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ABSTRACT 

COMPUTATIONAL MODELING AND ANALYSIS OF FACIAL EXPRESSIONS AND 

GAZE FOR DISCOVERY OF CANDIDATE BEHAVIORAL BIOMARKERS FOR 

CHILDREN AND YOUNG ADULTS WITH AUTISM SPECTRUM DISORDER 

 

Megan Anita Witherow 

Old Dominion University, 2024 

Director: Dr. Khan M. Iftekharuddin 

 

 

Facial expression production and perception in autism spectrum disorder (ASD) suggest 

the potential presence of behavioral biomarkers that may stratify individuals on the spectrum into 

prognostic or treatment subgroups. High-speed internet and the ease of technology have enabled 

remote, scalable, affordable, and timely access to medical care, such as measurements of ASD-

related behaviors in familiar environments to complement clinical observation. Machine and 

deep learning (DL)-based analysis of video tracking (VT) of expression production and eye 

tracking (ET) of expression perception may aid stratification biomarker discovery for children 

and young adults with ASD. However, there are open challenges in 1) facial expression analysis 

(FEA) across age groups to overcome domain shift between child and adult expressions, 2) 

Facial Action Coding System (FACS)-labeled 3D avatar-based stimuli to improve user 

engagement for eliciting expressions, and 3) assessment of construct validity and group 

discriminability criteria to discover candidate biomarkers for ASD. 

Consequently, this dissertation proposes three goals. The proposed dissertation goals 

have been completed in collaboration and consultation with a team of Old Dominion University 

and Eastern Virginia Medical School investigators. The first proposed aim is a novel deep 

domain adaptation fusing DL-based texture features with geometric landmark features for 

generalized child/adult FEA. Novel facial feature selection for DL is performed using a new 

statistical method based on a mixture of beta distributions. Our model performs competitively 



 

 

over transfer learning and existing domain adaptation methods using multiple benchmark data 

sets. Second, we propose FACS-labeled customizable avatars for improved user engagement and 

DL models for multi-label FACS action unit (AU) detection. The DL models incorporate feature 

fusion, multi-task learning of AUs and expressions, and a novel beta-guided correlation loss to 

achieve state-of-the-art AU detection performance on our primary benchmark data set. We report 

the construct validity of proposed stimuli and measurements based on a feasibility study of 

twenty healthy adults. Finally, we conduct an online pilot study of 11 autistic children and young 

adults and 11 age-/gender-matched neurotypical individuals. Webcam-based ET and VT are 

collected while participants recognize and mimic avatar expressions. Extensive statistical 

analyses, including evaluation of construct validity and group discriminability, identify one 

candidate ET biomarker and 14 additional ET and VT measurements that may be candidates for 

more comprehensive future studies with increased sample size for validation and clinical 

translation.
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CHAPTER 1 

INTRODUCTION 

Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental condition. 

Based on a 2020 surveillance survey, the United States Centers for Disease Control and 

Prevention (CDC) estimates that ASD affects 1 in 36 children in the United States [1]. This latest 

report reflects a trend of increasing prevalence (Figure 1) since the first survey in 2000 [2]. There 

are currently no validated biomarkers for ASD [3, 4]. Instead, diagnosis and ongoing clinical 

assessment are informed by direct visual observation, parent interviews, and psychological 

testing [4, 5]. In addition, the United States faces a shortage of ASD specialists, leading to an 

overworked developmental-behavioral pediatrics workforce and delays in accessing ASD-related 

care for patients and families [6]. With motivation to improve access to care, reduce wait times, 

and alleviate stress on the current ASD support system, scalable, automated tools based on 

computer vision and machine learning have been increasingly applied to ASD research over the 

past decade [7]. Especially during and since the COVID-19 pandemic, high-speed internet 

connectivity and the ease of technology have enabled access to children outside of clinical 

settings, improving access to care and engaging families that may not normally have access to 

services [8-11]. Computer vision and machine learning enable ecologically valid, precise 

measurements of ASD-related behaviors at home, school, and in community settings to 

complement ongoing clinical care, increase access to services, and reduce barriers to research 

participation [8-11].   
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Figure 1. Prevalence of ASD from 2000 to 2020 [2]. 

 

Individuals on the autism spectrum may have a wide variety of behavioral symptom 

profiles and experiences. According to the 5th edition of the Diagnostic and Statistical Manual of 

Mental Disorders (DSM-5), symptoms of ASD fall into the two broad categories of “persistent 

deficits in social communication and social interaction” and “restricted, repetitive patterns of 

behavior, interests, or activities” [12]. Among differences in social communication and social 

interaction, some individuals on the spectrum may produce and perceive facial expressions 

differently than their neurotypical (NT) peers [12]. These differences may be captured and 

quantified through eye tracking (ET) of gaze to facial stimuli and behavioral video tracking (VT) 

of facial behaviors [7]. Models for automated ET analysis and facial expression analysis (FEA) 

may help support autistic individuals and clinicians with rapid and objective assessments of 

ASD-related symptoms.  
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High heterogeneity in the perception and production of facial expressions among autistic 

individuals compared to NT individuals has long resulted in mixed findings regarding the nature 

of facial expressions in ASD [13]. However, while ASD research has historically focused on the 

search for diagnostic biomarkers that partition individuals into groups of NT and autistic 

individuals [13], the focus has recently shifted to the identification of stratification biomarkers 

that may explain some of the heterogeneity of ASD by identifying internally homogenous 

subgroups on the spectrum [14].  Such stratification biomarkers may identify prognostic 

subgroups with different tracks of longitudinal symptom development or treatment subgroups of 

individuals with clinically relevant difficulties, e.g., in social skills, for selective enrollment in 

interventions [15]. Globally, several large-scale efforts aimed at ASD biomarker discovery have 

emerged, including European Autism Interventions—A Multicentre Study for Developing New 

Medications (EU-AIMS) Longitudinal European Autism Project (LEAP) [16], Janssen Autism 

Knowledge Engine (JAKE) [17], and the Autism Biomarkers Consortium for Clinical Trials 

(ABC-CT) [18]. In the United States, ABC-CT has resulted in the first two biomarkers, an EEG 

N170 measure and an ET measure, for ASD to be accepted for evaluation in the United States 

Food & Drug Administration (FDA) biomarker qualification program [19].  

The highly heterogeneous responses seen in prior studies of facial expressions in ASD 

suggest that facial expressions may be a meaningful target for stratification. However, there are 

open challenges. While facial expression perception of individuals diagnosed with ASD has been 

well-studied via ET [20-22], few studies [23-33] have attempted to quantify facial expression 

production captured via VT. Among these, most existing studies [23-25, 27-30, 32, 34] analyze 

facial expression behaviors using off-the-shelf commercial or research tools based on machine 

learning models for FEA [24, 25, 27, 35-39] that have been developed using data sets of adult 
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facial expressions. However, due to differences in facial growth and motor ability [40, 41], adult 

facial expressions are not an appropriate ground truth for analysis of child facial expressions, and 

FEA models trained with data collected from adults have been shown to perform poorly on 

images collected from children [42-45]. Facial expressions may provide valuable information 

about a child’s development into an adult [46-48], making them a valuable modality for ASD 

research [13]. Many other applications of FEA including education (e.g., engagement in the 

classroom [49-51]), healthcare (e.g., monitoring of pain [52, 53], mental health [54, 55]), and 

entertainment (e.g., video games [56, 57]) also remain relevant from childhood into adulthood. 

To better support such applications and to better assess communication skills and support life-

long care in ASD, there is a need for FEA models that generalize across distinctive expression 

patterns from early childhood to adulthood. However, few works [58, 59] address FEA across 

age groups. Furthermore, there has been little interaction between FEA research considering age 

variations and relevant fields such as facial age estimation and age-invariant face recognition 

(AIFR), where age variations have been well-studied.  

Facial expression recognition and mimicry tasks have been used to elicit behavioral 

responses associated with facial expression perception and production [13]. Engagement plays a 

pivotal role in ensuring the validity and efficacy of such tasks in eliciting the intended construct 

[60]. Over the past twenty years and now entering the age of the metaverse, 3D avatars have 

become increasingly prominent and effective tools for engaging users in health applications. In 

clinical settings, 3D avatars have been broadly applied for neuro- and motor-rehabilitation [61] 

of patients, such as those who have suffered from stroke [62], cerebral palsy [63], brain injury 

[64], Parkinson’s disease [65], Alzheimer’s disease and dementia [66, 67]. Furthermore, 3D 

social avatars have aided the discovery of potential behavioral biomarkers and the development 
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of therapeutic interventions for individuals with social anxiety disorder [68], depression [69, 

70], schizophrenia [71], and ASD [32, 72-74]. For ASD research, animated 3D avatars have 

been shown to evoke higher levels of social engagement among individuals diagnosed with ASD 

when compared to traditional face-to-face interactions [75]. Given the ubiquity of facial 

expressions in daily life and their relevance to psychosocial health (e.g., facial palsy [76], 

depression [69, 70], social anxiety [68], and ASD [32, 72, 73]), facial expressions have 

become important targets for 3D avatar-based health applications. Thus, important design 

considerations have been identified to ensure that 3D avatars are valid and engaging for use in 

such applications [60, 77]. Among these, avatar customization has been shown to improve 

engagement among both autistic and NT individuals [78]. However, current customizable avatar 

platforms have not been evaluated by experts in the Facial Action Coding System (FACS) [79] 

or labeled with FACS action units (AUs), which is important to ensure that avatars accurately 

depict the target facial expressions.  FACS [79] is gold-standard for expression labeling and its 

taxonomy of AUs describe the individual constituent muscle movements of the face. Using 

appropriate FEA models, FACS AUs may also be used to quantify the facial muscle 

activations of research participants in response to the stimuli. This one-to-one correspondence 

between AUs produced by a 3D avatar and AUs produced by a participant can be used to 

define the expected NT response for facial expression production based on measurements of 

individual AUs. Furthermore, this correspondence provides an interesting pathway to study 

whether participant facial responses follow the elicited configuration of AUs, which may be 

applicable not only to studies of ASD, but also to healthcare applications for individuals with 

Alzheimer’s disease, facial palsy, and more [62-64, 66, 67]. Therefore, there is a need for 
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customizable avatar-based facial expression stimuli with FACS AU labels for improved user 

engagement and corresponding FEA models for measurement of FACS AUs.  

There is a critical need for reliable biomarkers to support clinical and behavioral research 

in ASD [18]. In the United States, ABC-CT has established a thorough and effective framework 

for evaluation of potential biomarkers for ASD that may serve as a model for successive research 

studies [18]. With the goal of biomarker qualification, ABC-CT recruits hundreds of participants 

for multi-day studies including diagnostic confirmation, data acquisition, and deep phenotyping 

[18, 80]. Numerous candidate measurements, or dependent variables (DVs), are evaluated based 

on assay validity, data acquisition rates, distributional properties in the NT group, test-retest 

reliability, and replication in an independent sample [80]. In order to make it to such large scale 

study, these DVs need to have been discovered in previously published, smaller scale studies and 

be selected as candidate biomarkers based on ABC-CT’s two inclusion criteria: construct validity 

and group discriminability [80]. Construct validity ensures that the experimental task elicits the 

intended response in the NT control group, and group discriminability confirms the presence of 

statistically significant differences between autistic and NT participant groups [80]. According to 

Shic et al. [81], group discriminability in the context of stratification is not expected to have 

effect sizes with diagnostic precision but rather, indicate broad group-level (ASD or NT) 

distributional differences associated with more homogenous subgroups within the ASD group. 

Few studies have considered facial expression production and perception for stratification 

biomarker discovery [82-85], and to our knowledge, none have assessed candidate biomarkers 

based on both construct validity and group discriminability. 

Overcoming these open challenges, we hypothesize that DVs related to facial expression 

perception and production may hold promise for candidate ASD stratification biomarker 
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discovery, as assessed by the ABC-CT criteria. To summarize the current challenges associated 

with the discovery of candidate ASD stratification biomarkers based on facial expressions, there 

are needs for 1) models that are appropriate for FEA of both child and adult facial expressions, 2) 

engaging, customizable avatar-based facial expression stimuli with FACS AU labels and 

corresponding FEA models for measurement of FACS AUs, and 3) assessment of construct 

validity and group discriminability for DVs related to facial expression production and 

perception in NT and ASD groups.  

 

1.1 PROPOSED WORK AND CONTRIBUTIONS 

 This dissertation addresses the aforementioned challenges in three goals. 

 The first goal of this dissertation is to obtain a model that is appropriate for both child and 

adult FEA. For this purpose, a novel deep domain adaptative approach fusing facial landmark 

features is proposed for concurrent learning of adult and child facial expressions. Source (i.e., adult 

facial expressions) and target (i.e., child facial expressions) domains are aligned in a unified 

domain-invariant latent representation. Inspired by facial age estimation and AIF , facial 

landmark measurements are fused with deep feature representations for robust expression learning 

across age groups. These facial landmark features are decomposed based on correlations with 

expression, domain, and identity factors using a novel facial feature selection method based on a 

mixture of beta distributions.  

 The second goal of this dissertation is to design FACS-labeled avatar-based facial 

expression stimuli for improved user engagement and develop associated models for automatic 

FACS AU measurement. Working with a certified FACS expert, six avatar models representing 

different genders and races with customizable hair color, eye color, skin tone, and clothing have 
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been developed, each with FACS-labeled dynamic animations for six facial expressions (‘anger’, 

‘disgust’, ‘fear’, ‘happy’, ‘sad’, and ‘surprise’). Corresponding deep models for multi-label AU 

detection are also developed. For richer representation learning, geometric landmark and deep 

learning-based texture features are fused while jointly learning AU detection and expression 

classification tasks. A novel beta-guided correlation loss encourages features to be correlated with 

AUs while discouraging correlation with subject identity. To study behavioral responses of healthy 

adult participants in response to the proposed stimuli as measured by proposed AU detection 

models, an online feasibility study is conducted. Participants complete expression recognition and 

mimicry tasks with the avatars while their facial webcam video and webcam-based eye-tracking 

are collected. We define and assess the validity of constructs based on the one-to-one relationship 

between avatar AUs and participant AUs, as well as a widely known ET construct (face preference 

[ 1]).  

 The third goal of this dissertation is to discover candidate stratification biomarkers based 

on the analysis of ET and  T data collected during an online pilot study of facial expression 

production and perception by autistic and NT children and young adults. The study is conducted 

online and    participants (11 with ASD and  1 NT) from across the United States take part. 

Participants diagnosed with ASD and NT participants are matched on age and gender, yielding 11 

matched pairs (11 participants diagnosed with ASD and 11 matched NT participants) in the final 

cohort. Measurements of participants’ facial  T and webcam-based ET are collected during 

recognition and mimicry tasks. Construct validity in the NT group is evaluated for each D  (e.g., 

AUs, percentage of gaze duration to the face) in response to each stimulus (e.g., mimicry of 

‘anger’, recognition of ‘surprise’). Then, candidate stratification biomarkers are identified among 

the D s with valid constructs based on group discriminability (ASD vs. NT) using the Boruta [  ] 
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statistical approach.  

 In summary, this dissertation proposes computational models for automated FEA of adult 

and child facial expressions, FACS-labeled  D avatar-based facial expression stimuli and AU 

measurements, and human subjects research study for discovery of stratification biomarkers for 

ASD.  

Table 1 summarizes the proposed contributions for each goal. This dissertation has produced 

three conference proceedings and three journal manuscripts. The proposed contributions in goal 1 

have been published in IEEE Transactions on Affective Computing [ 7] and comparison methods 

in Proceedings of SPIE Optics & Photonics Applications of Machine Learning  0   [  ],  0 0 

[  ], and  01  [  ]. The proposed contributions in goal   are under review by IEEE Transactions 

on Affective Computing [  ]. A journal manuscript reporting the research findings in goal   is 

under review by the Journal of Autism and Developmental Disorders [ 0].   

 

Table 1. Summary of proposed contributions for this dissertation 

Research Goal Description Contributions 

1 Deep representation learning of adult and 

child facial expressions using domain 

adaptation fusing facial landmark features 

Novel representation learning of adult and 

child facial expressions based on domain 

adaptation, statistical selection of facial 

landmark features, and feature fusion   

2 Customizable avatars with dynamic facial 

action coded expressions for improved 

user engagement 

FACS-labeled customizable avatar-based facial 

expression stimuli, deep learning-based AU 

measurements, novel beta-guided correlation 

loss, and construct validity based on feasibility 

study with healthy adults 

3 Pilot study to discover candidate 

biomarkers for ASD based on perception 

and production of facial expressions 

Online pilot study of individuals diagnosed 

with ASD and matched NT peers, construct 

validity and group discriminability for 

candidate biomarker selection 
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1.2 ORGANIZATION OF THE DISSERTATION 

The remainder of the dissertation is organized as follows. Chapter 2 describes required 

background, including machine learning paradigms, tree and neural network-based methods, 

transfer learning and domain adaptation, and analysis of facial expressions and gaze. Chapter 3 

proposes a deep domain adaptation and feature fusion model for concurrent learning of adult and 

child facial expressions with novel facial feature selection based on a mixture of beta 

distributions. Chapter 4 presents the proposed FACS-labeled customizable 3D avatar-based 

facial expression stimuli for improved engagement and associated deep learning-based AU 

measurements, including construct validity based on an online feasibility study with healthy 

adult participants. Chapter 5 discusses the protocol and findings of the proposed online pilot 

study involving participants diagnosed with ASD and matched NT peers, including construct 

validity, group discriminability, and sample size recommendations for future studies. In Chapter 

6, the dissertation concludes with a summary and suggestions for future research directions.  
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CHAPTER 2 

BACKGROUND REVIEW 

 This chapter briefly discusses the techniques and concepts required to understand this 

dissertation. In Section 2.1, the three main machine learning paradigms are introduced with an 

emphasis on the formulation of supervised learning problems for Chapters 3-5 and basic 

concepts from reinforcement learning relevant to Chapter 4. Section 2.2 discusses relevant 

machine learning methods, including tree-based methods primarily used in Chapter 5 and neural 

networks used in Chapters 3 and 4. Section 2.3 provides a succinct background of deep transfer 

learning and domain adaptation, which are foundational to Chapter 3. Section 2.4 briefly 

describes concepts related to FEA and ET analysis relevant to Chapters 3-5.  

 

2.1 LEARNING PARADIGMS 

 Machine learning may be partitioned into three main paradigms: unsupervised learning, 

supervised learning, and reinforcement learning [91]. Unsupervised learning, supervised 

learning, and reinforcement learning are described in Sections 2.1.1, 2.1.2, and 2.1.3, 

respectively. 

 

2.1.1 UNSUPERVISED LEARNING 

Unsupervised learning seeks to learn patterns from input data 𝑋 = {𝑥1, … , 𝑥𝑁} ∈ 𝒳 

without any human-provided labels [91]. For example, if each sample 𝑥𝑖, 𝑖 = 1,… ,𝑁, represents 

a vector of 𝑝 real-valued features, then 𝒳 = ℝ𝑝. If each sample 𝑥𝑖 represents an 𝑚× 𝑛 image, 

then 𝒳 ⊂ ℝ𝑚×𝑛. A detailed discussion of unsupervised learning is provided in Chapter 14 of 

Hastie et al. [92]. Unsupervised learning is concerned with learning the properties of probability 
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density 𝒫(𝑋) of input data 𝑋, especially when the dimensionality of 𝑝 is large [92]. Tasks in 

unsupervised learning may include dimensionality reduction, i.e., finding lower dimensional 

manifolds representative of high data density to understand associations among features through 

methods such as principal component analysis, self-organizing maps, and others [93], and 

clustering [94], i.e., identification of clusters of data representing the modes of 𝒫(𝑋) that may be 

associated with different types or classifications of the data [92]. One of the major limitations of 

unsupervised learning is that evaluating the performance of the methods is often challenging due 

to a lack of ground truth labels [92]. Instead, evaluation is based on heuristics or, for clustering, 

model-based evaluation metrics such as the silhouette coefficient [95], Calinski-Harabasz index 

[96], or Davies-Bouldin index [97] may be used. Such model-based metrics assess how ‘well 

defined’ the clusters are based on their distance, dispersion, and or separation [95-97].   

 

2.1.2 SUPERVISED LEARNING 

In supervised learning, the input data 𝑋 = {𝑥1, … , 𝑥𝑁} ∈ 𝒳 have been annotated with 

associated output labels 𝑌 = {𝑦1, … , 𝑦𝑁} ∈ 𝒴, and the goal is to learn a mapping 𝑓:𝒳 → 𝒴 [91]. 

Considering joint probability density 𝒫(𝑋, 𝑌) = 𝒫(𝑌|𝑋) ∙ 𝒫(𝑋), supervised learning is 

concerned with characterizing the conditional density 𝒫(𝑌|𝑋) [92]. Supervised learning methods 

are discussed in detail in Chapters 3-7 of Bishop [91] and Chapters 2-13 of Hastie et al. [92]. 

Supervised learning tasks may be categorized as regression or classification problems [91, 92]. 

For regression, each sample 𝑥𝑖 , 𝑖 = 1,… ,𝑁 is associated with one or more continuous, 

quantitative labels 𝑦𝑖, (e.g., 𝑦𝑖 ∈ 𝒴 ⊂ ℝ
1) [91, 92]. For classification, each 𝑥𝑖 is associated with 

𝐾 discrete, qualitative labels called ‘classes’ (e.g., if 𝐾 = 2, 𝑦𝑖 ∈ 𝒴 = {
′𝑐𝑙𝑎𝑠𝑠1′, ′𝑐𝑙𝑎𝑠𝑠2′}) [91, 

92]. For classification, class labels are usually encoded as numerals. For example, a 𝐾 = 2 class 
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problem with classes ‘present’ or ‘absent’ may be represented with ‘1’ and ‘0’, respectively [92]. 

When there are more than two classes, each class label may be encoded as a ‘one-hot’ vector, 

i.e., a vector of 𝐾 elements where the 𝑘th class (𝑘 = 1,… , 𝐾) is represented as a ‘1’ in the 𝑘th 

position of the vector, and the remaining positions are ‘0’ (see page 407 of [98]). 

Evaluation metrics for supervised learning methods quantify performance through the 

comparison of model predictions 𝑓(𝑥𝑖) to the ground truth labels 𝑦𝑖. For regression, it is standard 

practice to report the mean squared error (MSE) or root MSE (RMSE) and the mean absolute 

error (MAE) [99]. The MSE is defined as [99]: 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑦𝑖 − 𝑓(𝑥𝑖))

2.

𝑁

𝑖=1

 (1) 

MSE is the averaged form of the Euclidean distance or L2 norm and is optimal for Gaussian 

errors [99]. RMSE is calculated as the square root of the MSE [99]. RMSE provides a metric 

with the same units as the 𝑦𝑖’s and for normally distributed errors, represents the standard error 

[99]. The MAE is the averaged form of the Manhattan distance or L1 norm and is optimal for 

Laplacian errors [99]. The MAE is defined as [99]: 

𝑀𝐴𝐸 = 
1

𝑁
∑|𝑦𝑖 − 𝑓(𝑥𝑖)|.

𝑁

𝑖=1

 (2) 

Lower MSE, RMSE, and MAE are associated with better performance.  

For classification, evaluation metrics are defined based on the number of true positives 

(TP; e.g., ‘class 1’ samples correctly predicted as ‘class 1’), false positives (FP; e.g., samples not 

in ‘class 1’ incorrectly predicted as 'class 1’), true negatives (TN; e.g., samples not in 'class 1’ 

correctly predicted as not ‘class 1’), and false negatives (FN; e.g., ‘class 1’ samples incorrectly 
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predicted as not ‘class 1’) [100]. The ‘recall’ or ‘sensitivity’ is the fraction of correctly predicted 

samples of a particular class divided by the total number of samples of that class [100]: 

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (3) 

The ‘precision’ is the fraction of correctly predicted samples of a particular class divided by the 

total number of predictions for that class [100]: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (4) 

The ‘specificity’ is the fraction of samples correctly predicted as not of a particular class divided 

by the total number of samples not of that class [100]: 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
. (5) 

The ‘F1 score’ summarizes precision and recall as their harmonic mean [100]:  

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
. (6) 

A ‘receiver operating characteristic ( OC) curve’ is a plot of 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 vs. 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

[101]. The ‘area under the  OC curve’ (AUC) may be used to summarize the sensitivity and 

specificity metrics for performance evaluation [101]. Higher recall/sensitivity, precision, 

specificity, F1 score, and AUC are associated with better performance [100, 101]. 

Examples of supervised learning approaches include decision trees, random forests, and 

neural networks, which will be discussed in sections 2.2.1, 2.2.2, and 2.2.3, respectively, as well 

as many other methods [91, 92, 98]. 
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2.1.3 REINFORCEMENT LEARNING  

As in supervised learning, reinforcement learning is concerned with the conditional 

distribution of a response variable given a set of features [102]. However, unlike supervised 

learning where the optimization targets for the specified task are clear from the labels, 

reinforcement learning performs its optimization through the reinforcement, or feedback, it 

receives from the environment at each turn [102]. Although there may be no clear optimal 

outcome, it is still possible to learn to perform the task well by finding a series of actions that 

yield better outcomes than others [102]. For example, a gambler may explore and exploit a 

variety of slot machines with different probabilities of returning a jackpot with the goal of 

maximizing earnings (without knowing the maximum possible earnings) [102]. More formally, 

in reinforcement learning, we consider a decision-making ‘agent’ in an ‘environment’ that may 

inhabit one of many possible ‘states’ [91, 103]. Learning focuses on determining a series of 

suitable ‘actions’, i.e., interactions with the environment to transition it from one state to another, 

for the agent to take in order to maximize the total reward at a particular time step, i.e., the 

positive or negative cost of a particular action taken in a particular state [91, 103]. The total 

reward is the summation of the immediate reward and the anticipated future rewards scaled by an 

exponentiated ‘discount factor’ [103]. The best action for an agent to choose in each state is 

determined by a ‘policy’ that may either be extracted through learning the value of states and 

actions, as in value-based methods or learned directly through policy-based methods such as 

policy gradients [103]. A detailed coverage of reinforcement learning is provided in Miller [103].  
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2.2 MACHINE LEARNING METHODS 

 This section describes multiple machine learning methods used in this dissertation, 

including decision trees, random forests, and artificial neural networks. We focus our discussion 

on these methods as they are applied to supervised classification problems. 

 For all methods, we consider that the data has been split into independent ‘train’ and 

‘test’ sets. The train set is used to fit the model while the test set is reserved for evaluation 

purposes [104]. The train set may be split again to produce an independent ‘validation’ set, 

which may be used to assess model performance for, e.g., selecting the best model among 

multiple models, stopping training early, or choosing ‘hyperparameters’ [104]. Hyperparameters 

are model parameters that need to be specified prior to training, rather than learned while fitting 

the model [104]. One method of splitting a data set into train/test or train/validation sets is cross-

validation [98]. In k-fold cross-validation, the data set is split into 𝑘-independent folds [98]. The 

first fold is taken as the test (or validation) set and the remaining 𝑘 − 1 folds form the train set 

[98]. The model is then fit on the train set and evaluated on the held-out test fold [98]. Next, the 

second fold is taken as the test set and the remaining folds (including the first fold) are used to 

train the model [98]. This procedure is repeated so that each fold serves as the test set exactly 

once [98]. A special case of k-fold cross-validation is leave-one-out cross-validation (LOOCV). 

In LOOCV, 𝑘 equals the total number of samples in the full data set [98]. Each test set consists 

of only one sample while the remaining samples are used for training [98].   

In the following sections, we denote the input space as 𝒳 and output space as 𝒴. The 

goal of each machine learning method is to learn a function 𝑓:𝒳 → 𝒴. The training data consist 

of samples 𝑋 = {𝑥1, … , 𝑥𝑁} ∈ 𝒳 with labels 𝑌 = {𝑦1, … , 𝑦𝑁} ∈ 𝒴, where 𝑁 is the total number 

of training samples. Let individual sample-label pairs be denoted as (𝑥𝑖, 𝑦𝑖), 𝑖 = 1,… ,𝑁. 
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Sections 2.2.1, 2.2.2, and 2.2.3 describe decision trees, random forests, and neural networks, 

respectively.   

 

2.2.1 DECISION TREE 

 A decision tree is a supervised learning method that learns a type of directed graph that 

can be used to perform classification or regression tasks [91, 100]. Chapter 18 of Shalev-Shwartz 

and Ben-David [100] and Chapter 8 of James et al. [98] provide a detailed discussion of decision 

trees. This graph consists of an input node known as the ‘root’, one or more internal nodes 

known as ‘branches’, and output nodes known as ‘leaves’ that each corresponds to a specific 

label [100]. Figure 2 shows an example of this type of structure. Prediction involves transversing 

the graph from root to leaf based on partitioning of the input space 𝒳 [100].  Rules for such 

partitioning may be defined based on thresholds 𝜏𝑗 on the value of individual features 𝑋𝑗, where 

𝑗 = 1,… , 𝑝 for 𝑝 features [100]. These rules are learned during training. There are various 

algorithms for growing decision trees, including Iterative Dichotomiser 3 (ID3) [105] and 

Classification and Regression Trees (CART) [106].  

We will consider the CART algorithm, which performs binary partitioning of the input 

space. Let the data at node 𝑎 be denoted as 𝐷𝑎. For each candidate partitioning rule 𝜔 = (𝑋𝑗, 𝜏𝑎) 

based on a feature 𝑋𝑗 and threshold 𝜏𝑎, 𝐷𝑎 may be split into two subsets [98, 107]:  

𝐷𝑎
𝑙𝑒𝑓𝑡(𝜔 ) = {(𝑋, 𝑌)|𝑋𝑗 ≤ 𝜏𝑎}, 

𝐷𝑎
𝑟𝑖𝑔ℎ𝑡(𝜔) = {(𝑋, 𝑌)|𝑋𝑗 > 𝜏𝑎, }. 

(7) 

 



18 

 

 

 

Figure 2. Sample decision tree structure with root, branch, and leaf nodes (representing class ‘0’ 

or class ‘1’) labeled. 

 

If a subset does not consist of only a single class label, it is called ‘impure’ [98, 100]. Let 

𝐻(∙) be a function that quantifies the impurity of a subset [98, 107]. A popular choice for 𝐻(∙) is 

the Gini index [98]:  

𝐺𝑖𝑛𝑖 = ∑𝑟𝑎𝑘(1 − 𝑟𝑎𝑘)

𝐾

𝑘=1

, (8) 

where 𝑟𝑎𝑘 denotes the proportion of samples at a particular node 𝑎 with the 𝑘th class label. Then, 

the quality of the partitioning rule may be computed as the weighted average of the impurities of 

the two resulting subsets:  

𝐺(𝐷𝑎, 𝜔) =
𝑛𝑎
𝑙𝑒𝑓𝑡

𝑛𝑎
(𝐷𝑎

𝑙𝑒𝑓𝑡(𝜔 )) +
𝑛𝑎
𝑟𝑖𝑔ℎ𝑡

𝑛𝑎
(𝐷𝑎

𝑟𝑖𝑔ℎ𝑡(𝜔 )), (9) 

 1   1

 2   2    
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where 𝑛𝑎, 𝑛𝑎
𝑙𝑒𝑓𝑡

, and 𝑛𝑎
𝑟𝑖𝑔ℎ𝑡

 are the number of samples in 𝐷𝑎, 𝐷𝑎
𝑙𝑒𝑓𝑡(𝜔), and 𝐷𝑎

𝑟𝑖𝑔ℎ𝑡(𝜔), 

respectively [98, 107]. Then, we find the partitioning rule that minimizes 𝐺(∙) [98, 107]: 

𝜔∗ = argmin𝜔 𝐺(𝐷𝑎, 𝜔). (10) 

 This procedure is then recursed for 𝐷𝑎
𝑙𝑒𝑓𝑡(𝜔∗) and 𝐷𝑎

𝑟𝑖𝑔ℎ𝑡(𝜔∗) [98, 107]. Since it is 

possible to continue partitioning until all training samples are correctly classified, limitations 

may be placed on tree depth, i.e., the number of recursions, to reduce ‘overfitting’ [100]. 

Overfitting occurs when a machine learning method fits to noise in the training data, resulting in 

poor generalization to the test set [104]. The maximum depth may be specified as a 

hyperparameter prior to training. Therefore, recursion continues either until all leaves are ‘pure’ 

or the maximum depth has been reached [98, 107]. At test time, the predicted label is the label of 

the majority of training samples at the leaf node [98]. 

 An extension of CART, called a conditional inference tree (CIT) [108], uses the 

statistical significance of permutation tests to determine partitioning rules, instead of impurity 

measures like the Gini index.  

 

2.2.2 RANDOM FOREST 

 One of the limitations of CART is high variance in the constructed trees, e.g., splitting 

the train set in half and fitting trees on each part may yield vastly different trees [98]. Bootstrap 

aggregation, or bagging, may be used to reduce the variance of decision trees [98]. In bagging, 𝑏 

bootstrapped training sets are obtained by randomly sampling from the train set [98]. Then, 𝑏 

decision trees are fit, one for each of the 𝑏 bootstrapped train sets [98]. The number of trees 𝑏 is 

a hyperparameter set prior to training. To predict the class label using the ‘ensemble’ of 𝑏 trees, 
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each tree votes on the class label to predict, and the majority vote is taken as the predicted class 

label [98]. A random forest is an ensemble of decision trees formed by bagging with the 

additional requirement that the 𝑡th tree in the ensemble only have access to a random subset of 

the full set of 𝑝 features, where there are 𝑝𝑡 features in each random subset and 𝑝𝑡 is typically 

chosen to be √𝑝 [98]. The random sampling of the features has the effect of decorrelating the 

trees in the ensemble, further reducing the variance and improving the reliability of the approach 

[98].  

 

2.2.3 NEURAL NETWORKS 

 An artificial neural network is a computational structure based on a directed graph and 

biologically inspired by the brain [100]. Neural networks are composed of nodes, called 

‘neurons’ or ‘units’, that are arranged in disjoint subsets called ‘layers’ [100]. The edges 

connecting the nodes in the graph are each associated with a weight that is learned during 

training [100]. References for neural networks include Chapter 5 of Bishop [91], Chapter 20 of 

Shalev-Shwartz and Ben-David [100], Chapter 10 of James et al. [98], and Chapters 6-9 of 

Goodfellow et al. [109]. 

We concentrate our discussion on feedforward neural networks used in this dissertation. 

Feedforward neural networks are distinguished by the absence of cycles in the graphical model 

underlying the neural network [100]. Each edge connects the output of a neuron in the (𝑙 − 1)th 

layer to the input of a neuron in the 𝑙th layer [100]. There are other types of neural networks with 

cyclic connections, e.g., recurrent neural networks [98].  

 Every neural network has an input layer, one or more hidden layers, and an output layer 

[98, 100]. Perhaps the simplest feedforward neural network is a ‘multilayer perceptron (MLP)’, 
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i.e., where nodes in adjacent layers are fully connected or ‘dense’ [91]. An MLP with one hidden 

layer is a ‘shallow’ neural network architecture, while neural networks with two or more hidden 

layers are called ‘deep’ neural networks. ‘Deep learning’ is the field that studies deep neural 

networks [98]. A type of neural network architecture that is not fully connected is the 

convolutional neural network (CNN) [98]. CNNs use ‘convolutional layers’ where weights are 

organized into relatively smaller ‘kernels’, or ‘filters’, that are convolved with the input [98]. 

CNNs work particularly well on images [98]. The following subsections will discuss fully 

connected neural networks and CNNs in greater detail. 

 

2.2.3.1 FULLY CONNECTED NEURAL NETWORKS 

 Consider a fully connected neural network with 𝐿 + 1 layers indexed by 𝑙 = 0, … , 𝐿. 

Figure 3 shows an example of a fully connected deep neural network with four layers. The 

number of units in the input layer (𝑙 = 0) is equal to the dimensionality 𝑝 of the data 𝑋 ∈ ℝ𝑝 

plus one neuron called the ‘bias’. Except for the bias node which always outputs 1, the output of 

each unit in the input layer is just its input, i.e., the 𝑗th node in the input layer outputs feature 

value 𝑋𝑗 [100]. Each of the 𝑝 input units of the input layer is connected to each of the 𝑀1 hidden 

units in the first hidden layer (𝑙 = 1) [98]. In general, each hidden unit accepts a ‘fan-in’ of 

inputs which are the outputs of the nodes in the previous layer times their associated edge 

weights 𝑤(𝑙) ∈ 𝑊 [98]. This fan-in of inputs to the neuron is summed and undergoes a nonlinear 

transformation 𝑔(∙), called the ‘activation function’, which produces the neuron’s output, called 

an ‘activation’ [98]. 
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Figure 3. Example of a fully connected deep neural network with an input layer with five non-

bias units, two hidden layers with four and three non-bias hidden units, respectively, and an 

output layer with three output units. 

 

While there are many different activation functions available (see [110] for a survey), the most 

popular choice of 𝑔(∙) is the rectified linear unit (ReLU) [98]:  

𝑔(𝜉) = {
0 𝑖𝑓 𝜉  0
𝜉 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , (11) 

where 𝜉 is a placeholder for the argument of 𝑔(∙). The first hidden layer (𝑙 = 1) activations 𝐴𝑚1
(1)
,  

where 𝑚1 = 1,… ,𝑀1 hidden units, may be computed as [98]:  

𝐴𝑚1
(1)
= 𝑔(𝑤𝑚10

(1) +∑𝑤𝑚1𝑗
(1)

𝑝

𝑗=1

𝑋𝑗), (12) 
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where 𝑤𝑚10
(1)

 is the weight associated with the bias term, 𝑤𝑚1𝑗
(1)

 describes the weight between the 

𝑗𝑡ℎ input feature (𝑗 = 1, … , 𝑝) and 𝑚1𝑡ℎ hidden unit, 𝑋𝑗 is the 𝑗𝑡ℎ input feature, and 𝑔(∙) is the 

activation function. While the first hidden layer is connected directly to the 𝑝 features in the 

input layer, subsequent hidden layers (1  𝑙  𝐿) connect to the activations of the previous 

hidden layer. The activations 𝐴𝑚𝑙
(𝑙)

 of the 𝑙th hidden layer (1  𝑙  𝐿) with 𝑚𝑙 = 1,… ,𝑀𝑙 hidden 

units may be written as [98]: 

𝐴𝑚𝑙
(𝑙)
= 𝑔(𝑤𝑚𝑙0

(𝑙) + ∑ 𝑤𝑚𝑙𝑚𝑙−1
(𝑙)

𝑀𝑙−1

𝑚𝑙−1=1

𝐴𝑚𝑙−1
(𝑙−1)

), (13) 

where 𝑤𝑚𝑙0
(𝑙)

 is the weight associated with the bias term in the 𝑙𝑡ℎ layer, 𝑤𝑚𝑙𝑚𝑙−1
(𝑙)

describes the 

weight between the 𝑚𝑙−1𝑡ℎ hidden unit (𝑚𝑙−1 = 1,… ,𝑀𝑙−1) in the previous ((𝑙 − 1)𝑡ℎ) hidden 

layer and 𝑚𝑙𝑡ℎ hidden unit in the current (𝑙𝑡ℎ) hidden layer, 𝐴𝑚𝑙−1
(𝑙−1)

 is the 𝑚𝑙−1𝑡ℎ activation of 

the previous ((𝑙 − 1)𝑡ℎ) hidden layer, and 𝑔(∙) is the activation function. The number of units in 

the output layer (𝑙 = 𝐿) corresponds to the number of classes 𝐾 in the classification task. For 

binary classification (𝐾 = 2), only one output unit is needed as the labels 𝑌 may be encoded as 

‘0’ or ‘1’ [98]. For multi-class classification of 𝐾 > 2 different classes, there are 𝐾 output units 

to correspond to the one-hot encoded vector of labels 𝑌 [98]. An output function 𝑜(∙) is applied 

at each output node for final transformation to label space 𝒴 [92]. The selection of 𝑜(∙) depends 

on whether the task is binary (𝐾 = 2) or multiclass classification (𝐾 > 2).  For binary 

classification (𝐾 = 2), the output of the single output unit may be written as [98]: 

𝑓(𝑋) = 𝑜(𝑤10
(𝐿) + ∑ 𝑤1𝑚𝐿−1

(𝐿)

𝑀𝐿−1

𝑚𝐿−1=1

𝐴𝑚𝐿−1
(𝐿−1)

), (14) 
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where 𝑤10
(𝐿)

 is the weight associated with the bias term in the output ((𝑙 = 𝐿)𝑡ℎ) layer, 

𝑤1𝑚𝐿−1
(𝐿)

describes the weight between the 𝑚𝐿−1𝑡ℎ hidden unit (𝑚𝐿−1 = 1,… ,𝑀𝐿−1) in the last 

hidden ((𝐿 − 1)𝑡ℎ) layer and the single output unit in the output ((𝑙 = 𝐿)𝑡ℎ) layer, 𝐴𝑚𝐿−1
(𝐿−1)

 is the 

𝑚𝐿−1𝑡ℎ activation of the last hidden ((𝐿 − 1)𝑡ℎ) layer, and 𝑜(∙) is the output function. For 

binary classification, the typical selection of output function 𝑜(∙) is the sigmoid function [98]: 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜉) =
𝑒𝜉

1 + 𝑒𝜉
=

1

1 + 𝑒−𝜉
, (15) 

where 𝜉 is a placeholder for the argument of 𝑜(∙). For multiclass classification (𝐾 > 2), the 

output of the 𝑘𝑡ℎ output unit (corresponding to the 𝑘𝑡ℎ class with 𝑘 = 1,… , 𝐾) in the output 

layer (𝑙 = 𝐿) may be computed as [98]: 

𝑓𝑘(𝑋) = 𝑜(𝑤𝑘0
(𝐿) + ∑ 𝑤𝑘𝑚𝐿−1

(𝐿)

𝑀𝐿−1

𝑚𝐿−1=1

𝐴𝑚𝐿−1
(𝐿−1)

), (16) 

where 𝑤𝑘0
(𝐿)

 is the weight associated with the bias term in the output ((𝑙 = 𝐿)𝑡ℎ) layer, 

𝑤𝑘𝑚𝐿−1
(𝐿)

describes the weight between the 𝑚𝐿−1𝑡ℎ hidden unit (𝑚𝐿−1 = 1,… ,𝑀𝐿−1) in the last 

hidden ((𝐿 − 1)𝑡ℎ) layer and the 𝑘𝑡ℎ output unit in the output ((𝑙 = 𝐿)𝑡ℎ) layer, 𝐴𝑚𝐿−1
(𝐿−1)

 is the 

𝑚𝐿−1𝑡ℎ activation of the last hidden ((𝐿 − 1)𝑡ℎ) layer, and 𝑜(∙) is the output function. For 

multiclass classification, the usual choice of 𝑜(∙) is the softmax function [92]:  

𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑘(𝜉) =
𝑒𝜉𝑘

∑ 𝑒𝜉𝑖𝐾
𝑖=1

, (17) 

where 𝜉 is a placeholder for the argument of 𝑜(∙). Both sigmoid and softmax output functions 

produce positive estimates for each class that sum to one, i.e., the class ‘probabilities’ [92].  
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To train the network, we need to find weights 𝑊 that minimize a ‘loss’ function ℒ that 

quantifies how well the network classifies the training data at any given training step [98]. Many 

different loss functions have been proposed for classification tasks [111]. We present the most 

common, which are based on the cross-entropy between the predicted class probability and 

ground truth class label [111]. For binary classification (𝐾 = 2), the cross-entropy may be 

written as [98, 112]:  

𝑏𝑖𝑛𝑎𝑟𝑦_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑋, 𝑌)  = −
1

𝑁
∑(𝑦𝑖 log(𝑓(𝑥𝑖)) + (1 − 𝑦𝑖) log(1 − 𝑓(𝑥𝑖)))

𝑁

𝑖=1

. (18) 

For multiclass classification (𝐾 > 2), categorical cross-entropy generalizes cross-entropy for 

multiple outputs [98, 112]: 

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑋, 𝑌)  = −
1

𝑁
∑∑𝑦𝑖𝑘 log(𝑓𝑘(𝑥𝑖)) .

𝐾

𝑘=1

𝑁

𝑖=1

 (19) 

Given sample-label pairs from the train set, the gradient of the loss function with respect 

to the weights 𝑊 is efficiently computed using the backpropagation algorithm (please see 

Chapter 11.4 of  Hastie et al. [92] and Chapter 10.7 of James et al. [98] for detailed discussion of 

the backpropagation algorithm). Loss functions may also be applied to the validation and test 

sets to calculate the validation loss and test loss, respectively [98]. However, only the train loss is 

used to update the weights. The gradients are used by the minibatch stochastic gradient descent 

(SGD) optimization algorithm to perform updates to the weights 𝑊 iteratively. Iterations 

correspond to learning from different portions of the train set, called ‘minibatches’ or simply 

‘batches’ [98, 104]. Iterating over all the batches, i.e., the entire train set, is called an ‘epoch’ 

[104]. Training typically takes place for a fixed number of epochs or until an early stopping 
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condition, e.g., based on the validation loss, is met [98, 104]. At the 𝑡th iteration, the weight 

updates may be computed as [91]: 

 𝑊𝑡+1 = 𝑊𝑡 − 𝜁𝑡 ∙ ∇𝑊𝑡ℒ(𝑥𝑡:𝑡+𝑏 , 𝑦𝑡:𝑡+𝑏;𝑊𝑡), (20) 

where ∇𝑊𝑡 indicates the gradient with respect to weights 𝑊𝑡, ℒ(∙) is the loss function (e.g., 

binary or categorical cross-entropy), 𝜁𝑡 is the ‘learning rate’ (a positive real number and selection 

of its value is problem-specific), and 𝑏 is the ‘batch size’ (a positive integer). The learning rate 

determines the step size at each iteration, scaling the magnitude of the gradient-based updates 

[91]. The learning rate and batch size are hyperparameters that need to be selected prior to 

training [104]. Variants of minibatch SGD have been developed by taking previous weight 

updates into consideration in addition to the current gradients [104]. One of the most widely used 

variants is adaptive moment estimation (ADAM), which estimates the first and second moments 

of the gradients to compute adaptive learning rates for different parameters [113]. 

  andom forests have inspired an efficient form of regularization called ‘dropout’ that 

may be used in neural network layers to reduce overfitting [98]. Each epoch, dropout randomly 

selects 𝜙% of units in the layer and sets their activations to 0 [98]. The remaining units 

participate in the training epoch with their weights scaled by 1/(1 − 𝜙) [98]. Further discussion 

of dropout can be found in Chapter 10.7.3 of James et al. [98]. 

 

2.2.3.2 CONVOLUTIONAL NEURAL NETWORK 

 CNN is a feedforward neural network architecture that uses a special type of hidden layer 

called a convolutional layer [98]. For further reading on CNNs, please see Chapter 8.3.1 of Berk 

[102], Chapter 10.3 of James et al. [98], Chapter 5.5.6 of Bishop [91], Chapter 5 of Chollet 

[104], and Chapter 9 of Goodfellow et al. [109].The weights of a convolutional layer are 
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organized into a kernel that is used to filter the layer input [98, 104]. This involves passing the 

kernel over the input, multiplying the weights by the corresponding overlapping values of the 

input, and summing up the products [98, 104]. Then, the activation function 𝑔(∙), e.g., ReLU, is 

applied to the filtered input to yield the layer output, which is called a ‘feature map’ or 

‘activation map’ [98, 104]. Stated in another way, each entry in the feature map is a dot product 

between the kernel and a region of the layer input, followed by a nonlinear transformation 𝑔(∙) 

[98, 104]. Usually, a large bank of kernels is used, producing one feature map per kernel [98, 

104]. An example is shown in Figure 4. In Figure 4 (a), the trainable kernel begins scanning the 

input from the top left. Element-wise multiplication of the kernel and overlapping input region is 

performed. The products are summed and passed through the activation function to yield the top 

left element of the feature map. In Figure 4 (b), the kernel is moved to the right. Multiplication, 

summation, and activation steps are repeated to yield the next entry of the feature map. Finally, 

in Figure 4 (c) the kernel continues scanning from left to right and top to bottom until the feature 

map is complete.  
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Figure 4. Example of the computations involved in a convolutional layer with a 5x5 layer input 

and 2x2 kernel. 
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 Pooling is used to perform downsampling of feature maps through aggregation of local 

feature information [98]. Maximum pooling summarizes local regions of the layer input, e.g., 

regions of size 2x2, with the maximum value [98, 104]. Similarly, average pooling uses the mean 

value to summarize each local region [104]. An example of maximum pooling is as follows [98]: 

Max pool [

0 1 2  
1  8 0
2 9   
 1 2 1

] → [
 8
9  

]. (21) 

 A typical CNN architecture begins with an input layer matching the dimensions of 

images 𝑋 [98]. The input layer then feeds into a series of blocks consisting of convolutional 

layers each followed by a pooling operation [98]. Next, the feature maps from the last block are 

‘flattened’ into separate units that are fed into fully connected layers [98]. Finally, these fully 

connected layers feed into the output layer [98]. CNNs may be trained to perform classification 

tasks in the same way as previously described in Section 2.2.3.1. 

 

2.3 TRANSFER LEARNING AND DOMAIN ADAPTATION 

 Transfer learning is the use of information learned from a source task 𝑇𝑆 on source 

domain 𝐷𝑆 to solve a related target task 𝑇𝑇 on target domain 𝐷𝑇 [109]. 𝐷𝑆 corresponds to an 

input space 𝒳𝑆 and output space 𝒴𝑆 [114]. 𝑇𝑆 involves learning 𝑓𝑆: 𝒳𝑆 → 𝒴𝑆 using source data 

𝑋𝑆 = {𝑥𝑖
𝑆}
𝑖=1

𝑁𝑆
∈ 𝒳𝑆, 𝑥𝑖

𝑆~𝒫𝑋
𝑆(𝑥) and source labels 𝑌𝑆 = {𝑦𝑖

𝑆}
𝑖=1

𝑁𝑆
∈ 𝒴𝑆, where 𝑁𝑆 is the number of 

source samples and 𝒫𝑆 is the source probability distribution. Similarly, 𝑇𝑇 involves learning 

𝑓𝑇: 𝒳𝑇 → 𝒴𝑇 [114]. Target data are denoted as 𝑋𝑇 = {𝑥𝑖
𝑇}𝑖=1
𝑁𝑇 ∈ 𝒳𝑇 , 𝑥𝑖

𝑇~𝒫𝑋
𝑇(𝑥)  and target labels 

are denoted as 𝑌𝑇 = {𝑦𝑖
𝑇}𝑖=1
𝑁𝑇 ∈ 𝒴𝑇, where 𝑁𝑇 is the number of target samples and 𝒫𝑇 is the 

target probability distribution. A special case of transfer learning where 𝑇𝑆 and 𝑇𝑇 share label 
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spaces, i.e., 𝒴𝑆 = 𝒴𝑇, is called ‘domain adaptation’ [109, 114]. Transfer learning and domain 

adaptation rely on representation learning of common features that are relevant across domains 

and/or tasks, such as edges, geometric shapes, lighting, etc., in visual images [109]. For further 

reading on transfer learning and domain adaptation, please see Chapter 15.2 of Goodfellow et al. 

[109]. 

 Given the substantial number of samples required for effective deep learning, a common 

application of transfer learning is the fine-tuning of neural networks that have been pretrained on 

a large number of samples (e.g., millions) for new tasks for which the number of available 

labeled training samples is much smaller (e.g., hundreds) [104]. In this context, we assume that 

𝒳𝑆 = 𝒳𝑇, i.e., the input spaces are the same, with 𝒫𝑆 ≠ 𝒫𝑇 [114]. 𝒴𝑆 and 𝒴𝑇 may be the same 

or different [114]. For example, consider a CNN model that has been trained to classify 1000 

classes of objects from images (𝑇𝑆) [104].  We would like to utilize information the model 

learned for performing object detection in order to perform a new task (𝑇𝑇), e.g., binary 

classification of images of cats and dogs [104]. Since 𝒴𝑆 ≠ 𝒴𝑇, the minimum modification to the 

existing network architecture is the removal of the 1000-unit output layer and replacement with a 

single output unit for binary classification [104]. If desired, we can remove more layers from the 

existing network (called the ‘base’ network) or add additional layers on top of the base as long as 

the output layer has the appropriate number of units for task 𝑇𝑇 [104]. Next, we ‘freeze’ the base 

network, i.e., do not allow for updates to the weights [104]. The purpose of freezing the base 

network is to prevent useful representations in the early layers from being altered by possibly 

noisy updates based on the target training samples [104]. Then, the newly added layers are 

trained with data and labels from the target domain [104]. After that, we unfreeze some of the 

layers at the end of the base layer and train these jointly with the newly added layers, usually 
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using a reduced learning rate [104]. This allows the last few layers of the base layers to 

specialize their representations for the target task [104].  

 Domain adaptation methods may be categorized by the availability of target labels 𝑌𝑇 

[114]. In supervised domain adaptation, we have access to the target labels 𝑌𝑇 [114]. In 

unsupervised domain adaptation, no target labels are available [114]. In semi-supervised domain 

adaptation, a limited number of target labels are available [114]. Domain adaptation requires that 

assumptions be made on how the joint distribution of 𝑋 and 𝑌 changes [115]. Considering 

𝒫(𝑋𝑌)  =  𝒫(𝑋|𝑌)𝒫(𝑌)  =  𝒫(𝑌|𝑋)𝒫(𝑋), the covariate shift assumption attributes the change 

in the joint distribution to changes in 𝒫(𝑋) only, motivating methods that adapt the feature space 

to 𝒫(𝑌|𝑋) which is assumed constant [115]. Other settings may assume label shift, i.e., only 

𝒫(𝑌) changes while 𝒫(𝑋|𝑌) remains constant, or conditional shift, i.e., only 𝒫(𝑋|𝑌) changes 

while 𝒫(𝑌) remains constant [115]. 

 

2.4 ANALYSIS OF FACIAL EXPRESSIONS AND GAZE 

 Sections 2.4.1 and 2.4.2 below describe concepts related to analysis of facial expressions 

and gaze, respectively.  

 

2.4.1 ANALYSIS OF FACIAL EXPRESSIONS 

 A typical FEA pipeline begins with the input data, images of people making facial 

expressions. Next, face detection is often performed followed by cropping the image to the 

bounding box of the face. Popular methods for face detection include Haar Cascades [116] and 

CNNs [117]. Other preprocessing steps, such as normalization, may be applied depending on the 

data and task needs. Both traditional machine learning and deep learning approaches may be 
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applied to FEA. For traditional machine learning, features must be extracted from the 

preprocessed input images. Such features may be geometric or texture-based. Geometric features 

may be computed based on facial landmark points [118-121]. ‘Facial landmarks’ are x and y-

coordinates that mark the locations of facial components, such as the nose, eyes, eyebrows, 

mouth, and jawline [122]. Facial landmark points may be robustly and automatically detected 

using algorithms such as ensembles of regression trees [122]. Texture-based features may be 

extracted using traditional methods such as local binary patterns, histograms of oriented 

gradients, etc., or deep learning, e.g., CNNs [123-125]. Techniques such as filter-based methods 

based on univariate statistics, forward and backward stepwise selection, Least Absolute 

Shrinkage and Selection Operator (LASSO), etc., may be used to select a subset of features from 

the full set to be used for traditional machine learning [98]. Deep learning methods can be 

applied directly to input images of facial expressions without separate feature extraction and 

selection steps. Some tasks in FEA are facial expression classification and FACS AU detection.  

 Facial expression classification tasks focus on classifying images of facial expressions as 

belonging to one of two or more groups. Examples are positive vs. negative expressions (also 

called valence) [126-128] and the prototypical expressions (‘anger’, ‘disgust’, ‘fear’, ‘happy’, 

‘sad’, ‘surprise’) [129, 130]. More granular analysis of facial expressions may be performed 

using AUs of FACS, which describe the individual constituent movements of the human face 

[130]. TABLE 2 provides examples of FACS AUs and associated facial muscles [130]. FACS 

AU detection involves labeling a facial expression image with multiple AUs based on the 

configuration of the face [127, 131, 132].  
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Table 2. FACS AUs and associated muscles 

 

 

2.4.2 ANALYSIS OF GAZE 

 ET involves the tracking of eye movements and the estimation of where a person is 

placing visual attention with respect to the visual scene [133]. Eye gaze can be divided into 

‘fixations’ and ‘saccades’ [133]. Fixations represent a pause in eye movement while the person 

focuses on a particular area of the visual scene [133]. A saccade is the rapid movement of the eye 

that connects two fixations [133]. In ET data, fixations are described by x and y-coordinates that 

indicate where the person placed attention on the visual scene [133]. The visual scene may be 

divided into different areas of interest (AOIs). For example, in ASD research, a visual scene 

showing a caregiver playing with a toy may have AOIs associated with the caregiver’s face, the 

caregiver’s body, and the toy [81]. Thus, fixations may be categorized into different AOIs 

depending on where they are located in the visual scene [81]. The duration of a fixation is the 

AU Name Associated Muscles 

1 Inner Brow Raiser frontalis, pars medialis 

2 Outer Brow Raiser frontalis, pars lateralis 

4 Brow Lowerer depressor glabellae, depressor supercilii, corrugator supercillii 

5 Upper Lid Raiser levator palpebrae superioris, superior tarsal muscle 

6 Cheek Raiser orbicularis oculi, pars orbitalis 

7 Lid Tightener orbicularis oculi, pars palpebralis 

9 Nose Wrinkler levator labii superioris alaeque nasi 

10 Upper Lip Raiser levator labii superioris, caput infraorbitalis 

11 Nasolabial Deepener zygomaticus minor 

12 Lip Corner Puller zygomaticus major 

13 Cheek Puffer levator anguli oris 

15 Lip Corner Depressor depressor anguli oris 

17 Chin Raiser mentalis 

20 Lip Stretcher risorius 

23 Lip Tightener orbicularis oris 

24 Lip Pressor orbicularis oris 

25 Lips Part depressor labii inferioris, or relaxation of mentalis, orbicularis oris 

26 Jaw Drop masseter, relaxed temporalis and internal pterygoid 

27 Mouth Stretch pterygoids, digastric 
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amount of time (e.g., in milliseconds) that the person spends focusing on that area of the visual 

scene before the next saccade [133]. Since duration is difficult to interpret on its own [133], it is 

often reported as a percentage, e.g., the total duration of all fixations to a particular AOI divided 

by the total duration of all fixations [81].  
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CHAPTER 3 

DEEP REPRESENTATION LEARNING OF ADULT AND CHILD FACIAL EXPRESSIONS 

USING DOMAIN ADAPTATION FUSING FACIAL LANDMARK FEATURES 

 

This chapter contains materials that have been reprinted, with permission, from [87]. 

Please find the copyright notice in Appendix A.  

 

3.1 CHAPTER OVERVIEW 

From infancy to adulthood, facial expressions are a ubiquitous, information-rich 

component of human social interactions. Developing models robust to age variations is a 

challenging problem in FEA [134, 135]. Most existing approaches optimize the FEA 

performance on data sets representing specific age ranges. There has been limited work on 

classifying facial expressions across age groups. Furthermore, age variations in facial images 

have been well-studied in facial age estimation and AIFR, but there has been little cross-

pollination among these relevant research areas to improve FEA considering adult-child age 

variations. In the following sections, we discuss related work on the classification of adult and 

child expressions and methods from relevant research fields. Then, we propose a novel deep 

feature adaptation approach to the classification of adult and child expressions inspired by the 

state-of-the-art domain adaptation learning, facial age estimation, and AIFR literature. 

 

3.1.2 RELATED WORK 

 This section briefly reviews related work on the classification of adult and child 

expressions and methods from relevant research fields including facial age estimation and AIFR.  
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3.1.2.1 CLASSIFICATION OF ADULT AND CHILD FACIAL EXPRESSIONS 

 Existing off-the-shelf FEA tools and research [  ,   ,   ] have been mostly developed 

using adult benchmark data sets [1  -1 7]. However, facial morphology and kinematics gradually 

develop throughout childhood [ 0,  1], resulting in a distribution shift between child and adult 

expression patterns. For models trained on adult data sets, the distribution shift toward adults 

poorly generalizes distinctive patterns in child expressions [  -  ]. While benchmark data sets of 

child facial expressions remain limited, they are growing in number [1  -1 0]. Therefore, there 

has been an emerging trend directed at the classification of child facial expressions [  -  ]. 

 ecently, deep transfer learning using CNNs has shown promise for child facial expression 

classification [  ,   , 1 1]. However, recent studies focus only on maximizing performance on 

child facial expression benchmarks, bounded by a limited age range and sample size [1  ]. Such 

models tuned for child expressions fail to generalize to adult expressions [  ]. To overcome the 

poor generalization problem across age groups, limited existing work on facial expression 

classification involving mixed-age groups (child, adult, elderly) suggests two primary approaches: 

1) curating a mixed age training set to match the age distribution of the test set [  ], and  ) 

classifying images into age groups to determine the age-appropriate model for subsequent 

classification [  ]. The first approach requires the age distribution of the test set to be known a 

priori with availability of benchmark data matching. The second approach requires a robust age 

group classifier to select an appropriate expression classifier model and benchmark data to train 

expression classifiers for individual age groups. Age group classification is a challenging problem 

[1  , 1  ] and variations in expression make accurate age estimation even more challenging [  , 

1  ]. Furthermore, developments in both facial structure and muscle movements contribute to 

visual differences in child and adult expressions. A child’s growth is a gradual and uniquely 
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individual process, making the transition unclear when a child manifests the full spectrum of adult 

expressions.  

  ecently, domain adaptation has shown an interesting pathway to adapt an adult expression 

classification model using few child expression samples [  ]. This approach utilizes a dual stream 

deep CNN architecture and semantically aligns the class conditional distributions of child and 

adult domains [  ]. The underlying framework of this approach [1  ] is based on learning a 

domain-invariant latent representation. Such domain-invariant representations have shown to 

generalize even to unseen domains [1  ]. We hypothesize that learning a domain-invariant 

representation of expressions may prove effective for facial expression classification across child 

and adult domains.  

 

3.1.2.2 RECOGNITION OF AGE-VARYING FACIAL IMAGES 

 While limited attention has been given to facial expression classification across age groups, 

facial age estimation [1  ] and AIF  [1  ] are active research areas. State-of-art approaches for 

facial age estimation and AIF  benefit from deep learning and fusion of geometric and texture 

features [1  , 1  , 1  ]. Geometric features derived from facial landmarks capture structural 

changes associated with childhood development while texture features capture skin artifacts, such 

as wrinkles, associated with adult aging [1  , 1  ]. Contemporary studies continue to use 

traditional feature extraction methods, e.g., local binary patterns, histograms of oriented gradients, 

etc., but recently emphasize deep learning, e.g., CNNs, for texture feature extraction [1  -1  ]. 

Common geometric landmark features include distances between landmarks, ratios of distances, 

and areas and angles of triangles formed by landmark triplets [1  , 1 7-1  ]. Similar landmark 

features, including pairwise distances between landmarks and areas angles of facial polygons 
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formed by connecting neighboring landmark points, have also shown to be discriminative for FEA 

[11 -1 1]. Therefore, we hypothesize that domain-invariant representation learning of adult and 

child facial expressions can benefit from a fusion of CNN-extracted and landmark-derived 

features.  

 The use of the same feature types in both facial age estimation and AIF  suggests a subset 

of features correlated with and invariant to age. Statistical latent variable models optimized using 

the Expectation-Maximization (EM) algorithm have been applied to AIF  to decompose feature 

sets into age and identity factors [1  ]. This approach identifies a set of discriminative features for 

identity recognition using the identity factor, representing facial identity features invariant to age 

[1  ]. Gong et al. [1 0] have first proposed this approach using hidden factor analysis (HFA). HFA 

assumes the independence of age and identity. [1  ]. However, different people may show signs 

of aging at different rates. To overcome the independence assumption, the modified HFA (MHFA) 

approach introduces an additional factor representing age and identity-correlated facial appearance 

variations [1 1]. Given that the appearance of facial expressions varies among individuals and age 

groups, we hypothesize that FEA can benefit from the decomposition of feature sets into those 

correlated with expression, domain (adult or child), and identity. However, MHFA assumes that 

data are independent and identically distributed (i.i.d.) following a normal distribution with 

homogenous variances, which may not be true for real world facial expression data. Furthermore, 

HFA and MHFA require the optimization of one model per feature, making high dimensional 

feature vectors computationally prohibitive [1 0, 1 1]. Thus, principal component analysis (PCA) 

has been used for dimensionality reduction prior to HFA or MHFA [1 0, 1 1]. While PCA 

guarantees that the first principal components explain more of the variance than subsequent 

principal components, such linear data projection method does not guarantee that the PCA feature 
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space will be discriminative for classification. Each principal component is a linear combination 

of all input features, making it less intuitive to understand the contribution of individual features. 

Moreover, all features, even those with limited contribution to discriminability, are needed to 

reproduce the same principal components.  

 ery recently, the beta-mixture (betaMix) method [1  ] has been proposed to determine 

significant correlations among large numbers of variables using a mixture of beta distributions. 

The method, based on ideas and results from convex geometry, works well even for moderate 

sample sizes, e.g., 𝑁 = 10 depending on the number of predictors, and does not require 

assumptions of i.i.d., normality, or homogeneity of variances. The betaMix method detects 

correlations among all the features at once, so the EM algorithm needs to be applied only once for 

all features rather than for individual features. Since the betaMix method is appropriate for large 

feature vectors, dimensionality reduction is not required and the feature correlations may be 

interpreted directly, allowing for greater understanding of the interaction between the features and 

domain, identity, and expression factors. The betaMix method has shown promising results across 

multiple applications, including feature selection and classification [1  ].  

 

3.1.3 CONTRIBUTIONS 

 This chapter proposes novel deep domain adaptative FACial Expressions fusing BEtaMix 

SElected Landmark Features (FACE-BE-SELF) for domain-invariant expression classification. To 

the best of our knowledge, our proposed deep domain adaptive FACE-BE-SELF approach is the 

first to perform concurrent adult-child domain adaptation and learn a generalized expression 

representation that may be used for both child and adult facial expression classification. Our 

contributions are as follows: 
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• We fuse facial landmark measurements with deep feature representations for robust 

expression learning across age groups.   

• Our facial landmark features are decomposed based on expression, domain, and identity 

correlations.  

• A novel statistical method based on a mixture of beta distributions is proposed for facial 

feature selection for deep learning.  

• A new variant of concurrent adult-to-child expression learning is performed to yield domain-

invariant facial expression classification. 

• The proposed domain adaptation method is compared to baseline CNN, transfer learning, 

and existing domain adaptation methods for facial expression recognition using multiple 

benchmark data sets.   

The remainder of this chapter is organized as follows. Section  .  describes the methodology of 

our approach. Sections  .  and  .  present the results and discussion, respectively. Section  .  

discusses limitations and Section  .  summarizes. 

 

3.2 METHODS 

 This section describes and explains benchmark data sets, preprocessing steps, feature 

extraction, decomposition and selection of landmark features, deep learning models, deep domain 

adaptation, and experiments.  

 

3.2.1 DATA SETS 

We evaluate our proposed method using four data sets of facial expression images: 1) the 

Extended Cohn-Kanade (CK+) data set [136, 137], 2) the Aff-Wild2 data set [126, 127, 153-
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157], 3) the Child Affective Facial Expression (CAFE) data set [138, 139], and 4) the Child 

Emotion Facial Expression Set (ChildEFES) [140]. We consider both posed and spontaneous 

data sets. While spontaneous data sets represent most expressions seen in daily life, posed 

expressions serve a valuable purpose in healthcare applications such as social reciprocity training 

[158-160] for individuals with ASD and facial rehabilitation exercises for individuals with 

Parkinson’s disease and facial palsy [161, 162]. 

 

3.2.1.1 CK+ DATA SET 

 The CK+ data set [136, 137] consists of 593 image sequences of posed facial expressions, 

including labeled ‘anger’, ‘disgust’, ‘fear’, ‘happy’, ‘sad’, ‘surprise’, and ‘contempt’ examples, 

captured from 123 adult subjects (ages 18 to 50 years). A mixture of color and grayscale 

sequences are present in the data set. Sequences vary in length, but each sequence begins with 

the neutral expression and ends with the peak expression frame, which has been coded for AUs 

from FACS. We assign the last three frames of a sequence with its corresponding expression 

label and label the first frame of each sequence as ‘neutral’. This yields 1,254 samples: 135 

‘anger’, 177 ‘disgust’, 7  ‘fear’,  07 ‘happy’,   7 ‘neutral’,    ‘sad’, and 249 ‘surprise’. 

 

3.2.1.2 AFF-WILD2 DATA SET 

 The Aff-Wild2 data set [126, 127, 153-157], an extension of the Affect-in-the-Wild (Aff-

Wild) [128, 131, 163] data set, consists of 558 YouTube videos with annotations for three 

behavioral tasks: valance and arousal, FACS AUs, and facial expressions (‘anger’, ‘disgust’, 

‘fear’, ‘happy’, ‘neutral’, ‘sad’, ‘surprise’, and ‘other’). The facial expression subset of Aff-

Wild2 contains 84 videos with 84 ethnically diverse subjects (42 female). Age labels are not 
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provided. Visually, the subjects appear to be mostly adults with few child subjects, including 

infants. Labeled frames show a variety of different head poses, occlusions, and illumination 

conditions. Excluding the frames labeled ‘other’, there are a total of 451,794 samples: 18,940 

‘anger’, 1 ,    ‘disgust’, 11,    ‘fear’,  7    ‘happy’, 1 ,7 1  ‘neutral’,  0, 17 ‘sad’, and 

31,  0 ‘surprise’.  

 

3.2.1.3 CAFE DATA SET 

 The CAFE data set [138, 139] consists of 1,192 color photographs of 154 child subjects 

(ages   to   years) posing ‘anger’, ‘disgust’, ‘fear’, ‘happy’, ‘sad’, and ‘surprise’ expressions, 

including ‘neutral’. The data set includes open and closed mouth variations for each expression 

except ‘surprise’, which is posed with open mouth only. We include the mouth closed variant of 

all expressions except for ‘surprise’, yielding 707 samples: 11  ‘anger’,    ‘disgust’, 7  ‘fear’, 

1 0 ‘happy’, 1   ‘neutral’,    ‘sad’, and 10  ‘surprise’. The data usage agreement for the CAFE 

data set does not allow the republication of the images. 

 

3.2.1.4 CHILDEFES DATA SET 

 The ChildEFES data set [140] consists of color photos and videos capturing 34 child 

subjects (ages   to   years) producing a mixture of spontaneous and posed ‘anger’, ‘disgust’, 

‘fear’, ‘happy’, ‘sad’, ‘surprise’, and ‘contempt’ expressions. The expression labels are assigned 

based upon the agreement of four FACS judges. The expression-labeled videos were cropped to 

the peak expression. Then, the cropped videos were sampled at 20 frames per second to generate 

image sequences. Since the photographs are a subset of the image sequences, only the frames 

sampled from the videos are included. This yields 9,420 (5,107 spontaneous) samples: 1,435 
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(170) ‘anger’, 1,1   (   ) ‘disgust’,     (1 ) ‘fear’,  ,196 (1,   ) ‘happy’,  ,445 (2,372) 

‘neutral’, 1,0   (  0) ‘sad’, and   0 (  ) ‘surprise’. The data usage agreement for the 

ChildEFES data set does not allow for the use of the images in publications. 

 

3.2.1.5 NOTATION 

 Let input space 𝒳 represent the set of all possible facial images and features. Output 

space 𝒴 = {1, … , 𝐾} is the set of 𝐾 = 7 expression class labels (‘anger’, ‘disgust’, ‘fear’, 

‘happy’, ‘neutral’, ‘sad’, ‘surprise’). 𝒳 and 𝒴 are related by a function 𝑓:𝒳 → 𝒴. We consider 

adult facial expressions (CK+, Aff-Wild2) as the source domain and child facial expressions 

(CAFE, ChildEFES) as the target domain. We represent each source data set as 𝐷𝑆 =

{(𝑥𝑖
𝑆, 𝑦𝑖

𝑆) | 𝑥𝑖
𝑆 ∈ 𝒳, 𝑦𝑖

𝑆 ∈ 𝒴}
𝑖=1

𝑁𝑆
, 𝑥𝑖

𝑆~𝒫𝑋
𝑆 where 𝑁𝑆 is the total number of samples and 𝒫𝑆 is the 

source probability distribution. We represent each target dataset as 𝐷𝑇 = {(𝑥𝑖
𝑇 , 𝑦𝑖

𝑇) | 𝑥𝑖
𝑇 ∈

𝒳, 𝑦𝑖
𝑇 ∈ 𝒴}𝑖=1

𝑁𝑇 , 𝑥𝑖
𝑇~𝒫𝑋

𝑇 where 𝑁𝑇 is the total number of samples and 𝒫𝑇 is the target probability 

distribution. 

 

3.2.2 PREPROCESSING 

 Data sets are preprocessed following [43]. The dlib (http://dlib.net/) library is used to 

detect the face in each image and extract landmark coordinates on the face. The landmarks are 

used to center and rotate the face so that the eyes are level. The images are cropped in such a 

way that the left eye is located 30% of the image width in pixels from the left edge. Images are 

resized to 256 by 256 pixels, converted to grayscale, and normalized to range [0, 1]. 
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3.2.3 FEATURE EXTRACTION 

 Using the dlib library, we extract landmark points located at and around facial features 

such as the nose, eyes, mouth, and eyebrows as well as the perimeter of the face. These landmark 

locations are used to derive geometric features from FEA and AIFR literature based on pairs of 

landmarks and triplets of landmarks. Inter-landmark distance features [121, 143, 148, 149] are 

measured as the Euclidean distance between pairs of landmarks. Facial triangles [120, 147, 148] 

are extracted based on a Delaunay triangulation over the landmark locations. Each triangle is 

represented by a landmark triplet and has four associated features: the area of the triangle and its 

three angles expressed in radians. Figure 5 shows examples of the extracted features. 

 

 

© 2023 IEEE 

Figure 5. Sample image overlaid with: (a) facial landmark points, (b) inter-landmark distance 

features, (c) Delaunay triangulation of the face. 

 

3.2.4 LANDMARK FEATURE DECOMPOSITION AND SELECTION 

 We fit the betaMix method [152] to find significant correlations between the extracted 

features from adult-child data and three experimental factors taken from the labeled data:  

expression, domain, and identity. Based on given data, the betaMix method automatically learns 
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a threshold that represents significant correlations among pairwise landmark features (predictors) 

and factors (domain, expression, and subject identity). The extracted features for the source and 

target data sets are concatenated to form a matrix of 𝑝 predictors and 𝑁 samples, where 𝑝 > 𝑁. 

Expression, domain, and identity are also entered into the model, yielding a (𝑝 +  ) × 𝑁 data 

matrix. We assume the data as 𝑝 +   points in ℝ𝑁. Subspaces of ℝ𝑁 lie on the Grassmann 

manifold (see [164] for a detailed exposition of the Grassman manifold). The Grassmann 

manifold 𝔾𝑁,𝑑 is used to study 𝑑-dimensional subspaces of ℝ𝑁 [152, 164]. For principal angles 

( 𝜃1, … , 𝜃𝑑) between subspaces in ℝ𝑁, 𝔾𝑁,𝑑 has an invariant measure that can be used to 

compute the volume and probability of their sets [152]. These principal angles can be used to 

determine canonical correlations (𝜌1, … , 𝜌𝑑) as 𝜌𝑗 = cos 𝜃𝑗  with pairs of canonical variables 

lying on 𝔾𝑁,𝑑 [152]. 𝔾𝑁,1 corresponds to lines through the origin of Euclidean space [152]. The 

line is a natural choice of projection due to its computational ease and interpretability. 

Furthermore, with 𝔾𝑁,1, the random variable sin2 𝜃𝑗 has the following beta distribution [152]: 

𝜆 ≝ sin2 𝜃𝑗~𝑏𝑒𝑡𝑎 (
𝑁 − 1

2
,
1

2
). (22) 

 Thus, we consider that the predictors and factors lie on 𝔾𝑁,1 and define 𝜃𝑗  as the angle 

between the 𝑗th pair of predictors/factors, with a total of ((𝑝 +  )(𝑝 + 2)) 2⁄  pairs of 

predictors/factors, and  𝑗 = 1, … . , ((𝑝 +  )(𝑝 + 2)) 2⁄   [152]. We let 𝜆𝑗 = sin
2 𝜃𝑗. A predictor-

predictor or predictor-factor pair is considered ‘null’ if it corresponds to randomly sampled 

(uncorrelated) points in ℝ𝑁. As shown in [152], pairs of null predictors/factors are expected to be 

mutually perpendicular with high probability, even for moderate values of 𝑁. In relation to 

Equation (16), a mixture of beta distributions may be used to determine if the pair of 
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predictors/factors represented by each  𝜆𝑗 are null (uncorrelated) or nonnull (correlated).  Then, 

the betaMix model is defined as: 

𝑙(𝜆𝑗) = 𝜄0𝑗𝑑0(𝜆𝑗) + (1 − 𝜄0𝑗)𝑑(𝜆𝑗), (23) 

where 𝑑0(𝜆𝑗) is the null distribution, 𝑑(𝜆𝑗) is the alternative distribution and 𝜄0𝑗~𝐵𝑒𝑟(𝑟0) with 

probability of the null component 𝑟0 is a random indicator that equals one if the 𝑗th pair of 

predictors/factors corresponding to 𝜆𝑗 are null. The null component of the mixture model is 

defined by the beta distribution: 

𝑑0(𝜆𝑗) =
1

𝑏𝑒𝑡𝑎(
𝑠−1

2
,
1

2
)
𝜆
𝑗

𝑠−1

2
−1
(1 − 𝜆𝑗)

−
1

2, (24) 

where 𝑠 ≤ 𝑛 is the estimated effective sample size. The nonnull component of the mixture model 

is defined as: 

𝑑(𝜆𝑗) =
1

𝑏𝑒𝑡𝑎(𝛼, 𝛽)
𝜆𝑗
𝛼−1(1 − 𝜆𝑗)

𝛽−1, (25) 

where 𝛼, 𝛽 > 0. The latent mixture variables (𝛼, 𝛽, 𝑠) are estimated using the EM algorithm.  

The E-step updates 𝜄0𝑗  with the posterior mean: 

𝜄0̂𝑗 =
𝑟0𝑑0(𝜆𝑗)

𝑟0𝑑0(𝜆𝑗) + (1 − 𝑟0)𝑑0(𝜆𝑗)
, (26) 

and 𝑟0 is updated with its maximum likelihood estimate, 𝑟̂0 = 𝔼(𝜄)̂. The M-step obtains the 

maximum likelihood estimates of 𝛼, 𝛽, and 𝑠 by solving the following equations: 

𝜓(𝛼) − 𝜓(𝛼 + 𝛽) =
∑ (1 − 𝜄0𝑗) log(𝜆𝑗)
((𝑝+3)(𝑝+2))/2
𝑗=1

∑ (1 − 𝜄0𝑗)
((𝑝+3)(𝑝+2))/2
𝑗=1

, (27) 



47 

 

 

𝜓(𝛽) − 𝜓(𝛼 + 𝛽) =
∑ (1 − 𝜄0𝑗) log(1 − 𝜆𝑗)
((𝑝+3)(𝑝+2))/2
𝑗=1

∑ (1 − 𝜄0𝑗)
((𝑝+3)(𝑝+2))/2
𝑗=1

, 

(28) 

𝜓 (
𝑠 − 1

2
) − 𝜓 (

𝑠

2
) =

∑ 𝜄0𝑗 log(𝜆𝑗)
((𝑝+3)(𝑝+2))/2
𝑗=1

∑ 𝜄0𝑗
((𝑝+3)(𝑝+2))/2
𝑗=1

, 
(29) 

where 𝜓(∙) is the digamma function. The E- and M-steps are repeated iteratively to update the 

parameters until convergence. Pairs of predictors/factors are considered nonnull if the posterior 

null probability under 𝑑0 is smaller than threshold 𝜏, 𝜄0̂𝑗  𝜏. We denote the maximum 𝜆𝑗 that 

satisfies 𝜄0̂𝑗  𝜏 as 𝑄. Then, the screening rule for nonnull pairs may be written as 𝜆𝑗  𝑄. Since 

𝜆𝑗 = sin
2 𝜃𝑗  and 𝜌𝑗 = cos 𝜃𝑗 , pairs with a correlation of at least 𝜌 = cos (sin−1(𝑄1/2)) are 

considered significant. Figure 6 summarizes the betaMix method.   

 Based on the fitted beta distribution, a graphical model is built where each node is a 

predictor or factor. An edge connects each nonnull predictor-predictor pair or factor-predictor 

pair. These edges represent a significant correlation between the connected nodes (predictors or 

factors). A subgraph formed by a factor and its adjacent predictor nodes captures the subset of 

predictors that are significantly correlated with the factor. Using these subgraphs, we decompose 

the feature vector into sets correlated with expression, domain, and identity. For our proposed 

FACE-BE-SELF approach, we select the features in the expression subgraph and prune features 

that also appear in the domain or identity subgraphs. The resulting selection of features is used in 

subsequent feature fusion. 
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Figure 6. Overview of the betaMix method. 

 

3.2.5 DEEP LEARNING MODELS 

 We model supervised classification as the following inverse problem:  

𝑌 = 𝑓(𝑋;𝑊) ( 0) 

where 𝑓(∙) is a neural network model parameterized by weights 𝑊, 𝑋 ∈ 𝒳 are the model inputs, 

and 𝑌 ∈ 𝒴 are the associated class labels. We partition 𝑓(∙) into feature extractor 𝑀:𝒳 → 𝒵 and 

classifier 𝐶:𝒵 → 𝒴 such that 𝑓 = 𝐶 ∘ 𝑀 with latent feature space 𝒵. Using this notation, we 

define multiple architectures: MLP, CNN, and feature fusion model including MLP and CNN 

components.  

 For the MLP, we consider 𝑋 = 𝑉, where feature set 𝑉 ∈ 𝒱 = ℝ𝑝𝑏𝑒𝑡𝑎  and 𝑝𝑏𝑒𝑡𝑎 is the 

number of betaMix-selected features based on significant correlations with expression. The MLP 

has one hidden layer with  1  hidden units,  eLU activation, and dropout with a probability of 

0. . We consider a latent feature vector 𝑍 ∈ 𝒵 = ℝ512 produced by the hidden layer of the MLP. 

The hidden layer is followed by a softmax output layer of 𝐾 = 7 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠) nodes. 

Uniform initialization is applied to all of the MLP weights. 

 For the CNN, we consider 𝑋 = 𝑈 ∈ 𝒰 = ℝ256×256 and define 𝑀(∙) as a sequence of 

three convolutional blocks, each consisting of a convolutional layer with  x  filter kernels 

followed by a  x  max pooling, and a fully connected neural network with  1 -dimensional 
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hidden layer. This hidden layer also yields a latent feature vector 𝑍 ∈ 𝒵 = ℝ512. The uniform 

distribution was used to initialize all weights. Dropout with a probability of 0.  is applied to the 

 1 -dimensional hidden layer. We define 𝐶(∙) as a 𝐾-dimensional fully connected layer with 

softmax mapping from 𝒵 onto 𝒴. This CNN architecture is shown in Figure 7.  

 

 

© 2023 IEEE 

Figure 7. CNN architecture. The model is partitioned into a feature extractor that maps from 

input to latent feature space and classifier from the latent feature space to the output space. 

 

 For the proposed FACE-BE-SELF feature fusion model, we define 𝑋 = (𝑈, 𝑉), where 

𝑈 ∈ 𝒰 = ℝ256×256 and 𝑉 ∈ 𝒱 = ℝ𝑝𝑏𝑒𝑡𝑎 , where 𝑝𝑏𝑒𝑡𝑎 is the number of betaMix-selected features 

based on significant correlations with expression. Feature extractor 𝑀(∙) is made up of CNN 

model 𝐺:𝒰 → 𝒵𝐺, 𝒵𝐺 = ℝ
512 and the MLP model 𝐻:𝒱 → 𝒵𝐻, 𝒵𝐻 = ℝ

512. We define the 

concatenation of 𝑍𝐺  and 𝑍𝐻 spaces as 𝑍 ∈ 𝒵 = ℝ
1024. Then, we define 𝐶(∙) as a 𝐾-dimensional 

fully connected layer with softmax mapping from 𝒵 onto 𝒴. The architecture of the feature 

fusion model is shown in Figure  . 
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Figure 8. Feature fusion architecture. 

 

3.2.6 DEEP DOMAIN ADAPTATION 

  ather than maximizing the performance on a target domain, our goal for deep domain 

adaptation is to optimize the model for maximum performance on both the source and target 

domains. We assume that the distribution shift between source and target domains can be 

attributed to covariate shift 𝒫𝑋
𝑆(𝑥) ≠ 𝒫𝑋

𝑇(𝑥) and assume ∀𝑥 ∈ 𝒳,  𝒫𝑆(𝑌 |𝑋 = 𝑥) =  𝒫𝑇(𝑌 | 𝑋 =

𝑥). We adopt a dual stream architecture (Figure  ) consisting of parallel feature extractors 𝑀𝑆(∙) 

and 𝑀𝑇(∙) for source and target distributions, respectively. Weights are shared between the two 
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branches such that 𝑀(∙) = 𝑀𝑆(∙) = 𝑀𝑇(∙). Paired source and target examples 𝑋𝑆 and 𝑋𝑇 are 

passed into their respective feature extractors to yield source and target latent representations, 

i.e., 𝑍𝑆 = 𝑀(𝑋𝑆) and 𝑍𝑇 = 𝑀(𝑋𝑇). Parallel classifiers 𝐶(∙), which also share weights, are trained 

with 𝑍𝑆 and 𝑍𝑇 to optimize performance on both source and target domains.  

 

 

© 2023 IEEE 

Figure 9. Domain adaptation framework. Source-target pairs are passed into parallel feature 

extractors. Resulting latent distributions are aligned by the domain alignment loss. Parallel 

classifiers are supervised by source and target classification losses. 

 

 The model is optimized using three supervised loss functions: source classification loss 

ℒ𝐶𝑠(𝑓), target classification loss ℒ𝐶𝑡(𝑓), and domain alignment loss ℒ𝐷𝐴(𝑀). We define ℒ𝐶𝑠 and 

ℒ𝐶𝑡 as the categorical cross-entropy loss given our multiclass expression classification problem. 

To address class imbalance in the training sets, we scale each sample’s contribution to the overall 

loss by the frequency of its associated class in the training set. We define ℒ𝐷𝐴 as the contrastive 

alignment loss [1  ]:  
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ℒ𝐷𝐴(𝑀) =  ∑ ∑ 𝑑(𝑀(𝑥𝑖
𝑆|𝑦𝑖

𝑆 = 𝑎),𝑀(𝑥𝑗
𝑇|𝑦𝑗

𝑇 = 𝑎))
𝑖,𝑗

 
𝐾

𝑎=1
 

+∑ ∑ 𝑘(𝑀(𝑥𝑖
𝑆|𝑦𝑖

𝑆 = 𝑎),𝑀(𝑥𝑗
𝑇|𝑦𝑗

𝑇 = 𝑏))
𝑖,𝑗

,
𝐾

𝑎,𝑏|𝑎≠𝑏
 

( 1) 

 

with 𝑑(∙) and 𝑘(∙) defined as: 

𝑑(𝑀(𝑥𝑖
𝑆),𝑀(𝑥𝑗

𝑇)) =  0. ‖𝑀(𝑥𝑖
𝑆) − 𝑀(𝑥𝑗

𝑇)‖
𝐹

2
 (  ) 

and 

𝑘(𝑀(𝑥𝑖
𝑆),𝑀(𝑥𝑗

𝑇)) =  
1

2
(𝑚𝑎𝑥(0,  𝑚 − ‖𝑀(𝑥𝑖

𝑆) − 𝑀(𝑥𝑗
𝑇)‖

𝐹

 
))2, (  ) 

where ‖∙‖𝐹 is the Frobenius norm and margin 𝑚 = 1 [1  ]. The effect of ℒ𝐷𝐴 is to minimize the 

distance between samples of the same class from different domains, and the similarity between 

samples of different classes and domains. The overall loss is: 

ℒ = (ℒ𝐶𝑠 + ℒ𝐶𝑡) + 𝜉ℒ𝐷𝐴, (  ) 

where 0  𝜉  1 is a scaling parameter for balancing the contribution of domain alignment loss.  

 

3.2.7 EXPERIMENTS 

 We perform preprocessing of the CAFE, ChildEFES, CK+, and Aff-Wild  data sets 

following Section  . . . To evaluate our proposed FACE-BE-SELF method, we consider data 

sets in two source target pairs: CK+ CAFE (posed expressions only) and Aff-Wild  ChildEFES 

(majority spontaneous expressions). We split each data set into multiple train, validation, and test 

sets using a  x  nested cross-validation design. In the outer  -fold cross-validation loop, the data 

is split into train (  folds) and test (1 fold) sets. In the inner loop, the train set is divided into   to 
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yield inner train and validation sets for hyperparameter selection. The validation performance 

metrics are averaged across the two folds to yield the best hyperparameters. These 

hyperparameter selections are then used to train the model with the recombined outer loop 

training set and evaluate on the held-out test fold. This procedure is repeated a total of   times, 

such that each sample appears in one of the   test sets. To avoid inflation of performance 

estimates based on subject-specific features, we generate the cross-validation folds such that 

each subject appears in one fold only and no subject appears in both train and test sets [  ,   ].  

 We fit the betaMix method on the train sets for each source target pair. The fitted mixture 

model identifies nonnull (significantly correlated) pairs of predictors factors which are used to 

build a graph with predictors factors represented as nodes and significant correlations 

represented as edges. By examining the subgraphs of each factor node and its adjacent predictor 

nodes, we report the mean number of significantly correlated features for each factor and the 

overlap of features appearing in multiple factor subgraphs. To select features for subsequent 

fusion, we consider the expression subgraph, pruning features that also appear in the domain 

and or subject subgraphs. We assess the discriminability of our data-driven feature selection 

compared to that of features selected based upon a range of correlation thresholds (0.1, 0. , …, 

1.0).  

 The average overall F1 performance on the inner  -fold cross-validation loop is used to 

select a value for the loss balancing parameter 𝜉 (Equation (  )) for each of the outer  -fold 

cross-validation training sets. Other studies [1  , 1  ] have found that 𝜉 is problem-specific and 

consider values in the range (0.00, 1.00). Due to high computational costs, we choose among 

representative low (0.01), moderate (0. ), and high (0.8) values in (0.00, 1.00). To better 

understand the contributions of CNN, betaMix-selected landmark features, and domain 
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adaptation to our proposed FACE-BE-SELF approach, we perform an ablation study.   

 Then, we evaluate the performance of our proposed domain adaptation with FACE-BE-

SELF approach on two source target data set pairs and compare against four baseline models: 1) 

CNN trained on source data (source CNN) [  ],  ) CNN trained on target data (target CNN) 

[  ],  ) three transfer learning approaches (pretraining on source data then, a, training on target 

data [  ], b, fine-tuning on the target data [  ], or c, fine-tuning on a mixture of source and 

target data), and  ) two existing domain adaptation approaches [  , 1  ].  

 For all experiments, we train deep models using the ADAM optimizer with a triangular 

learning rate policy [1 7] cycling between a minimum learning rate of 𝜁𝑚𝑖𝑛 = 10
−5 and a 

maximum learning rate of 𝜁𝑚𝑎𝑥 = 10
−3. We use a batch size of  2.  

 

3.3 RESULTS 

 This section describes the results of the feature extraction; selection of landmark features 

for expression, domain, and identity factors; and domain adaptation.  

 

3.3.1 FEATURE EXTRACTION 

 We extract    landmark points on the face as shown in Figure   (a) and use these to 

measure inter-landmark distances. Because the 68 × 68 Euclidean distance matrix is symmetric 

with zeros (self-distance) in diagonal entries, the total number of inter-landmark distance features 

is (68 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠 × 68 𝑙𝑎𝑛𝑑𝑚𝑎𝑟𝑘𝑠) − 68 2⁄ = 2278. Figure   (b) overlays all possible inter-

landmark distance features on the face. The Delaunay triangulation over the landmark locations 

results in a set of 10  triangles on the face. For each facial triangle, the area and three internal 

angles are computed, resulting in 106 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 × ( 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒⁄ ) =  2  triangle-
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based features. Figure   (c) visualizes the Delaunay triangulation on the face. 

 

3.3.2 SELECTION OF LANDMARK FEATURES FOR EXPRESSION, DOMAIN, AND 

IDENTITY FACTORS 

 We fit the betaMix method on each of the  -fold cross-validation training sets for both 

source target data set pairs. For a representative CK+ CAFE training set, betaMix learns the 

screening rule 𝜆𝑗 = sin
2(𝜃)  𝑄 = 0.8 . This is equivalent to an angle of 6 .7° or less between 

the pairs of factors features, or a correlation coefficient of at least 𝜌 = cos(6 .7°) = 0. 12. 

Averaging over the   training sets, the mean correlation threshold for CK+ CAFE is 

0. 1 ±0.0  . Similarly, for a representative Aff-Wild  ChildEFES training set, betaMix learns 

the screening rule 𝜆𝑗 = sin
2(𝜃)  𝑄 = 0.99. This is equivalent to an angle of 8 . ° or less 

between the pairs of factors features, or a correlation coefficient of at least 𝜌 = cos(8 . °) =

0.100. For Aff-Wild , the mean correlation threshold is 0.0  ±0.0 1. Figure 10 shows the mean 

number of features correlated with ‘expression’, ‘domain’, and ‘identity’, as well as the number 

correlated with two out of three and all three factors.   

Considering the CK+ CAFE pair of data sets, Figure 11 compares the performance of an 

MLP trained on features selected by the data-driven correlation threshold learned by betaMix and 

those selected based upon a range of correlation thresholds (0.1, 0. , …, 1.0). There is not any 

feature with a correlation coefficient of 0.  or greater for the expression factor. 
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Figure 10. Mean number of features correlated with expression, domain, and identity for (a) 

CK+/CAFE and (b) Aff-Wild2/ChildEFES. 
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Figure 11. CK+/CAFE 5-fold cross-validation average overall F1 scores for MLP trained on 

expression-correlated feature selections at various thresholds. 
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3.3.3 DOMAIN ADAPTATION 

 For each train test split in the outer  -fold cross-validation loop, we select 𝜉 based on the 

overall F1 score averaged over the   validation sets of the inner  -fold cross-validation loop. For 

CK+ CAFE, 𝜉 = 0.01 is selected for all   train test splits of the outer cross-validation loop. For 

Aff-Wild  ChildEFES, 𝜉 = 0.01 is selected once, 𝜉 = 0.  is selected twice, and 𝜉 = 0.8 is 

selected twice.  

 Ablation study results for FACE-BE-SELF are presented in Table  . The proposed model 

is compared with variants that selectively remove one or two of the following model 

components: CNN, betaMix-selected landmark features, and domain adaptation. 

 

Table 3. Ablation study for the proposed FACE-BE-SELF model 
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 Figure 1  compares the  -fold cross-validation performance of our proposed FACE-BE-

SELF with multiple baselines for the CK+ CAFE and Aff-Wild  ChildEFES source target pairs, 

including CNNs trained on a single domain [  ], transfer learning [  ], and domain adaptation 

approaches [  ]. Since transfer learning performance on the source domain is expected to 

deteriorate after fine-tuning on target data only, we also compare with transfer learning fine-
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tuned on a mixture of source and target data. 

 

 Figure 1  plots one-versus-rest multiclass  OC curves and reports the AUC metrics for 

the proposed FACE-BE-SELF approach.  
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Figure 12. 5-fold cross-validation overall F1 score for comparison models. 

 



59 

 

 

 

© 2023 IEEE 

Figure 13. FACE-BE-SELF ROC Curves for various data sets. 
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3.4 DISCUSSION  

 This chapter presents FACE-BE-SELF for classification of adult and child facial 

expressions through deep domain adaptation and the fusion of facial landmark features correlated 

with expressions. Our experiments on four data sets and comparison of eight facial expression 

classification methods have revealed four important findings as follows. First, the decomposition 

of landmark features for expression, domain, and identity factors based on the data-driven 

threshold learned by betaMix reveals very little overlap in the subgraphs of different factors for 

CK+ CAFE (Figure 10 (a)) while the factor subgraphs of Aff-Wild  ChildEFES share a 

substantial number of adjacent feature nodes (Figure 10 (b)). Features concurrently correlated 

with expression and domain factors indicate the presence of domain shift in the landmark feature 

space 𝒱 = ℝ𝑝𝑏𝑒𝑡𝑎 . While the CNN feature space is known to exhibit adult-child domain shift 

[  -  ], our results suggest the domain shift to be dependent on the domain data set pair. The 

underlying data dependency (differences in overlap regions of Figure 10 (a) and Figure 10 (b)) 

may be attributed to differences in sample size and demographics, age ranges, and or mixture of 

posed spontaneous expressions [1  , 1  ]. Second, a parsimonious feature selection is obtained 

from the expression subgraph after eliminating features significantly correlated with the other 

factors (Figure 11). Third, our ablation study shows that fusing these selected landmark features 

and CNN-extracted image features improves the expression classification performance for both 

child and adult data (Table  ). Fourth, our proposed FACE-BE-SELF method outperforms all 

baseline models for the posed data sets (CK+ CAFE) and performs competitively for the data 

sets with spontaneous expressions (Aff-Wild  ChildEFES). The sections to follow provide 

detailed discussions in addition to and expanding upon these four key findings.  
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3.1.1 SELECTION AND FUSION OF FACIAL LANDMARK FEATURES 

 Our comparison of the proposed data-driven feature selection and a range of correlation 

thresholds reveals that our data driven betaMix approach yields the largest correlation threshold 

prior to substantial performance degradation (Figure 11). This threshold corresponds to a 

parsimonious selection of highly correlated features that preserve useful complementary 

information for expressions that is discarded at higher thresholds. Furthermore, fusing CNN-

extracted features with the selected landmark features improves the classification performance of 

child and adult facial expressions (Table  ). Like age estimation and AIF , facial expression 

classification also benefits from the fusion of geometric landmark and texture features [1  , 

1  ]. Given that the feature fusion model outperforms CNN features only, our selected landmark 

features provide complementary information representative of expressions beyond that learned 

by the CNN (Table  ). The effectiveness of selected features in classification suggests that the 

proposed betaMix correlation coefficient threshold is an effective metric in optimizing feature 

selection for facial expression classification.  

 

3.1.2 DOMAIN ADAPTATION FOR EXPRESSION LEARNING 

 Our findings suggest that domain adaptation methods provide robust representation 

learning of adult and child facial expressions (Figure 1 ). During adaptation, source and target 

performance are jointly optimized via ℒ𝐶𝑠 and ℒ𝐶𝑡 while the class conditional distributions are 

aligned using ℒ𝐷𝐴. This optimization procedure ensures balanced performance on both domains. 

Our findings also confirm that supervision on both domains (as in transfer learning) or a method 

of domain alignment is required for effective classification (Figure 1 ). For both CK+ CAFE and 

Aff-Wild  ChildEFES source-target pairs, we observe poor cross domain performance for CNNs 
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trained on a single domain (Figure 1 ). This poor cross domain performance is indicative of 

distribution shift and replicates the findings of multiple prior studies [  -  ].  

 Our proposed FACE-BE-SELF method yields higher source and target average overall F1 

scores for CK+ CAFE than all baseline models, with similar average overall F1 scores for source 

and target of 0.     and 0.  0 , respectively, with a difference of 0.01 0 (Figure 1 ). 

Spontaneous expression classification (Aff-Wild  ChildEFES) is more challenging than 

classification of posed facial expressions such as CK+ and CAFE. For example, Aff-Wild  is the 

most challenging of the four data sets that we use to evaluate our approach. Current state-of-the-

art performance on the official test set for Aff-Wild  is an overall F1 score of 0.   7, achieved 

by the best performing team at the recent  rd Affective Behavior Analysis in-the-wild 

Competition [1  ]. Please note that our results are not directly comparable as we perform cross-

validation rather than use the official test set. For Aff-Wild  ChildEFES, the best performing 

models are FACE-BE-SELF and fine-tuning on a mixture of source and target data (Figure 1 ). 

Compared to fine-tuning on a mixture of source and target data, FACE-BE-SELF performs better 

on ChildEFES (average overall F1 score 0.   7 > 0.  1 ) and worse on Aff-Wild  (average 

overall F1 score 0.  01 < 0. 0  ) but has a smaller difference in source and target performance 

(0.0    vs 0.1  7). Thus, despite poorer performance on Aff-Wild , FACE-BE-SELF offers 

better target (ChildEFES) performance and more balanced performance between source and 

target.  

 The  OC curves for CK+ CAFE (Figure 1  (a)(b)) reveal that despite class imbalance 

during training, FACE-BE-SELF learns to recognize all classes with AUCs near unity, indicating 

high sensitivity and specificity. For ChildEFES, the  OC curves show that all classes perform 

better than chance (Figure 1  (d)). ‘Surprise’, with its distinctive open mouth appearance 
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achieves an AUC of unity while negative expressions ‘anger’ and ‘sad’ prove more difficult. The 

 OC curves for Aff-Wild  (Figure 1  (c)) reflect the challenging nature of the data set with an 

overall average AUC of 0.  , close to chance level (0. 0). The best performing classes are 

‘anger’ (AUC 0.  ) and ‘fear’ (AUC 0.  ), while ‘disgust’ performs worst (0.1 ). 

 

3.4.4 EXPLAINING FEATURE CONTRIBUTIONS 

 We perform additional analysis using SHapley Additive exPlanations (SHAP) [1  ] to 

explain the contributions of different features to the classification of child and adult expressions. 

To quantify the contributions of both betaMix-selected landmark features and CNN features in 

the feature fusion model, we use the expected gradients method [170] as implemented in the 

SHAP library (https:  github.com slundberg shap) to obtain and visualize the (approximate) 

SHAP values for both landmark and CNN features. Figure 1  visualizes the SHAP values for 

source (CK+) and target (CAFE) domains. We use the same image from the CK+ data set for all 

visualizations. Figure 1  (a) shows the SHAP values associated with source and target image 

inputs to the CNN feature extractor. For both source and target, areas of the input with the 

greatest (positive or negative) contribution to expression classification are those involved in 

producing facial expressions: the eyebrows, eyes, nose, and mouth. Figure 1  (b) and Figure 1  

(c) visualize the SHAP values of the top ten most important landmark features for source and 

target, respectively, ranked based on their mean absolute SHAP value. Figure 1  (d) plots these 

top ten features. Nine out of the ten features are the same for the source and target sets. The top 

four features, which are ranked in the same order for both source and target, are areas of triangles 

located at the right corner of the lips (  features), left corner of the lips (1 feature), and between 

the left eye and eyebrow (1 feature). The symmetric features (the second area at the left corner of 
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the lips and area between the right eye and eyebrow) are also among the top ten most important 

features, but in different orders of importance. In addition to these six triangle area features, three 

inter-landmark distance features are ranked among the top ten for both domains. These features 

represent distances between the mouth and eyes (  features) and the mouth and nose (1 feature). 

As with the image input, the top ten landmark features represent important areas of the face for 

producing expressions: the eyebrows, eyes, and mouth. 

 

3.5 LIMITATIONS 

 Although the betaMix method is robust to dependence among samples, the high degree of 

similarity among faces (compared to other types of data) and universality of expressions may 

yield a small effective sample size. Even with a small effective sample size, betaMix is shown to 

capture significantly correlated landmark features. However, there may be features that are useful 

for classification of expressions but are not significantly correlated with expression based on the 

betaMix-learned minimum correlation coefficient. Furthermore, the data dependency of betaMix 

feature selections may affect performance on unseen data sets. An additional adaptation or fine-

tuning step may be required for these models to address possible data dependency. The age 

ranges studied cover   to   years for CAFE,   to   years for ChildEFES, and 1 + years for CK+. 

Aff-Wild  does not report specific age ranges.  Further research is required to determine if the 

adapted models are capable of generalizing to participants in other age groups, e.g., teens and 

pre-teens.  
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Figure 14. Visualization of SHAP values for FACE-BE-SELF: (a) image input to CNN, (b) top 

10 source landmark features, (c) top 10 target landmark features, (d) plotted top 10 landmark 

features for source and target. 
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3.6 SUMMARY 

 In this chapter, a novel deep domain adaptative FACE-BE-SELF for concurrent learning 

of adult and child facial expressions is proposed. FACE-BE-SELF yields a meaningful and 

effective selection of features that are correlated with expressions. The explanation and 

visualization of SHAP values corroborate the facial expression classification performance of our 

method. The superiority of our method over existing transfer learning and domain adaption 

methods satisfies the need for a systematic feature selection, feature fusion, and domain 

adaptation to perform domain-invariant classification. In future work, we plan to investigate the 

generalizability of this approach to other age groups and data acquisition pipelines. We hope that 

this approach may be used to yield automated, objective assessments of age or domain varying 

patterns in other applications.  
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CHAPTER 4 

CUSTOMIZABLE AVATARS WITH DYNAMIC FACIAL ACTION CODED 

EXPRESSIONS FOR IMPROVED USER ENGAGEMENT 

 

4.1 CHAPTER OVERVIEW  

 Facial expressions of 3D avatars are often used as stimuli in studies of intervention 

efficacy or behavioral biomarker discovery [32, 69, 70, 73, 74]. Such studies incorporate tasks 

to elicit and measure constructs related to facial expressions. The typical setting involves 

eliciting a response using the 3D avatar-based stimuli, capturing the response with a sensor, 

and extracting relevant measurements from the raw sensor data. To capture perception and 

production of facial expressions, the applicable sensing modalities are ET and VT, respectively 

[32, 69, 70, 73, 74]. Measures such as the percentage duration of gaze fixations to AOIs within 

the stimuli have been used to study perception [81]. To assess production, FACS [79] provides 

a taxonomy of AUs that describe the individual constituent movements of the face. Machine 

and deep learning approaches may be used to detect AUs from video frames of the face [132, 

171-177]. Finally, evaluating the construct validity of these tasks, i.e., whether the intended 

construct is elicited and measured, is an important precursor for well-designed studies of 

intervention efficacy or behavioral biomarker discovery [81, 178].  

 In the sections to follow, we review related work on important design considerations 

for 3D avatar-based facial expression stimuli, automatic detection of FACS AUs, and construct 

validity. Then, we propose 1) dynamic, FACS-labeled stimuli for perception and production of 

facial expressions, rendered on customizable 3D avatars, 2) a new deep learning-based AU 

detector for measurement of subjects’ facial responses, and  ) construct validity of the 
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proposed stimuli and measurements based on two tasks (recognition and mimicry) completed 

by 20 healthy adult volunteers. 

 

4.1.1 RELATED WORK 

 This section discusses related work on design considerations for 3D avatar-based facial 

expression stimuli, automatic detection of FACS AUs, and construct validity. 

 

4.1.1.1 DESIGN CONSIDERATIONS FOR 3D AVATAR-BASED FACIAL EXPRESSION 

STIMULI 

 Securing and maintaining user engagement is a key challenge for avatar-based health 

applications [60]. Recently, avatar customization has been identified as an effective means of 

improving engagement [60]. Avatar customization has been shown to increase engagement and 

enjoyment in social [78, 179], procedural [180], creative [180], and cognitive tasks [60], 

including interventions for physical [181, 182] and mental health [60, 179]. Avatar realism is 

another important factor influencing engagement. Hyper-realistic avatars may trigger the 

uncanny valley effect, a phenomenon where objects with increasingly realistic human 

appearances evoke uneasiness or revulsion, causing users to disengage [77]. Furthermore, 

several studies find that users prefer to interact with semi-realistic avatars [77, 183]. Avatars 

may embody a humanoid form to varying degrees from ‘talking heads’ to full body 

representations. Full body representations have been shown to improve dyadic interactions 

with avatars [184].  Facial expression stimuli may be rendered statically as still images or 

dynamically as animations from neutral to peak expression. While some studies [72, 185] 

continue to use static facial expressions due to accessibility of widely used, validated stimuli 
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sets [186, 187], it has been established from both neuroimaging and behavioral perspectives 

that dynamic expressions are more salient than static expressions, and show increased activity 

in face processing regions of the brain [188]. Thus, dynamic facial expressions play a pivotal 

role in assessing relevant differences between control individuals and individuals with a 

diagnosis in biomarker discovery studies (e.g., depression [189], Moebius syndrome [190], 

ASD [188]).  

 To study the effect of 3D avatar-based stimuli on perception or production of facial 

expressions, it is important to ensure that the avatar accurately renders the target expressions 

by having the expressions evaluated and labeled with AUs by FACS experts. This labeling 

may be especially critical for studies of expression production, where the construct may be 

defined based on a one-to-one correspondence between the avatar’s AUs and the participant’s 

AUs. While several methods for transferring AUs to arbitrary avatar faces have emerged, e.g., 

[191, 192], these methods are not guaranteed to accurately reproduce the target AUs. 

Therefore, avatar models and avatar-generation platforms that have been evaluated by FACS 

experts, such as MiFace [193], HapFACS [194], FACSGen [195], FACSHuman [196], and 

García et al.’s avatars [197], are preferred. While all of these existing avatars and avatar-

generation platforms support dynamic animations, they are limited in that they either lack 

customization capabilities [193, 197], rely on commercial software [194, 195], and/or are 

rendered as a disembodied floating head or face [193, 195, 196], which may break immersion. 

Additionally, García et al.’s avatars [197] are hyper-realistic, which may trigger the uncanny 

valley effect [77]. Given these limitations, there still exists a need for customizable, dynamic 

3D avatars and avatar-based facial expression stimuli that have been evaluated and labeled 

with AUs by FACS experts. 
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4.1.1.2 AUTOMATIC DETECTION OF FACS AUS 

 While ET based measures of facial expression perception require only straightforward 

mathematical operations [81], automatic AU detection from images is more challenging. Facial 

expressions consist of multiple AUs occurring simultaneously in various localized areas of the 

face. Thus, AU detection is a multi-label problem, where each facial image is assigned one or 

more AUs. AU detection methods either train individual binary classifiers to detect the 

presence or absence of each AU or train a single model to detect multiple AUs at once [172-

175, 177]. The latter approach, referred to as multi-label learning, is considered superior due to 

its computational efficiency and ability to take relationships between AUs into account [172-

175, 177]. In addition to modeling the relationships between AUs, state-of-the-art multi-label 

learning approaches often incorporate methods for focusing on relevant areas of the input or 

features using saliency maps [177], attention [176], or patch/region learning [171, 175]. Multi-

label learning approaches may also benefit from multi-task learning of other tasks related to 

the face (e.g., landmark prediction [176], facial expression classification [198], valence-arousal 

estimation [198]) and from feature fusion (e.g., saliency maps [177], geometric features [199]). 

 A drawback of state-of-the-art multi-label AU detection approaches is that they do not 

independently predict left and right activations of bilaterally located AUs, which may be useful 

for health applications. For example, Dell’Olio et al. [200] recently proposed FaraPy, an 

augmented reality mirror therapy for patients with facial paralysis. Asymmetrical AU 

activation is characteristic of facial palsy or paralysis, e.g., due to stroke, Parkinson’s, Bell’s 

Palsy, etc. [200], and has also been observed among individuals diagnosed with ASD [201-

203].  
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 Recently, Bar and Wells [152] present an approach based on convex geometry for 

identifying significant correlations among a large number of features using a mixture of beta 

distributions (betaMix). The betaMix approach relies upon Theorem 1.1 from [204], which 

shows that the sine squared of the angles between randomly drawn features in high 

dimensional space follows a beta distribution. In Chapter 3, we apply the betaMix approach 

[152] in the context of facial expression classification [87] for decomposing geometric 

landmark-based features (e.g., distances between pairs of landmarks) into sets associated with 

expressions, identity, and age groups (children and adults). As described in Section 3.2.4 [87], 

learning takes place in two separate steps. First, betaMix [152] is fit using the EM algorithm to 

learn correlations between already extracted landmark-based features and three factors 

(expressions, identity, and age groups). The resulting graph is used to select expression-

correlated features that are invariant to age and identity. Then, in the second step, the betaMix-

selected features are fused with deep learning-based features to fit the expression classifier. 

Given our success with facial expression classification, we anticipate that feature extraction,  

selection, and learning steps may be further optimized for AUs by training end-to-end with 

supervision from the AU labels. We hypothesize that the aforementioned Theorem 1.1 from 

[204] may be adapted into a loss function for simultaneous, end-to-end learning of correlations 

among AUs and features, while discouraging dependence on identity, which is not addressed 

by present multi-label AU detection approaches. 

 

4.1.1.3 CONSTRUCT VALIDITY  

 Construct validity may be determined by assessing whether the expected response is 

elicited in a healthy control group. For example, this approach has been used to evaluate 
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candidate ET biomarkers for ASD [81]. Since NT individuals are known to prefer to attend to 

faces when viewing social stimuli, Shic et al. [81] test for face preference (percentage of gaze 

duration to the face AOI vs. random gaze) among NT controls to determine construct validity.  

 

4.1.2 CONTRIBUTIONS 

To address the limitations of currently available 3D avatar-based facial expression stimuli, 

we propose Customizable Avatars with Dynamic Facial Action Coded Expressions 

(CADyFACE) for user engagement. To detect AUs elicited by CADyFACE, we propose a 

deep neural network for novel Beta-guided Correlation and Multi-task Expression learning 

(BeCoME-Net). We further conduct a pilot study to evaluate the construct validity of 

CADyFACE and BeCoME-Net AU measurements. Our contributions are as follows: 

• CADyFACE incorporates six avatar models representing different genders and races with 

customizable hair color, eye color, skin tone, and clothing. For each CADyFACE model, 

six facial expressions (‘anger’, ‘disgust’, ‘fear’, ‘happy’, ‘sad’, and ‘surprise’) have been 

posed and labeled by a certified FACS expert with over 600 hours of coding experience.  

• We propose a novel beta-guided correlation loss for BeCoME-Net that encourages 

features to be correlated with AUs while discouraging correlation with subject identity. 

For richer representation learning, BeCoME-Net fuses geometric landmarks and deep 

learning-based texture features while jointly learning AU detection and expression 

classification tasks. We consider variants of BeCoME-Net for bilateral and unilateral AU 

detection. We compare BeCoME-Net with state-of-the-art AU detection methods on two 

benchmark data sets.  

• We conduct an online pilot study of 20 healthy adult participants to evaluate the construct 
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validity of the proposed CADyFACE stimuli and BeCoME-Net AU measurements. 

Participants complete two facial expression-related tasks, recognition and mimicry, while 

facial video and webcam-based eye-tracking data are collected.  

The remainder of this chapter is organized as follows. Section 4.2 describes the proposed 

methods. Section 4.3 presents the results and discussion. Section 4.4 discusses limitations. 

Section 4.5 summarizes.  

 

4.2 METHODS 

 This section describes the design and development of the proposed CADyFACE 

stimuli, BeCoME-Net for multi-label AU detection, and pilot study, tasks, and constructs. 

 

4.2.1 DESIGN AND DEVELOPMENT OF CADYFACE STIMULI 

 The design and development of CADyFACE stimuli involves multiple steps including 

avatar generation, avatar customization, FACS-annotation of the avatars’ facial expressions, 

dynamic animation of the facial expressions, and review by clinical team members.  

 

4.2.1.1 AVATAR GENERATION 

 We generate 3D avatars for CADyFACE using free, open-source tools including the 3D 

modeling software Blender (https://www.blender.org/) and ManuelBastioniLAB 1.6.1a 

(https://github.com/animate1978/MB-Lab), a character creation plugin for Blender. 

ManuelBastioniLAB 1.6.1a includes six human prototypes: African female, African male, Asian 

female, Asian male, European female, and European male. We obtain one 3D avatar for each of 

these six prototypes using the default settings. Each avatar includes a face rig with 75 
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blendshapes for facial animation. We dress the avatars in pants, a shirt, and a jacket. Clothing 

assets are obtained from [192].  

 

4.2.1.2 AVATAR CUSTOMIZATION 

 We develop the CADyFACE avatar customization application using the free Unity game 

engine (https://unity.com/). Users are shown their current avatar on the left side of the screen and 

a selection of customization options on the right side of the screen. Users navigate between 

screens of options using ‘next’ or ‘back’ buttons, which also update a progress bar. As users 

select different customization options, the updates are rendered on the avatar. An example 

customization screen is shown in Figure 15. 

 

 

Figure 15. Example customization screen for hair color. 

 

 There are 49,152 different possible combinations based on the selection of one of each of 

the following: six different avatar models, three skin tones, four eye colors, four hair colors, 

eight jacket colors, eight shirt colors, and eight pants colors. All customization options are 

summarized in Figure 16. 
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Figure 16. Avatar customization options: (a) all avatar model and skin tone combinations, (b) eye 

color options, (c) hair color options, (d) jacket color options, (e) shirt color options, and (f) pants 

color options. 

 

4.2.1.3 FACS-ANNOTATED FACIAL EXPRESSIONS 

 Within Unity, we develop a software application to visualize expressions on each of the 

six prototype avatars and to adjust the appearance of each expression. Using this software, a 

member of our team who is a certified FACS expert with over 600 hours of coding experience 

has tuned the blendshapes for each of the six prototype avatars to render six different facial 

expressions (a total of 36 sets of 75 blendshapes). The AUs representing each expression are 

selected based upon their definitions in the FACS Investigator’s Guide [79]. The specific AUs 

present in each expression and their intensities are reported in Table 4. Examples of each 

expression are shown in Figure 17. 
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Table 4. CADyFACE AU intensities (A= low to E= high) 

 

 

 

Figure 17. FACS-annotated expressions in CADyFACE (left to right): ‘anger’, ‘disgust’, ‘fear’, 

‘happy’, ‘sad’, and ‘surprise’. 

 

4.2.1.4 DYNAMIC ANIMATION OF FACIAL EXPRESSIONS 

 To generate the facial expression animations for CADyFACE, we linearly interpolate the 

blendshape values from ‘0’ (neutral) to the values associated with the AU labels defined for the 

target expression and avatar prototype. We animate each expression over 25 frames with a delay 

of 50 milliseconds between frames. 

 

 

 

Expressions 
Action Units 

1 2 4 5 6 7 10 11 12 15 17 20 23 25 26 27 

Anger   E E  C D      D B C  

Disgust       E    D      

Fear E C D E        C  C  B 

Happy     C    E        

Sad E  D     B  E       

Surprise D D  B          C  C 
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4.2.1.5 REVIEW BY CLINICAL TEAM MEMBERS 

 We have developed CADyFACE as a part of our Institutional Review Board (IRB)-

approved study for behavioral biomarker discovery among children and young adults with ASD. 

Two team members who are clinicians with expertise in ASD have reviewed and provided 

feedback on CADyFACE throughout its development to ensure suitability for the study and 

appropriateness for individuals with ASD. 

 

4.2.2 BECOME-NET FOR MULTI-LABEL AU DETECTION 

 This section describes the proposed BeCoME-Net including benchmark data sets, 

preprocessing, notation, bilateral and unilateral AU detection, backbone architecture, beta-guided 

correlation loss, multi-label learning framework, and experiments.  

 

4.2.2.1 BENCHMARK DATA SETS 

 To train and evaluate BeCoME-Net for detecting the AUs present in CADyFACE, we 

consider the CK+ [137, 205] data set. The CK+ data set comprises 593 image sequences of 123 

adult subjects ages 18 to 50 years posing facial expressions including ‘anger’, ‘disgust’, ‘fear’, 

‘happy’, ‘sad’, and ‘surprise’. Each sequence begins with a neutral expression frame and ends 

with the peak expression frame, which has been annotated with AU labels. CK+ includes 30 

different AUs, including the 16 AUs in CADyFACE: AUs 1, 2, 4, 5, 6, 7, 10, 11, 12, 15, 17, 20, 

23, 25, 26, and 27. We refer to this subset of CK+ AUs as 16AU-CK+. We also use CK+ to 

compare BeCoME-Net with existing state-of-the-art approaches. However, since some of the 

AUs in CK+ appear with low frequency, existing state-of-the-art approaches report results on 12 

or 13 AU subsets. We follow established literature [177] to define the 12 AU subset (12AU-
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CK+) as AUs 1, 2, 4, 5, 6, 7, 9, 12, 17, 23, 24, and 25. Then, the 13 AU subset (13AU-CK+) is 

defined as 12AU-CK+ and AU 27 [177]. The frequencies of AUs present in at least one of these 

three subsets are reported in Table 5. Additionally, we follow the same procedure as [87] to 

obtain expression-labeled samples of CK+ to train the model to perform the expression 

classification task as a part of the proposed multi-task learning. The distribution of expression 

labels is 1   ‘anger’, 177 ‘disgust’, 7  ‘fear’,  07 ‘happy’,   7 ‘neutral’,    ‘sad’, and     

‘surprise’ samples. 

 In addition to our primary data set, CK+, we also benchmark our approach on the 

Extended Denver Intensity of Spontaneous Facial Action (DISFA+) [206, 207] data set. DISFA+ 

consists of image sequences of 9 adult subjects posing 42 facial expressions including individual 

AUs, combinations of AUs, and the   prototypical expressions (‘anger’, ‘disgust’, ‘fear’, 

‘happy’, ‘sad’, and ‘surprise’). Each sequence begins with a neutral expression, moves to the 

peak expression, and ends with a neutral expression. All frames have been annotated for 12 

different AUs: 1, 2, 4, 5, 6, 9, 12, 15, 17, 20, 25, and 26. The frequencies of these AUs are 

reported in Table 5. We also extract the samples with expression labels for use in multi-task 

learning, including     ‘anger’,  ,77  ‘disgust’, 1, 7  ‘fear’,  ,  1 ‘happy’,   ,7   ‘neutral’, 

    ‘sad’, and 1,    ‘surprise’ samples.   
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Table 5. Frequency of AUs in CK+ and DISFA+ data sets 

 

 

4.2.2.2 PREPROCESSING 

 We follow the same preprocessing pipeline as in [87], which yields 256×256-pixel 

grayscale images of centered faces, rotated such that the eyes are level and the left eye is 30% of 

the image width from the left edge. The images are min-max normalized to the range [0,1]. For 

each image, we use the dlib library (http://dlib.net/) to extract 68 landmark points on the face and 

normalize x- and y-coordinates to [0,1]. 

 

4.2.2.3 NOTATION 

 BeCoME-Net is a deep learning model of the form 𝑓:𝒳 → 𝒴, where 𝒳 is the input space 

of facial images and landmarks and 𝒴 is the output space of AU labels for the AU detection task 

AU Description 
CK+ 

Frequency 

DISFA+ 

Frequency 

1 Inner Brow Raiser 117 9353 

2 Outer Brow Raiser 117 7982 

4 Brow Lowerer 194 12036 

5 Upper Lid Raiser 102 9208 

6 Cheek Raiser 123 9839 

7 Lid Tightener 121 -- 

9 Nose Wrinkler 75 3993 

10 Upper Lip Raiser 21 -- 

11 Nasolabial Deepener 34 -- 

12 Lip Corner Puller 131 10371 

15 Lip Corner Depressor 94 3956 

17 Chin Raiser 202 5689 

20 Lip Stretcher 79 4854 

23 Lip Tightener 60 -- 

24 Lip Pressor 58 -- 

25 Lips Part 324 11442 

26 Jaw Drop 50 -- 

27 Mouth Stretch 81 7487 
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and expression labels for the expression classification task. We define input 𝑋 = (𝑋𝑖𝑚𝑔, 𝑋𝑙𝑚𝑘) ∈

𝒳, where 𝑋𝑖𝑚𝑔 ∈ 𝒳𝑖𝑚𝑔 ⊆ ℝ
𝑚×𝑛

 are 𝑚× 𝑛 facial expression images and 𝑋𝑙𝑚𝑘 ∈ 𝒳𝑙𝑚𝑘 ⊆ ℝ
𝑙×2 are 

pairs of 𝑙 x- and y- landmark coordinates. We define output 𝑌 ∈ 𝒴 separately for multi-task 

learning of AU detection and expression classification tasks. For the AU detection task, we 

define 𝑌 = 𝑌𝐴𝑈 ∈ 𝒴𝐴𝑈, where 𝒴𝐴𝑈 represents the set of all binary label vectors indicating the 

presence or absence of 𝐾𝐴𝑈 (12, 13, or 16) different facial action units. For the expression 

classification task, we define 𝑌 = 𝑌𝐸𝑋𝑃𝑅 ∈ 𝒴𝐸𝑋𝑃𝑅 where 𝒴𝐸𝑋𝑃𝑅 is the set of 𝐾𝐸𝑋𝑃𝑅-dimensional 

one-hot encoded vectors representing the 𝐾𝐸𝑋𝑃𝑅 = 7 expression labels. We denote the vector for 

subject identity as 𝑔, which will be used in the design of the proposed beta-guided correlation 

loss to discourage feature correlations with identity. We partition 𝑓 into backbone network 𝑀 

and task head 𝐻 such that 𝑓 = 𝐻 ∘ 𝑀, 𝑀:𝑋 → 𝑍, and 𝐻: 𝑍 → 𝑌, where 𝑍 is a latent space of 𝑝 

features. 

 

4.2.2.4 BILATERAL AND UNILATERAL AU DETECTION 

 We define two variants of BeCoME-Net with different input shapes for bilateral and 

unilateral detection of AUs. BeCoME-Net-F is designed to process (𝑚 × 𝑛 = 2 6 ×  2 6)-

pixel grayscale images and 𝑙 = 68 landmark points extracted from the full facial image for 

bilateral AU detection. For unilateral AU detection, we predict AUs on the left and right sides of 

the face independently and define BeCoME-Net-H for (𝑚 × 𝑛 = 2 6 × 128)-pixel grayscale 

images of the left or right side of the face and 𝑙 =  9  landmark points (29 from the same side of 

the face and 10 located along the center line of the face). 
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4.2.2.5 BACKBONE ARCHITECTURE 

 The architecture for BeCoME-Net begins with a backbone 𝑀(∙), consisting of 

convolutional, pooling, and fully connected layers for feature extraction. Figure 18 presents the 

backbone architecture for BeCoME-Net-F. The backbone incorporates two branches for 

processing images 𝑋𝑖𝑚𝑔 and landmarks 𝑋𝑙𝑚𝑘, respectively. For the image branch, we consider the 

same model architecture as in Chapter 3 [87]: three blocks of a 2D convolutional layer with 3x3 

kernel size followed by 2x2 maximum pooling yielding 16, 32, and 64 feature maps, 

respectively, and a final fully connected layer of 512 hidden units. Convolutional and fully 

connected layers use the ReLU activation function. Dropout is applied with a probability of 0.5 

at the final fully connected layer. For the landmark branch, we input the x, y-coordinates of the 𝑙 

landmark points directly into a 1D convolutional layer with a kernel size of 1 to yield 16 feature 

maps, which are flattened prior to a final 512-unit fully connected layer. We use ReLU in the 

convolutional and fully connected layers and apply dropout with a probability of 0.5 at the fully 

connected layer. Compared to Chapter 3 [87], in which we perform feature engineering and 

selection based on the landmarks prior to learning, the 1D convolutional layer with kernel size 1 

serves to aggregate the 2D coordinate information so that the network may learn relevant 

features from the normalized landmark positions directly. We concatenate the outputs of the 

image and landmark branches to form (𝑝 = 102 )-dimensional feature vector 𝑍. 
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Figure 18. BeCoME-Net-F backbone architecture. 

 

4.2.2.6 BETA-GUIDED CORRELATION LOSS 

 We are interested in modeling significant correlations between the features in 𝑍, labels in 

𝑌, and subject identity 𝑔 during training. Let 𝑏 represent the batch size. Consider the space ℝ𝑏.  

From [87, 152, 204], the sine squared of the angle 𝜃 between two random lines drawn from ℝ𝑏 

follows the beta distribution: 

𝜆 ≝ sin2 𝜃~𝑏𝑒𝑡𝑎 (
𝑏 − 1

2
,
1

2
) (35) 

  andom or ‘null’ pairs will be approximately perpendicular for even moderate values of 

𝑏, e.g., 𝑏 = 10, meaning that the probability of two random lines being correlated by chance is 

very small [152]. This result may be used to build a graphical model where the nodes are 

features, labels, or identity, and the edges represent significant correlations. We denote the 

number of nodes as 𝑤. For the AU detection task, 𝑤 𝑛𝑜𝑑𝑒𝑠 = 𝑝 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 + 𝐾𝐴𝑈 𝐴𝑈𝑠 +
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1 𝑓𝑜𝑟 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦. For the expression classification task, 𝑤 𝑛𝑜𝑑𝑒𝑠 = 𝑝 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 +

𝐾𝐸𝑋𝑃𝑅 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 + 1 𝑓𝑜𝑟 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦.  

 To build the graph, we employ a frequentist inferential procedure to screen for edges 

(‘non-null’ pairs or significant correlations) among the features in 𝑍, labels in 𝑌, and subject 

identity 𝑔. We denote the 𝜂-quantile of 𝑏𝑒𝑡𝑎 (
𝑏−1

2
,
1

2
) as 𝑄𝜂. Pairs 𝜆𝑒 (e.g., feature-feature, 

feature-label, feature-identity) are considered significantly correlated if 𝜆𝑒 = sin
2 𝜃𝑒  𝑄𝜂, 

where 𝑒 = 0,1, … , 𝑡 and the total number of possible edges 𝑡 = 0. 𝑤(𝑤 − 1). The selection of 𝜂 

may be used to control the Type I error rate. For each possible edge 𝜆𝑒, we consider the null 

hypothesis 𝐻0: 𝜆𝑒 ≥ 𝑄𝜂 (i.e., no edge) and the alternative 𝐻𝑎: 𝜆𝑒  𝑄𝜂 (i.e., edge in the graph). 

We conduct a total of 𝑡 individual hypothesis tests to determine the presence/absence of all 

possible edges. Using the Bonferroni correction, we divide 𝛼 = 0.0  by the total number of 

hypothesis tests 𝑡 to set  𝜂 =
𝛼

𝑡
.  The screening rules associated with the null and alternative 

hypotheses may be implemented using mirrored and translated Heaviside functions: 

𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝑄𝜂 − 𝜆𝑒) = {
0,   𝜆𝑒 > 𝑄𝜂
1,   𝜆𝑒  𝑄𝜂 

. (36) 

However, due to the discontinuity at  𝜆𝑒 = 𝑄𝜂, equation (30) is not differentiable. Sigmoid 

functions may be used to provide a smooth approximation for the Heaviside functions [208]. 

Therefore, we consider the following sigmoid function for differentiable implementation of the 

screening rules: 

𝜎(𝜆𝑒) = 1 −
1

1+𝑒−𝛾(𝜆𝑒−𝑄𝜂)
, (37) 

where 𝛾 adjusts the sharpness of the transition from 1 to 0 at 𝑄𝜂.  
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 To construct the predicted graph adjacency matrix 𝐴, we apply (3) for each 𝜆𝑒 to yield 

the edge connection between each 𝑒th pair of nodes (features, labels, or identity) and assign these 

to the upper triangle of 𝐴 in row-major order. We fill the diagonal (representing self-connection) 

with 1’s. The lower triangle of 𝐴 is the upper triangle mirrored over the diagonal. We construct 𝐴 

such that the first 𝑝 rows and columns represent the 𝑝 features. The next 𝐾𝐴𝑈 or 𝐾𝐸𝑋𝑃𝑅 rows and 

columns represent the AU or expression labels, respectively. The last row and column represent 

identity. Then, we propose the beta-guided correlation loss ℒ𝐵𝐺𝐶  as: 

ℒ𝐵𝐺𝐶(𝐴) =
1

𝑤2
∑∑(𝑆𝑖𝑗 ∙ 𝐴𝑖𝑗)

𝑤

𝑗

𝑤

𝑖

, (38) 

where 𝑆 is a 𝑤 × 𝑤 sign matrix (consisting of -1’s, 0’s, and 1’s) that we use to encourage 

features to be correlated with the labels, discourage feature correlations with subject identity, and 

encourage feature diversity by discouraging correlations among the features themselves. We set 

the diagonal of 𝑆 to 0’s as self-connection will be unchanging and have no impact on the loss. 

Similarly, labels and identity will not be updated during learning. Only the features will be 

affected by the gradient updates. Therefore, we multiply the entries of 𝐴 associated with label-

label and label-identity pairs by 0’s in 𝑆 so that they do not contribute to the loss. Since we 

minimize the loss during learning, rows and columns representing edges between the labels and 

features are multiplied by -1 to maximize feature correlations with the labels. The remaining 

entries of 𝑆 are filled with 1’s to discourage correlations with subject identity and among the 

features. The entries are multiplied by the corresponding entries of 𝐴. To aggregate the 

individual loss contributions into a single number, we sum over all entries. Then, we divide by 

the total number of entries 𝑤2 so that the scale of the loss does not change for different numbers 

of features or labels. 
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 Equation (38) bears some similarity to reinforcement learning. Considering the policy 

gradient theorem without discounting [209], the loss at each time step is defined as the 

immediate reward times the predicted action (e.g., the one-hot encoding for the current action 

times the log of predicted probabilities for each action). Analogously, our 𝐴𝑖𝑗’s encode the 

predicted presence or absence of an edge in the graph and the 𝑆𝑖𝑗’s encode the associated 

rewards. However, rather than simply using cross-entropy for edge predictions, our equation ( 7) 

has several advantages. Figure 19 shows three key regions of equation ( 7). A particular 𝜆𝑒 will 

fall within region (a) if the associated pair of nodes is significantly correlated and will receive the 

full reward (or penalty) based on the associated 𝑆𝑖𝑗. For example, a 𝜆𝑒 representing a feature-

identity pair with 𝜎(𝜆𝑒) ≈ 1 will receive a penalty ≈ 1, while a 𝜆𝑒 representing a feature-label 

pair with 𝜎(𝜆𝑒) ≈ 1 will receive a reward ≈ 1 (penalty ≈ −1).   Region (b) represents the 

boundary between significantly correlated and uncorrelated nodes. For 𝜆𝑒’s falling within region 

(b), the reward will be weighted by 𝜎(𝜆𝑒). Finally, region (c) represents uncorrelated nodes 

where 𝜎(𝜆𝑒) ≈ 0, so uncorrelated nodes will have a very small contribution to the loss.  Due to 

equation ( 7), ℒ𝐵𝐺𝐶  focuses more on significantly correlated pairs while ignoring uncorrelated 

pairs. Therefore, individual features are allowed to specialize, i.e., to be highly correlated with 

one or several specific AUs (or expressions), without being penalized for having low correlation 

with other AUs (or expressions). This property is especially suitable for AU and expression 

learning as many of the constituent muscle actions of the face cannot or rarely occur 

concurrently (e.g., AU    ‘lip pressor’ and AU    ‘lips part’ cannot occur together) while others 

often occur together (e.g., AU 1 ‘inner brow raiser’ and AU   ‘outer brow raiser’).    
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Figure 19. Plot of equation (37) showing regions where (a) there is a significant correlation 

between nodes, (b) transition between significantly correlated and uncorrelated nodes, and (c) 

nodes are uncorrelated. 

 

4.2.2.7 MULTI-TASK LEARNING FRAMEWORK 

 While our primary goal is AU detection, training BeCoME-Net to perform the related 

task of expression classification is expected to improve representation learning and AU detection 

performance. We define the multi-label AU detection head as a fully connected output layer of 

𝐾𝐴𝑈 units with sigmoid activation, where 𝐾𝐴𝑈 is the number of target AUs. We define the 

expression classification head as a fully connected softmax output layer with 𝐾𝐸𝑋𝑃𝑅 units for the 

𝐾𝐸𝑋𝑃𝑅 facial expression classes. For efficient learning of both tasks, we duplicate the backbone 

and connect one head to each copy, as shown in Figure 20. Weights are shared between the two 

copies of the backbone for simultaneous training on both AU detection and expression 

classification tasks. We supervise the learning of the AU detection and expression classification 

tasks with the weighted multi-label cross-entropy loss ℒ𝑊𝑀𝐶𝐸 [210] and weighted categorical 

cross-entropy loss ℒ𝑊𝐶𝐶𝐸 [211], respectively.  We choose the weighted variants of both losses to 
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address imbalance in the label distributions. We use the beta-guided correlation loss ℒ𝐵𝐺𝐶  in both 

tasks (ℒ𝐵𝐺𝐶_𝐴𝑈 for AU detection and ℒ𝐵𝐺𝐶_𝐸𝑋𝑃𝑅 for expression classification) to encourage 

features to be correlated with the labels while discouraging correlation with subject identity. The 

loss for the AU detection task is ℒ𝐴𝑈 = ℒ𝑊𝑀𝐶𝐸  + ℒ𝐵𝐺𝐶_𝐴𝑈, and ℒ𝐸𝑋𝑃𝑅 = ℒ𝑊𝐶𝐶𝐸 + ℒ𝐵𝐺𝐶_𝐸𝑋𝑃𝑅 for 

the expression classification task. The overall loss is ℒ = ℒ𝐴𝑈 + ℒ𝐸𝑋𝑃𝑅. 

 

 

Figure 20. BeCoME-Net multi-task learning framework. 

 

4.2.2.8 EXPERIMENTS 

 Following established literature [177], we perform 3-fold subject-independent cross-

validation for all experiments and report F1 scores calculated over all test folds. To study the 

effect of multi-task learning and the proposed beta-guided correlation loss, we perform an 

ablation study on 16AU-CK+ for both bilateral and unilateral AU detection models. Then, we 

benchmark BeCoME-Net-F and BeCoME-Net-H on 16AU-CK+ and report the performance for 

each AU. Next, we train and test BeCoME-Net-F and BeCoME-Net-H on 13AU-CK+, 12AU-

CK+, and DISFA+ for comparison with state-of-the-art approaches. For 13AU-CK+, we 

compare with BGCS [174], HRBM [172], and LNDSM [177]. For 12AU-CK+, we compare with 

JPML [173], DSCMR [132], and LNDSM [177]. For DISFA+, we compare with DRML [171], 
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AU R-CNN [175], JÂA-Net [176], and LNDSM [177]. LNDSM [177] is the newest state-of-the-

art approach with which we compare.  

 For all experiments, we train using the ADAM optimizer with a triangular learning rate 

policy [167] cycling the learning rate between 10−5 and 10−3 until convergence. We use a batch 

size of 𝑏 =  2 and set 𝛾 =100.  

 

4.2.3 PILOT STUDY, TASKS, AND CONSTRUCTS 

 This section describes IRB approval, participants, online stimuli presentation and data 

collection, tasks, and constructs.  

 

4.2.3.1 IRB APPROVAL 

 This pilot study has been conducted as a part of our larger IRB-approved study to 

discover behavioral biomarkers for children and young adults with ASD and has been approved 

by the IRBs at Old Dominion University (Application No. 1424272) and Eastern Virginia 

Medical School (Application No. 19-06-EX-0152). Approval letters from ODU and EVMS IRBs 

may be found in Appendices B and C, respectively.  All participants have provided informed 

consent and have not received compensation for their participation. 

 

4.2.3.2 PARTICIPANTS 

 We have recruited 20 healthy adult volunteers (ages 21 to 35, 4 female) for an online 

pilot study of CADyFACE. Inclusion criteria includes being at least 20 years of age at the time 

of enrollment and having access to an Internet-connected personal computer with a webcam. For 

privacy, each participant has been assigned a unique subject identifier.  
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4.2.3.3 ONLINE STIMULI PRESENTATION AND DATA COLLECTION 

 A Unity Web-GL application has been developed to present the CADyFACE stimuli in 

each participant’s web browser. The application is embedded into a webpage hosted on the 

visionlab.odu.edu domain, which is served by a secure web server located at Old Dominion 

University. Participants must enter their unique subject identifier to access the webpage.  

 As the participants interact with the Unity Web-GL application, the WebGazer.js 

(https://webgazer.cs.brown.edu/) [212] JavaScript library and its self-calibrating ET model are 

used to collect VT and webcam-based ET coordinates from the participants’ webcams. As these 

VT frames and ET coordinates are collected, they are recorded to the secure web server. 

 

4.2.3.4 TASKS  

 Participants complete two tasks developed using the CADyFACE stimuli: recognition 

and mimicry. In the recognition task, participants are asked to select the expression shown by 

clicking the button labeled with the name of the expression. In the mimicry task, participants are 

asked to make the same facial expression as the avatar. Each task consists of six trials, one for 

each of the six FACS-annotated expressions in CADyFACE (‘anger’, ‘disgust’, ‘fear’, ‘happy’, 

‘sad’, or ‘surprise’). Each participant customizes their own avatar that is used in both tasks. The 

expression and mimicry tasks are shown in Figure 21. 
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Figure 21. (a) Recognition and (b) mimicry tasks. 

 

4.2.3.5 CONSTRUCTS 

 During the recognition task, participants are expected to attend their gaze to the avatar’s 

face to determine the expression. Therefore, we consider the face preference construct [81]. 

Following [81], we measure the construct as the percentage of gaze duration to the avatar’s 

face (%Gaze Face) and test construct validity using a one-sample t-test of %Gaze Face against 

the percentage of the scene taken up by the avatar’s face, which is the expected %Gaze Face 

given random gaze. For our recognition task, the avatar’s face occupies 15.0% of the scene. 

We test the construct validity of all six expressions. 

 During the mimicry task, participants are expected to pose the same facial expression as 

the avatar. Since CADyFACE has AU labels, we consider constructs based upon the activation 

of the same AUs by the participants. To measure the constructs, we use BeCoME-Net-F and 
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BeCoME-Net-H to detect the AUs in peak expression frames of each of the participants’ 

mimicked expressions. We use both BeCoME-Net-F and BeCoME-Net-H to measure the 

construct with both bilateral and unilateral AU detectors. For each AU, we test construct 

validity using a one-sample t-test against 0 (no activation). We test the construct validity of all 

AUs in all six expressions. 

 

4.3 RESULTS AND DISCUSSION 

 This section presents and discusses the ablation study, BeCoME-Net performance on 

the AUs in CADyFACE, comparison of BeCoME-Net with state-of-the-art AU detectors, and 

construct validity for BeCoME-Net AU measurements based on the pilot study group’s 

responses to the CADyFACE stimuli.  

 

4.3.1 ABLATION STUDY 

 To understand the impact of multi-task learning and the beta-guided correlation loss, we 

perform an ablation study for both bilateral and unilateral AU detection on 16AU-CK+. As shown in 

Table 6, the best performance is achieved for bilateral and unilateral models when both multi-task 

learning and the beta-guided correlation loss are considered. The inclusion of multi-task learning or 

the beta-guided correlation loss alone result in small improvements in mean F1 score (less than 1%) 

for bilateral and unilateral models. Including both multi-task learning and beta-guided correlation 

achieves an improvement of 1.81% and 2.86% in mean F1 score for bilateral and unilateral models, 

respectively. These results suggest that the use of the beta-guided correlation loss in the secondary 

expression classification task yields better representation learning for AU detection. These results 

also show that all bilateral models perform better than their unilateral counterparts, which we expect 
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is due to the bilateral models having access to information from the entire face.  

 

Table 6. Ablation study 

 

 

4.3.2 BECOME-NET PERFORMANCE FOR CADYFACE AUS   

 The precision, recall, and F1 scores for each AU based on 3-fold cross-validation of 16AU-

CK+ for BeCoME-Net-F and BeCoME-Net-H are reported in Figure 22. FIGURE 23 reports 

precision, recall, and F1 scores based on the expression classification task. Both models follow similar 

patterns of performance. The best performing AUs with the F1 scores of over 80% are AUs 2, 12, 17, 

25, and 27. As shown in Table 5, AUs 2, 12, 17, and 25 are some of the most frequent AUs in 16AU-

CK+. While being a less frequent AU, AU 27 (mouth stretch) is associated with the distinctive open 

mouth appearance seen in the fear and surprise expressions. The worst performing AUs with F1 scores 

less than 50% are the four least frequent AUs in 16AU-CK+: AUs 10, 11, 23, and 26.  

 

AU 

Detection 

Input Size 

(image,  landmarks) 

Multi-Task 

Learning 

Beta-Guided 

Correlation Loss 

Mean F1 

Score 

Unilateral 256x128, 39    61.16% 

Unilateral 256x128, 39 X  61.83% 

Unilateral 256x128, 39  X 61.77% 

Unilateral 256x128, 39 X X 64.02% 

Bilateral 256x256, 68   64.51% 

Bilateral 256x256, 68 X  64.78% 

Bilateral 256x256, 68  X 65.16% 

Bilateral 256x256, 68 X X 66.32% 
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Figure 22. AU detection precision, recall, and F1 scores based on 3-fold cross-validation of 

16AU-CK+ for (a) BeCoME-Net-F and (b) BeCoME-Net-H. 

 

 

Figure 23. Expression classification precision, recall, and F1 scores based on 3-fold cross-

validation of 16AU-CK+ for (a) BeCoME-Net-F and (b) BeCoME-Net-H. 

 

4.3.3 COMPARISON WITH STATE-OF-THE-ART AU DETECTORS 

 We compare our proposed BeCoME-Net with state-of-the-art approaches for multi-label 

AU detection using the CK+ (AU13-CK+ and AU12-CK+) and DISFA+ data sets. Table 7 
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shows that BeCoME-Net-F achieves performance on par with the best performing and most 

recent state-of-the-art method LNDSM [177] for AU13-CK+. BeCoME-Net-H performs second 

best after BeCoME-Net-F and LNDSM. For AU12-CK+, BeCoME-Net-F achieves the highest 

performance, slightly outperforming LNDSM while BeCoME-Net-H performs equally well to 

LNDSM. We note that for each prediction, LNDSM requires a reference image of the neutral 

face for the same subject. Our proposed BeCoME-Net performs competitively on CK+ without 

requiring reference images of the neutral face.  

 

Table 7. F1 scores for BeCoME-Net compared with state-of-the-art approaches for multi-label 

AU Detection on CK+ 

 

 

 To show how BeCoME-Net performs on a data set other than CK+, we compare our 

performance on the DISFA+ data set in Table 8. While BeCoME-Net-F and BeCoME-Net-H 

both outperform DRML [171] and AU R-CNN [175], the best performance is achieved by 

LNDSM [177] followed by JÂA- Net [176]. Both LNDSM and JÂA-Net methods exhibit greater 

complexity and depth than ours. LNDSM is twice as deep as BeCoME-Net with six 

Method 
AU 

Mean 
1 2 4 5 6 7 9 12 17 23 24 25 27 

13 AU Detection 

BGCS  0.71 0.68 0.64 0.60 0.58 0.47 0.52 0.73 0.77 0.22 0.24 0.79 0.58 0.58 

HRBM  [0.87] 0.86 0.73 0.72 0.62 0.55 0.86 0.73 0.82 [0.57] 0.35 0.93 0.88 0.73 

LNDSM  0.86 [0.88] [0.81] 0.74 [0.70] 0.62 0.89 [0.87] [0.86] 0.46 0.46 [0.94] 0.90 [0.77] 

BeCoME-
Net-F  

0.82 0.85 0.80 [0.76] 0.66 [0.63] [0.93] 0.82 0.83 0.45 [0.58] 0.91 [0.91] [0.77] 

BeCoME-
Net-H 

0.81 0.82 0.76 0.75 0.66 0.58 0.90 0.83 0.83 0.49 [0.58] 0.90 0.90 0.76 

12 AU Detection 

JPML  0.50 0.40 0.72 0.53 0.58 0.24 0.55 0.75 0.82 0.42 0.31 0.76 -- 0.55 

DSCMR  0.54 0.64 0.61 0.42 [0.68] 0.36 0.54 0.80 [0.90] [0.75] 0.36 0.86 -- 0.62 

LNDSM  [0.88] [0.86] [0.82] 0.75 [0.68] 0.56 0.90 [0.87] 0.85 0.33 0.43 [0.91] -- 0.74 

BeCoME-
Net-F 

0.80 0.83 0.80 0.76 0.67 [0.61] [0.94] 0.85 0.82 0.46 [0.59] 0.90 -- [0.75] 

BeCoME-
Net-H 

0.81 0.83 0.78 [0.78] 0.65 0.60 0.91 0.82 0.81 0.44 0.54 0.90 -- 0.74 

*Bold with brackets indicates the best score. Bold without brackets indicates the second-best score. 
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convolutional blocks compared to our three [177].  LNDSM  also benefits from using neutral 

reference images to generate saliency maps that are fused at several intermediate layers of the 

network [177].  JÂA-Net involves multiple sub-networks for face alignment, global feature 

learning, local AU feature learning, and attention refinement [176]. Furthermore, BeCoME-Net 

may be less competitive on DISFA+ due to the beta-guided correlation loss, which discourages 

correlation between the learned features and subject identities. Given that DISFA+ contains only 

9 subjects (compared to 123 in CK+), some discriminative features may be spuriously correlated 

with subject identity.  

 

Table 8. F1 scores for BeCoME-NET compared with state-of-the-art approaches for multi-label 

AU detection on DISFA+ 

 

 

4.3.4 CONSTRUCT VALIDITY 

 As shown in Table 9, the recognition task’s face preference construct is valid for all 

expressions. Two participants are excluded due to ET track loss. Table 10 reports construct 

validity for the mimicry task based on BeCoME-Net-F and BeCoME-Net-H AU predictions. For 

some of the tests (indicated by an asterisk*), we are unable to compute a t-statistic due to there 

being no predictions of the AU among any of the participants. These AUs are AU 10, AU 11, 

AU 23, and AU 26, which are the four least frequent AUs in the 16AU-CK+ training set. The 

Method 
AU 

Mean 
1 2 4 5 6 9 12 15 17 20 25 26 

DRML  0.27 0.22 0.51 0.36 0.56 0.32 0.39 0.23 0.27 0.16 0.57 0.42 0.36 

AU R-CNN  0.48 0.43 0.56 0.48 0.43 0.24 0.47 0.24 0.06 0.29 0.53 0.39 0.38 

JÂA-Net  0.84 0.81 0.79 0.78 0.78 0.68 0.85 0.55 0.60 0.49 0.85 0.69 0.73 

LNDSM  0.83 0.80 0.78 0.74 0.82 0.74 0.84 0.56 0.65 0.50 0.88 0.77 0.74 

BeCoME-Net-F 0.75 0.71 0.70 0.68 0.72 0.64 0.81 0.53 0.60 0.41 0.74 0.60 0.66 

BeCoME-Net-H 0.73 0.74 0.67 0.69 0.72 0.61 0.73 0.39 0.49 0.37 0.69 0.55 0.61 
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following unilateral and bilateral constructs are valid: AUs 4 and 25 for ‘anger’; AU 17 for 

‘disgust’; AUs 1, 2, 5, 25, and 27 for ‘fear’; AU 12 for ‘happy’; all AUs (1, 4, 11, 15) except AU 

11 for ‘sad’; and all AUs (1, 2, 5, 25, 27) for ‘surprise’. Failing to pass the test of construct 

validity for some AUs may be attributed to one of two reasons: BeCoME-Net did not detect a 

present AU or the CADyFACE stimuli did not successfully elicit the AU. 

 

4.4 LIMITATIONS 

 As with other 3D avatar models, the ManuelBastioniLAB models that we use in this work 

are limited by the fidelity and quality of their blendshapes. While AUs 9 and 10 are both listed as 

potential core components of a prototypical disgust face in the FACS Investigator’s Guide [79], AU 

  (‘nose wrinkler’) is more common, as reflected by the relative frequencies in the CK+ data set. 

However, since the ManuelBastioniLAB models are unable to perform nose wrinkling, we opt for 

AU 10. Using AU 9 instead of AU 10 may have yielded better results for the construct validity of 

the disgust expression. Furthermore, for AU 11 (‘nasolabial deepener’), the ManuelBastioniLAB 

models are only able to render a low level of activation. More conspicuous representation of AU 11 

may have had a positive impact on the construct validity of AU 11 within the sad expression.   
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Table 9. Construct validity for recognition task 

 

 

Table 10. Construct validity for mimicry task 

 

 

  

Expression Construct %Gaze Face 

df t-statistic p-value validity 

Anger Face Preference 17 3.523 0.001 ✓ 

Disgust Face Preference 17 2.291 0.018 ✓ 

Fear Face Preference 17 3.320 0.002 ✓ 

Happy Face Preference 17 3.123 0.003 ✓ 

Sad Face Preference 17 3.113 0.003 ✓ 

Surprise Face Preference 17 2.566 0.010 ✓ 

 

Expression Construct 
BeCoME-Net-F (Bilateral) BeCoME-Net-H (Unilateral) 

df t-statistic p-value validity df t-statistic p-value validity 

Anger 

AU 4 Activation 19 3.199 0.005 ✓ 19 4.359 <0.001 ✓ 

AU 5 Activation 19 1.831 0.082  19 1.831 0.083  

AU 7 Activation 19 1.453 0.163  19 3.199 0.005 ✓ 

AU 10 Activation 19 --* --  19 2.517 0.021 ✓ 

AU 23 Activation 19 --* --  19 --* --  

AU 25 Activation 19 5.339 <0.001 ✓ 19 3.943 <0.001 ✓ 

AU 26 Activation 19 --* --  19 1.453 0.163  

Disgust 
AU 10 Activation 19 1.000 0.330  19 1.453 0.163  

AU 17 Activation 19 4.819 <0.001 ✓ 19 2.854 0.010 ✓ 

Fear 

AU 1 Activation 19 7.550 <0.001 ✓ 19 8.718 <0.001 ✓ 

AU 2 Activation 19 13.077 <0.001 ✓ 19 8.718 <0.001 ✓ 

AU 4 Activation 19 1.831 0.083  19 2.517 0.021 ✓ 

AU 5 Activation 19 3.943 <0.001 ✓ 19 3.943 <0.001 ✓ 

AU 20 Activation 19 1.000 0.330  19 1.831 0.083  

AU 25 Activation 19 10.376 <0.001 ✓ 19 8.718 <0.001 ✓ 

AU 27 Activation 19 3.199 0.005 ✓ 19 2.854 0.010 ✓ 

Happy 
AU 6 Activation 19 2.179 0.042 ✓ 19 1.000 0.330  

AU 12 Activation 19 2.854 0.010 ✓ 19 2.854 0.010 ✓ 

Sad 

AU 1 Activation 19 3.943 <0.001 ✓ 19 4.818 <0.001 ✓ 

AU 4 Activation 19 4.359 <0.001 ✓ 19 5.338 <0.001 ✓ 

AU 11 Activation 19 --* --  19 --* --  

AU 15 Activation 19 5.339 <0.001 ✓ 19 2.517 0.021 ✓ 

Surprise 

AU 1 Activation 19 4.359 <0.001 ✓ 19 5.339 <0.001 ✓ 

AU 2 Activation 19 4.819 <0.001 ✓ 19 5.940 <0.001 ✓ 

AU 5 Activation 19 2.854 0.010 ✓ 19 3.943 <0.001 ✓ 

AU 25 Activation 19 7.550 <0.001 ✓ 19 10.376 <0.001 ✓ 

AU 27 Activation 19 3.560 0.002 ✓ 19 3.199 0.005 ✓ 

                      *AU not detected 
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4.5 SUMMARY 

 This chapter proposes the CADyFACE stimuli, customizable 3D avatars with FACS labels 

for improved user engagement. Additionally, we propose BeCoME-Net for multi-label AU 

detection of AUs elicited by CADyFACE. We conduct an online feasibility study with 20 adult 

volunteers who complete recognition and mimicry tasks based on CADyFACE while their 

expressions and eye-gaze are recorded. We report the construct validity of these tasks using a well-

known eye-tracking measure and the BeCoME-Net AU predictions. In the next chapter, 

CADyFACE and BeCoME-Net are used in a study aimed at discovering behavioral biomarkers for 

children and young adults diagnosed with ASD.  
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CHAPTER 5 

PILOT STUDY TO DISCOVER CANDIDATE BIOMARKERS FOR AUTISM BASED ON 

PERCEPTION AND PRODUCTION OF FACIAL EXPRESSIONS 

 

5.1 CHAPTER OVERVIEW 

 Identifying stratification biomarkers based on perception and production of facial 

expressions may help explain the heterogeneity of ASD with aims to improve patient care and 

individualize treatment strategies [14]. Behavioral VT and ET enable low-cost, unobtrusive 

acquisition of quantitative behavioral measurements of the face and eyes in naturalistic settings 

[18, 80], which may be subsequently studied using robust statistical tools for biomarker 

identification [213-215]. Online research studies may play a major role in ASD research by 

providing online access to large numbers of participants and longitudinal follow up [216]. The 

design of pilot studies compatible with the online model is an important step towards scalability 

for future large-scale replication and validation of research findings.  

In the next section, we discuss related work on facial expression perception and 

production in ASD within the context of biomarker discovery as well as online studies and 

associated challenges. Then, we describe the contributions of this chapter, including the online 

pilot study of facial expression perception and production among ASD and NT groups of 

participants; assessment of VT and ET derived DVs based on ABC-CT criteria [18] of construct 

validity and group discriminability; and identification of one candidate biomarker and several 

more DVs of interest for future study. 
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5.1.1 RELATED WORK 

 The role of ASD in the perception and production of facial expressions has been studied 

for decades with conflicting findings, in part due to high heterogeneity in the responses of 

individuals diagnosed with ASD. The majority of studies report that autistic individuals have 

greater difficulty (e.g., lower accuracy, higher electroencephalography (EEG) N170 latency) 

compared to NT controls when completing facial expression recognition tasks, while others 

report no group differences [13]. Production of facial expressions has been studied via one of 

two modes of elicitation: 1) spontaneity, i.e., natural elicitation of expressions, or 2) mimicry, 

i.e., imitation of expressions. Spontaneous expressions of autistic individuals have been reported 

to be less frequent, shorter in duration, and lower in quality as rated by NT observers [13].  The 

intensity of spontaneous expressions has been reported to be the same [13, 217], lesser [23, 82], 

or greater (more exaggerated) [82, 85, 218, 219] in individuals diagnosed with ASD compared to 

NT controls. Some studies [202, 220, 221] have also reported greater asymmetry in the 

spontaneous facial expressions of individuals diagnosed with ASD. Regarding facial expression 

mimicry ability, some studies find no group differences, while others report that expressions 

posed by individuals diagnosed with ASD are less congruent or less accurate than NT controls 

[13].  

A more nuanced view of facial expressions in ASD may be revealed through 

stratification of such heterogeneous behavioral responses. In a study of facial expression 

recognition with autistic and NT participants ages 14-55 years, Loth et al. [83] report that 63% of 

their sample of individuals diagnosed with ASD performed more than two standard deviations 

below the NT mean, while a smaller subgroup of about 15% of autistic participants performed as 

well as the NT group. As a part of the EU-AIMS LEAP, Meyer-Lindenberg et al. [84] 
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investigate facial expression recognition as a candidate stratification biomarker for ASD. In their 

sample (participants ages 6-30 years and NT or diagnosed with ASD, and/or mild intellectual 

disability), partitioning individuals diagnosed with ASD into low and high performing subgroups 

accounts for 9-14% of the variance in ASD-related traits, adaptive behavior, and severity of 

social difficulties. Furthermore, Meyer-Lindenberg et al. [84] report neurofunctional differences, 

i.e., significantly lower functional magnetic resonance imaging (fMRI) activation in the 

amygdala and fusiform gyrus for the low performing subgroup, between subgroups. Differences 

in ET to social images, including facial expressions, as a characteristic of ASD has been well 

documented [222]. As a part of ABC-CT, Shic et al. [81] present the Oculomotor Index of Gaze 

to Human Faces (OMI), an aggregated measure of ET to faces in videos of social scenes, as a 

candidate stratification biomarker for ASD. OMI has recently been accepted into the FDA’s 

biomarker qualification program [19]. While OMI focuses on social scenes overall and not on 

facial expressions in particular, recent ET studies on facial expression recognition have also 

found reduced visual attention to the face by participants diagnosed with ASD compared to NT 

controls, as well as greater difficulty in recognizing negative or complex emotions such as 

‘anger’, ‘disgust’, and ‘fear’ [223, 224].  

For measuring facial expression production, FACS [130] is considered the gold standard. 

Quinde-Zlibut et al. [85] use FACS AUs to measure spontaneous facial expression production 

among adult (ages 18-59 years) autistic and NT participants for subgroup identification. For the 

ASD group, they report that increased expressiveness is associated with poorer facial expression 

recognition performance [85]. Moreover, Quinde-Zlibut et al. [85] identify a subgroup of autistic 

adults in their sample that show heightened expressiveness (‘engagement’ summary score from 

the commercially available iMotions AFFDEX software (https://imotions.com/products/ 
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imotions-lab/modules/fea-facial-expression-analysis/), computed as the average activation of 

upper and lower face AUs). Bangerter et al. [82] study the spontaneous facial responses of 

autistic and NT individuals ages 6 to 63 in response to funny videos. Using the iMotions FACET 

software (no longer commercially available), two constituent AUs of a smile   ‘happy’ 

expression are measured: AU 6 and AU 12 [82]. They report that, on average, individuals 

diagnosed with ASD show less activation of AUs 6 and 12 as compared to the NT control group 

[82]. However, within the ASD group, they identify “over-responsive” and “under-responsive” 

subgroups, which display more intense and less intense responses to the stimuli, respectively, as 

compared to the NT group [82]. Using JAKE, Manfredonia et al. [23] study facial expression 

mimicry in individuals ages 6-54 years, including an ASD group (n = 144) and an NT group (n = 

41). They study activation of two AUs, as measured using the iMotions FACET software, per 

each of six facial expressions: ‘anger’ (AUs   and   ), ‘disgust’ (AUs   and 10), ‘fear’ (AUs   

and  ), ‘happy’ (AUs 1  and  0), ‘sad’ (AUs 1 and 1 ), and ‘surprise’ (AUs   and   ) [23]. 

Manfredonia et al. [23] report statistically significant differences between autistic and NT 

individuals’ portrayals of ‘happy’ (AU 1 ), ‘fear’ (AU  ), ‘surprise’ (AU  ), and ‘disgust’ (AU 

 ). They also find significant negative correlations between some AUs (‘happy’ AU 1  and 

‘fear’ AU  ) and social communication scores [23]. Although the purpose of their study is not to 

identify subgroups, Manfredonia et al. [23] report that in some cases, more activation of AUs 

corresponded to a greater severity of symptoms, which may suggest a subgroup of individuals 

with more exaggerated or intense expressions. Drimalla et al. [217] investigate recognition and 

mimicry of facial expressions in a sample of autistic and NT individuals ages 18 to 62 years. 

They report significantly higher recognition accuracy and faster response times for the NT group 

compared to the ASD group [217]. To automatically recognize AUs during expression mimicry 
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of AU-labeled images of actors posing expressions, Drimalla et al. [217] use the open-source 

OpenFace 2.0 [225] software. Drimalla et al. [217] report that the imitated expressions of 

participants diagnosed with ASD are significantly more different than the stimulus expressions, 

with significantly more variance in intensity, and require significantly more time to pose when 

compared to the NT control group. Furthermore, more accurate imitation of facial expressions is 

found to be positively associated with better recognition performance [217]. 

In addition to individual heterogeneity across the spectrum, task design and participant 

characteristics play an important role in the elicitation and measurement of ASD-related 

behaviors. Facial expression stimuli may be presented as either static, i.e., still images, or 

dynamic, i.e., videos or animations. Both static and dynamic expressions have been shown to 

elicit differential responses, e.g., reduced recognition accuracy, in individuals diagnosed with 

ASD as compared to NT controls [13]. Keating and Cook [13] point out a need for both static 

and dynamic expression stimuli to be used in studies of ASD, as it is unclear to what extent 

autistic individuals may rely on static features (e.g., configuration of the face) versus dynamic 

features (e.g., order and speed of moving facial muscles) during processing of facial expressions. 

Effective task design also requires consideration of participant engagement. It has been noted 

that many individuals on the spectrum have an affinity and interest in technology, including 

increased engagement with 3D avatar characters [226, 227]. In an ET study on the visual 

processing of real and avatar faces by children diagnosed with ASD, Pino et al. [75] found that 

participants show increased interest and more visual exploration of the avatar faces compared to 

the real faces. Furthermore, customization of avatars has been recommended as an important 

design consideration for the development of interactive technologies for individuals on the 

spectrum [227, 228] and has been shown to increase task engagement and enjoyment among 
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both NT and autistic individuals  [78]. Individual participant characteristics such as age, gender, 

and intelligence quotient (IQ) may also affect behavioral responses [13]. Alexithymia, a 

subclinical personality trait characterized by difficulty in describing one’s own emotions and 

with a prevalence of approximately 50% of the autistic population [229] and 10% of the NT 

population [230], has also been found to affect perception and production of facial expressions in 

both NT and autistic individuals [13].  

Studies such as the Simons Foundation Powering Autism Research for Knowledge 

(SPARK) [216] demonstrate the recent success of online ASD research. SPARK now has over 

100,000 people diagnosed with ASD and 175,000 of their family members [231] sharing medical 

and behavioral information online through questionnaires and mailing in saliva for genetic 

analysis. The rise of online research has also motivated platforms for remote data collection, 

such as Apple ResearchKit (apple.com/researchkit) which has been applied to ASD research for 

collection of behavioral data in the Autism & Beyond research study [8]. There may be potential 

challenges associated with online research. Recently, it has been reported that online qualitative 

research studies (e.g., focus groups and interviews) have seen a rise in ‘scammer participants’ 

attempting to pose as autistic individuals or their parents [232]. Some characteristics of suspect 

participants include appointment booking data suggesting that they are in different countries than 

they claim to be in, keeping cameras off during Zoom/Teams interviews, brief and vague 

responses, discrepancies in responses (e.g., names and ages changing), frequent inquiries about 

payment, etc. [232]. However, numerous strategies, including careful screening over telephone 

or videoconferencing, requiring the webcam to be turned on at the beginning of the research 

session, and checks to ensure that participants are within the geographic limits of the study (e.g., 

checking the time zone of the appointment booking) may help safeguard data integrity of such 
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studies [232]. Another challenge of online research is diagnostic confirmation. For example, 

SPARK requires its autistic participants to have received a lifetime professional diagnosis of 

ASD. Although diagnoses in the SPARK cohort are not independently verified, the study of the 

validity of self- and caregiver-reported diagnoses has shown good agreement with diagnosis of 

ASD based on electronic medical records [233]. While telehealth research reports that autistic 

individuals tend to be more comfortable and relaxed interacting with clinicians from their homes, 

there may be a need for more parent involvement when interacting with young children [234]. It 

has also been noted that during online videoconferencing, some autistic individuals may find 

their own webcam video distracting [234]. Screening participants for suitability and informing 

participants/parents of what to expect beforehand has been recommended as some children with  

moderate or severe challenging behaviors may be less likely to stay engaged during online 

interactions with clinicians [234].  

 

5.1.2 CONTRIBUTIONS 

 Motivated by recent progress into the discovery and qualification of stratification 

biomarkers for ASD, we have conducted an IRB-approved pilot study on facial expression 

perception and production among children and young adults diagnosed with ASD compared to 

age- and gender-matched NT controls. Prompted by successful online research studies in the 

literature [8, 216, 231] and the global COVID-19 pandemic, this pilot study has been conducted 

online with steps taken to ensure the integrity of the data and comfort of participants [234]. 

Participants have completed recognition and mimicry tasks using previously validated static and 

dynamic stimuli based on customizable 3D avatars [235] while their webcam captures ET and 

VT of the face. Since the avatar stimuli are labeled with AUs, we are able to define constructs for 
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expression mimicry based on the avatar AUs. It has been shown that facial expression analysis 

models that are trained using adult expressions (such as OpenFace 2.0 and iMotions) may 

perform poorly on child facial expressions [87, 236]. Therefore, we use state-of-the-art deep 

neural network models [87, 235], that have undergone domain adaptation for use in our age 

group (children and young adults, ages 8 to 20 years) [87, 237], to extract facial expression and 

AU labels from the webcam images for behavioral VT. Furthermore, we measure the asymmetry 

of facial expressions in ASD, which has been investigated by few prior studies [202, 220, 221]. 

We evaluate our D s (e.g., participants’ facial expressions, activations and asymmetry of AUs, 

ET measurements, etc. in response to different avatar-rendered facial expressions) using ABC-

CT’s criteria of construct validity and group discriminability in order to identify candidate 

stratification biomarkers for future study. Given the large number of parameters designed to 

capture the AUs, and their complex structures, the use of statistical methods becomes useful to 

determine the functional forms of the interactions and build group classifications, e.g., ASD vs 

NT, for group discriminability. The methods we propose are built from the Boruta algorithm 

models [86, 213, 238] that circumvent unrealistic assumptions of normality and independence in 

order to capture and showcase class behaviors.  We identify one candidate biomarker plus 

fourteen additional DVs that may be of interest for future research. 

 The remainder of this chapter is organized as follows. Section 5.2 describes methodology 

including the study protocol and data analyses. Sections 5.3 and 5.4 present results and 

discussion, respectively. Section 5.5 discusses limitations, and Section 5.6 concludes with a brief 

summary.  
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5.2 METHODS  

 This section describes the protocol of the proposed study and analytic plan, including 

IRB approval, groups of participants and inclusion/exclusion criteria, recruitment and screening, 

informed consent and assent, protection of participant privacy, phenotypic measures, remote 

experiments and collection of data, data acquisition rates, derivation of DVs, constructs, 

imputation of missing DVs, application of Boruta methods to group discriminability, and power 

analysis.  

 

5.2.1 IRB APPROVAL 

 The IRBs at ODU and EVMS have reviewed and approved the proposed study. The 

EVMS and ODU IRB approval numbers are 19-06-EX-0152 and 1424272-21, respectively. 

Approval letters from ODU and EVMS IRBs may be found in Appendices B and C, respectively.   

 

5.2.2 GROUPS OF PARTICIPANTS, INCLUSION AND EXCLUSION CRITERIA 

 Participants include English-speaking children and young adults between ages 8 to 20 

years and residing in the United States. All participants are required to be generally healthy, with 

either no diagnosis of mood disorders or no change in medication regimen for six months, and 

IQ of 70 or above. Two groups have been recruited: an NT group and a group of individuals who 

have received a diagnosis of ASD (henceforth, ASD group). Inclusion and exclusion criteria for 

each group follow.  
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5.2.2.1 ASD GROUP 

 The ASD group includes English-speaking individuals (ages 8 to 20) diagnosed with 

ASD, residing in the United States, generally healthy, with either no diagnosis of mood disorders 

or stable mood disorder (off medications and stable OR on the same dose of medication(s) for six 

months), IQ 70 or above, and the ability to sit in a chair, attend to a computer monitor, and use a 

mouse to interact with computer software for one hour. The following individuals are excluded 

from the ASD group: individuals age <8 years or ≥ 1 years at time of study recruitment, not 

English-speaking, not residing in the United States, not diagnosed with ASD, have history of 

severe and chronic illnesses affecting general health, have diagnosis of mood disorders without 

stable medication regimen for six months, IQ <70, and/or who will be unable to sit in a chair, 

attend to a computer monitor, and use a mouse to interact with computer software for one hour. 

 

5.2.2.2 NT GROUP 

 The NT group consists of generally healthy, NT individuals residing in the United States 

that are age-matched and gender-matched with the individuals in the group with ASD. These 

individuals have no history of severe and chronic diseases affecting general health. Participants 

with mood disorders have reported that they are stable without medications or on a stable dose of 

medication(s) for six months. 

 

5.2.3 RECRUITMENT AND SCREENING 

 Participants for the ASD group have been recruited via flyers distributed locally and 

nationwide through the CHKD General Academic Pediatrics and Developmental Pediatrics 

Clinics; Autism Society Tidewater Virginia and other affiliates of the Autism Society across the 
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continental United States (Acadiana in Louisiana, Central Virginia, Colorado, Iowa, Minnesota, 

Oregon, Texas, Inland Empire in California); Parents of Autistic Children of Northern Virginia; 

the Autism Science Foundation; the Organization for Autism Research; and Autism-related 

Facebook groups (Autism Parents Hampton Roads, Autism Research Study Database, and 

Autism – All Across the Spectrum). Participants have been recruited for the NT group through 

flyers posted at CHKD General Academic Pediatrics and ODU. Flyers for both groups have been 

posted to the ODU Vision Lab website and posted at local public libraries and community 

centers. 

 To confirm that all eligibility criteria are met and to safeguard against possible scammer 

participants, a phone screening interview has been conducted with each participant or their 

parent/guardian via their United States-based telephone number. Following screening, 

participants are asked to provide their time zone during scheduling. The time zones are 

confirmed based on timestamps in scheduling emails. Given the sensitive nature of diagnostic 

records [232], participants are invited, but not required, to provide the research team with 

documentation of diagnosis.  During screening, all participants confirm that they meet the 

following minimum technology requirements: 1) access to a personal computer with Internet, 2) 

webcam, 3) headphones or speakers. 

 

5.2.4 INFORMED CONSENT AND ASSENT 

 Consent/assent has been obtained electronically as follows. For potential participants who 

meet the screening criteria, the participant (or parent/guardian if the participant is <18 years of 

age) is asked to provide an email address to which the Zoom session links and consent/assent 

documents are sent. The potential participant or parent/guardian reviews the consent/assent 
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documents prior to the first virtual study visit.  During the first virtual study visit, a member of the 

research team explains the informed consent form to the participant or parent/guardian. During the 

session, the participant or parent/guardian is given the opportunity to review the consent form and 

ask any questions. The study is explained to the participant at an age-appropriate level. To collect 

the signatures, the participant (if age 18 or older) or parent/guardian is asked to sign the consent 

form by either printing, signing, and scanning, OR by providing their electronic signature. 

Similarly, child assent (for participants under age 18) is obtained either by having the child type 

their name on the signature line or the parent/guardian may choose to print a copy that the child 

signs and the parent scans. The signed electronic copies are returned to the investigator via email 

before moving to the next step of the study.  

 

5.2.5 PROTECTION OF PARTICIPANT PRIVACY 

 Only IRB-approved investigators for this study have access to the data. To ensure 

participant confidentiality, data is identified only by a coded participant number. A key with the 

non-identifying participant number linked to the participant’s name is kept separate from the 

database in a password protected electronic file. 

 

5.2.6 PHENOTYPIC MEASURES 

 To measure IQ, all participants complete the Kaufman Brief Intelligence Test, Second 

Edition (KBIT-2). The KBIT-2 has been administered over Zoom by an investigator trained in 

the administration of this assessment. To measure alexithymia traits, participants 18 or older 

complete the Bermond-Vorst Alexithymia Questionnaire (BVAQ). For participants under 18, a 

parent guardian completes the Children’s Alexithymia Measure (CAM) for their child. 



111 

 

 

Participants are also asked to complete two psychological research measures and a well-known 

multi-sensory integration task: 

• Reading the Mind in the Eyes Task (REMT) 

(http://www.midss.org/content/reading-mind-eyes-test) 

• Cambridge Memory Test of Faces for Children (CMTF) 

(https://www.ccd.edu.au/services/tools/CFMTC/index2.html) 

• McGurk Effect 

(https://openwetware.org/wiki/Beauchamp:Stimuli#McGurk_and_Control_Audiovisual_

Speech_Syllables) 

 

5.2.7 REMOTE EXPERIMENTS AND COLLECTION OF DATA 

 Motivated by successful online research studies [8, 216, 231], we have designed an 

online study protocol to conduct during the COVID-19 pandemic. Experiments have been 

conducted over a Zoom call between the participant (and participant’s parent guardian if the 

participant is under 18 years old) and research team. The call begins with the webcam turned on 

in Zoom. A researcher checks that the participant is centered in front of their webcam and 

instructs the participant or parent/guardian to navigate to a web URL where the experimental 

tasks are hosted. Once at the web URL, the webcam is disconnected from Zoom and the 

participant or parent/guardian is instructed to give the website permission to access the webcam 

feed. To prevent participants from being distracted by their own webcam video [234], no visual 

webcam feed is shown during the experimental tasks.  Participants complete recognition (REC) 

and mimicry (MIM) tasks using the validated, customizable avatars as previously described in 

Chapter 4. During the REC task, the participant is asked to click the button for which of six 
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expressions (‘anger’, ‘disgust’, ‘fear’, ‘happy’, ‘sad’, or ‘surprise’) they recognize as being 

shown on the avatar’s face. During the MIM task, the participant is asked to pose the same 

expression as the avatar in front of their webcam. Given possible variations in engagement and 

responses to static or dynamic stimuli, each task is completed under four conditions: 

uncustomized avatar with static expressions (US), uncustomized avatar with dynamic 

expressions (UD), customized avatar with static expressions (CS), and customized avatar with 

dynamic expressions (CD). The order of tasks and conditions is REC-US, MIM-US, REC-UD, 

and MIM-UD, followed by an avatar customization screen, and then REC-CS, MIM-CS, REC-

CD, and MIM-CD. Conditions involving the uncustomized avatar are completed first to avoid 

biasing participants’ responses to the uncustomized avatar (e.g., due to disappointment) after 

having created their customized avatar. For each task and each condition, each of the six 

expressions (‘anger’, ‘disgust’, ‘fear’, ‘happy’, ‘sad’, ‘surprise’) is shown twice for a total of 1  

trials. The order of expressions is randomized within each task and condition. WebGazer.js 

(https://webgazer.cs.brown.edu/) [212] is used to record video frames for facial VT and webcam-

based ET fixation coordinates from the participants’ webcams. Participants are offered breaks in 

between each task and informed that they may at any time request to take as many additional 

breaks as needed. For each participant, the entire visit including breaks is approximately one 

hour in duration. Upon completion of the study tasks, each participant is compensated with a 

$10.00  isa gift card (valid only in the United States), emailed to the participant’s email address 

on file. 
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5.2.8 DATA ACQUISTION RATES 

 To study acquisition rates for different types of data (e.g., VT, ET) and patterns of 

possible data loss (e.g., due to participants moving out of frame, ET track loss, etc.), we report 

the percentage of missing values for each group per task, condition, and expression.  

 

5.2.9 DERIVATIONS OF DVS 

 Our DVs may be described using (stimulus, measurement) pairs. Stimulus refers to a 

particular expression (‘anger’, ‘disgust’, ‘fear’, ‘happy’, ‘sad’, ‘surprise’) under a particular 

stimulus condition (US, UD, CS, or CD) presented during a particular task (REC or MIM). The 

measurements are defined based on ET, VT, and button click data collected from the 

participants. There are 312 DVs in total as follows. During the REC task, two types of 

measurements are collected:  

1. The participants’ recognition accuracy (%Acc) is calculated based on the percentage of 

correct responses (clicking the button labeled with the name of the expression that is 

shown on the avatar).  

2. Following Shic et al. [81], we compute %Gaze Face as the percentage of participants’ ET 

fixation duration gazing at the avatar’s face.  

The total number of DVs for the REC task is 2 𝑓𝑜𝑟 %𝐴𝑐𝑐 𝑎𝑛𝑑  %𝐺𝑎𝑧𝑒 𝐹𝑎𝑐𝑒 ×

6 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 ×   𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 =  8. During the MIM task, four different types of 

measurements are collected as follows:  

1. The age-appropriate facial expression classification model described in Chapter 3 [87] is 

used to predict the participants’ mimicked expressions from  T. The model outputs 

softmax probabilities (range 0 to 1) for each expression (‘anger’, ‘disgust’, etc.). The 
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softmax probability corresponding to the stimulus expression is used as a measurement of 

the participants’ ability to mimic the avatar’s overall expression (EXP  measurement). 

2. The participants’ ability to mimic each AU presented by the avatar is quantified by the 

predicted AU activation (ACT measurement, range 0 to 1) in VT frames using an AU 

model we adapt from Chapter 4 [235].  

3. The left-right asymmetry of the participants’ AU activations (ASYM measurement) is 

computed as the difference of left-right activations for the AU in VT frames as predicted 

by the AU model we adapt from Chapter 4 [235]. 

4. We compute %Gaze Face based on ET in the same way as for the REC task.   

The total number of DVs for the MIM task is (2 𝑓𝑜𝑟  𝐸𝑋𝑃𝑅 𝑎𝑛𝑑 % 𝐺𝑎𝑧𝑒 𝐹𝑎𝑐𝑒 ×

6 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠 + 2 𝑓𝑜𝑟 𝐴𝐶𝑇 𝑎𝑛𝑑 𝐴𝑆𝑌𝑀 × (7 𝐴𝑈𝑠 𝑖𝑛 ′𝑎𝑛𝑔𝑒𝑟′ + 2 𝐴𝑈𝑠 𝑖𝑛 ′𝑑𝑖𝑠𝑔𝑢𝑠𝑡′ +

7 𝐴𝑈𝑠 𝑖𝑛 ′𝑓𝑒𝑎𝑟′ + 2 𝐴𝑈𝑠 𝑖𝑛 ′ℎ𝑎𝑝𝑝𝑦′ +   𝐴𝑈𝑠 𝑖𝑛 ′𝑠𝑎𝑑′ +   𝐴𝑈𝑠 𝑖𝑛 ′𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒′)) ×

  𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠  = 26 .  8 𝑅𝐸𝐶 𝐷𝑉𝑠 + 26  𝑀𝐼𝑀 𝐷𝑉𝑠 =  12 𝑡𝑜𝑡𝑎𝑙 𝐷𝑉𝑠. We use 

Ganin and Lempitsky [237]’s unsupervised domain adaptation method to adapt the AU model 

from Chapter 4 [235] for our age group by finetuning the network on facial expression samples 

collected in this study for 50 epochs with a leaning rate of 1e-7. Using the adapted model, ACT 

and ASYM values are obtained for 16 AUs (AUs 1, 2, 4, 5, 6, 7, 10, 11, 12, 15, 17, 20, 23, 25, 

26, 27). For each task, each measurement is computed for each of the six expressions and four 

stimulus conditions. Then, the DVs are specified as (stimulus, measurement) pairs such as 

(MIM-US ‘Happy’,  T ACT AU  ) or ( EC-CD ‘Sad’, ET %Gaze Face).  
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5.2.10 CONSTRUCTS  

 Following ABC-CT [18, 80, 81], we evaluate the construct validity of each DV based on 

whether the expected response is elicited in the NT group and use one sample t-tests to test for 

validity. The construct for %Acc based DVs during REC is intact expression recognition, with 

null hypothesis H0: μ=1 .7% and alternative Ha: μ >16.7%, i.e., the NT mean for %Acc is greater 

than chance (1 clicked expression button / 6 total expression buttons = 16.7%). The construct for 

DVs measuring %Gaze Face during REC and MIM is gaze preference to the face, with H0: μ 

=15.0% and Ha: μ >15.0%, i.e., the NT mean for %Gaze Face is greater than random gaze (the 

face occupies 15.0% of the visual scene) [81]. Intact expression mimicry is the construct for DVs 

measuring EXPR and ACT of AUs during the MIM task. For EXPR, H0: μ =16.7% and Ha: μ 

>16.7% (greater than chance).  For ACT of AUs, H0: μ =0 and Ha: μ >0 (AU is present). The 

expected response in the NT group for ASYM of AUs is symmetrical AU activation. We 

consider H0: μ =0 (symmetrical activation) and Ha: μ ≠0 (asymmetrical activation). For all D s 

except those based on ASYM of AUs, the construct is valid if H0 is rejected. For ASYM of AUs, 

we consider the construct valid if the corresponding construct for ACT of the AU is valid and we 

fail to reject H0. 

 

5.2.11 IMPUTATION OF MISSING DVS 

Especially when working with children, it is possible for data to be lost due to 

participants moving out of their calibrated positions. To impute any missing DVs, we evaluate 

the performance of five different imputation methods on our data set using samples with no 

missing values. These five methods include simple imputation with 1) the mean or 2) the median 

value of the DV, multiple imputation by chained equations (MICE) [239, 240] using 3) Bayesian 
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ridge regression or 4) random forest regression, and 5) k-nearest neighbors (KNN) imputation 

[241].  

We follow prior studies [240, 242] to design an experiment to compare among the five 

imputation methods. From the full data set, we determine the set of DVs that are missing for one 

or more samples. Next, we identify a reduced data set of samples with no missing DVs. Then, we 

repeat the following procedure for each target DV in the set of all missing DVs: 

1. We consider LOOCV of the reduced data set (samples with no missing values) to obtain 

train/test splits of the data. In LOOCV, each sample serves as the test set once and 

remaining samples form the train set. 

2. For each split, we save the ground truth value of the target DV from the test sample. 

Then, we assign ‘not a number’ (‘NaN’, denotes missing) to the target D  in the test 

sample.  

3. For each sample in the train set, we randomly assign DVs from the set of all missing DVs 

to ‘NaN’ with a probability of  0%. This results in a train set with  0% missing values 

among DVs from the set of missing DVs.  

4. We perform imputation with each of the methods. 

5. We repeat steps 2-4 for each of the train/test splits. Using the stored ground truth values 

and imputed values, we compute evaluation metrics: MSE, root RMSE, and MAE. 

We use Scikit-learn (https://scikit-learn.org/) for our implementation. For MICE, we use 

mean imputation as the initial strategy and obtain the imputed values by averaging over ten 

repeated imputations. We use the default settings for Bayesian ridge regression. For random 

forest, we use ten trees in the ensemble. For KNN, we consider the five nearest neighbors. We 

average the evaluation metrics over all missing DVs to obtain aggregated metrics for 
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performance comparison among imputation methods. We use the best performing method to 

impute missing values in the full data set.  

 

5.2.12 GROUP DISCRIMINABILITY 

Among the DVs with valid constructs, we use the Boruta method [86] to find all DVs that 

are relevant in discriminating between the NT and ASD groups. To make use of the Boruta 

method, we consider all DVs with valid constructs as features and group (ASD or NT) as the 

classification labels. Originally developed with genetics research in mind, Boruta is an ‘all-

relevant’ feature selection method that is appropriate for handling correlated features [86], as is 

expected to be the case with our DVs. For example, ACT AU 6 and ACT AU 12 are expected to 

occur together during the mimicry of a ‘happy’ expression [130]. Boruta offers numerous 

advantages: identification of all discriminative features given a specified Type I error rate 𝛼, 

high stability of feature selections, and because it is based on trees, no assumption on the 

distribution of the data [86, 213]. 

Boruta is implemented as a wrapper around the random forest classification algorithm, an 

ensemble method comprising decision trees independently developed on different bootstrapped 

samples of the data [86]. Each tree in the forest assigns an importance value to each feature in 

the tree based on its contribution to the classification loss [86]. To calculate the importance of 

each feature in the forest, the average loss for the feature among all trees in which it is present 

may be divided by its standard deviation to generate a Z score [86]. These Z scores are used to 

measure feature importance in the Boruta algorithm [86]. Then, Boruta works as follows [86]:  
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1. The information system is extended by making copies of all of the features, called 

‘shadow features’. To remove correlations with the classification labels, the sample 

values within each of the shadow features are permuted.  

2. The random forest algorithm is run on the extended information system to determine the 

importance values for the features and shadow features.  

3. The percentile (𝑝𝑒𝑟𝑐) of the shadow features’ importance is used as a reference value. 

Features that have a higher importance than the reference value are assigned a ‘hit’. In 

standard Boruta, 𝑝𝑒𝑟𝑐 = 100, so features must have higher importance than the most 

important shadow feature to be assigned a ‘hit’.  

4. Steps 1-3 are repeated for a specified number of iterations or until all features are deemed 

‘important’ or ‘unimportant’. After each iteration, p-values are computed using the 

binomial distribution, e.g., a feature is assigned a ‘hit’ 𝑘 times in 𝑛 iterations (Bernoulli 

trials) with the null hypothesis that the probability of a ‘hit’ 𝑝 is 0.5, i.e., H0: 𝑝 = 0. . 

Two one-tailed binomial tests are performed: a test of rejection (Ha: 𝑝  0. ) and a test of 

confirmation (Ha: 𝑝 > 0. ). In the test of confirmation, we consider features with a 

Bonferroni-corrected p-value of less than 𝛼 = 0.0  as ‘important’. Similarly, features 

with a Bonferroni-corrected p-value of less than 𝛼 = 0.0  per the test of rejection are 

considered ‘unimportant’. 

When the number of samples is small, there is a greater likelihood that the permuted 

shadow features are correlated with the classification labels by chance [238]. To address this 

issue, a modified version of Boruta, called r-Boruta [238], that adjusts 𝑝𝑒𝑟𝑐 to account for this 

chance correlation may be used. The new value of  𝑝𝑒𝑟𝑐 is determined by generating a large 

number of random features (100,000 in our case), computing the correlation coefficients between 
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the random features and classification labels, and taking the maximum absolute value times 100 

as 𝑝𝑒𝑟𝑐 [238]. We use the BorutaPy library (https://github.com/scikit-learn-contrib/boruta_py) 

implementation of Boruta and r-Boruta. Following BorutaPy’s documentation, we set the 

maximum tree depth to 5, allow BorutaPy to dynamically adjust the number of trees, and set the 

maximum number of iterations to 1000.  

 

5.2.13 POWER ANALYSIS 

We use Acharjee et al. [213]’s PowerTools framework for power analysis of candidate 

biomarkers. PowerTools uses the observed effect size for each DV to generate multiple synthetic 

data sets following a series of sample sizes (e.g.,   ,   ,   , …). The associated statistical power 

for each sample size is reported. 

 

5.3 RESULTS 

This section presents findings including participant characteristics, data loss, construct 

validity, imputation study results, group discriminability, and power analysis. 

 

5.3.1 PARTICIPANT CHARACTERISTICS 

Twenty-two participants (11 in each group) are included in our final analysis. ASD and 

NT groups are selected from a total of 32 volunteers (11 diagnosed with ASD and 21 NT) who 

completed the study. The ASD group includes all 11 participants diagnosed with ASD. The NT 

group of 11 participants is formed by matching NT participants with participants in the ASD 

group on age (±1 year) and gender. Eight out of eleven participants in the ASD group have 

provided documentation of diagnosis. CAM [243] and BVAQ [244] alexithymia scores are 
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standardized based on the population values reported in their respective publications. We obtain 

alexithymia scores for all participants except two in the ASD group. For two participants in the 

ASD group, have not received the REMT, and for one participant in the ASD group, we do not 

have a CMTF score. Participant characteristics are summarized in Table 11.  

Shapiro-Wilk tests show that the data collected from the participants exhibit possible 

departure from normality and may have extreme values or may be thought of as a mixture of 

feature characteristics. Due to time dependence associated with ordering of tasks, the data 

collected includes correlation and does not reflect complete independence. To further explore 

these observations about the data, we propose the deep neural network models and Boruta/r-

Boruta models that are appropriate for data with correlation and do not assume independence or 

normality of the data. 

 

Table 11. Participant characteristics (M: mean, SD: standard deviation) 

 

 

 

 

Characteristic ASD Group TD Group 

Number of participants 11 11 

Gender (N Males, N Females) 8, 3 8, 3 

%Male 72.7% 72.7% 

Age in years (M, SD) 14.09 (4.44) 14.00 (4.05) 

KBIT Full-scale IQ (M, SD) 100.09 (15.16) 115.45 (12.48) 

KBIT Verbal IQ (M, SD) 98.27 (14.42) 110.54 (9.08) 

KBIT Nonverbal IQ (M, SD) 101.54 (20.04) 115.72 (17.68) 

Standardized Alexithymia Score (M, SD) 0.0103 (0.5315) -0.3427 (0.9709) 

REMT (M, SD) 0.6905 (0.1364) 0.7482 (0.0965) 

CMTF (M, SD) 0.8063 (0.1568) 0.9146 (0.0576) 

McGurk (M, SD) 0.3636 (0.3931) 0.4091 (0.3754) 
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5.3.2 DATA LOSS 

Table 12 reports the percentage of missing samples by task and data modality (REC ET 

REC button clicks, MIM ET, and MIM VT). One participant in the ASD group (9.09%) and two 

participants in the NT group (18.18%) do not have any ET samples due to technological issues 

(e.g., incompatible hardware, low Internet bandwidth). Additional ET samples are lost due to 

track loss, e.g., due to participants moving out of range. The primary reason for loss of VT is 

participants leaning in too close to the camera (cutting off their lower face). The greatest data 

loss is seen for the CD condition, which occurs at the end of the experimental session, likely due 

to participants moving out of their original calibrated position. To address data loss, we impute 

missing values using the robust KNN imputation approach, which provides the best performance 

in the imputation study with much higher levels of simulated data loss (50%) than observed in 

the experimental data.    

 

5.3.3 CONSTRUCT VALIDITY 

A total of 220 out of 314 DVs have a valid construct. Table 13 summarizes the results for 

the tests of construct validity. A construct may be invalid either because the task does not elicit 

the expected response in the NT group and/or we are unable to measure the elicited response. We 

further validate these findings citing relevant literature in the discussion section. 

 

5.3.4 IMPUTATION STUDY 

Comparison of five imputation methods (mean imputation, median imputation, MICE 

using Bayesian ridge regression, MICE using random forest, and KNN imputation) is carried out 

with nine participants that have no missing data. Table 14 reports mean MSE, RMSE, and MAE 
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metrics, averaged over all DVs in the missing set. The missing set consists of DVs that have one 

or more missing samples in the full data set, e.g., 20 or 21 samples instead of the full 22 samples. 

There are 158 DVs in the missing set. We note that 158 DVs may appear more inflated than 

actuality as loss of VT samples, e.g., due to a participant leaning in too close to the webcam, may 

affect multiple D s. For example,  T for MIM of ‘anger’ during any stimulus condition (US, 

UD, CS, CD) is associated with 7 ACT DVs, 7 ASYM DVs, and 1 EXPR DV. Therefore, loss of 

one  T frame during MIM of ‘anger’, e.g., under the US condition, will add 1  D s to the 

missing set, even if only 1 frame is missing out of the total possible 22. Also, our imputation 

study simulates higher levels of data loss (50% of samples missing for all DVs) than present in 

the full data set. The lowest MSE, RMSE, and MAE are achieved by KNN imputation. 

Therefore, we use KNN imputation to impute the missing values in the full data set.  

 

5.3.5 GROUP DISCRIMINABILITY  

Considering a Type I error rate of 𝛼 = 0.0 , we identify one candidate biomarker with 

Boruta: (MIM-US ‘Disgust’, ET %Gaze Face). To understand the partitioning of groups using 

(MIM-US ‘Disgust’, ET %Gaze Face), we fit the CIT [108] shown in Figure 24. The CIT 

identifies a binary partitioning of samples based on (MIM-US ‘Disgust’, ET %Gaze Face) and 

tests the null hypothesis of independence between (MIM-US ‘Disgust’, ET %Gaze Face) and the 

group label. The null hypothesis is rejected with a p-value of 0.001. The CIT identifies the 

partition between groups as 0.53 with all participants in the ASD group, as well as three 

participants from the NT group, having a value of (MIM-US ‘Disgust’, ET %Gaze Face) that is 

greater than 0.53.  
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Table 12. Percentage of missing data by task, condition, and expression for ASD and NT groups 
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Table 13. Construct validity for DVs by task, condition, and expression ('check' denotes a valid 

construct; for AUs, a 'check' without '*' means both ACT and ASYM are valid while a 'check' 

with '*' means only ACT is valid) 
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Table 14. Comparison of five different imputation methods 

 

 

 

Figure 24. CIT of Group (ASD or NT) with Boruta-selected DV 

 

For r-Boruta, we determine the value of 𝑝𝑒𝑟𝑐 for our sample size to be 84.89%. Fifteen 

DVs are deemed important by r-Boruta, including (MIM-US ‘Disgust’, ET %Gaze Face) 

identified by Boruta. Table 15 reports these fifteen DVs along with their group means and 
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standard deviations. Figure 25 shows the box plots by group for the fifteen DVs selected by 

Boruta and r-Boruta.  

 

Table 15. Group Means (M) and Standard Deviations (SD) for DVs selected by Boruta 

(italicized) and r-Boruta (all) 
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Figure 25. Box plots for fifteen DVs selected by Boruta (outlined in red) and r-Boruta (all) 
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5.3.6 POWER ANALYSIS  

Figure 26 shows the PowerTools [213] output for estimated statistical power using a 

series of simulated samples of sizes 22, 44, 88, 176, 352, and 704 and the observed effect sizes 

for the fifteen DVs selected by Boruta and r-Boruta. The power analysis corroborates the choice 

of Boruta for candidate biomarker selection, showing that maximum power for (MIM-US 

‘Disgust’, ET %Gaze Face) is achieved for our current sample size of   .  

 

 

Figure 26. PowerTools visualization of observed effect sizes for selected DVs (candidate 

biomarker selected by Boruta in italics) and statistical power estimates for different sample sizes 
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5.4 DISCUSSION  

Our findings demonstrate the feasibility of DVs related to facial expression perception 

and production in stratification biomarker discovery for ASD, considering the criteria of 

construct validity and group discriminability. With regard to construct validity (Table 13), 

invalid constructs may be due to limitations of the measurement tools (e.g., deep neural network 

models) or failure to elicit the expected response from NT participants (e.g., participants do not 

look at the face or do not produce the expression as expected). 

For the tools, we use the stimuli and models for AU measurement developed in Chapter 

4. Prior study of these tools report limitations for construct validity. In our prior study (Chapter 

4) [235] of these tools, the following AUs are reported to have invalid constructs: AUs 5, 23, and 

   during ‘anger’; AU 10 during ‘disgust’; AU  0 during ‘fear’; AU   during ‘happy’; and AU 

11 during ‘sad’. Therefore, it is an expected finding that some of our constructs involving these 

same AUs (5, 6, 10, 11, 20, 23, and 26) are invalid. For the DVs involving EXPR measurements, 

some of the constructs for ‘fear’ (US, UD, CS, CD), ‘happy’ (US, CS, CD), and ‘sad’ (US, CS) 

are invalid. This may be due to differences in the image characteristics of our data set (e.g., 

lighting, backgrounds) or in the imitated expressions from our NT group compared to the 

prototypical expressions of the model’s training data (Chapter 3) [87]. 

NT participant characteristics may also have an impact on construct validity. Studies of 

facial expression production with NT children have reported that negative expressions may be 

more difficult to elicit from children, including ‘anger’ [245], ‘fear’ [141], and ‘sad’ [245]. 

Furthermore, Grossard et al. [245] find that NT children produce significantly higher quality 

facial expressions on request versus during imitation of an avatar and that the imitated 

expressions may be less credible and less recognizable. Therefore, some of the AUs and 
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expressions in our study may be difficult to elicit especially among younger members of our age 

group. This may explain why we see invalid constructs for AU    ‘lips part’ (ACT and AS M 

for US, UD, CD; AS M only for CS) during ‘anger’, and for AU   ‘brow lowerer’ (ACT and 

AS M for US, UD, CD) and AU  7 ‘mouth stretch’ (ACT and AS M for US, UD, CS, CD) 

during ‘fear’. Also, the only two ET D  constructs that are not valid, ( EC-CD ‘Sad’, ET 

%Gaze Face) and (REC-CD ‘Anger’, ET %Gaze Face), both occur at the end (CD condition) of 

the experiment and may be invalid due to waning attention from the some of the participants.  

Assessment of group discriminability criteria using Boruta has identified one candidate 

biomarker (MIM-US ‘Disgust’, ET %Gaze Face). (MIM-US ‘Disgust’, ET %Gaze Face) is 

greater for the ASD group, indicating that participants diagnosed with ASD spend more 

percentage gaze duration to the face while viewing the static ‘disgust’ expression presented on 

the uncustomized avatar compared to the NT group (Table 15). Our results are consistent with 

existing literature noting increased preference and engagement towards avatars among 

individuals diagnosed with ASD [226, 227], as well as Pino et al. [75]’s finding of higher gaze 

duration towards negative emotions. Using r-Boruta, we also identify fourteen additional DVs of 

interest, which we interpret with caution. No DVs involving %Acc or EXPR measurements are 

selected by either Boruta or r-Boruta. Like (MIM-US ‘Disgust’, ET %Gaze Face), the other ET 

DVs identified by r-Boruta ((REC-CD ‘Fear’, ET %Gaze Face), ( EC-CS ‘Fear’, ET %Gaze 

Face), (MIM-CS ‘Sad’, ET %Gaze Face), and (MIM-UD ‘Sad’, ET %Gaze Face)) also involve 

negative emotions (‘fear’ or ‘sad’) and except for (MIM-CS ‘Sad’, ET %Gaze Face), report 

higher percentage gaze duration in the ASD group compared to the NT group (Table 15).  

Six DVs involving ACT of AUs ((MIM-UD ‘Anger’,  T ACT AU 7), (MIM-CD ‘Fear’, 

VT ACT AU 5), (MIM-CS ‘Fear’,  T ACT AU  ), (MIM-US ‘Fear’,  T ACT AU  ), (MIM-
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CD ‘Happy’,  T ACT AU  ), (MIM-US ‘Surprise’,  T ACT AU  )) are selected by r-Boruta. 

Four of these DVs ((MIM-CD ‘Fear’,  T ACT AU  ), (MIM-CS ‘Fear’,  T ACT AU  ), (MIM-

US ‘Fear’,  T ACT AU  ), (MIM-US ‘Surprise’,  T ACT AU  )) show greater activation, on 

average, by the ASD group compared to the NT group (Table 15). These findings corroborate 

prior mimicry studies that report more intense ‘fear’ [218] and ‘surprise’ [219] expressions by 

the ASD group relative to the NT group. In Manfredonia et al. [23]’s study, group differences are 

also reported for ‘fear’ and ‘surprise’ expressions, specifically in AU   ‘upper lid raiser’. 

Manfredonia et al. [23]’s ASD group shows lower activation of AU   on average relative to the 

NT group. However, Manfredonia et al. [23] elicit facial responses using textual prompts rather 

than mimicry. On average, our ASD group has lower (MIM-UD ‘Anger’,  T ACT AU 7) and 

(MIM-CD ‘Happy’,  T ACT AU  ) compared to the NT group (Table 15). Prior studies have 

reported more intense [218] or no difference [23, 219] in the production of ‘anger’. However, 

these prior studies use either static expressions [218, 219] or a textual prompt [23] to elicit facial 

responses. Recently, Keating et al. [246] report significantly poorer recognition of dynamic 

‘anger’ among their sample of participants diagnosed with ASD compared to an NT control 

group, even when controlling for alexithymia. It is possible that group differences in responses 

elicited by dynamic ‘anger’ stimuli may also extend to AU production and may be of interest for 

further study. Similar to Bangerter et al. [82], we also find less activation of AU 6 during 

production of ‘happy’ ((MIM-CD ‘Happy’,  T ACT AU  )), on average, in the ASD group 

compared to the NT group. We do not observe [217]’s finding of lower standard deviations of 

AU activations in the NT group compared to the ASD group. Heterogenous findings across our 

study and others may support the presence of subgroups of autistic participants that are more and 

less expressive [85]. However, these are preliminary findings and follow up studies are required.  
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For all five DVs involving ASYM of AUs ((MIM-CS ‘Fear’,  T AS M AU   ), (MIM-

CD ‘Fear’,  T AS M AU  ), (MIM-CS ‘Fear’,  T AS M AU  ), (MIM-UD ‘Surprise’,  T 

ASYM AU 5)) identified by r-Boruta, the ASD group shows higher asymmetry on average than 

the NT group (Table 15). Prior studies [202, 220, 221] on facial expression asymmetry in ASD 

have also found that individuals diagnosed with ASD may have higher levels of asymmetry in 

their expressions, specifically in the activation of left and right levator anguli oris muscles of the 

lower face (associated with AU 1  ‘cheek puffer’, which is not present in the stimulus 

expressions) [202, 221]. In the lower face, we identify one D  that involves AU    ‘lips part’, 

which may be associated with multiple facial muscles including depressor labii inferioris, 

mentalis, and orbicularis oris [130]. While prior studies focus on overall left-right asymmetry 

[220] or a few muscles of the lower face [202, 221], we are able to capture muscle activations of 

the upper face as well. Three D s related to asymmetry of AU   ‘upper lid raiser’ activations 

identified in our analysis suggest that asymmetry of movements of the upper face may also be of 

interest for future study.   

Power analyses (Figure 26) show that maximum power is attained for (MIM-US 

‘Disgust’, ET %Gaze Face) with our current sample size of   , corroborating the use of Boruta 

for reliable selection of candidate biomarkers. For replication of our findings, future studies may 

consider sample size recommendations from Figure 26 based on the DVs of interest and desired 

statistical power. 

 

5.5 LIMITATIONS 

Although our sample size is relatively small, the variance and covariance patterns in our 

sample have been managed by matching participants on age and gender. Further examination of 



133 

 

 

larger data may shed additional information on perception and production behaviors. Our 

intuition in selecting robust DVs guided us in the use of statistical tools (Boruta and r-Boruta) 

that do not require independence or normality assumptions and work well for correlated data. 

Another direction could have been to use nonparametric or more general distribution functions 

(such as copula types). However, with the nonparametric approach, we may lose the dependence 

structure of the data, and with a copula-based approach, the dependence structure will be 

transformed based on the cumulative distribution function at the cost of interpretability. Further 

larger studies that incorporate deep phenotyping of participants and replication samples will 

move findings toward a more comprehensive understanding of these DVs and how they relate to 

IQ and other phenotypic variables (e.g., severity of ASD-related symptoms, social 

communication scores, adaptive function, etc.). 

 

5.6 SUMMARY 

This study demonstrates the feasibility of and provides a framework for ASD 

stratification biomarker discovery based on production and perception of facial expressions. We 

identify one candidate biomarker as well as fourteen additional DVs of interest and provide 

sample size recommendations for future studies. Our study has found evidence of both more and 

less intense expressions in our ASD group, on average, depending on the stimulus type. More 

research is required to confirm and understand the significance of possible subgroups of autistic 

individuals based on these initial findings. Furthermore, we find several important DVs related to 

asymmetry of facial movements among individuals on the spectrum that we hope will facilitate 

follow up studies. Furthermore, we hope that this study will provide a foundation for larger 

studies involving deep phenotyping of participants and replication samples. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

This dissertation investigates facial expression perception and production in behavioral 

imaging (VT) and eye gaze (ET) to identify candidate stratification biomarkers for children and 

young adults diagnosed with ASD. To accomplish this objective, we define three goals for the 

dissertation. The outcomes of the dissertation are summarized for each goal in  

Table 16 and further discussed in Section 6.1 below, followed by directions for future 

work in Section 6.2. 

 

6.1 CONCLUSION 

In the first goal [87], we address the important challenge of age-invariant FEA by 

proposing novel deep domain adaptation and fusion of geometric landmark features to yield a 

deep learning model that is appropriate for FEA across adult and child facial expression 

domains. Accordingly, novel concurrent learning of adult and child facial expressions produces a 

domain-invariant latent feature representation for improved generalizability of facial expression 

classification across age groups. For the first time in the literature, we use the betaMix method to 

perform feature selection for deep learning. Using the betaMix method, we decompose landmark 

features based on their correlations with expression, domain, and identity factors to select and 

fuse useful and explainable features for expression classification that are invariant to domain and 

identity. Our proposed model performs competitively or better over comparison methods 

(baseline CNNs, transfer learning, and other domain adaptation approaches) across multiple 

benchmark data sets. Visualization of SHAP values provides explainability to corroborate the 

classification performance.  
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Table 16. Summary of dissertation outcomes 

Contributions Results Publications 

GOAL 1 (CHAPTER 3): Deep representation learning of adult and child facial expressions using domain 

adaptation fusing facial landmark features 

• Performed novel concurrent adult and child expression 

learning to yield domain-invariant facial expression 

classification. 

• Decomposed facial landmark features based on expression, 

domain, and identity correlations. 

• Proposed novel feature selection for deep learning using the 

betaMix statistical approach. 

• Fused facial landmark measurements with deep feature 

representations for robust expression learning across age 

groups. 

• Provided feature explainability using SHAP values 

The proposed method 

shows competitive or better 

facial expression 

classification performance 

over comparison methods 

for multiple benchmark data 

sets. Explainability and 

visualization of SHAP 

values corroborates the 

facial expression 

classification performance. 

Published three 

conference 

papers  

[43, 44, 88]  

and one journal 

paper [87]  

GOAL 2 (CHAPTER 4): Customizable avatars with dynamic facial action coded expressions for improved user 

engagement 

• Developed six customizable avatars for improved user 

engagement, labeled with AUs by a FACS expert. 

• Trained and evaluated deep learning models for bilateral and 

unilateral AU detection. 

• Improved representation learning by fusing geometric 

landmark and deep learning-based texture features while 

jointly learning AUs and expressions. 

• Proposed novel beta-guided correlation loss to encourage 

feature correlation with AUs while discouraging correlation 

with subject identity. 

• Conducted a feasibility study with twenty heathy adults and 

assessed construct validity of proposed stimuli and 

measurements (AU activations and ET percentage gaze 

duration to the face). 

The proposed AU detection 

model achieves state-of-the-

art performance on the CK+ 

data set, our primary 

benchmark set. Assessment 

of construct validity reveals 

that all constructs are valid 

for ET based measurements 

in response to the stimuli 

and the majority of 

constructs are valid for the 

AU measurements.  

One journal 

paper [89] 

(under review) 

GOAL 3 (CHAPTER 5): Pilot study to discover candidate biomarkers for ASD based on perception and 

production of facial expressions 

• Conducted online pilot study of facial expression perception 

and production during recognition and mimicry tasks with 

participants diagnosed with ASD and matched NT peers. 

• Collected measurements of facial expressions in VT, 

activation and asymmetry of AUs in VT, and ET percentage 

gaze duration to the face while participants interact with 

static and dynamic facial expressions posed by customized 

and uncustomized avatars. 

• Evaluated DVs based on criteria of construct validity and 

group discriminability. 

• Proposed Boruta algorithm models for group discriminability 

to overcome assumptions of normality and independence. 

One candidate biomarker 

(percentage gaze duration to 

the static ‘disgust’ facial 

expression shown by an 

uncustomized avatar) and 

fourteen additional DVs of 

possible interest for future 

study are identified. Based 

on power analysis, a sample 

size of at least 176 (to yield 

a power of at least 0.75 for 

DVs of potential interest) is 

suggested for future studies.  

One journal 

paper [90] 

(under review) 
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The second goal [89] of this dissertation addresses another important challenge: FACS-

labeled avatar-based stimuli for improved user engagement during elicitation of facial expression 

AUs and associated deep learning models for automated measurement of participant AU 

responses. To this end, we have worked with a certified FACS expert to develop customizable 

avatars with dynamic, FACS-labeled animations for six facial expressions (‘anger’, ‘disgust’, 

‘fear’, ‘happy’, ‘sad’, and ‘surprise’). We have also developed deep learning models for multi-

label AU detection, incorporating feature fusion, multi-task learning of AUs and expressions, 

and a novel beta-guided correlation loss to achieve state-of-the-art performance on the CK+ 

benchmark data set that is used as our primary benchmark data set. Construct validity of the 

proposed stimuli and associated measurements (ET percentage gaze duration to the face and 

activation of AUs) is evaluated based on data collected in an online feasibility study of twenty 

healthy adults. Assessment of construct validity reveals that all constructs are valid for ET based 

measurements in response to the stimuli and the majority of constructs are valid for the AU 

measurements. 

Finally, in the third goal [90], we conduct an online pilot study where age- and gender-

matched ASD and NT groups of participants interact with stimuli from Goal 2 while behavioral 

imaging (VT) and eye gaze (ET) of their facial expression production and perception are 

collected. Deep learning models for FEA developed in Goals 1 and 2 are used to process VT 

frames to yield quantitative measurements of participants’ facial expressions in response to the 

stimuli. Candidate stratification biomarker criteria based on construct validity and group 

discriminability are used to assess the DVs derived from ET and VT. For group discriminability, 

we build our approach on Boruta algorithm models to overcome assumptions on the 

independence and normality of the data. Our approach has resulted in the identification of one 
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candidate biomarker for ASD based on percentage duration of ET gaze to a static ‘disgust’ 

expression posed by an uncustomized avatar. We also identify fourteen additional DVs of 

possible interest for future study, including DVs related to activations of AUs 2, 5, 6, and 7 

during production of ‘anger’, ‘fear’, ‘happy’, and ‘surprise’ expressions; asymmetry of AU   and 

AU    activations while posing ‘fear’ and ‘surprise’; and percentage duration of gaze to the 

avatar’s face while viewing ‘fear’ and ‘sad’ expressions. Following a power analysis based on 

the observed effect sizes for these DVs, we recommend a sample size of at least 176 (or 88 in 

each group) for future studies to yield a power of at least 0.75 for all fourteen DVs.  

 

6.2 FUTURE WORK 

 Future research directions may build on any of the aforementioned goals to facilitate the 

development of more sophisticated behavioral measurements, more complex and engaging 

stimuli, and improved experimental design for future studies of biomarker discovery or 

intervention. The measurements proposed in this dissertation do not capture the temporal 

features of participants’ behavioral responses.  ather, we perform our analysis for individual 

frames of VT and aggregate ET information over the duration of the task. Development of 

appropriate methods for analyzing facial expressions and AUs over a sequence of frames may 

yield interesting quantitative measurements of the temporal evolution of expressions. There are 

numerous exciting challenges including the increased complexity of deep learning models and 

(possibly unsupervised) domain adaptation methods that will require training and evaluation with 

limited available labeled data. Time-series features may also be extracted from ET data to build 

new DVs.  
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With regard to the stimuli, improvements may be made to the rigging and appearance 

(e.g., wrinkles) of the 3D avatar models for more accurate rendering of facial expressions and 

AUs. More complex expressions in addition to the basic six (‘anger’, ‘disgust’, ‘fear’, ‘happy’ 

‘sad’, ‘surprise’) used in this dissertation may be created to elicit different combinations of AUs. 

The benefits of expanding the library of expressions for the avatars is twofold. First, it would 

enable study of perception and production of more complex expressions which may better 

differentiate among subgroups on the spectrum. Second, the extended library may be used to 

augment the limited training data for AU detection. While we only use the few basic avatar 

prototypes in this dissertation, the avatar generation software is able to create diverse avatars of 

many different ages, shapes, sizes, etc., at varying levels of realism with millions of possible 

combinations. Therefore, the limiting factor for the creation of a rich and diverse data set of 

avatar facial expressions is the process of FACS labeling. Development of a robust automated 

pipeline to assist with labeling may facilitate this process. Increasing the number and variety of 

customization options available to participants may also increase their engagement and self-

identification with the avatars. 

Future biomarker discovery and biomarker qualification efforts considering facial 

expression perception and production in ASD would benefit from larger sample sizes, which 

may allow for clustering of subgroups on the spectrum. Additionally, having participants 

undergo diagnostic confirmation (e.g., via the Autism Diagnostic Observation Schedule, Second 

Edition (ADOS-2)) and deep clinical phenotyping (e.g., communication scores, adaptive 

behavior scores, etc.) as a part of the research will enable investigation of relationships between 

candidate biomarkers and clinical scores. Test-retest reliability of candidate biomarkers may be 

investigated by having participants take part in multiple visits over time (e.g., after six weeks). 
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Furthermore, recruitment of a replication sample may be done to assess the reliability of the 

research findings for independent cohorts of participants. Integration of FEA models (expression 

classification and AU detection) in the loop with the tasks and stimuli may enable new 

interventions for facial expression mimicry that may provide specific feedback on participants’ 

facial movements. Near real-time ET feedback may be used to prompt and guide participants’ 

gaze towards specific areas of the face. Large studies such as ABC-CT involve large steering 

committees that weigh in on research directions for maximum benefit. Partnering with groups 

such as the Autistic Self Advocacy Network (ASAN) at the design stage of future research 

studies may help steer research in directions most valued by the autistic community.   
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