>D</u>	<u>T</u>	<u>D</u>	<u>T</u>	<u>D</u>	<u>T</u>	<u>D</u>
1	.004	.001	•05	.05	.011	.005	.005	.005	.005	.005	2 0	18
2	.002	.001	.05	.05	.004	.001	.005	.005	.005	.005	.02	.01
3	.003	.001	.05	•05	.006	.003	.005	.005	.005	.005	5.0	4.0
4	<.001	.001	.05	.05	.003	<.001	•005	.005	.005	.005	.02	.01
5	.001	.001	.05	.05	.003	<.001	.005	.005	.005	.005	.03	.02
6	<.001		.05		.015		•005	•005	.005		.01	
7	<.001		.05		.026		.005	.005	.005		.005	
8	<.001	.001	.05	.05	.003	<.001	.005	.005	•005	.005	.02	.01

.

Site	3/18/81	3/21/81	4/18/81	5/24/81	7/13/81
pl	H				
A-1 B-1 C-1 D-1	6.2 6.8 6.6 6.6	6.3 NS 7.0 NR	6.4 6.5 7.1 6.9	6.6 6.6 7.0 7.1	6.50 6.45 6.85 6.80
A-2 B-2 C-2 D-2	6.8 6.6 NS	6.85 6.45 6.65 NS	6.3 6.2 6.6 7.1	6.3 6.4 6.7 NS	6.20 6.50 6.65 NS
El	<u>n</u> (mv)				
A-1 B-1 C-1 D-1	NR -140 NR +0	-165 NS -60 NR	-190 -200 -50 +60	-190 -180 -48 +32	-200 -212 -15 +98
A-2 B-2 C-2 D-2	+170 NR -195 NS	+60 +120 NR NS	+80 +20 -250 -140	-125 -80 -230 NS	-40 -50 -240 NS
	Conductivi	ty (MOHS)			
A-1 B-1 C-1 D-1	NR NR NR NR	NR NR NR NR	NR NR NR NR	1480 1650 550 1820	1520 181 51 1720
A-2 B-2 C-2 D-2 *NS =	NR NR NR NR No Sample	NR NR NR NR	NR NR NR NR	550 980 2230 NS	380 380 2490 NS

*NS = No Sample **NR = No Reading

Site	3/18/81	3/21/81	4/18/81	5/24/81	7/13/81
	<u>Salinity</u> (⁰ /o	0)			
A-1 B-1 C-1 D-1	NR NR NR NR	NR NR NR NR	NR NR NR NR	1.0 1.0 0.5 1.0	0.8 1.0 0.0 1.0
A-2 B-2 C-2 D-2	NR NR NR NR	NR NR NR NR	NR NR NR NR	0.1 0.5 1.5 NS	0.0 0.3 1.8 NS
	<u>NO2</u> (mg/1)				
A-1 B-1 C-1 D-1	NS NS NS 221.0	BLD NS BLD 25.9	BLD BLD 0.57 582.6	2.76 2.59 2.76 258	2.0 2.0 2.0 393-332
A-2 B-2 C-2 D-2	NS BLD BLD NS	BLD BLD BLD NS	BLD 4.57 BLD BLD	BLD 7.14 BLD NS	2.0 7.18 2.0 NS
	<u>TKN</u> (mg/l)				
A-1 B-1 C-1 D-1	4.5 3.1 1.4 NR	8.8 NS 2.7 14.0	6.6 NS 1.7 11.8	1.3 NS 0.9 1.4	over over 1.23 0.0
A-2 B-2 C-2 D-2	2.58 3.44 +10 (over) NS S = No Sample R = No Reading	5.6 2.4 over NS	3.5 2.6 23.2 6.2	1.5 0.8 0.8 NS	over 1.62 1.18 NS
	- no reauting				

Site	3/18/81	3/21/81	4/18/81	5/24/81	7/13/81
	<u>PO4</u> (mg/l)				
A-1 B-1 C-1 D-1	NS* NS NS 0.021	1.04 NS 0.01 0.030	0.968 0.000 0.000 0.020	1.22 NS 0.02 0.10	0.98 0.91 BLD 0.02
A-2 B-2 C-2 D-2	NS 0.009 0.000 NS	0.02 0.010 0.000 NS	0.035 0.000 0.000 NS	0.05 0.02 0.03 NS	BLD BLD BLD NS
	<u>SO4</u> (mg/l)				
A-1 B-1 C-1 D-1	NR NR NR NR	3.0 NS 11.0 over	NR NR NR NR	NR NR NR NR	NR NR NR NR
A-2 B-2 C-2 D-2	NR NR NR NR	34.8 over 26.2 NS	NR NR NR	NR NR NR	NR NR NR NR
	<u>Na</u> (mg/l)				
A-1 B-1 C-1 D-1	NS NS 2.4 10.8	57.9 NS 2.5 11.4	57.0 NS 1.7 11.5	282.0 364.0 17.0 46.7	299.9 369.0 9.1 38.1
A-2 B-2 C-2 D-2	45.6 64.8 54.4 NS	37.7 41.5 49.9 NS	23.3 23.0 45.3 NS	88.2 91.7 212.0 NS	54.6 81.9 218.0 NS
*NS **NR	A				

Site	3/18/81	3/21/81	4/18/81	5/24/81	7/13/81
	<u>Cl</u> (mg/l)				
A-1	NS	520	NR	415	435
B-1	NS	NS	NR	450	505
C-1	NS	84	NR	BLD	BLD
D-1	210	220	NR	205	120
A-2	NS	210	NR	140	105
B-2	720	390	NR	218	150
C-2	940	840	NR	525	560
D-2	NS	NS	NR	NS	NS
	<u>K</u> (mg/l)				
A-1	NS	15.4	15.4	16.74	17.65
B-1	NS	NS	NS	13.42	13.99
C-1	109.9	113.0	79.5	72.60	42.90
D-1	204.5	195.3	216.7	182.20	157.10
A-2	8.3	7.3	10.3	12.85	11.94
B-2	15.4	16.4	33.7	41.70	41.70
C-2	235.0	211.6	162.8	174.20	191.30
D-2	NS	NS	NS	NS	NS
	<u>Ca</u> (mg/l)				
A-1	NS	28.1	24.9	24.88	24.02
B-1	NS	NS	NS	46.51	47.38
C-1	77.4	80.4	65.5	55.60	58.50
D-1	427.0	415.0	370.0	231.50	225.80
A-2 B-2 C-2 D-2 *NS **NR	24.1 160.4 296.7 NS - No Sample - No Reading	18.1 130.7 246.3 NS	21.1 80.4 190.0 NS	16.52 64.20 188.30 NS	84.40 52.70 196.90 NS

Site	3/18/81	3/21/81	4/18/81	5/24/81	7/13/81
M	<u>g</u> (mg/l)				
A-1	NS*	31.1	30.9	29.732.96.227.9	29.7
B-1	NS	NS	NS		32.3
C-1	8.6	9.4	6.9		6.2
D-1	30.9	35.5	32.6		25.0
A-2	15.9	14.2	14.2	13.7	5.9
B-2	over	over	over	56.9	47.9
C-2	53.5	50.1	41.8	42.5	44.2
D-2	NS	NS	NS	NS	NS
F	<u>e</u> (mg/1)				
A-1	NS	30.0	24.1	NR**	NR
B-1	NS	NS	NS	NR	NR
C-1	77.4	80.4	65.5	NR	NR
D-1	427.0	415.2	370.7	NR	NR
A-2	24.1	18.1	21.1	NR	NR
B-2	160.4	130.7	80.4	NR	NR
C-2	296.7	246.3	190.0	NR	NR
D-2	NS	NS	NS	NR	NR
*NS =	No Sample				

*NS = No Sample **NR = No Reading

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83	
Al	6.15	6.45	6.20	6.35	6.20	6.40		6.40	6.50	6.30	6.30	6.10	
B	6.9 0	6.50	6.20	6.40	6.30	6.35	6.30	6.90	7.10	7.00	7.00	6.45	
c_1	7.20	7.00	6.35	7.10	6.90	7.10	7.05	7.05	7.00	7.05	7.05	6.85	
$\overline{D_1}$	5.70	5.95	6.75	5.60	5.30	5.85	6.10	5.55	5.85	5.80	5.40	5.40	
E	5.85	6.00	5.50	6.20	5.85	6.15	5.20	6.00	6.10	5.95	5.80	6.10	
\mathbf{F}_1	*ND	6.40	5.70	6.25	6.00	6.35	6.50	6.20	6.35	6.15	6.15	6.10	
Gī	7.15	6.80	5.90	6.90	6.65	6.80	6.90	6.70	6.75	6.60	6.60	6.95	
нī	5.60	6.00	7.20	6.65	5.40	5 .9 0	5.00	5.50	5.20	5.75	5.50	5.50	
I	4.70	5.15	5.60	5.00	4.80	5.40	5.10	5.05	5.05	5.20	4.85	5.60	F
J_1	5.85	6.10	4.90	6.00	5.80	6.30	5.85	5 .9 0	6.10	6.20	5.80	5 .9 0	
-) 1
A ₂	6.68	6.80	6.00	6.70	*ND	6.9 0	6.35	6.80	6.85	6.80	6.80	6.55	
B2	6.58	6.85	*ND	6.80	6.70	6.95	6.65	6.75	6.9 0	6.85	6.85	6.66	
$\tilde{C_2}$	7.09	6.95	6.60	7.20	7.10	7.10	7.15	7.00	7.20	7.05	6.90	7.00	1
$\tilde{D_2}$	7.05	7.00	6.70	6.90	6.90	7.30	6 .9 0	6.90	7.00	6.80	6.90	6.70	l
E ₂	6.90	*ND	6.65	7.00	6.65	6.90	6.85	6.60	6.70	6.45	6.45	6.45	
F ₂	6.47	6.75	6.80	6.70	6.65	7.00	6.85	6.85	6.90	6.70	6.70	6.40	1
G2	7.10	7.10	7.25	7.10	6.95	7.10	7.15	6.95	6.95	6.95	6.80	7.30	(
нź	6.25	6.90	7.00	7.20	7.10	7.05	6.40	7.00	6.80	7.25	6.90	6.40	
I2	5.50	*ND	5.80	6.10	5.80	6.70	5.70	5.85	6.40	6.35	5.85	5.70	r,
J_2^{-}	6.60	6.95	6.60	6.75	6.70	6.95	6.40	6.80	6.55	7.00	6.65	6.40	1
2													
Ch	*ND	6.65	6.85	6.85	6.75	6.80	7.45	7.10	6.70	6.80	6.65	7.05	
R	*ND	*ND	*ND	6.60	6.80	6.90	7.15	6.40	6.85	6.80	6.70	7.10	

. . . - - / - -. . .

. .

*ND = No Data

92

Appendix C. Total data set samples sites, for all parameters and Chesapeake Landfill.

Eh (mv)

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
A ₁	-150	-25	-130	-190	-130	-90	-90	-10	65	-70	-35	-55
B ₁	-180	-55	-70	-160	-130	-80	-85	-20	60	-200	-160	-40
c ₁	30	-50	-80	-160	-140	-30	-60	50	60	-155	-60	-60
\mathbf{D}_1	-35	0	-65	-80	-60	-140	-80	110	-10	-30	-40	-9 0
ЕÎ	-40	-100	-110	-170	-165	-180	-170	70	-60	-115	-9 0	-110
F ₁	*ND	-130	-120	-190	-190	-200	-170	-10	-20	-100	-55	-110
G1	-75	-70	-20	-110	-40	-30	-100	40	150	-100	10	65
нī	-15	-20	-30	-70	-60	-60	-70	9 0	130	45	-30	-15
\mathbf{I}_{1}^{-}	120	9 0	110	10	30	70	10	180	255	9 0	55	70
J_1^-	10	0	15	-80	-70	-80	-80	65	190	50	-20	10
A ₂	-40	-50	*ND	-120	*ND	-110	-70	20	75	-70	-40	-40
B ₂	-110	-60	-40	-130	-110	50	-80	10	40	-140	-60	-60
c2	-20	-60	-80	-120	-150	-130	-80	35	50	-160	-30	-55
D_2^2	-90	-70	-40	-110	-90	-160	-80	30	-10	-9 0	-60	-30
E2	-65	*ND	-70	-120	-170	-100	-130	10	-30	-120	-60	-100
F2	-95	-60	0	-110	-170	70	-120	10	-30	-110	-34	-100
G2	-30	-40	-70	-110	-100	-210	-100	35	110	-100	10	50
н2	-30	-50	-80	-100	-70	60	-80	100	130	-10	-80	-40
12	25	*ND	-50	-90	10	60	-10	120	40	30	-40	-50
J_2^2	-60	-30	-50	-110	-100	-90	-9 0	220	210	20	-120	-70
Ch	*ND	-45	20	-50	-40	-100	-80	65	180	-10	40	100
R	*ND	*ND	*ND	-170	-50	65	-50	80	120	10	150	100

TEMPERATURE	(°C)	
	· · ·	

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
	*ND	*ND	16.0	*ND	10.0	12.0	12.0	16.5	19.5	19.0	20.0	19.0
A ₁	*ND	*ND	16.5	*ND	9.0	9.5	12.0	16.0	23.0	19.0	10.0	17.0
B_1	*ND	*ND	15.0	*ND	12.0	12.5	13.5	17.0	25.0	19.0	18.0	17.0
C ₁	*ND	*ND	16.0	*ND	11.0	11.5	12.5	16.0	23.0	17.5	18.0	17.0
Dl	*ND	*ND	16.0	*ND	11.0	11.5	12.0	15.0	16.0	19.5	17.5	17.5
El E.	*ND	*ND	17.0	*ND	11.0	12.0	14.5	18.0	19.0	20.0	18.5	17.0
F ₁	*ND	*ND	18.5	*ND	10.0	14.5	15.5	16.0	21.0	21.0	19.5	19.0
G1 Н1	*ND	*ND	16.0	*ND	14.0	12.0	13.0	14.0	20.0	19.5	18.0	17.0
I_1	*ND	*ND	16.0	*ND	12.0	13.0	14.0	14.5	19.0	17.0	16.5	17.0
J_1	*ND	*ND	16.5	*ND	12.0	12.0	14.0	14.0	20.0	17.5	19.5	17.0
21	ALD.	ND	1005	112	1200	1200						
A ₂	*ND	*ND	*ND	*ND	*ND	11.5	13.0	15.0	18.0	17.0	18.0	16.0
B ₂	*ND	*ND	16.0	*ND	10.0	9.0	12.5	17.0	19.5	16.5	17.5	17.0
c_2^{-}	*ND	*ND	16.0	*ND	15.0	13.5	14.0	17.0	15.0	18.0	16.0	18.0
D ₂	*ND	*ND	15.5	*ND	13.0	13.0	13.0	16.0	18.5	18.0	17.0	17.0
E ₂	*ND	*ND	17.0	*ND	12.0	11.5	12.5	17.0	21.0	19.0	17.5	17.0
F2	*ND	*ND	17.0	*ND	9.0	14.0	14.0	17.0	17.0	19.0	18.0	18.0
G2	*ND	*ND	17.0	*ND	14.0	14.5	16.0	16.0	23.5	21.0	18.0	18.5
н ₂	*ND	*ND	15.0	*ND	12.0	14.0	13.0	13.0	18.5	16.5	15.0	16.0
12	*ND	*ND	16.5	*ND	11.5	12.5	13.0	13.0	*ND	17.5	16.0	16.0
J_2^2	*ND	*ND	16.0	*ND	13.5	12.0	14.0	14.5	19.0	17.0	17.0	17.0
Ch	*ND	*ND	13.0	*ND	7.0	10.0	14.0	22.0	29.5	31.0	25.0	12.0
R	*ND	*ND	*ND	*ND	6.0	11.5	13.5	25.5	26.5	31.0	28.0	16.0

.

.

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
A ₁	1390	1400	950	*ND	2 9 00	2700	3700	2950	2500	2300	2400	1800
Bl	6000	1620	1050	*ND	1700	1750	1600	5000	10000	8500	9000	1500
с ₁	12400	9000	6800	*ND	8000	9 000	8000	4600	7000	8000	8000	5050
Dl	*ND	340	460	*ND	2500	2250	3350	2100	2400	1750	1900	1600
El	*ND	1 39 0	720	*ND	1500	1500	1500	1200	2600	1850	1800	1850
Fl	*ND	1810	2120	*ND	2200	1650	1850	1150	2100	1850	1800	1500
Gl	*ND	3660	3500	*ND	6500	3100	3300	3700	3700	7500	3400	3350
нı	*ND	260	230	*ND	450	130	120	165	185	230	250	255
1 ₁	*ND	132	178	*ND	105	29 0	105	110	110	100	110	115
J_1	*ND	230	250	*ND	260	335	280	9 50	235	185	190	210
A ₂	3550	2600	*ND	*ND	*ND	2800	1850	7050	1700	1700	2050	3050
B2	*ND	2210	2100	*ND	2500	2300	2400	2600	2700	2500	2550	2300
C2	7400	7200	3650	*ND	2000	1200	800	700	7500	900	9 50	9 50
D_2	*ND	1680	1500	*ND	1950	1 9 00	2000	2000	2600	1250	1850	1800
E ₂	*ND	1600	279 0	*ND	29 00	2700	2500	2600	2100	2500	2700	2950
F ₂	*ND	1200	1730	*ND	1200	1000	800	700	900	1100	1100	850
G2	*ND	39 00	7500	*ND	10500	7000	7000	7000	7000	10000	6800	5000
H ₂	*ND	405	410	*ND	130	450	430	430	440	400	420	445
I2	*ND	109	130	*ND	110	265	100	105	135	120	175	160
J ₂	*ND	300	330	*ND	330	300	320	1010	320	300	335	320
Ch	*ND	14800	8500	*ND	15000	4700	4100	10000	13500	18500	20000	14000
R	*ND	*ND	*ND	*ND	14000	8000	6500	11000	15000		22000	13000

CONDUCTIVITY (mohs)

0 4 7 T 1 T M 1	(01.)
SALINITY	(9/00)

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
	1.0	2.0	0.5	*ND	2.5	2.0	2.5	2.0	1.5	1.5	1.5	1.0
A ₁	1.0	2.0	0.5	*ND	1.5	1.5	1.0	6.5	6.0	5.5	6.0	1.0
^B 1	4.0	2.0	0.5	*ND	6.5	7.0	6.0	5.0	5.0	5.5	5.5	3.5
C1	9.0	7.0			2.0	3.0	2.5	1.5	1.5	1.0	1.0	1.0
\mathbf{D}_1	*ND	1.0	<0.5	*ND				0.5	1.5	1.0	1.0	1.0
E ₁	*ND	2.0	<0.5	*ND	1.0	1.0	1.0					
\mathbf{F}_1	*ND	2.0	<0.5	*ND	2.0	1.0	1.5	0.5	1.5	1.0	1.0	1.0
Gl	*ND	4.0	2.5	*ND	5.0	2.0	2.5	2.5	2.0	5.0	2.0	2.0
Нl	*ND	0.5	<0.5	*ND	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1 1	*ND	<0.5	<0.5	*ND	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
\mathbf{J}_{1}^{-}	*ND	<0.5	<0.5	*ND	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5
											_	
A ₂	2.5	2.5	*ND	*ND	*ND	2.5	1.5	0.5	1.0	1.0	1.0	2.0
B_2^-	*ND	2.5	1.5	*ND	2.0	2.0	2.0	1.5	1.5	1.5	1.5	1.5
c_2^-	5.0	5.0	0.5	*ND	1.5	1.0	0.5	0.5	0.5	0.5	0.5	0.5
D_2^{-}	*ND	2.0	1.0	*ND	1.5	1.0	1.5	1.0	1.5	0.5	1.0	1.0
E ₂	*ND	2.0	<0.5	*ND	2.0	2.0	2.0	2.0	1.0	1.5	1.5	1.5
F2	1.5	1.5	<0.5	*ND	1.0	0.5	0.5	<0.5	0.5	0.5	0.5	<0.5
G2	*ND	5.0	5.0	*ND	8.0	5.0	5.0	5.0	4.0	6.5	4.5	4.5
H ₂	*ND	0.5	<0.5	*ND	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
12 12	*ND	<0.5	<0.5	*ND	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
J2	*ND	0.5	<0.5	*ND	<0.5	<0.5	<0.5	1.0	0.5	<0.5	<0.5	<0.5
02							• • • •				-	
Ch	*ND	9.5	6.5	*ND	14.0	4.0	3.0	6.0	7.0	9.5	12.0	10.5
R	*ND	*ND	*ND	*ND	13.0	6.0	5.0	6.5	8.5	10.0	12.5	11.0

<u>NO3</u> (mg/1)

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
A ₁	0.3	0.1	0.1	<0.1	<0.1	0.2	0.1	0.1	*ND	<0.1	0.1	0.1
BÎ	0.2	0.1	0.2	0.1	0.2	0.1	0.1	<0.1	*ND	*ND	<0.1	0.1
c_1	0.6	0.3	<0.1	0.2	<0.1	0.8	<0.1	<0.1	*ND	*ND	<0.1	<0.1
D	0.1	<0.1	0.1	0.1	<0.1	0.1	<0.1	0.1	*ND	<0.1	0.2	0.2
E	0.1	0.1	0.1	0.1	<0.1	<0.1	0.1	0.2	*ND	0.1	<0.1	<0.1
F	0.1	0.1	0.1	<0.1	<0.1	0.1	0.1	0.1	*ND	<0.1	<0.1	0.1
G1	0.2	0.1	0.1	0.1	<0.1	<0.1	0.1	0.1	*ND	0.1	0.1	<0.1
нī	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	*ND	<0.1	0.1	<0.1
I	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.1	*ND	<0.1	<0.1	<0.1
J_1	<0.1	<0.1	0.1	<0.1	<0.1	0.1	0.1	0.1	*ND	0.1	0.5	1.0
A ₂	0.1	<0.1	<0.1	0.1	*ND	0.4	0.1	0.1	*ND	<0.1	<0.1	0.1
B ₂	0.3	<0.1	0.1	0.1	<0.1	0.3	0.1	0.1	*ND	<0.1	<0.1	<0.1
C2	0.2	0.7	0.1	<0.1	<0.1	<0.1	<0.1	0.1	*ND	0.7	0.9	<0.1
D_2	<0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1	<0.1	*ND	<0.1	<0.1	0.1
E ₂	0.1	*ND	0.1	0.1	0.1	<0.1	<0.1	<0.1	*ND	0.1	0.2	0.1
F2	0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1	<0.1	*ND	<0.1	0.1	<0.1
G_2	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	*ND	<0.1	<0.1	<0.1
H ₂	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	*ND	0.1	<0.1	<0.1
I2	0.2	*ND	0.1	0.1	0.1	<0.1	0.1	0.1	*ND	0.1	0.2	0.3
J_2^{-}	0.9	<0.1	0.1	0.1	0.1	0.1	0.1	0.1	*ND	<0.1	<0.1	0.1
Ch	*ND	0.1	0.3	0.2	0.3	0.4	0.2	0.1	*ND	<0.1	0.1	0.4
R	*ND	*ND	*ND	0.3	0.3	0.4	0.2	0.2	*ND	<0.1	0.1	0.3

*ND = No Data

NO ₂	(ug/1)	

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
Α.	5	6	5	11	8	5	6	4	6	3	2	3
A ₁	<1	9	9	12	10	15	9	<1	<ĭ	<1	<ī	14
^B 1	<1	1	<1	*ND	4	1	*ND	35	<1	*ND	<1	*ND
C ₁	*ND	8	7	4	1	6	7	10	7	4	2	4
D ₁	*ND	7	, h	3	15	13	11	*ND	5	5	4	10
El El	עאיי 1	2	4	6	6	6	4	10	2	*ND	3	15
F ₁	1	7	1	*ND	5	1	3	2	1	<1	1	3
G1	4	5	1	2	7	2	2	2	1	<1	<1	1
H ₁	4	<1	<1	<1	<1	1	<1	<1	<1	<1	1	<
I ₁	*ND	2	1	2	4	2	2	4	4	6	1	49
Jl	- ND	2	1	L	-	2	-	-	•	Ŭ	-	
A ₂	2	3	3	4	*ND	7	3	3	2	<1	<1	3
B2	3	9	2	3	2	2	2	<1	<1	1	1	2
C_2^2	<1	6	1	3	2	3	4	10	17	16	1	14
D_2^2	*ND	1	1	3	2	14	1	9	<1	*ND	1	1
E ₂	4	*ND	<1	*ND	*ND	<1	<1	9	*ND	*ND	7	9
F_2^2	2	2	1	*ND	*ND	1	1	1	1	*ND	5	1
G2	2	10	<1	<1	10	1	1	9	<1	*ND	<1	*ND
H ₂	*ND	2	3	1	*ND	3	2	5	3	1	1	3
I ₂	*ND	*ND	*ND	<1	<1	2	2	2	1	*ND	1	22
J_2^2	*ND	4	9	<1	2	1	<1	12	1	1	<1	1
Ch	*ND	38	34	10	9	27	18	70	6 0	2	1	85
R	*ND	*ND	*ND	10	10	5	9	21	16	2	<1	13

<u>TKN</u> (mg/1)

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
Al	1.8	1.5	*ND	1.4	1.5	*ND	1.6	*ND	3.2	<0.1	*ND	<0.1
B1	2.9	14.0	*ND	7.9	6.3	*ND	5.2	*ND	*ND	160	*ND	6.1
C_1	790	*ND	*ND	380	254	*ND	*ND	*ND	680	260	*ND	190
D_1	*ND	1.5	*ND	9.5	3.4	*ND	0.1	*ND	3.2	7	*ND	1.7
El	*ND	2.5	*ND	2.5	4.6	*ND	6.6	*ND	22	34	*ND	1.7
Fl	12.0	9.6	*ND	24	22	*ND	25	*ND	48	47	*ND	5.0
G ₁	*ND	160.0	*ND	190	*ND	*ND	*ND	*ND	1 9 0	49	*ND	73
H	*ND	<0.1	*ND	0.4	0.3	*ND	0.5	*ND	0.4	1.9	*ND	0.9
I ₁	*ND	<0.1	*ND	<0.1	0.3	*ND	0.3	*ND	0.1	1.9	*ND	0.9
J	*ND	<0.1	*ND	0.1	<0.1	*ND	<0.1	*ND	0.1	0.8	*ND	0.9
A ₂	0.6	<0.1	*ND	0.3	0.4	*ND	0.2	*ND	0.7	0.6	*ND	0.3
Β ₂	1.4	<0.1	*ND	0.4	0.1	*ND	0.3	*ND	1.3	2.8	*ND	0.6
C2	320.0	*ND	*ND	32	0.9	*ND	0.7	*ND	16	25	*ND	8.2
02 D2	*ND	<0.1	*ND	0.8	0.7	*ND	0.6	*ND	5.1	1.6	*ND	1.2
E2	*ND	*ND	*ND	3.2	1.8	*ND	1.4	*ND	2.9	8.8	*ND	3.4
F2	8.8	9.2	*ND	9.6	6.4	*ND	3	*ND	*ND	6.6	*ND	1.7
G2	*ND	*ND	*ND	210	156	*ND	*ND	*ND	410	84	*ND	214
ч <u>г</u> Н2	*ND	<0.1	*ND	0.1	0.4	*ND	0.5	*ND	0.9	2.9	*ND	0.8
1 ₂	*ND	<0.1	*ND	0.1	0.4	*ND	0.5	*ND	0.3	1.5	*ND	<0.1
J ₂	*ND	<0.1	*ND	0.4	0.6	*ND	0.9	*ND	0.1	0.8	*ND	<0.1
Ch	*ND	<0.1	*ND	0.2	0.3	*ND	0.6	*ND	5.6	1.6	*ND	1.5
R	*ND	*ND	*ND	0.2	0.3	*ND	0.8	*ND	0.6	0.8	*ND	0 .9

*ND = No Data

.

٠

TPO₄

.

.

SITE	9/2/82	9/3/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
	0.01	0.12	0.10	0.05	0.06	0.07	0 06	*ND	*ND	0.05	0.06	0.04
A1	0.01	0.13	0.12	0.05	0.06		0.06	*ND	*ND	1.30	0.93	0.24
B1	0.80	0.33	0.27	0.18	0.17	0.24	0.21					
с ₁	1.70	1.66	1.50	1.07	1.97	1.71	1.82	*ND	*ND	2.40	1.40	1.60
Dl	0.22	0.07	0.10	0.01	0.02	0.05	0.03	*ND	*ND	0.03	0.03	<0.01
El	1.25	0.07	0.11	0.06	0.03	0.07	0.04	*ND	*ND	0.02	0.04	0.02
F ₁	0.15	0.09	0.11	0.07	0.07	0.10	0.06	*ND	*ND	<0.01	0.09	0.04
G_1	0.09	0.06	0.15	0.18	0.16	0.13	0.14	*ND	*ND	0.67	0.36	0.07
нī	0.07	0.02	0.03	<0.01	0.04	0.02	0.03	*ND	*ND	<0.01	0.02	<0.01
I ₁	0.06	0.10	0.03	<0.01	<0.01	0.01	0.01	*ND	*ND	<0.01	<0.01	<0.01
J_1^1	0.15	*ND	0.05	<0.01	0.03	0.02	0.02	*ND	*ND	0.01	0.01	<0.01
-												
A ₂	0.44	0.02	0.04	<0.01	*ND	0.02	0.02	*ND	*ND	<0.01	<0.01	<0.01
B2	1.20	0.04	0.04	<0.01	0.01	0.02	0.02	*ND	*ND	0.01	0.02	<0.01
C2	0.61	0.32	0.41	0.03	0.07	0.05	0.03	*ND	*ND	0.08	0.12	0.05
D2	1.18	0.10	0.03	<0.01	0.02	0.02	0.02	*ND	*ND	0.08	0.01	<0.01
E2	2.20	*ND	0.05	0.02	0.04	0.04	0.04	*ND	*ND	0.03	0.03	<0.01
F2	0.22	0.02	0.04	0.02	0.02		0.03	*ND	*ND	<0.01	0.02	<0.01
- 2 G2	1.16	1.14	1.59	1.46	1.41		1.38	*ND	*ND	1.60	1.10	1.50
ч Н2	0.15	0.01	0.01	<0.01	0.01	0.01	0.01	*ND	*ND	0.02	0.03	<0.01
	1.40	*ND	0.07	<0.01	0.01	0.01	0.01	*ND	*ND	<0.01	<0.01	<0.01
I2	1.10	0.04	0.06	0.03	0.08		0.07	*ND	*ND	0.04	0.08	0.07
J ₂	1.10	0.04	0.00	0.03	0.00	0.03	0.07	112				
Ch	*ND	0.06	0.07	0.03	0.03	0.03	0.03	*ND	*ND	0.06	0.09	0.03
R	*ND	*ND	*ND	0.03	0.03		0.03	*ND	*ND	0.05	0.05	0.06

<u>0P04</u>

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
	*ND	*ND	0.07	0.03	0.04	<0.01	0.02	0.04	0.05	*ND	0.04	0.04
A ₁	*ND	*ND	0.24	0.18	0.12	0.20	0.34	0.58	0.96	*ND	0.95	0.21
B1	*ND	*ND	*ND	1.27	1.29	1.30	1.40	1.80	2.67	*ND	2.50	1.50
C1	*ND	*ND	0.05	<0.01	0.01	<0.01	0.01	<0.01	0.01	*ND	0.01	0.02
D1	*ND	*ND	0.05	0.07	0.02	0.01	0.04	0.02	<0.01	*ND	0.01	0.02
El F.	*ND	*ND	0.06	0.03	0.02	<0.01	0.06	0.04	0.05	*ND	0.05	0.04
F ₁	*ND	*ND	0.05	0.03	0.10	0.30	0.43	0.56	0.73	*ND	0.28	0.06
G ₁	*ND	*ND	<0.01	<0.01	0.02	<0.01	<0.01	0.03	0.01	*ND	<0.01	0.01
H ₁	*ND	*ND	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	*ND	<0.01	<0.01
I ₁			0.01	0.01	0.02	<0.01	0.01	<0.01	<0.01	*ND	<0.01	0.01
J_1	*ND	*ND	0.01	0.01	0.02	10.01	0.01	(0.01	(0.01	IND		0.01
A ₂	*ND	*ND	<0.01	<0.01	*ND	<0.01	<0.01	<0.01	0.01	*ND	<0.01	<0.01
2 B2	*ND	*ND	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	*ND	<0.01	<0.01
C_2^2	*ND	*ND	0.03	0.05	0.03	0.01	0.02	0.01	0.09	*ND	0.07	0.06
D2	*ND	*ND	<0.01	<0.01	0.01	<0.01	0.01	<0.01	<0.01	*ND	<0.01	<0.01
E2	*ND	*ND	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	*ND	<0.01	<0.01
г Г2	*ND	*ND	<0.01	0.02	0.01	<0.01	<0.01	0.01	<0.01		<0.01	<0.01
G ₂	*ND	*ND	*ND	1.14	1.11	1.10		1.30			1.30	1.40
ч <u>у</u> Н2	*ND	*ND	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	0.01
	*ND	*ND	0.02	0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	0.01
I2	*ND	*ND	0.02	0.08	0.60	0.10		0.02			0.04	0.08
J ₂		·· ND	0.03	0.00	0.00	5410		5002				
Ch	*ND	*ND	0.03	<0.01	0.01	<0.01	0.02	0.03	0.05	*ND	0.04	0.04
R	*ND	*ND	*ND	<0.01	0.01	<0.01	<0.01	0.02	0.02	*ND	0.01	0.03

<u>SO4</u> (mg/1)

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
A ₁	17	<1	<1	35	43	*ND	53	89	*ND	3	18	5
B1	10	<1	<1	45	10	9	10	11	*ND	16	20	<1
C ₁	10	15	15	15	11	12	15	10	*ND	6	13	11
D1	*ND	19	13	75	53	62	39	110	*ND	48	120	91
E1	*ND	<1	<1	7	5	6	5	7	*ND	27	4	<1
F ₁	<1	<1	8	10	9	8	8	5	*ND	2	4	<1
Gl	*ND	6	4	4	7	5	9	13	*ND	<1	3	<1
н1	*ND	7	5	6	9	10	7	10	*ND	2	7	3
1	*ND	26	28	23	25	27	26	21	*ND	6	7	25
J_1	*ND	20	17	12	15	18	11	13	*ND	17	<1	21
A ₂	<1	<1	*ND	190	<1	75	43	31	*ND	17	30	80
B ₂	8	<1	<1	6	6	4	8	21	*ND	17	22	16
C_2^2	11	10	<1	6	5	5	4	5	*ND	<1	4	4
D_2^2	*ND	5	3	<1	<1	<1	<1	4	*ND	<1	4	4
E2	*ND	*ND	<1	<1	<1	<1	<1	4	*ND	<1	6	3
F2	<1	<1	<1	<1	<1	<1	<1	5	*ND	<1	3	3
G2	*ND	7	10	10	9	9	10	9	*ND	8	10	11
н ²	*ND	8	4	4	5	5	5	5	*ND	1	7	4
	*ND	*ND	31	4	5	4	4	4	*ND	*ND	25	4
12 J2	*ND	10	8	8	9	8	8	9	*ND	6	20	360
Ch	*ND	95 0	*ND	540	160	340	94	210	*ND	800	510	1540
R	*ND	*ND	*ND	560	180	320	110	180	*ND	700	490	37

<u>C1</u> (mg/1)

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
۸.,	*ND	293	226	442	714	*ND	878	1330	*ND	1140	*ND	780
А ₁ В1	*ND	191	258	636	485	*ND	533	1030	*ND	2740	*ND	525
C_1	*ND	1270	1340	1330	1180	*ND	1290	1090	*ND	2270	*ND	1380
D_1	*ND	200	162	994	1030	*ND	863	729	*ND	1000	*ND	750
El	*ND	384	345	333	569	*ND	374	457	*ND	1150	*ND	660
F_1	*ND	365	408	571	580	*ND	480	411	*ND	800	*ND	570
Gl	*ND	881	447	411	335	*ND	533	657	*ND	1040	*ND	680
H ₁	*ND	49	42	36	34	*ND	36	34	*ND	110	*ND	90
I ₁	*ND	22	20	18	82	*ND	20	7	*ND	30	*ND	20
J_1^{-1}	*ND	26	29	27	33	*ND	29	25	*ND	36	*ND	40
A ₂	*ND	771	1370	2223	*ND	*ND	563	385	*ND	1090	*ND	1490
B2	*ND	647	548	1128	757	*ND	870	848	*ND	1500	*ND	1070
C_2	*ND	1140	705	303	207	*ND	154	70	*ND	270	*ND	230
D2	*ND	483	429	460	537	*ND	512	524	*ND	880	*ND	620
E ₂	*ND	*ND	835	762	726	*ND	969	666	*ND	1230	*ND	1010
\mathbf{F}_2^2	*ND	314	415	460	206	*ND	187	71	*ND	370	*ND	220
G2	*ND	11 9 0	1120	1073	1060	*ND	1020	1110	*ND	1950	*ND	1390
H ₂	*ND	44	53	51	63	*ND	56	48	*ND	100	*ND	90
12	*ND	*ND	8	11	12	*ND	10	7	*ND	25	*ND	30
J_2^2	*ND	15	14	14	3	*ND	12	9	*ND	30	*ND	30
Ch	*ND	5710	4170	3296	6060	*ND	4380	3564	*ND	8030	*ND	8850
R	*ND	*ND	*ND	3598	6310	*ND	4630	3050	*ND	8530	*ND	8650

,

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
					710	840	870	1020	580	540	570	480
A1	940	710	370	390			590	870	2130	2180	2090	390
Bl	310	220	180	310	590	680			810	840	860	690
C ₁	940	790	790	840	970	1010	970	790				490
Dl	240	210	170	620	860	730	1030	700	480	440	500	
E	410	330	280	320	610	560	540	510	410	430	470	430
F1	310	360	370	490	650	580	570	550	450	470	430	390
G1	460	350	350	380	530	510	560	680	550	490	460	460
H ₁	35	38	35	31	53	*ND	49	53	43	47	52	52
I ₁	19	19	19	18	39	38	38	37	23	23	51	24
J_{l}	25	25	27	27	53	58	58	51	34	29	29	31
°1	25		_,									
A ₂	590	640	940	1240	*ND	890	790	570	500	62 0	620	810
B ₂	620	59 0	610	640	830	830	780	850	660	770	670	64
c2	850	860	600	320	450	410	360	440	180	220	250	220
D ₂	360	360	360	400	640	620	630	650	630	490	500	510
E2	380	*ND	620	600	790	760	770	750	600	650	670	670
F2	430	270	330	420	460	449	370	400	260	260	260	230
G ₂	890	9 00	870	880	1060	99 0	1030	980	89 0	1 9 00	800	770
	28	41	47	49	76	71	71	70	55	57	60	63
H ₂	19	*ND	16	14	35	35	35	36	29	20	21	22
1 ₂			17	17	39	39	39	39	24	25	24	25
J ₂	21	17	17	17					L 1		- ·	
Ch	*ND	*ND	*ND	*ND	6500	39 00	3500	49 00	39 00	5180	60 9 0	5180
		*ND	*ND	*ND	6800	4400	3800	4600	3990	5420	4940	4750
R	*ND	~ND	~ND	"ND	0000	4400	5000	4000	3775	2.20		

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
		10	0.0	10	()	(1	()	70	(1	()	62	53
A1	660	42	38	42	63	61	64	70	61	63		
B1	38	130	110	66	41	33	33	120	1500	1520	1500	110
C ₁	1470	1210	1260	1330	1250	1470	1390	1030	1480	1510	1530	1090
Dl	16	8	7	35	28	42	45	33	33	42	39	37
E	72	35	29	35	57	89	94	140	200	160	140	130
\mathbf{F}_1	74	54	48	48	60	44	54	69	81	92	87	87
GI	540	420	420	420	460	43	450	430	520	500	4440	420
нı	2	2	2	1	2	*ND	1	1	2	2	2	2
I	2	2	2	2	2	2	2	2	2	2	2	2 3
\mathbf{J}_{1}	3	2	2	2	2	2	2	2	2	2	2	3
A ₂	27	15	29	44	*ND	80	80	50	27	19	18	37
B_2	16	15	14	14	130	140	140	150	18	19	18	16
$\bar{c_2}$	640	730	300	120	93	75	53	43	45	53	62	57
$\overline{D_2}$	17	11	11	13	18	18	18	18	15	15	15	15
E2	40	*ND	29	29	32	30	28	26	28	29	29	31
F2	76	18	3	3	18	26	13	10	13	11	13	9
G2	540	97 0	92 0	780	96 0	840	940	92 0	1040	1020	1090	1120
н ₂	3	3	3	3	6	5	5	5	5	5	5	6
I2	27	*ND	3	2	2	2	2	2	3	2	2 2	3
J_2^2	5	2	2	2	2	2 2	2	2	2	2	2	3
Ch	*ND	120	91	74	158	65	45	106	130	180	260	170
R	*ND	*ND	*ND	81	160	75	55	82	120	190	170	170
	n.	112	112									

<u>K</u> (mg/1)

<u>Ca</u> (mg/1)

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
A ₁	120	47	42	77	110	110	110	100	92	96	96	71
B ₁	43	85	74	74	130	80	70	150	150	150	140	92
c_1	74	74	88	81	100	9 0	9 0	9 0	85	78	71	99
\mathbf{D}_1	18	15	12	51	50	6 0	60	60	31	28	29	27
El	70	41	31	38	43	43	34	23	78	64	46	23
F ₁	43	59	51	77	70	60	70	60	64	53	56	34
G1	62	55	51	66	80	80	80	70	75	75	78	75
нı	10	13	12	7	8	*ND	6	9	12	15	16	17
I ₁	3	3	3	3	4	4	4	4	4	4	4	4
J_1	29	28	30	31	34	38	36	32	30	27	27	31
A2	126	120	126	107	*ND	80	80	50	78	110	110	120
B2	110	100	110	122	130	140	140	150	150	150	140	140
C_2^2	85	100	144	92	80	80	70	60	68	82	89	82
D_2^2	110	96	100	118	140	140	150	110	120	110	120	110
E ₂	160	*ND	210	210	220	200	200	190	190	200	250	260
F2	331	141	167	197	130	120	100	9 0	130	140	140	110
G2	210	120	110	110	120	110	120	110	110	110	110	95
н ²	23	51	66	66	80	80	80	80	81	85	85	89
ΙŽ	100	*ND	15	9	12	12	12	12	10	10	11	11
J_2^-	62	66	66	66	80	100	80	80	85	85	85	82
Ch	*ND	126	100	77	160	60	50	100	120	170	210	170
R	*ND	*ND	*ND	96	160	80	60	9 0	110	170	150	160

<u>Mg</u> (mg/1)	
------------------	--

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
				24	10	70	70	9 0	42	45	41	33
A1	88	19	17	36	42	70	70					
B ₁	17	27	21	25	33	27	28	100	130	140	130	28
с ₁	120	110	120	120	110	120	120	90	100	100	100	90
D_1	25	17	15	86	90	80	100	70	42	37	44	40
E	88	22	16	23	37	32	32	29	46	42	39	25
F1	34	63	57	91	80	70	70	60	60	60	70	50
G1	81	67	62	79	70	70	80	70	70	70	60	60
н1	4	4	4	3	3	*ND	3	3	4	4	5	4
I ₁	8	7	7	6	5	5	5	5	6	6	6	6
J_1	5	2	3	3	4	4	4	4	3	2	2	2
A ₂	62	48	91	140	70	*ND	60	24	33	43	43	80
B ₂	49	36	39	39	38	37	38	44	42	42	41	37
C ₂	100	110	34	26	17	14	10	9	9	11	13	11
D2	64	39	41	46	27	41	42	43	40	37	39	39
E2	64	*ND	86	86	9 0	9 0	80	80	70	70	80	9 0
F2	240	35	46	64	24	21	16	13	23	22	13	15
G ₂	260	160	150	150	150	140	150	130	150	139	130	110
ч Н2	4	4	5	5	5	5	5	5	5	5	5	5
12 I2	79	*ND	6	5	4	4	4	4	3	3	4	4
J_2	10	4	4	4	3	3	3	3	4	4	4	4
52	10	4	-	•	5	Ū.		-				
Ch	*ND	410	29 0	250	430	140	120	260	320	460	600	440
R	*ND	*ND	*ND	*ND	450	190	140	220	310	480	430	430

<u>Fe</u> (mg/1)

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
A ₁	3.9	3.9	3.9	7.0	9.1	7.9	11.0	3.3	6.7	7.0	5.8	5.5
Bl	4.0	5.2	7.8	12.0	19.0	11.0	9.8	7.9	2.3	1.4	1.1	9.9
cl	1.8	2.6	3.7	3.0	4.5	1.5	2.6	4.1	2.3	0.3	0.3	6.5
Dl	18.0	2.6	2.4	31.0	12.0	17.0	26.0	17.0	17.0	14.0	20.0	17.0
El	3.3	1.7	1.3	4.4	15.0	11.0	3.3	19.0	22.0	8.1	2.3	3.6
F1	86.0	1.6	3.0	4.0	3.6	2.7	3.4	5.4	3.6	3.6	5.3	9.6
Gl	17.0	3.0	3.1	1.2	7.6	2.6	10.0	12.0	13.0	12.0	11.0	2.5
н ₁	9.0	3.1	1.8	3.5	2.4	*ND	2.1	2.0	2.6	2.6	2.5	2.3
I	11.0	0.9	0.8	0.2	0.3	0.4	0.4	0.3	0.9	1.5	1.6	1.0
J_1	15.0	1.3	1.6	1.6	2.7	2.7	2.9	1.8	1.2	0.4	0.2	0.1
A ₂	140.0	1.4	3.4	1.3	*ND	1.3	1.8	1.7	1.9	1.7	0.4	0.4
B ₂	30.0	1.2	0.8	0.6	0.4	0.3	0.3	0.7	0.4	1.7	0.2	0.2
с ₂	7.4	6.2	2.5	0.5	0.6	0.4	0.5	0.6	0.5	0.6	0.8	0.3
D2	120.0	0.3	0.1	0.7	0.7	0.6	0.2	0.1	<0.1	1.9	0.2	0.7
E2	9.0	*ND	16.0	16.0	20.0	17.0	9.0	0.2	9.0	7.3	15.0	9.6
F2	630.0	0.6	1.7	2.0	0.2	0.4	0.6	0.3	0.1	1.2	0.4	0.2
G2	260.0	4.7	0.9	0.9	2.1	1.7	1.5	1.7	1.0	2.4	0.8	1.4
н2	13.0	0.4	0.2	0.3	0.1	0.1	0.1	0.3	0.2	0.2	0.2	0.2
1 ₂	460.0	*ND	8.2	1.2	0.3	1.0	0.1	0.1	4.3	14.0	12.0	15.0
J ₂	8.2	0.1	<0.1	<0.1	0.4	0.1	0.1	0.1	0.2	0.1	0.6	0.2
Ch	*ND	0.3	0.4	0.4	0.3	0.8	0.7	1.0	0.7	0.2	0.2	0.3
R	*ND	*ND	*ND	0.4	0.4	0.6	0.7	0.9	0.5	0.2	0.2	0.2

\underline{Mn} (mg/1)

SITE	9/2/82	9/30/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
A ₁	1.1	0.2	0.3	0.2	0.7	0.8	0.7	0.5	0.5	0.5	0.5	0.4
B1	0.3	0.2	0.2	2.1	0.5	0.3	0.2	0.4	0.3	0.3	0.3	0.4
C ₁	0.3	0.4	0.5	0.4	0.5	0.4	0.4	0.4	0.4	0.3	0.3	0.4
D_1	0.1	0.1	0.1	0.3	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.1
El	0.2	0.1	0.1	0.1	0.2	0.1	0.1	0.2	0.3	0.2	0.2	0.1
\mathbf{F}_{1}	0.5	0.2	0.2	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Gl	0.4	0.4	0.3	0.3	0.6	0.4	0.5	0.7	0.4	0.4	0.5	0.4
H1	<0.1	<0.1	<0.1	<0.1	<0.1	*ND	<0.1	<0.1	0.1	0.1	0.1	0.1
I ₁	0.1	0.1	0.1	0.1	0.1	0.1	<0.1	<0.1	0.1	0.1	0.1	0.1
J_1^{-1}	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.2
~1	•••=											
A ₂	0.4	0.3	0.3	0.5	*ND	0.2	0.2	0.1	0.2	0.2	<0.1	0.2
B2	0.3	0.4	0.3	0.4	0.2	0.2	0.2	0.2	0.3	0.3	0.2	0.2
c_2^2	0.2	0.3	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1
D_2^2	1.1	0.2	0.2	0.3	0.3	0.2	0.2	0.3	0.1	0.3	0.3	0.3
E2	0.3	*ND	0.6	0.6	0.7	0.6	0.6	0.5	0.5	0.5	0.6	0.5
F2	11.0	0.2	0.2	0.3	0.1	0.1	<0.1	<0.1	0.1	0.1	0.1	0.1
G2	2.7	0.3	0.3	0.3	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.3
н ₂	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
12	4.5	*ND	0.2	0.2	0.2	<0.1	<0.1	0.1	0.4	0.4	0.5	0.4
J_2^{-}	0.4	0.2	0.2	0.2	0.1	<0.1	0.1	0.1	0.2	0.2	0.2	0.2
01	±100	0.1	0.1	<i>(</i> 0 1	<u> </u>	ZO 1	<u> </u>	0.2	0.2	0.1	0.2	0.1
Ch	*ND	0.1	0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.2	0.1	0.2	0.1
R	*ND	*ND	*ND	<0.1	<0.1	<0.1	0.1	0.1	0.1	0.1	0.1	0.1

<u>Zn</u> (mg/1)

SITE	9/2/82	9/3/82	10/28/82	12/20/82	1/29/83	3/6/83	4/17/83	6/3/83	7/1/83	7/29/83	8/28/83	10/30/83
	<0.01	<0.01										
Al Ba	0.02	0.01	<0.11 <0.01	0.08	0.07	0.39	0.07	0.05	0.03	0.01	0.01	0.03
B ₁				<0.01	<0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
C ₁	0.01	0.01	0.01	<0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01
	0.04	<0.01	0.01	0.01	<0.01	<0.01	<0.01	<0.01	0.01	<0.01	0.01	0.01
El	<0.01	<0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
F1	0.21	0.01	0.01	0.01	0.01	<0.01	0.01	0.01	<0.01	<0.01	0.01	<0.01
Gl	<0.01	<0.01	<0.01	0.01	0.02	0.05	0.05	0.01	0.01	<0.01	0.01	0.01
н1	0.01	<0.01	<0.01	<0.01	0.03	*ND	0.01	0.01	0.02	0.10	0.01	0.01
Il	0.03	0.01	<0.01	<0.01	0.01	0.01	0.01	0.02	0.01	<0.01	0.01	0.01
J_1	0.03	<0.01	<0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01	<0.01
A2		<0.01	0.30	0.35	*ND	*ND	0.38	0.23	0.10	0.02	0.01	0.13
^B 2	0.08	0.01	<0.01	<0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.01	0.01
С ₂	0.01	0.06	0.01	0.01	0.03	0.05	0.01	0.03	0.01	0.01	0.04	0.02
D2	0.18	0.01	<0.01	0.01	<0.01	0.01	0.02	<0.01	0.01	0.01	0.06	0.06
E2	<0.01	*ND	0.01	0.01	0.01	<0.01	<0.01	0.01	0.01	0.01	<0.01	0.01
F2	2 .9 0	<0.01	<0.01	<0.01	0.03	0.06	0.05	<0.01	0.01	<0.01	0.02	0.03
G2	1.30	0.02	0.01	0.01	0.02	0.02	0.02	0.02	0.01	0.02	0.01	0.02
Н2	0.05	<0.01	<0.01	0.01	0.05	0.04	0.02	0.04	0.02	0.02	0.01	0.01
I ₂	1.90	*ND	0.03	<0.01	0.02	0.02	0.01	0.02	0.01	0.01	0.03	0.01
J_2^-	0.14	<0.01	<0.01	<0.01	0.01	0.05	<0.01	0.05	<0.01	<0.01	0.01	0.02
-								0.03		10.01	0.01	0.01
Ch	*ND	0.02	0.03	0.02	0.04	0.02	0.01	<0.01	0.01	0.01	0.01	0.01
R	*ND	*ND	*ND	0.02	0.06	0.03	0.02	0.02	0.02	0.01	0.01	0.01
							0.02	0.02	0.02	0.02	0.01	0.02

Appendix D. General descriptive statistics for all parameters by sample site, Chesapeake Landfill.

рH

.

.

1		Num. Smpl	Mean	Std. Dev.	Min	Jax	Bange
Site Type	Site		1	1	1		
Upper Wells	1 A 1	12	6.283	0_144	6.050	6.500	0.450
	B1	12	6.629	0_319	6.300	7. 100	0.800
	101	12	7.008	0.122	6_750	7.200	0_450
	D1	12	5.657	0.248	5.300	6.100	0.800
	[E1	12	5.908	0.270	5-200	6.200	1.000
	IF1	11	6 - 2 14	0.179	5.900	6.500	0.600
	G1	121	6.8331	0_ 197	6.600	7.200	0.600
	1 11	121	5.633	0.421	5.000	6.650	1.650
	11	1 121	5.067	0.253	4.700	5.600	0.900
	 J1	1 12	5.983	0. 163	5-8001	6.300	0.500
Lover	1 A 2	101	6.723	0.164	6.350	6-900	0.550
Wells	32	1 12	6.7621	0.123	6.5801	6.9501	v.370
	 <u>c</u> 2	1 12	7.037	0. 14 1	6.700	7.200	0.500
	D2	121	6 . 9 17	0_ 168	6.650	7.300	0.650
	E2	1 11	6.691	0_ 199	6.450	7.000	0.550
	 F2	1 121	6.731	0.171	6.4001	7.000	0.600
	G2	121	7.058	0.143	6-800	7.300	0.500
	H2	1 12	6.854	0.331	6.250	7.250	1.000
	12	1 11	5.977	0.365	5.500	6. 700	1.200
	J2	1 121	6.6961	0.203	6-400	7.000	0.600
Surface	Channel	1 11	6.877	0.239	6.650	7.450	0.800
Water	River	1 91	6.811	0.233	6.4001	7.150	0.750
Site Typ	e	1 <u>1</u>			1	1	
Jpper Wells		119	6.1221	0.619	4_700	7.200	2.500
Lower We	11s	1 116	6.7521	0.350	5.500	7.300	1.800
Sur face	Fater	1 201	6.8471	0.233	6_400	7.450	1_050
 Total		255	6.465	0.5851	4.7001	7.450	2.750

•

-	
- 12	ħ
~	-

		Num. Smpl	Sean	Std. Dev.	Min	Max	Range
Site Type	Site						
Upper	<u>⊿</u> 1	12	- 75 . 8 33	69.865	-190-000	65.000	255.000
Wells	B1	12	-93.333	75.749	-200.000	60.000	260_000
	C1	12	- 54 - 5 00	74.616	-160.000	60.000	220.000
	D1	12	- 43. 333	61.583	-140_000	110.000	250.000
	1 E1	12	-103.333	70.657	-130.000	70.000	250.000
	<u></u> F1	11	-1 17 . 7 27	67.504	-200-000	-10.000	190.000
	G1	1 12	-23-333	78.287	-110-000	150.000	260.000
	H1	12	-8.750	64_495	-70-000	130-000	200_000
	 I1	12	90.833	70.737	10.000	255.000	245.000
	 J1	12	0.833	78.475	-80_000	190.000	270.000
Lover	A2	10	-44_400	57.574	-120-000	75.000	. 195.000
Wells	 B2	1 12	- 57.500	63.264	-140.000	50.000	190.000
	C2	12	-66.667	67.767	-160.000	50.000	210_000
	D2	1 12	-66.667	49.604	-160.000	30.000	190.000
	i F2	1 11	- 86 - 8 18	50.412	-170.000	10.000	180.000
	F2	12	-62.417	67.629	-170.000	70.000	240.000
	G2	12	- 46 - 2 50	87.311	-210_000	110.000	320.000
	H2	1 12	-20-833	76.569	-100-000	130.000	230.000
	<u></u> I2	1 11	4.091	59.867	-90.000	120-000	210.000
	J2	12	-22.500	117.328	-120.000	220.000	340.000
	Channel	1 11	7.273	84_064	-100.000	180.000	280.000
Water	River	1 9	28.333	102.652	-170_000	150.000	320.000
Site Typ	e	İ	1		1		
Upper Wells		· 119	 -42_218	90-333	-200-000	255.000	455.000
Lower We	lls	1 116	-47.138	74-477	-210-000	220,000	430.000
Sur face	Fater	20	16.750	90.949	1-170-000	180.000	350.000
Total		1 255	1 - 39 . 8 31	84.853	1-210-000	255.000	465.000

Temperature (C)

٠

.

		Num. Sapl	≝ean i	Std. Dev.	Min	3ax	Range
Site Type	Site 			1			
Upper	A1	9	16.000	3.783	10.000	20.000	10.000
Wells	B1	91	15_6 67	4.670	9_000	23.000	14_000
	C1	9	16.556	4.011	12.000	25.000	13.000
	D1	9	15.833	3.767	11.000	23.000	12.000
	E1	9	15.111	2.998	11_000	19.500	8.500
	F1	1 91	16.333	3.152	11.000	20.000	9.000
	G1	91	17.222	3.580	10.000	21.000	11.000
	E1	91	15.944	2.877	12.000	20.000	8.000
	II1	9	15_4 44 1	2.228	12.000	19.000	7.000
	j J1	9	15.833	2.990	12.000	20.000	8.000
Lover	A2	1 71	15.500	2.500	11.500	18.000	6.500
Wells	B2	9	15.000	3. 623	9.000	19.500	10_500
	C2	91	15.833	1.620	13.500	18.000	4.500
	D2	91	15-6 67	2. 194	13_000	18.500	5.500
	E2	1 91	16.056	3.311	11.500	21.000	9.500
	 ? 2	9	15.989	3. 100	9.000	19.000	10.000
	G2	9	17.6 11	3.070	14.000	23.500	9.500
	H2	91	14 - 7 78	2.033	12.0001	18.500	6.500
	12	1 81	14.5001	2.236	11.500	17.500	6.000
	J2	1 91	15.556	2.200	12.0001	19.000	7_000
	Channel	1 91	18.167	8.860	7.000	31.000	24.000
Water	Eiver	I 81	19.750	9.130	6.000	31.000	25.000
Site Typ	e	i i					
Opper We	lls	901	15.994	3.337	9_000	25.000	16.000
Lover We	lls	+	15.655	2.657	9.000	23.500	14.500
Surface	Water	1 17	18.9121	8-740	6.000	31.000	25.000
Total		1 1941	16.0981	3. 925	6.000	31.000	25.000

Cond	luct	i vi	ty (uπ	ohs	ł
------	------	------	------	----	-----	---

~

 		Num. Smpl	 Mean	Std. Dev.	l 1 Min	l Max	l Range
Site Type	Site		1	1		 	+ 1 1
Upper Wells	A1		2271.818	1 815.743	950-000	13700-000	 2750-000
	B1	1 11	4338.182	3488.859	1050.000	10000	8950-000
	101	1 11	7804.545	2089.073	46 00 _ 0 00	12400	7800.000
	D1	10	1870_000	915-800	340.000	13350.000	3010.000
	E1	10	1591.000	491.335	720.000	12600.000	1880.000
	F1	10	1803.000	314.892	11 50 . 0 00	2200.000	1050.000
	G1	10	4171.000	1521.538	3100.000	7500.000	4400_000
	81	1 10	227.500	93.460	120.000	450.000	330.000
	11	i 10	135.500	58.860	100.000	290.000	190.000
	J1	10	312.500	228.330	185.000	950.000	765.000
Lover Wells	1 4 2	9	2927.778	1675-767	1700.000	7050.000	5350.000
. 67 73	B2	10	2416.000	187.391	2100-000	2700-000	600.000
	c2	1 11	30 22 . 7 27	2912-934	700.000	7500.000	6800.000
	D2	10	1853.000	354.935	1250-000	2600.000	1350.000
	E2	10	25 34 . 0 00	407.573	1600-000	2950-000	1350.000
	F2	10	1058.000	290.930	700.000	1730.000	1030.000
	G2	10	71 70 . 0 00	1968.107	39 00 . 0 0 0	10 50 0	66 00 . 0 00
	1 82	10	396.000	94.980	1 30 . 0 00	450-0001	320.000
	12	1 10	140.900	49_948	100_0001	265.000	165.000
	J2	1 10	3 86 . 5 00	219.470	300.0001	1010-000	710.000
Surface Nater	Channel	10	1 2 3 10	5378.238	4100-0001	20 00 01	15900
	River	8	1 36 87 .5	5 378. 114	65 00 . 0 00 1	22000	15500
Site Typ	e				1		<u> </u>
lpper We	lls	103	2521.019	2714-660	100.000	12400	12300
lower We	ower Wells		2191-440	2312.232	100-0001	10 50 01	10400
urface	later	18	12922.21	5264.929	4100.000	220001	17900
otal		221	32 19 . 0 45	4046-7251	100.0001	22000	21900

Salinity (0/00)

-

		Num. Smpl	Mean	Std. Dev.	Min	dax	Range
Site Type	Site 						
Upper Vells	A1	1 11	1_636	0.636	0.500	2.500	2.0
16112	B1	11	2.955	2. 127	0.500	6-000	5.5
	C1	11	5.318	2. 30 5	0.500	9_000	8.5
	D1	10	1.450	0_864	0_000	3.000	3.0
	El	10	1_000	0.527	0_0001	2.000	2_0
	F1	10	1.150	0.6261	0.000	2.000	2.0
	G1	10	2.950	1.235	2.000	5.000	3.0
	(H1	10	0.100	0.211	0.000	0°• 50 0	0.5
	II	10	0.000	0.000	0.000	0.000	0_0
	J1	10	0.050	0_ 158	0.000	0.500	0.5
Lover	1 12	9	1.611	0_782	0.500	2_ 50 0	2.0
¥ells	B2	10	1.750	0.3541	1.500	2.500	1.0
	C2	11	1.455	1.781	0.5001	5.000	4.5
	D2	1 10	1.200	0.4221	0.500	2.000	1.5
	E2	10	1.550	0.643	0.000	2.000	2.0
	F2	1 11	0.591	0.539	0.0001	1.500	1.5
	G2	101	5.250	1. 16 1	4.000	8.000	4.0
	H2	10	0.050	0_ 158	0.000	0.500	0.5
	12	10	0.000	0.000	0.000	0.000	0.0
	J2	1 10	0.200	0.3501	0.000	1.000	1_0
	Channel	1 10	8.150	3.473	3.0001	14.000	11.0
Water	River	1 91	9.063	3.041	5.000	13.000	8.0
Site Typ	e						
Upper We	lls	10 3	1.709	1.972	0_000	9.000	9.0
Lower We	11s	10 1	1.356	1_641	0.000	8.000	8_0
Sur fa ce	Water	18	8.556	3-226	3.0001	14.000	11_0
Total		2221	2.104	2.744	0.0001	14.000	14.0

Hardness (mg/l)

•

		Num. Smpl	l Mean	Std. Dev.	 Min	l Max	 Range
Site Type	Site 	 	 	 		1	
Upper Wells	1 4 1	12	438.500	157.746	182.000	671_000	489_000
	B1	12	514-167	287.239	185.000	954-000	769.000
	C1	12	663.667	51.748	590.000	724-000	134.000
	D1	12	342.500	177.125	96.000	608.000	512.000
	E1	1 12	273.500	115.612	146.000	543_000	397.000
	1 21	12	427.667	68.658	308.000	575.000	267.000
	G1	12	479.667	44.730	389.000	548.000	159.000
	H1	11	49.273	11.917	31.000	65.000	34_000
	11	12	36-833	7.941	31.000	60.000	29.000
	J1	12	95.750	15.304	76.000	120.000	44.000
Lower Wells	A2	10	541.500	20 2 94 2	227_000	847-000	620.000
- et 12	B2	1 12	500.583	47.500	401.000	557.000	156.000
	C2	12	342.833	176-285	188.000	714-000	526.000
	D2	12	486.417	94-047	401.000	755.000	354.000
	E2	11	873.364	102.804	680.000	1038.000	358.000
	F2	12	653.750	740-5751	279.000	2968_000	2689.000
	G2	1 12	962.000	355-311	693_000	2067.000	1374-000
	H2	12	202.500	42.928	97.000	243.000	146.000
	<u></u> I2	1 11	173.818	408.507	46.000	1410-000	1364.000
	J2	12	2 14 . 0 00	23.657	182.000	262-000	80.000
	Channel	11	1697.813	722.060	620.000	2995-0001	2375.000
Vater	River	8	1670.500	656.024	729.000	2401.000	1673.000
Site Typ	e	i i		1			
Opper We	11s	119	3 34 - 5 29	237_277	1 31_000	954_0001	923.000
Lover We	11s	116	4 94 - 2 59	394-814	46.0001	2968.0001	2922-000
Sur fa ce	Water	19	16 86 . 3 16	676- 172	620.0001	2995.0001	2375.0001
Total		254	508.5941	498-147	31.000	2995.000	2964-0001

Nitrate (mg/l)

		Num. Smpl	Mean	Std. Dev.	Min	Max	Range
Site Type	Site		ł				
Upper Wells	A1	1 11	0.100	0.089	0.000	0_ 30 0	0.300
	B1	101	0_110	0_074	0.000	0.200	0.200
	C1	10	0.190	0.292	0_000	0.800	.0-800
	D1	1 11	0.082	0.075	0_000	0_ 200	0.200
	E1	1 11	0.073	0.065	0_000	0_ 200	0_200
	F1	1 11	0.064	0.050	0.000	0_ 100	0.100
	G1	i 11j	0_082	0-060	0_0001	0.200	0_200
	81	1 11	0.018	0.0401	0.000	0_ 100	0_100
	111	1 11	0_018	0_0401	0.000	0. 100	0_100
	J1	11	0.182	0-306	0.000	1_000	1.000
Lower 7ells	A2	10	0.090	0.120	0.0001	0_ 4001	0_400
	82	1 11	0_091	0.114	0.000	0_ 300	0.300
	C2	11	0.245	0.345	0_000	0. 900	0.900
	D2	11	0.027	0_047	0.000	0_ 1001	0.100
	E2	10	0.030	0.063	0.000	0.200	0.200
	F2	11	0.036	0_050	0-0001	0. 100	0.100
	G2	1 11	0.013	0.060	0.0001	0_200	0.200
	H2	1 11	0.018	0-0401	0-0001	0. 100	0_100
	12	10	0-1401	0.084	0.000	0.300	0_300
	J2	1 11	0.064	0.0501	0.0001	0. 100	0_100
Surface Vater	Channel	101	0.2101	0. 137	0.0001	0-400	0_400
* 4. 2.	River	1 81	0.2251	0.128	0.0001	0- 4001	0.400
Site Typ	e	i i	1	i	1	1	
Upper Wells		10 8	0.091	0_148	0_0001	1.000	1.000
Lover 7e	11s	107	U_0801	0_ 142	0.0001	0.9001	0.900
Sur face	Vater	1 18	0.217	0.129	0.0001	0_ 4001	0_400
Total		233	0.0961	0.148	0.0001	1.000	1.000

Nitrite (ug/l)

•

 		Num. Smpl	l Nean	Std. Dev.	 Min	Max	 Range
Site Type	Site		,			1	1
Upper Wells	1 A 1	1 12	5.333	2.425	2.000	11.000	9_000
	E1	12	6.500	6.038	0_000	15.000	15.000
	C1	1 8	5.125	12.147	0_000	35.000	35.000
	D1	1 11	5.455	2.697	1_000	10.000	9.000
	E1	10	7_700	4.244	3_000	15.000	12.000
	F1	11	5.273	4-125	1_000	15.000	14_000
	G1	11	2.000	1.549	0.000	5.000	5_000
	L H 1	12	2.500	2.111	0.000	7.000	7_000
	I1	12	0.250	0.452	0.000	1.000	1.000
	J1	11	7.000	14.014	1_000	49.000	48_000
Lover Wells	A2	11	2.727	1.902	0_000	7.000	7.000
	B2	12	2-208	2.350	0.000	9_000	9.000
	C2	12	6_417	6-201	0_000	17.000	17.000
	D2	10	2.400	4.169	0_000	14_000	14_000
	E2	1 7	2.857	3-848	0_000	9.000	9.000
	F2	9	1.667	1.323	1_000	5.000	4_000
	G2	10	2_400	4.061	0_000	10.000	10.000
	1 H2	10	2-400	1.265	1_000	5.000	4.000
	12	81	3.750	7_421	0_000	22.000	22.000
	J2	11	2.000	3.521	0.0001	12.000	12.000
Surface Water	Channel	11	32.182	28.586	1.000	85.000	84.000
	Fiver	i 91	9.556	6.654	0.000	21.000	21.000
Site Typ	e	i i			Í	i	
Opper We	lls	1 110	4 - 6 36 [6_,44 1	0-000	49-000	49_000
Lover Ne	11s	100	2.925	4.072	0.000	22-000	22.000
Surface	Water	201	22.000	24. 127	0.000	85-000	85.000
Fotal ,		1 2301	5.4021	10.111	0.0001	85.000	85_000

.

TEN (mg/1)

 		Num. Smpl	Mean	Std. Dev.	Min	flax	Range .
Site Type	Site 						
Upper Wells	Å1	8	1.375	1.026	0.000	3-200	3_200
	B1	7	28.914	57.906	2.900	160.000	157.100
	C1	6	425.667	249.785	190.000	790.000	600.000
, 	D1	7	3.771	3. 333	0.100	9.500	9_400
	21	7	10.557	12.516	1.700	34.000	32.300
	F1	8	24 . 0 75	16.135	5.000	48.000	43.000
	G1	5	1 32 . 4 00	66.860	49.000	190.000	141_000
	E1	1 7	0.629	0_621	0_000	1.900	1.900
	11	7	0.371	0_687	0_000	1_ 900	1_900
	J1	7	0.143	0.294	0_000	0.800	0_800
Lover 7ells	12	1 81	0.387	0.236	0.000	0_ 70 0	0.700
- 67 73	B2	8	0.862	0.938	0.000	2. 80 0	2.800
	C2	7	57.543	116-329	0.700	320.000	319.300
	D2	7	1.429	1.694	0_000	5.100	5.100
	E2	1 6	3.583	2.676	1.400	8.800	7.400
	F2	7	6_4 86	3. 113	1_700	9.700	8_000
	G2	5	214-800	121-133	84.000	410-000	326-000
	1 H2	1 7	0.800	0.983	0.000	2.900	2.900
	12	7	0_4001	0.523	0.0001	1.500	1.500
	J2	71	0.400	0.379	0.0001	0_ 9001	0.900
Surface	Channel	7	1_400	1.955	0.0001	5. 600	5.600
Water	Eiver	1 61	0.450	0.333	0.000	0.800	0_800
Site Type	2	i í	ļ	1	[1	
Upper We	lls	691	54.062	140-237	0.000	790.000	790.000
Lover We	lls	69	22 . 9 25	72. 593	0.000	410.000	410_000
Sur face	later	13	0.962	1.484	0.000	5_ 600	5.600
Total		1 15 1	35.217	107. 990	0.0001	790-000	790.000

		Num. Smpl	Mean	Std. Dev.	Min	Max	Range
Site Type	Site 						
0pper Wells	A 1	10	0.065	0.036	0.010	0.130	0.120
. 67 73	B1	10	0_467	0.397	0.170	1_ 30 0	1.130
	C1	10	1.683	0.352	1.070	2_400	1.330
	D1	10	0.056	0.065	0.000	0_220	0.220
	E1	10	0.171	0-380	0.020	1.250	1.230
	F1	10	0.078	0_041	0.000	0.150	0.150
	G1	1 10	0.201	0. 185	0.060	0_ 670	0.610
	E1	1 10	0.023	0.022	0.0001	0.0701	0.070
	11	1 10	0.012	0.019	0.0001	0_0601	0.060
	J J1	91	0.032	0.047	0.000	0_ 15 0	0.150
Lower Wells	1 2	9	0.060	0_143	0.0001	0_ 44 01	0_440
	<u></u> B2	1 101	0_136	0.374	0.0001	1_ 200	1.200
	c2	101	0.177	0_ 20 1	0.030	0.610	0.580
	D2	1 10	0.137	0_ 367	0.0001	1. 180)	1.180
•	E2	9	0.272	0.723	0.000	2. 20 01	2.200
	F2	10	0.0401	0.0641	.0 . 0 00	0_ 2201	0.220
	G2	10	1.359	0. 186	1_100	1.600	0.500
	E2	1 10	0.025	0.045	0.0001	0. 150)	0.150
	12	1 91	0.167	0.463	0_0001	1.4001	1_400
	J2	1 10	0.162	0.3301	0.0301	1. 100	1.070
	Channel	9	0.0481	0.023	0.0301	0.0901	0.060
Water	River	+ <u></u> +- 1 71	0.0401	0.013	0.0301	0.060	0.030
Site Typ	e	ii	i	i	i		<u> </u>
Opper We	lls	-	0.281	0.532	0_000	2-400	2-400
Lover We	lls	97	0.256	0.503	0.000	2. 200	2.200
S ur fa ce	Water	1 16	0_0441	0.019	0.030	0.090	0.060
Total		1 2121	0.2521	0.5001	0.0001	2- 400	2_400

Total Phosphate (mg/l)

٠

Orthop	hosphat	te (mg/l))
--------	---------	-----------	---

		Num- Smpl	Me an	Std. Dev.	Min	Max	Range
Site Type	Site						
Upper Wells	A1	9	0.037	0.019	0.000	0.070	. 0.070
1 CT 12	B1	9	0.420	0.331	0.120	0. 96 0	0-840
	C1	1 81	1.716	0.565	1.270	2.670	1_400
i 	D1	9	0_012	0.016	0_000	0.050	0.050
	E1	91	0.028	0.024	0_000	0.070	0.070
I	F1	91	0.0421	0_019	0_000	0.060	0.060
	G1	9	0.291	0. 24 1	0_050	0.730	0.680
	1 81	9	0.008	0.011	0.000	0.030	0.030
	II	9	0.0001	0.000	0_000	0_000	0_000
	J1	1 91	0.007	0.007	0_000	0.020	0.020
Lower Wells	A2	8	0.001	0.004	0.000	0.010	0.010
# et te	82	9	0_000	0.000	0.000	0.000	0.000
	C2	9	0_041	0.028	0.010	0- 090	0.080
	D2	9	0.0021	0.004	0_0001	0.010	0.010
	E2	91	0.0001	0.000	0.000	0.000	0.000
	F2	9	0.004	0.007	0.000	0.020	0.020
	I G2	81	1.231	0.109	1.100	1.400	0.300
	HŻ	9	0_001	0.003	0.000	0_010	0.010
	12	1 91	0_0.04	0.007	0.000	0-020	0_020
	J2	91	0.053	0.029	0.0201	0. 100	0.080
Surface	Channel	1 91	0.024	0.018	0.0001	0.050	0.050
Vater	River	8	0.011	0.011	0.0001	0.0301	0.030
Site Typ	e		ļ		1		
Opper We	lls	89	0 - 2 40	0.527	0.000	2-670	2.670
Lover We	11s	1 981	0.123	0.355	0.0001	1_400	1_400
s ur fa ce	Tater	17	0.018	0.016	0_0001	0.050	0.050
Total		1 1941	0.167	0.4341	0.000	2_ 670	2_670

Sulfate (mg/l)

•

.

٠

•

		Num. Smpl	Mean	Std. Dev.	Min	Max	Bange
Site Type	Site 						
Upper Wells	A1	1 10	26.350	28.893	0_000	89.000	89_000
# et 12	1 B1	1 11	11_864	12.748	0.000	45.000	45.000
	101	1 11	12.091	2.879	6_000	15.000	9.000
	D1	10	63.000	36.092	13_000	120.000	107_000
	I ====================================	10	6.070	7.870	0.000	27.000	27.000
ł	[[P 1	1 11	4.836	3.941	0.000	10.000	10_000
	 G1	1 10	5.060	3.969	0_000	13.000	13.000
	<u></u> E1	1 10	6.670	2.756	2.000	10.000	8.000
	II1	1 10	21.400	8.099	6_000	28.000	22_000
	 J1	10	14 . 4 00	6.041	0_000	21.000	21_000
Lower	Ι Δ2	10	46.600	58.127	0.000	190.000	190.000
Vells	B2	1 11	9_8 18	7.900	0_000	22.000	22.000
	 C2	1 11	4-927	3-384	0.000	11_000	11.000
	D2	1 10	2.010	2.150	0_000	5.000	5.000
	E2	 9	1.500	2.264	0.000	6.000	6.000
	<u></u> F2	1 11	1.027	1.774	0.000	5.000	5.000
	G2	1 10	9.300	· 1.168	7.000	11.000	4_000
	H2	1 10	4.790	1_880	1_000	8.000	7.000
	12	++ 81	10.062	11.188	3.900	31.000	27.100
	J2	1 10	44 . 5 50	110.905	6.000	360.000	354.000
Sur face	Channel	1 91	571.556	463.661	94.000	1540.000	1446_000
Water	River	1 81	322-125	237.322	37-000	700_000	663.000
Site Typ	e	 					7-2-7-2-2
Upper We	1 ls	103	16.953	22.347	0.000	120.000	120.000
Lover We	11s	100	13.400	41_413	0.000	360.000	360.000
Sur face	Vater	1 17	454 . 176	385.497	37.000	1540-000	1503.000
Total		1 2201	49.124	160_218	0.000	1540.000	1540-000

.

٠

Chloride (mg/l)

		Num. SmFl		Std. Dev.	l L Min	 Max	 Bange
Site Type	Site	 					
Upper Wells	1 & 1	1 8	725.375	392.886	226.000	1330.000	1104_000
	B1	8	799.750	824.117	191_000	2740.000	2549.000
	C1	8	1393.750	366-253	1090.000	2270-000	1180.000
	D1	8	716.000	349.007	162.000	1030-000	868.000
	E1	8	534.000	274-306	333.000	1150.000	817.000
	121	8	523.125	139.935	365_000	800.000	435.000
	G1	8	625.500	239.240	355.000	1040_000	685.000
	1 81	8	53.875	29.396	34.000	110_000	76.000
	11	8	27.375	22-947	7.000	82_000	75.000
	J1	8	30.625	5.263	25.000	40.000	15.000
Lower Wells	1 42	7	1127.429	630.978	385.000	2223.000	1838.000
# et 12	1 82	8	921.000	304.566	548.000	1500_000	952.000
	C2	8	384.875	353.7.02	70-000	1140-000	1070_000
	D2	8	555.625	142.961	429_000	830.000	451.000
	E2	7	846.429	204-462	6.66 . 0 0 0	1230.000	564.000
	F2	8	2 80 . 3 75	131.630	71.000	460_000	389.000
	G2 ·	8	1239.125	309.165	1020.000	1950.000	930-000
	H2	8	63.125	20-622	44.000	100.000	56.000
	12	7	14.714	9.013	7.000	30.000	23.000
	J2	81	15.875	9.523	3_000	30.000	27.000
Surface Water	Channel	8	5507.500	2056.685	3296.000	8850.000	5554.000
	River	6	5794.667	2 43 3. 74 3	3050-000	8650.000	5600.000
Site Typ	e						
Upper We	11s	30	542.938	524.382	7.000	2740-000	2733.000
Lover Ve.	lls	77	540.260	512.393	3.000	2223.000	2220.000
Sur face	Water	.141	5630.571	2139-517	30 50 - 0 00	8850.000	5800-000
Total		171	958.263	1597-912	3.000	8850-000	8847.000

.

.

٠

•

So di um	(mg/l)
----------	--------

		Num. Smpl	l Mean	Std. Dev.	 Min	 Max	 Range
Site Type	Site 		 		; ; ;	1]]	: : :
Upper Wells	Å 1	1 12	668.333	1 214-681	370-000	1020.000	650_000
	81	12	878.333	782.790	180_000	2180-000	2000-000
	C1	12	858.333	95-330	690.000	1010_000	320.000
	D1	12	5 39.167	263.558	170.000	1030.000	860.000
	21	12	441_667	101-429	280_000	610.000	330-000
	F1	12	468.333	103.294	310.000	650.000	340.000
	G1	12	481_667	95-235	350.000	680-000	330.000
	81	1 11	44.364	8.310	31_000	53.000	22.000
	I1	12	29.000	10.988	18.000	51.000	33.000
	J1	1 12	37.250	13.465	25.000	58.000	33-000
Lover Vells	A2	1 11	746.364	216.161	500.000	1240.000	740.000
# ET 12	B2	12	6 59 . 5 00	210.003	64.000	850.000	786.000
	C2	1 12	430.000	231.831	180-000	860.000	680.000
	1 D2	1 12	512.500	119.630	360.000	650.000	290-000
	E2	11	660.000	116.017	380_000	790.000	410.000
	F2	12	340.833	81.626	230.000	460.000	230.000
	G2	12	9 96 . 6 67	297.454	770.000	1900.000	1130.000
	1 82	12	57.333	14.240	28.000	76.000	48.000
	12	1 11	25.636	8.488	14_000	36.000	22.000
	J2	12	27.167	9.233	17.000	39.000	22.000
	Channel	1 81	4893.750	1075.213	3500.000	6500.000	3000.000
Water	River		4837.500	945.013	3800.000	6800.000	3000.000
Site Type		i i				1	
Opper We	l 1s	119	448.008	404.563	18.000	2180-000	2162.000
Lower Ne.	11s	117	444 . 786	354.992	14.000	1900-000	1886.000
Sur fa ce	ater 🗌	16	4865.625	978.318	3500.0001	6800-0001	3300-000
Total		252	726.996	1 16 5. 439	14.0001	6800-000	6786.000

•

.

Potassium (mg/l)

.

.

		Num. Sapl	Mean	Std. Dev.	Min	Max	Range
Site Type	Site						
Upper Wells	1 & 1	12	106.583	174.585	38.000	660.000	622.000
wells	B1	12	433.417	648.169	33.000	1520.000	1487.000
	1C1	12	1335.000	168.054	1030_000	1530.000	500.000
	D1	12	30.417	13.132	7_000	45.000	38.000
	E1	1 12	98_4 17	55. 556	29.000	200.000	171.000
	 F1	1 12	66.500	17.344	44_000	92.000	48.000
	G1	1 12	454.167	42.525	420.000	540.000	120.000
	 H1	1 11	1.727	0.467	1_000	2.000	1.000
	 I1	1 12	2.000	0.000	2.000	2.000	0.000
	 J1	1 12	2.167	0.389	2.000	3_000	1.000
Lower	<u>A2</u>	1 11	38.727	23.057	15.000	80.000	65.000
Vells	 B2	1 12	57.500	61.098	14.000	150.000	136.000
	 C2	1 12	1 189.250	242.707	43.000	730-000	687.000
	 D2	1 12	15-3 33	2.605	11_000	18.000	7.000
	<u></u> E2	1 11	30.091	3.646	26.000	40-000	14.00
!	1 P2	1 12	17.750	19.415	3.000	76.000	73.00
i	 G2	1 12	928-333	155.904	540.000	1120-000	580.00
	 	1 12	4_500	1.168	3.000	6.000	3.00
	 I2	1 17	4.545	7.461	2.000	27.000	25.000
	1 J2	1 12	2.333	0.888	2.000	5.000	3.000
Sur face	Channel	1 11	127.192	62.032	45.000	260.000	215.00
Water	River	1 9	122.556	50.814	55.000	190.000	135_00
Site Typ	e	i	1		, <u> </u>	1	
Opper We	lls	- 119	 255-151	451.102	1_000	1530.000	1529.00
Lower We	lls	117	131.513	290.478	2.000	1120.000	1113.000
Surface	Tater	20	125.100	55.839	45.000	260.000	215.00
Total		256	188_484	369.675	1_000	1530.000	1529.00

.

Calcium (mg/l)

•

•

		Num. Smpl	Mean	Std. Dev.	Min	Max	Range
Site Type	Site 						
Opper 7ells	1 1	12	89.250	25.140	42.000	120.000	78.000
	B1	12	103.167	38.221	43.000	150.000	107.000
	c1	12	85.000	9.573	71_000	100.000	29.000
	D1	12	36.750	18.346	12.000	60-000	48.000
	E1	12	44 - 5 00	17.661	23.000	78.000	55.000
	F1	12	58.083	11.958	34_000	77.000	43.000
	G1	12	70.583	10.004	51.000	80.000	29.000
	[H1 .	11	11.364	3.695	6.000	17_000	11_000
	11	12	3.667	0_492	3.000	4.000	1.000
	j J1	12	31.083	3.450	27.000	38.000	11.000
Lover	1 12	11	100.636	24.861	50-000	126.000	76.000
Wells	B2	1 121	1 31.8 33	17.383	100.000	150-000	50.000
	c2	1 12	86 . 0 00	21.247	60.000	144.000	84.000
	D2	12	1 18.667	16.675	96.000	150.000	54.000
	E2	1 11	208.182	27.863	160.000	260.000	100-000
	F2	12	149_667	63-917	90.000	331.000	241.000
	G2	12	1 19 . 5 83	29.268	95.000	210-000	115.000
	H2	12	72.167	18.775	23.000	89.000	66.000
	12	1 11	19-455	26.760	.9_000	100.000	91.000
	J2	12	78.083	11.066	62.000	100.000	38.000
	Channel	1 1	122.091	50.830	50.000	210-000	160.000
¥at er	Eiver	1 91	119-556	40-3871	60.000	170.000	110.000
Site Type				•		 	
Opper Wells		1 119	53 - 6 97	36. 173	3-000	150-000	147.000
Lower Zells		117	108.402	55.074	9.0001	331_000	322.000
Surface Water		201	1 20 . 9 50	45.447	50.000	210.000	160.000
Total		2561	83-953	54-295	3.000	331-000	328.000

Magnesium (mg/l)

.

		Num. Smpl	Sean	Std. Dev.	Min	Max	Bange
Site Type	Site						
Opper Wells	I & 1	12	49.417	24.511	17.000	90.000	73.000
	B1	1 2	58.833	49-849	17.000	140-000	123.000
	C1	12	108.333	11.934	90.000	120.000	30.000
	D1	12	53.833	29.890	15.000	100.000	85.000
	E1	12	35.917	18.623	16.000	88.000	72.000
	1 F1	12	63.750	14.417	34_000	91.000	57_000
	G1	1 12	69 . 9 17	7. 229	60.000	81_000	21_000
	1 81	111	3.727	0_ 64 7	3.000	5_000	2.000
	11	12	6.000	0.953	5-000	8_000	.3-000
	JI	12	3.167	1.030	2.000	5.000	3_000
Lower	A2	11	63.091	32.414	24_000	140.000	116.000
Wells	B2	12	40.167	3_ 689	36-000	49.000	13_000
	C2	12	30 - 3 33	35.737	9.000	110-000	101_000
	D2	1 12	41.500	8.426	27.000	64.000	37.000
	E2	1 11	80 . 5 45	9.081	64.000	90.000	26.000
	F2	1 12	44.333	63.461	13.000	240.000	227.000
	G2	1 12	1 50 . 8 33	37.040	110.000	260.000	150.000
	H2	1 121	4.833	0.389	4-000	5.000	1.000
	12	1 11	10.909	22.598	3.000	79.000	76.000
	I J2	1 12	4.167	1.899	3.000	10.000	7.000
Surface	Channel	1 11	3 38 . 1 82	145- 177	120-000	600-000	480.000
Water	River	l 81	3 31. 2 50	133-677	140.000	480-000	340-000
Site Type		i i					
Opper Vells		- 119	45_639	38 <u>-</u> 427	2.000	140-000	138.000
Lover Jells		117	46.957	50-640	3_000	260.000	257.000
Surface Water		1 19	335.263	136.641	120.000	600-000	480.000
Total		2551	67.824	94.666	2.000	600.000	598.000

Iron (mg/l)

• • (

 		Num. Smpl	<u>Mean</u>	Std. Dev.	Min	 Max	i Range
Site Type	Site					1	
0pper Wells	1 & 1	12	6 - 2 50	2.350	3_300	11.000	7.70
	81	12	7.617	5.210	1.100	19.000	17.90
	C1	12	2.767	1. 774	0.300	6.500	6.20
	D1	12	16 . 1 67	8.164	2.400	31.000	28.60
	E1	12	7.917	7. 189	1.300	22.000	20.70
	P1	12	10.983	23.709	1_600	86.000	84_40
	G1	1 12	8.333	5.004	1_200	17.000	15.80
	E1	1 11	3.082	2.021	1.800	9.000	7.20
	11	12	1_608	2. 993	0_200	11.000	10_800
	JI	12	2.625	4-011	0.100	15.000	14.900
Lower Wells	1 1 2	1 11	14_1 18	41.758	0_400	140.000	139.60
Welts	B2	1 12	3.067	8.494	0.200	30.000	29-80
	C2	1 121	1.742	2. 445	0.3001	7.400	7.10
	D2	1 12	10_458	34.500	0.0001	120.000	120.000
	I E2	1 11	11_645	5.681	0.200	20.000	19.800
	1 2	1 12	53.142	181.664	0_100	630.000	629.900
	G2	1 12	23.258	74.562	0.800	260.000	259.200
	H2	12	1.275	3-6941	0.100	13.000	12.900
	12	1 11	46 . 8 36	137.158	0.0001	460.0001	460.000
	J2	12	0.8421	2-3241	0.0001	8.200	8_200
Surface Water	Channel	1 11	0.4821	0.271	0.2001	1.000	0.800
	River	1 91	0.4561	0.2461	0.200	0. 90 01	0.700
Site Typ	e	<u>i</u> i	i	i	i	i	<u> </u>
Opper Wells		119	6.766	9-508	0 - 100	86.000	85.900
Lover Wells		1 117	16_444	76.692	0_0001	630.000	630.000
Surface Water		201	0.4701	0.254	0.2001	1_ 0001	0.800
Fotal		256	10.697	52.421	0_0001	630.000	630_000

Manganese (mg/l)

		Num. Smpl	Mean	Std. Dev.	Min	flax	Eange
Site Type	Site 		 				
Opper Wells	1 1	12	0.533	0.261	0_200	1.100	0-900
	31	1 121	0_458	0.525	0.200	2. 100	1_900
	C1	1 12	0.392	0.067	0-300	0_ 50 0	0.200
	D1	1 12	0.125	0.062	0_100	0_ 300	0_200
	E1	1 12	0.158	0_067	0_100	0.300	0_200
	1 21	12	0.233	0.089	0.200	0.500	0.300
	G1	121	0_433	0.107	0.300	0_ 700	0.400
	I E1	11	0.036	0.050	0.000	0. 100	0.100
	11	12	0.083	0.0391	0_0001	0_ 10 0	0.100
	J J1	12	0.192	0.029	0_100	0.200	0.100
Lover	A2	11	0.236	0.136	0.0001	0- 50 0	0.500
¥ells	B2	12	0.267	0.078	0.200	0-4001	0.200
	C2	12	0.067	0.098	0.000	0_ 30 01	0.300
	D2	1 12	0.317	0.255	0.100	1_ 100	1_000
	E2	1 11	0.5451	0_ 104	0_300	0_ 700	0_400
	F2	1 12	. 1.025	3. 142	0.0001	11.000	11_000
	G2	12	0.4921	0.696	0.200	2. 700	2.500
	H2	1 121	0.017	0.039	0.000	0_ 10 0	0.100
	12	1 11	0_627	1.295	0.000	4. 50 01	4.500
	J2	12	0.175	0.097	0.000	0-400	0_400
	Channel'	1 11	0.091	0-083	0.0001	0_ 20 0	0.200
Vater	River	1 91	0.067	0.050	0.0001	0_ 10 01	0.100
Site Typ	e	1 1	1	r			
Opper Vells		· 119	0-2661	0 - 25 1	0.000	2. 100	2.100
Lower Vells		117	0_374	1_ 106	0.000	11.000	11.000
Surface Water		1 201	0.080	0.070	0.0001	0. 2001	0.200
Total		256	0.301	0. 770	0.0001	11.000	11_000