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ORIGINAL ARTICLE

Eukaryotic microbes, principally fungi and
labyrinthulomycetes, dominate biomass on
bathypelagic marine snow

Alexander B Bochdansky1, Melissa A Clouse1 and Gerhard J Herndl2
1Ocean, Earth and Atmospheric Sciences, Old Dominion University, Norfolk, VA, USA and 2Department of
Limnology and Bio-Oceanography, Division of Bio-Oceanography, University of Vienna, Vienna, Austria

In the bathypelagic realm of the ocean, the role of marine snow as a carbon and energy source for the
deep-sea biota and as a potential hotspot of microbial diversity and activity has not received
adequate attention. Here, we collected bathypelagic marine snow by gentle gravity filtration of sea
water onto 30 μm filters from ~1000 to 3900 m to investigate the relative distribution of eukaryotic
microbes. Compared with sediment traps that select for fast-sinking particles, this method collects
particles unbiased by settling velocity. While prokaryotes numerically exceeded eukaryotes on
marine snow, eukaryotic microbes belonging to two very distant branches of the eukaryote tree, the
fungi and the labyrinthulomycetes, dominated overall biomass. Being tolerant to cold temperature
and high hydrostatic pressure, these saprotrophic organisms have the potential to significantly
contribute to the degradation of organic matter in the deep sea. Our results demonstrate that the
community composition on bathypelagic marine snow differs greatly from that in the ambient water
leading to wide ecological niche separation between the two environments.
The ISME Journal (2017) 11, 362–373; doi:10.1038/ismej.2016.113; published online 20 September 2016

Introduction

Deep-sea life is greatly dependent on the particulate
organic matter (POM) flux from the euphotic layer.
Thus, the quantification of the POM flux into the
ocean’s interior and the attenuation of POM with
depth in the oceanic water column have been major
focal points in oceanographic research in large
international research programs (for example,
Martin et al., 1987; Koeve and Ducklow, 2001;
Buesseler and Boyd, 2009). The POM flux in the
oceanic water column is typically estimated by
collecting particles with sediment traps (Buesseler
et al., 2007; Honjo et al., 2008). However, these
sediment traps collect fast-sinking particles with
much higher efficiency than slowly-sinking parti-
cles, while buoyant particles are not collected at all.
Recently, we demonstrated that bathypelagic parti-
cles in a size range from 400 μm to several mm were
more abundant than expected from the number
spectrum of smaller particles (Bochdansky et al.,
2016). Approximately 30% of these particles did not
contain apparent ballast, such as fecal pellets

or dense phytodetritus, but a large amount of
transparent exopolymer particles (TEP, Alldredge
et al., 1993), which led us to conclude that they
are either neutrally buoyant or slow sinking
(Bochdansky et al., 2016). Neutrally buoyant or
slowly-sinking marine snow has previously been
suspected to contribute significantly to the meta-
bolism of the deep sea, providing hotspots of
microbial diversity and activity (Baltar et al., 2010;
Bochdansky et al., 2010; Burd et al., 2010). Hence, it
is likely that the microbial community composition
and activity on bathypelagic marine snow is funda-
mentally different from that of the ambient water.
Deep-sea studies examining differences between
particle-associated and freely-suspended microbes
so far have primarily been based on high-throughput
sequencing of the 16S and 18S rRNA genes. For
instance, bacterial, archaeal and eukaryotic micro-
bial communities were found to be significantly
different between 0.22 and 3 μm fractions in samples
from the Puerto Rico trench (6000m) (Eloe et al.,
2011). The examination of bathypelagic bacterio-
plankton communities revealed deep phylogenetic
differences between particulate fractions (40.8–20μm)
and free-living cells (0.2–0.8μm) (Salazar et al., 2015).
Microbial communities of all three domains also
differed between sea water samples and sediment
trap (particle interceptor traps) contents (Fontanez
et al., 2015). In a study employing stable isotope
probing, specific particle-associated clades were
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identified that specialize in the degradation of high-
molecular weight compounds (Orsi et al., 2016).
Recently, Pernice et al. (2016) described a highly
variable eukaryotic microbial community composi-
tion that was affected by depth, water masses, as well
as the number of prokaryotes. It is thus possible that
the relative amount and type of marine snow
significantly contributes to this observed variability.

In the present study, we addressed the question
whether the particular conditions in bathypelagic
marine snow, representing oases in the nutritive desert
of the bathypelagic realm, lead to altered microbial
food web structures on bathypelagic marine snow as
compared with the ambient water. We also hypothe-
sized that the abundance relation between prokaryotes
and eukaryotes in deep-sea marine snow more closely
resembles the one in surface waters rather than the
organic nutrient-deprived deep-sea ambient waters.
To this end, we examined the relative distribution
of eukaryotic microbes in general, as well as three
specific subgroups—the kinetoplastids, fungi and
labyrinthulomycetes—in bathypelagic marine snow
collected on 30 μm pore-size filters. The pore size of
the filters was selected to filter large volumes of water
and to target amorphous marine snow. The rationale
for the selection of the three subgroups was as follows.
Fungi have been identified in all marine environments
including the deep sea, hydrothermal vents, sea ice
and in the deep biosphere below the sea floor
(for example, Kutty and Philip, 2009; Le Calvez et al.,
2009; Edgcomb et al., 2011a; Morgan-Smith et al.,
2013; Ciobanu et al., 2014; Rédou et al., 2015; Richards
et al., 2015; Hassett and Gradinger, 2016; Tisthammer
et al., 2016). While fungi are thought to have a
relatively small role in pelagic environments (Newell,
1994; Kirchman, 2008), some reports have shown
episodically higher numbers in the water column
(Gutiérrez et al., 2011). Of the labyrinthulomycetes,
thraustochytrids are often associated with dead phyto-
plankton debris at the end of a bloom (reviewed in
Raghukumar, 2002) where they can be episodically
found in such high numbers that they match bacterial
biomass (Damare and Raghukumar, 2008). For both
groups, marine snow represents a potential nutrient-
rich substrate that would suit their osmotrophic
lifestyle. The third group selected for this study, the
kinetoplastids, are heterotrophic flagellates that have
consistently been found in deep-sea samples (e.g.,
Turley et al., 1988; Arndt et al., 2003; Morgan-Smith
et al., 2013). In addition, their non-parasitic forms are
voracious bacterivores that are often associate with
particles (Artolozaga et al., 2000; Boenigk and Arndt,
2002), which makes them prime candidates to popu-
late deep-sea marine snow.

Materials and methods
Sample collection
Sea water was collected during the MEDEA-2
research expedition to the North Atlantic and Arctic

Basin between 22 June and 22 July 2012 on the
RV Pelagia (Royal Netherlands Institute of Sea
Research, Figure 1). At the beginning of the cruise,
all Niskin bottles were filled with a 5% bleach
solution overnight to remove microbes that may
have grown during storage. Collection depths were
chosen to target specific bathypelagic water masses
(Supplementary Table S1,van Aken, 2000). Immedi-
ately after returning on deck, one 25 L Niskin bottle
was removed from the rosette assembly and set aside
for gentle gravity filtration. A filter cartridge was
connected to the spout and a flow restrictor was put
in-line after the cartridge (Supplementary Figure S1).
The cartridge was loaded with a 25mm diameter,
30 μm pore-size polycarbonate filter membrane (type
PCT30025100, Sterilitech Corp., Kent, WA, USA).
The flow was set to a maximum rate of 100mlmin− 1.
Although marine snow is defined as4500 μm in size
(Alldredge and Silver, 1988), pores or meshes of that
size are ineffective because these particles are too
fragile to be retained. In contrast, filtration on
smaller pore sizes such as 0.2 or 0.8 μm filters is
limited to much smaller volumes (~100ml and ~1L
on 25mm diameter filters, respectively) due to the
clogging of the filter pores by TEP and finely
suspended material from the ambient water.
Approximately 15–21 L were filtered in this manner
(see Supplementary Table S1 for volume filtered at
each station), and upon inspection, all filters had a
visible layer of material. While still in the cartridge,
the collected material was preserved on the filter by
connecting a syringe containing a 2% (final concen-
tration) formaldehyde solution in 0.2 μm filtered
deep-sea water. The filter was gently rinsed with
sterile 1 × phosphate-buffered saline and ultrapure
water by attaching another set of syringes to the
cartridge and by gently moving the water in the

Figure 1 Map of stations at which deep-sea samples of marine
snow were taken. Depths are shown in Supplementary
Table 1. CGFZ, Charlie Gibbs Fracture Zone; PAP, Porcupine
Abyssal Plane.
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same direction as the original flow. Water samples
(200–250ml each) from the same depths and loca-
tions were preserved in 2% formaldehyde (~30min)
and subsequently filtered through 25mm 0.2 μm
pore-size polycarbonate filters (Millipore, Billerica,
MA, USA) using a standard filtration manifold.
Filters were also rinsed with 1× phosphate-
buffered saline and ultrapure water before being
stored at − 80 °C. Samples were returned to Old
Dominion University on dry ice where they were
stored at − 80 °C until further processing.

Pretreatment of filters with agarose and EDTA
Initial microscopic observation revealed that no
microbes could be visualized using 4',6-diamidino-
2-phenylindole (DAPI) despite a visible layer of
material on the 30 μm pore-size filters. This was due
to a thick matrix of TEP which we were able to
render permeable by pretreating the filter with a
25mM EDTA solution for 15min (Cavaliere et al.,
2014). Tests were performed with shorter and longer
time intervals (5min to 2 days), with 15min being
optimal. EDTA dissolves the TEP by scavenging the
cationic bridges of mainly Ca2+ between neighboring
TEP chains (Cavaliere et al., 2014; Bar-Zeev et al.,
2015). To minimize losses from the filter surface, we
covered the filter with agarose according to the
catalyzed reporter deposition fluorescence in situ
hybridization (CARD-FISH) procedure (Teira et al.,
2004; Morgan-Smith et al., 2013) before the EDTA
treatment. Agarose forms a very porous molecular
mesh that works very well to hold organisms in place
but allows EDTA and probes to penetrate. Tests
indicated that agarose coating did not negatively
affect EDTA permeabilization.

Tyramide signal amplification CARD-FISH
CARD-FISH was performed to examine the composi-
tion of eukaryotic microbes on both the 30 μm
and 0.2 μm filters. As we found a mismatch of
the kinetoplastids with the universal eukaryote
probe EUK516 (Bochdansky and Huang, 2010;
Mukherjee et al., 2015), and some diplonemids
displayed a second mismatch (for example, Genbank
accession #KF633466.1 and #JN542573.1), we
designed a new probe (Diplo516) and used the
combination of three probes (EKD: EUK516
+KIN516+Diplo516, Supplementary Table S2) to be
as inclusive as possible. We evaluated this probe
combination with a series of stringency tests on
deep-sea samples from the same cruise (5 stations)
using the protocol of Hugenholtz et al. (2001)
and arrived at an optimal stringency of 40%
formamide concentration (see probe evaluation
details in the Supplementary Information). This
group hybridizing with the EKD-probe combination
will be referred to as 'eukaryotes'. The probe
sequences and optimal formamide stringencies used
in this study for kinetoplastids (KIN516), fungi (PF2)

and labyrinthulomycetes (LabY) are also given in
Supplementary Table S2. After the initial agarose
coating and EDTA treatment, we followed the CARD-
FISH protocol using AlexaFluor 488 detailed in
Morgan-Smith et al. (2013). Additional permeabili-
zation as previously applied for fungi and the regular
FISH protocol is not necessary when using CARD-
FISH (Jobard et al., 2010; Morgan-Smith et al., 2013).
We achieved 100% success rate of CARD-FISH in
detecting fungal cells without permeabilization
in tests using bread yeast and a chytrid culture.
All treatments were counterstained with DAPI in an
antifadent mountant (Vectashield with DAPI, Vector
Laboratories, Burlingame, CA, USA). Signals were
only considered positive (regarded as an eukaryotic
cell) if the green hybridization signal was also co-
located with a clearly identifiable DAPI-stained
nucleus. Not all probes could be used on all filters,
due to a shortage of filter slices after performing
formamide, EDTA and agarose tests (see above). For
every filter slice, prokaryotes were also enumerated
using DAPI and these more numerous and easily
identifiable cells served as benchmark values to
normalize eukaryotic microbe numbers for each
filter slice.

Enumeration and dispersion diagnostics
Two sets of counts were performed on every filter
slice (30 and 0.2 μm). The first set consisted of
counting both prokaryotes and eukaryotic microbes
at the same time and in the same plane to obtain
information on spatial heterogeneity on the filter
surfaces. This was done by counting up to 150
entire microscopic fields at the highest magnification
(Olympus BX51 epifluorescence microscope (Center
Valley, PA, USA), U-LH100HG APO mercury burner,
100 ×UPlanSApo objective lens and ×20 ocular
magnification). This approach was used to test
the hypothesis that organisms that landed on the
30 μm filter were not solely random intercepts on
the filter membrane but due to the presence of
particles. In that case, the dispersion index would
be much higher than expected from a random
distribution. The distribution of organisms on the
0.2 μm filter, in contrast, should have a distribution
of organisms on the filter surface closer to
random. In other words, the patchy arrangement of
microbes on the filter surface is an indicator that
particles were captured even if the exact outlines of
these particles are not readily detectable. As a
dispersion index, we chose the Lloyd index of
patchiness (Lloyd, 1967), which has a good
dynamic range at highly overdispersed (patchy)
distributions (Bochdansky and Bollens, 2004).
The Lloyd index of patchiness (Lp) is the ratio of
the Lloyd index of mean crowding ( _m) divided by
the mean (m), or

Lp ¼
.m
m

¼ mþ s2

m
� 1

� �� �
m�1
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where σ2 is the variance (Lloyd, 1967). An Lp of 1
means that microbes are randomly distributed on the
filter, above 1 they are overdispersed.

A second set of counts was performed at lower
(×10 ocular) magnification to enumerate all protists
found on the entire filter slice (up to 300 entire
microscopic fields). This improved the enumeration
of less represented groups. Length and average width
of a subsample of fungi and the labyrinthulomycetes
were measured (this included single cells, thalli and
sporangia, but did not include any hyphen that
permeated the particle matrix, Jobard et al., 2010).
Volume calculations were based on prolate spheroid
geometry (π/6 ×width2 × length) for eukaryotic
microbes (Pernice et al., 2015), and on the equation
(π/4) ×width2 × (length− (width/3)) for cocci and
bacilli (Bratbak, 1985). Estimates of eukaryotic
microbial biomass are minimum estimates of total
biomass especially for organisms that may have
significant biomass allocated in hyphen structures.
Non-parametric tests were used in lieu of Student's
t-tests because residuals were not normally distrib-
uted, or sample size was too small to test for
normality of the residuals.

Results

Prokaryote counts on 30 μm filters were highly
variable among different microscopic fields, and
were significantly more patchy than those observed
on 0.2 μm filters. The Lp was on average 5.22
(s.d. = 4.33, n=61) on the 30 μm filters, and on
average 1.39 (s.d. = 0.27, n=59) on 0.2 μm filters
with the means being significantly different from
each other (Wilcoxon signed-rank test, n=58,
z-score = 6.62, Po0.0001). This means that while
prokaryotes were only 1.4 times more overdispersed
than expected from a random distribution on 0.2 μm
filters, prokaryotes were 5 times more overdispersed
on 30 μm filters. The standard deviation of prokar-
yote numbers for individual fields was also much
higher on the 30 μm filters (83% of mean) than on
the 0.2 μm filters (19% of the mean). This demon-
strates that microbes that landed on the 30 μm filters
were not random intercepts with the filter surface
but that parts of aggregates were responsible for the
patchy distribution. Figure 2 shows an example of a
large particle with embedded microbes under DAPI
as found on a 30 μm filter; particle boundaries were
not always as clear as in that particular case
however. This image also demonstrates the typically
large amount of transparent exopolymer matrix that
holds the particle and microbes together (Figure 2).

Examples of eukaryotic microbes with positive
hybridization signals from CARD-FISH are displayed
in Figure 3. The ratios between eukaryotic and
prokaryotic microbes (normalized eukaryote num-
bers, NEN) are shown in Figure 4. The differences in
NEN between the 0.2 μm and the 30 μm filters were
highly significant for the eukaryotes (Wilcoxon

signed-rank test, z-score = 3.92, P=4.5 ×10− 5), the
labyrinthulomycetes (Wilcoxon signed-rank test,
z-score = 3.46, P=2.7 × 10− 4) and the fungi (Wilcoxon
signed-rank test, z-score=3.48, P=2.5×10−4). Fewer
samples were available for kinetoplastids but the
difference was still significant between NEN on the
0.2 and the 30 μm filters (Mann–Whitney U-test,
U=16, P=0.0286). Fungi and labyrinthulomycetes
accounted for ~1/5 each of all eukaryotic microbes
on particles (30 μm filters) but for a much lesser extent
on the 0.2 μm filter samples (Figure 4). The relative
enrichment ratios on particles (that is, the enrichment
of eukaryotic microbes in excess of the enrichment of
prokaryotes, calculated as the ratio between NEN on
the 30μm filters and NEN on the 0.2 μm filters) were
78, 25, 42 and 141 times that of prokaryotes for total
eukaryotes, kinetoplastids, labyrinthulomycetes and
fungi, respectively (Figure 4).

The volumes of fungi and labyrinthulomycetes
were on average 115 μm3 (s.d. = 203, n=16) and
106 μm3 (s.d. = 125, n=22), respectively, and thus
much larger than those of prokaryotes (cocci:
0.061 μm3, s.d. = 0.073, n=90; bacilli: 0.079 μm3,
s.d. = 0.089, n=88) in the same samples. For fungi
and labyrinthulomycetes, the volumes were mea-
sured for each occurrence, which may include more
than one cell per occurrence (for example, in a
sporangium or thallus).

Discussion
Methodological considerations
The use of 30 μm pore-size filters in combination
with gentle gravity filtration was a suitable

Figure 2 Epifluorescence image mosaic of a bathypelagic particle
from 3390 m collected at the Charlie Gibbs Fracture Zone and
retained by a 30 μm pore-size filter, pretreated with 25 mM EDTA,
and stained with DAPI. Note: hazy areas [brackets] are not large
objects but represent backscatter from the edges of the 30 μm
filter pores.
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compromise to sample marine snow aggregates from
large volumes of water, because the large filter pores
let single organisms pass, but retained some marine
snow. However, these aggregates are too fragile to be
collected quantitatively with this method as they can
easily fragment even under the gentlest collection
and fixation protocols on filters. A better method is
to visually locate these particles in the water column
and then collect them selectively with suction

samplers or syringes, being careful to exclude
ambient water. This type of collection is either
carried out by divers (for example, Bochdansky and
Herndl, 1992; Silver, 2015) or by submersibles
(Silver and Alldredge, 1981; Alldredge and
Youngbluth, 1985). However, the bathypelagic ocean
is beyond the reach of divers, and submersibles are
prohibitively expensive to deploy over large ocean
regions as encompassed in this study. In addition,

Figure 3 Examples of protists hybridized with four different probes. Images are overlays of the CARD-FISH probes (green) and DAPI
counterstain (blue). (a–d) Organisms hybridizing with the LabY probe for labyrinthulomycetes; (c) green channel only, po= filter pore,
pa=particle fragment. (e–h) Organisms hybridizing with the broad fungal probe PF2. (e) bu= cell shape is similar to a yeast cell forming a
bud; (g) hy = structures that appear to be fungal hyphae similar to those shown in Jobard et al. (2010). As only ribosomes embedded
in cytoplasma (and not chitin cell walls) light up in CARD-FISH, hyphae may appear thinner than when chitin stains are used.
(i and j) Organisms hybridizing with the universal eukaryote probe combination to include kinetoplastids and diplonemids (probe: EKD).
(k) Kinetoplastid showing the kinetoplast (kin), a large mitochondrion and the nucleus (nuc) side by side (probe: KIN516).
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marine snow less than a few millimeters is very
difficult to collect from a submersible (Silver and
Alldredge, 1981; Alldredge and Youngbluth, 1985)
so that a large portion of relevant particles
(4400 μm) is unaccounted for (Bochdansky et al.,
2016). Although we concede some inefficiency in
our sampling protocol, we are also confident that
marine snow was retained by our method. The
organisms on the 30 μm pore-size filters were much
more overdispersed than those on the 0.2 μm filters,
rejecting the notion that these organisms were just
randomly captured by direct interception with

the filter surface. In addition, a thick layer of TEP
(the invisible matrix that typically holds marine
snow together) was present on all 30 μm pore-size
filters—so much so that EDTA had to be used to
allow probes and nucleic acid stains to reach
the embedded microorganisms. Normalizing all
counts to the more abundant prokaryotes leads to
relative enrichment ratios of eukaryotic microbes in
an unbiased manner and also circumvents the
problem of uneven material collection on different
parts of the filters.

Kinetoplastids
Non-parasitic species of this group of flagellates are
known to feed well on bacteria attached to particles
(Artolozaga et al., 2000; Boenigk and Arndt, 2002)
and in biofilms (Chavez-Dozal et al., 2013). Members
of this group (Bodo sp., Neobodo designis) do not
feed well on freely-suspended cells but prefer to feed
on attached prokaryotes (Caron, 1987; Bochdansky
and Clouse, 2015). The ratio of eukaryotic microbes
to prokaryotes on particles in this study is very
similar to those found in surface environments (for
example, Gasol et al., 1997) where bacterivores
together with viruses have an important role in
controlling prokaryotic populations (for example,
Fuhrman and Noble, 1995). Thus, it is likely that
bacterivores have the same capacity to control
prokaryotes on marine snow as in surface waters.
A recent study demonstrated that kinetoplastids are
also very abundant in hypolimnetic systems where
they can represent up to 44% of total flagellates
(Mukherjee et al., 2015). It would thus be very
interesting to further study their association with
particles in freshwater systems.

Fungi
In our analysis, approximately one fungal cell occurs
for every 1000 prokaryotes on marine snow making
their biomass approximately at par with that of
prokaryotes (Table 1). This raises the intriguing
question on how important fungi are for the
degradation of organic material in the deep sea.
Many species of fungi are known to be saprotrophic,
and their osmotrophic food acquisition is suitable for
substrates they can attach to and on which their
extracellular enzymes are not lost to the environ-
ment by diffusion (Richards et al., 2015). Fungi
are often better than bacteria at breaking down
recalcitrant organic material (Clipson et al., 2006).
There is evidence from isotopic analyses that
particles absorb some of the old refractory dissolved
organic carbon in the deep sea (Hwang et al., 2006)
and it is possible that this recalcitrant material can be
utilized by fungi. In this context, it is important to
keep in mind that bacteria and fungi are not always
in competition with each other but that both may
contribute to the degradation and benefit from each
other's breakdown products in a mutualistic rather

Figure 4 NEN (number of eukaryotic microbes divided by
number of prokaryotes) on 0.2 μm pore-size (a) and on 30 μm
pore-size (b) filters. The ratio between NEN30 and NEN0.2 provides
the relative enrichment ratios on marine snow (c). This ratio is an
indicator for how much more eukaryotes are enriched in particles
over the already highly enriched prokaryotes. It demonstrates that
the contrast between the particles and ambient water environ-
ments are much larger for eukaryote than for prokaryotic numbers.
Error bars are standard deviations.
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than antagonistic manner (Frey-Klett et al., 2011).
Deep-sea POM has a high C:N ratio (Baltar et al.,
2010). As fungi have a higher C:N ratio than bacteria
(~10 vs 5), using substrates with high C:N ratios
could give them a stoichiometric advantage over
bacteria (Wang et al., 2012), although this view is not
universally accepted (de Vries et al., 2006). Although
fungi may contribute to the degradation of particles
in the water column, there is also the intriguing
possibility that their hyphen stabilize marine snow
as they do with soil particles (Chenu and Stotzky,
2002). Fungal hyphae permeating the particle matrix
was shown in Jobard et al. (2010) for 'lake snow'.

Fungi in deep-sea sediments and the deep bio-
sphere dominate among active eukaryotes (Takishita
et al., 2006; Edgcomb et al., 2011a) where they also
dominate active eukaryotic gene expression in
metatranscriptomes (Orsi et al., 2013). However,
there is considerable genetic separation between
benthic and pelagic fungal groups, implying that
pelagic fungi are not merely resuspended benthic
fungi (Tisthammer et al., 2016). In fact, pelagic
fungal abundance and diversity are influenced by
environmental factors such as freshwater input,
temperature and increases in POM (Taylor and
Cunliffe, 2016). Specifically, chytrid fungi that are
both parasites and decomposers of phytoplankton
increase in numbers during diatom blooms (Taylor
and Cunliffe, 2016). Other pelagic environments
where fungi are found in large numbers are on
Trichodesmium sp. colonies (Sheridan et al., 2002)
and in the surface waters of upwelling regions where
fungi episodically exceed prokaryote biomass
(Gutiérrez et al., 2011). Recently, a survey of bath-
ypelagic eukaryotic microbes concluded that Basi-
diomycota (a major group of fungi) are among the
four most dominant groups (Pernice et al., 2016).
That study did not distinguish between marine snow
and ambient water but screened their samples
through a 20 μm mesh. While screening will prevent
most metazoans from entering the sample, some
marine snow will fragment and associated organisms
will be mixed into the sample. Given our result of an
extreme enrichment of fungi on marine snow, it is
very likely that fungi in these samples came

primarily from marine snow. The variability in
taxonomic composition of eukaryotic microbes was
high in that study with much of the variance
explained by water mass (Pernice et al., 2016).
As the amount of deep-sea marine snow changes
dramatically by water mass and location (Bochdansky
et al., 2010, 2016), some of the high variability in
microbial eukaryotes is very likely due to the relative
abundance and type of marine snow in these layers.

Labyrinthulomycetes
This group is even less studied in marine pelagic
environments than fungi. Methods previously used
in pelagic environments were either most probable
number estimates using pollen as bait or growth
substrate or the Acriflavine direct detection method
based on sulfated polysaccharides in their cell walls
(Raghukumar, 2002). The first time CARD-FISH used
to systematically evaluate labyrinthulomycetes in
the deep-sea water column was Morgan-Smith et al.
(2013) using the LabY probe (Stokes et al., 2002).
Cells of this group have been reported to occur at
higher numbers than fungi in the water column
(Raghukumar, 2002). In our analysis, labyrinthulo-
mycetes were approximately equally abundant as
fungi on the 0.2 μm filters and less enriched than
fungi on marine snow (Figure 4). Of the labyrinthu-
lomycetes, the thraustochytrids are the most domi-
nant group in pelagic marine systems, and they are
often associated with phytodetritus but are interest-
ingly suppressed during intense phytoplankton
blooms (Raghukumar, 2002). Thraustochytrids and
their 18S rRNA sequences have been found to be
abundant in the bathypelagic environment down to
4000 m (Gaertner, 1982; López-García et al., 2001).
Thraustochytrids are extremely well adapted to cold
temperatures and high pressures (Bahnweg and
Sparrow, 1974; Riemann and Schaumann, 1993;
Ragunkumar and Ragunkumar, 1999), and have
even been found in dense clusters in Antarctic
sediments (Riemann and Schrage, 1983). They have
been suggested to be important agents in the
degradation of organic material on deep-sea particles
(Raghukumar, 2002) as they are an important group

Table 1 Biomass (carbon) ratios of labyrinthulomycetes (LabY) and fungi (PF2) to prokaryotes

Group Average volume V&P
(μm3)

Carbon range
N&ST (pg)

Carbon range M&L
(pg)

Carbon V&P
(pg)

Biomass ratio
N&ST

Biomass ratio
M&L

Biomass ratio
V&P

LabY 106 5.83–23.90 7.42–33.39 9.48 0.23–0.95 0.29–1.29 0.37
PF2 115 6.33–25.95 8.05–36.23 10.13 0.35–1.42 0.44–1.98 0.53

Calculations were based on 0.1–0.41 g cm− 3 dry weight to wet volume (van Veen and Paul, 1979), and 0.2–0.9 g dry weight cm− 3 wet volume
(Newell and Statzell-Tallman, 1982). Note: 1 g cm− 3 = 1 pg μm− 3. Dry weight conversion to carbon was 55% for Cryptococcus albidus (shake
culture only) (van Veen and Paul, 1979), and 35% (Newell and Statzell-Tallman, 1982). Carbon values were also obtained from volume using the
equation C (pg) = 0.216× volume0.811 (μm3) for non-diatom protists (Menden-Deuer and Lessard, 2000). The same equations were applied to both
groups of organisms. For bacteria, 20 fg per cell was assumed although this may be an overestimation of bacterial carbon in the deep sea (Ducklow
and Carlson, 1992; Fukuda et al. 1998). Biomass ratio =C of eukaryotic microbes/C of prokaryotes (V&P: van Veen and Paul (1979); N&ST: Newell
and Statzell-Tallman (1982); M&L: Menden-Deuer and Lessard (2000)).
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of decomposers of coastal leaf litter and phytoplank-
ton in sediments (Bongiorni, 2012). Because
many are also parasitic or symbiotic (Damare and
Raghukumar, 2010), thraustochytrids' ecological role
cannot be inferred from the data at hand. However,
their large biomass contribution to microbes asso-
ciated with particles suggests a substantial role in
deep-sea biogeochemical processes.

Biomass calculations
Carbon ratios of fungi and labyrinthulomycetes to
prokaryotes are shown in Table 1. We used various
conversion factors; however, the individual biomass
estimates are very close to each other (Table 1).
The carbon estimates for labyrinthulomycetes in this
study are close to those previously determined for
thraustochytrids (Kimura et al., 1999). Previous
estimates of the contribution of thraustochytrids to
total decomposer biomass (bacteria+protists) ranged
from 3.5 to 29% (Kimura et al., 1999). In another
study, the biomass of thraustochytrids was ~ 10% to
~ 100% of that of bacterial biomass (Damare and
Raghukumar, 2008). Our calculations suggest that
labyrinthulomycete biomass is approximately equal
to that of prokaryote biomass on bathypelagic marine
snow. If we combine the biomasses of fungi and
labyrinthulomycetes, then eukaryotic saprotrophs
exceed prokaryotes in terms of biomass, even when
we exclude all other eukaryotic microbes that are
present on particles. The biomass distribution of
eukaryotic microbes on deep-sea marine snow is
therefore much more similar to the biomass distribu-
tion in typical surface waters where eukaryotic
microbes (including primary producers) exceed
prokaryotic biomass (for example, Gasol et al.,
1997; Church, 2008). While some misclassification
of taxa by means of CARD-FISH is inevitable due to
errors when there is not a perfect sequence match, it
is important to emphasize that the distinction
between prokaryotes and eukaryotic microbes is
very robust, as only those organisms were consid-
ered eukaryotic microbes that had both a cell body
hybridizing with the probes and a clearly visible
nucleus inside that (Figure 3).

Colonization of particles by eukaryotic microbes
Laboratory-made marine snow in rolling tanks is
quickly colonized by heterotrophic protists such as
flagellates, amoeba and ciliates (Artolozaga et al.,
1997) for which enrichment factors range from 5 to
~ 10 000 (Silver et al., 1978; Caron et al., 1982;
Artolozaga et al., 1997). The species composition
on particles is more closely related to that found in
benthic habitats than in pelagic habitats (Artolozaga
et al., 1997). For instance, pelagic amoeba are
typically found associated with aggregates (Arndt,
1993; Rogerson et al., 2003), and some amoeboid-
type shapes were indeed present on the bathypelagic
particles examined here (Figures 3i and j).

The conclusion that marine snow is a unique
microenvironment for eukaryotic microbes also
resonates with earlier findings of highly enriched
metazoan plankton, some of which are almost
exclusively found on marine snow such as acoel
turbellarians and nectochaeta larvae of polychaetes
(Bochdansky and Herndl, 1992). All these indicate
that marine snow provides a benthos-like yet unique
habitat in the water column.

Comparison between CARD-FISH and amplicon
sequencing
There are similarities and discrepancies in the
relative abundance of eukaryotic microbes in the
deep sea between methods when comparing ampli-
con sequencing and direct cell counts. As shown
above, the high number of Basidiomycota in deep-
sea samples (Pernice et al., 2016) is supported by our
findings of a large number of fungi. Direct counts and
16S/18S diversity approaches also agree in the
relative abundance of diplonemids for deep-sea
environments (Lara et al., 2009; Morgan-Smith
et al., 2013; Lukeš et al., 2015; Pernice et al., 2016).
In contrast, group 2 alveolates that represent a large
portion in deep-sea clone libraries (for example,
Countway et al., 2005; Pernice et al., 2016) make a
relatively smaller fraction in deep-sea samples when
enumerated by CARD-FISH (Morgan-Smith et al.,
2013). Ciliates are dominant in clone libraries of the
deep sea (for example, Countway et al., 2005;
Pernice et al., 2016). Ciliate abundances are high in
oxygen-depleted waters where they either form
symbiotic relationships with prokaryotes (Edgcomb
et al., 2011b; Orsi et al., 2013) or feed on them
(Anderson et al., 2012). However, ciliates are rare in
the typical high-oxygen deep-sea samples and when
counts are based on morphological criteria (Aristegui
et al., 2009). There are considerable biases that lead
to overrepresentation of some groups in the analysis
of 18S rRNA gene libraries discussed in detail in
Koid et al. (2012), including multiple genome copies
found especially in alveolates (for example, Dino-
phycea and Ciliophora). Unless the actual cell
numbers can be independently verified by direct
cell counts using suitable CARD-FISH probes, results
of the relative dominance of some eukaryotic groups
in deep-sea samples need to be treated with great
caution.

Conclusions

There is growing evidence that neutrally buoyant or
slowly-sinking particles augmented by an active
community of chemosynthetic and carbon-fixing
microorganisms need to be considered in budget
calculations of the deep sea (Baltar et al., 2009, 2010;
Bochdansky et al., 2010; Burd et al., 2010; Herndl
and Reinthaler, 2013). The high TEP content of deep-
sea macroscopic particles, especially those in the
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range of 400 μm to several mm in size, could
contribute to that buoyancy (Atsetsu-Scott and
Passow, 2004; Bochdansky et al., 2016). Slowly-
sinking and neutrally buoyant particles would allow
sufficient time for complex eukaryotic microbial
communities to form on the high organic nutrients
available in particle matrix and pore water. The
ratios between eukaryotes and prokaryotes in our
0.2 μm filter samples were low and similar to those
typically found in the deep ocean (Aristegui et al.,
2009; Morgan-Smith et al., 2013; Pernice et al.,
2015). In contrast, the bathypelagic marine snow
samples abounded with eukaryotic microbes with
eukaryote:prokaryote ratios much higher and closer
to those found in surface waters. At these high
biomass levels, eukaryotic microbes could signifi-
cantly contribute to particle solubilization and
remineralization, and to the control of prokaryote
abundances through grazing, all of which strongly
suggests that eukaryotic microbes can no longer be
considered sideshows to ecosystem processes of the
deep sea.
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