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Abstract: The study presents a comparative analysis of climate data under two scenarios: a Gaussian
copula marginal regression model for count time series data and a copula-based bivariate count time
series model. These models, built after comprehensive simulations, offer adaptable autocorrelation
structures considering the daily average temperature and humidity data observed at a regional
airport in Mobile, AL.
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1. Introduction

Multivariate count time series are prevalent in modern statistical analysis, and they
rarely exhibit independence between the series. Discretization of time series data has
been proposed in data mining by authors such as Chaudhari et al. (2014) [1], Marquez-
Grajales et al. (2020) [2], and Mordvanyuk et al. (2022) [3]. Our objective is to propose a
modeling of the discrete data with temporal dependence. Pair copula construction has
gained popularity, as it offers flexibility and useful advantages in the learning of the joint
distribution of time series data. As we know, Pearson’s correlation is based on the normal
shape of the marginal distributions. Stretching and reshaping the marginal distributions
will give different answers. Categorizing the values as it is usually done in climate research
(e.g., saying the temperature is in the 80s) creates challenges that can be overcome with the
copula-based modeling. The advantages of using the copula also include the distribution
assumptions, the time dependence, the mixture of the types of marginal distributions,
and the addition of covariates. Further, there are new connections or time markers, that
may have been missed in how observations are linked, that can be discovered. In this paper,
we propose a comparative study of the climate data under the following two different cases:

• The Gaussian copula marginal regression model for count time series data;
• The copula-based bivariate count time series model.

These models are all part of a multivariate time series which offers flexible auto-
correlation structures when the data are described as discrete counts.

Weather describes the short-term fluctuations of temperature, dew point, humidity,
wind speed and direction, precipitation, atmospheric pressure, and other meteorological
variables at a given location. Climate, on the other hand, is the long-term average variation
of these meteorological variables at a location. By way of example, when we want to decide
what clothes to put on each day, we can look at the weather, and what we stock up in
our closet will probably depend on the climate of the place. The day-to-day activities of
humans continue to change the make up of the earth’s atmosphere. The causes of climate
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and weather change are air pollution, deforestation, and increasing energy demand for
heating and cooling, to name a few. Some other natural processes, such as volcanic erup-
tions, add to the increase in greenhouse gases in the atmosphere. When these atmospheric
variables change quickly and negatively, they can impact many elements of human activity.
In recent years, extreme weather conditions have displaced many people and exacerbated
the factors driving people into poverty. These unfavorable weather events also increase
health problems, as droughts and destructive storms cause food growth problems. It is
essential to continue to explore more statistical methods, ranging from data collection to
model development, to explain the variability of weather and climate data and assess future
weather conditions so that people can be better prepared for extreme weather events. Ad-
vanced technology makes it possible to collect data for many weather-related factors. Thus,
new approaches to visualizing and analyzing any relationship between these variables are
needed as multivariate climate data sets become more widely available. A range of filter
colors and patterns are available in modern data visualizations, which are intended to help
users interactively visualize graphs and increase the forecasting of future trends under
changing environmental conditions. Since there are also possible subjective interpretations
of these graphs, statistical climate models based on the mathematical representations of the
atmospheric variables remain a more dependable approach to obtaining information about
current and future weather and climate states.

Quite a few data visualization methods have been developed to explore the inter-
variable relations of these atmospheric properties. Teuling et al. [4] present a methodology
which is an extension of that of [5] for describing the inter-variable relations of atmospheric
properties. Their method is based on the properties of common color schemes to plot two
variables in a single color map using a two-dimensional color legend for both sequential
and diverging data. Concerning climate models, Agrawal [6] investigates the effectiveness
of copula models in estimating and predicting climate extremes. Their study examines
the bivariate distributions of temperature–humidity, temperature–wind speed, and wind
speed–humidity in Boulder County, Colorado. The study bootstraps simulated data from a
climate model and examines the accuracy of extreme event probability predictions when
data are of different lengths and internal variability for the different copula functions.
The analysis results reveal lower bias and variance for longer data records than for shorter
data records when estimating the true probability of extreme compound events. Li et al. [7],
in their paper, utilize three Archimedean copula models (the Clayton, Frank, and Gumbel
copulas) to compare measured wave data to simulated wave climate data at a wave energy
converter test site. In assessing the goodness of fit of the three models using R2, the study
finds that Gumbel’s copula performs better compared to the other two copulas. Lee et al. [8]
apply the Clayton, Frank, Gumbel, and Gaussian copula functions to analyze the joint
frequency of drought intensity and duration. They examine the performance of these
copulas and find that the Frank and Gumbel copulas outperform the Clayton copula in the
drought bivariate frequency analysis. The impacts of climate change and human activity
have led other natural scientists to develop non-stationary multivariate analysis techniques
to model these environmental changes (Li et al. [9], see also Yin et al. [10]).

The two most often discussed atmospheric properties that are connected to living
situations are temperature and humidity. Temperature is the degree of warmth or coldness
measured on a definite temperature scale using thermometers. Though the degree Celsius
(◦C) scale and Kelvin (K) scale are used for temperature measuring purposes, the Fahrenheit
(◦F) temperature scale is used by the United States and very few other countries. Relative
humidity, typically expressed as a percentage, measures the amount of water vapor in the
air relative to its capacity to hold it at a given temperature. We find that the temperature–
relative humidity relationship is inversely proportional since relative humidity decreases
as temperature rises and vice versa. Thus, temperature relates to the amount of moisture
the atmosphere is able to hold. The way these variables interact affects human health
and well-being as well as the weather. Barma et al. [11] utilize one-parameter bivariate
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Archimedean copulas to assess the conditional probability of the number of COVID-19
cases given the mean daily temperature and relative humidity.

The literature has shown that climate data at different time points are correlated. These
environmental phenomena exhibit both serial and cross-correlations that add complexities
in the model specification and inference. Research in the case of negative correlation is still
ongoing. In the bivariate case, the joint distribution is typically assumed to be normally
distributed, but that assumption is easily violated because of changes in behavior or climate.
Integrating over a discrete set requires special treatment after description. The bivariate
copula offers flexibility about the underlying distributions. Moreover, when counts are used
in the modeling, the theoretical and sample results lack consistency. The main reason is that
the count data are modeled under the assumption of a conditional discrete distribution,
instead of a marginal distribution.

Here, we use data from Mobile Regional Airport in Alabama, where the temperatures
are measured over a 14-month period with thermal gradients. Data on humidity for the
same period are also recorded. George et al. [12], in their research, establish that the
temperature and rain amount are related. In their paper, they present linear regression
models in describing bivariate relationships between the two meteorological variables. One
can also regress temperature and humidity, but it is not obvious to define either variable as a
response or predictor variable. Additionally, even though we know that these two variables
are related, the relationship may not always be linear. To gain in efficiency, we propose to
capture the dependence between these variables, in a multivariate distribution format with
discrete classification. To circumvent limitations due to the normality assumption, or the
fact that the data exhibit many same values, we investigate the relationship by applying
copula-based time series models.

Our analysis differs twofold from the above analyses. We do not classify the tempera-
ture as high, low, or medium. We convert both humidity and temperature variables into
a discrete scale by partitioning them in their associated time intervals. The copula-based
approach will derive the relationship in a general framework.

The paper is organized as follows. Motivation of the bivariate time series data is
given in Section 2, with a review of the correlation structure. Model construction in
each of the cases and inference (under maximum likelihood estimation) are provided
in Sections 3 and 4, respectively. The simulations and data application are shown in
Sections 5 and 6, respectively, followed by a discussion and conclusion in Section 7.

2. Distributions
2.1. The Poisson Distribution

The Poisson distribution is one of the candidate distributions to model count data. We
use the Poisson distribution as a marginal distribution to build our proposed copula-based
bivariate model. Suppose yt denotes a random observed count at time t. The probability
mass function (pmf) of the well-known Poisson distribution is defined as:

f (yt) =
e−λλyt

yt!
,

where λ > 0 is the intensity parameter with E(yt) = λ and V(yt) = λ.

2.2. Copulas

As a multivariate cumulative distribution function (cdf), the copula is a joint function
that captures the dependence structure between variables. With uniform margins U(0, 1)
as in [13], an n-dimensional copula is a function C : [0, 1]n → [0, 1] with the following
three properties:

1. C(1, . . . , ut, . . . , 1) = ut, ∀ t = 1, 2, . . . , n and ut ∈ [0, 1].
2. C(u1, u2, . . . , un) = 0 if at least one ut = 0 for t = 1, 2, . . . , n.
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3. For any ut1 , ut2 ∈ [0, 1] with ut1 ≤ ut2 , for t = 1, 2, . . . , n,

2

∑
j1=1

2

∑
j2=1

· · ·
2

∑
jn=1

(−1)j1+j2+···+jn C(u1j1 , u2j2 . . . , unjn) ≥ 0.

Let Y1, . . . , Yn be random variableswith marginal cdfs F1, . . . , Fn and joint cdf F, then
we have the following:

1. There exists an n-dimensional copula C such that for all y1, . . . , yn ∈ R

F(y1, y2, . . . , yn) = C(F1(y1), F2(y2), . . . , Fn(yn)).

2. If Y1, . . . , Yn are continuous, then the copula C is unique. Otherwise, C can be uniquely
determined on n-dimensional rectangle Range(F1)× Range(F2)× · · · × Range(Fn).

When all the margins are integer valued, the multivariate probability mass function
can be obtained as

f (y1, y2, . . . , yn) = P(Y1 = y1, Y2 = y2, . . . , Yn = yn)

=
2

∑
j1=1

2

∑
j2=1

· · ·
2

∑
jn=1

(−1)j1+j2+···+jn C(u1j1 , u2j2 . . . , unjn) (1)

where ut1 = Ft(yt) and ut2 = Ft(y−t ). Here, Ft(y−t ) is the left-hand limit of Ft at yt, which is
equal to Ft(yt − 1). In the bivariate case,

Pr(Y1 = y1, Y2 = y2) = C(F(y1), F(y2); θ)− C(F(y−1 ), F(y2); θ)

− C(F(y1), F(y−2 ); θ) + C(F(y−1 ), F(y−2 ); θ).

There are a number of copula functions, i.e., C, one can choose from. Table 1 shows
some of the popular functions of copula families. For more details on these families, see [14].
Bivariate copulas like Gaussian, Frank, and T distributions can accommodate both positive
and negative dependencies. Gumbel, Clayton, and Plackett copulas are restricted to model
positive dependencies only.

Table 1. Bivariate copula functions.

Copula Copula Function

Gaussian C(u1, u2; δ) = Φδ(Φ−1(u1), Φ−1(u2)), δ ∈ [−1, 1]

Frank C(u1, u2; δ) = − 1
δ log

[
1 + (e−δu1−1)(e−δu2−1)

e−δ−1

]
, δ ∈ R {0}

Gumbel C(u1, u2; δ) = exp
[
−

(
(− log (u1))

δ + (− log (u2))
δ
)1/δ

]
, δ ≥ 1

Clayton C(u1, u2; δ) = (u−δ
1 + u−δ

2 − 1)−1/δ, δ > 0

Plackett C(u1, u2; δ) =
[1+(δ−1)(u1+u2)]−

√
[1+(δ−1)(u1+u2)]2−4u1u2δ(δ−1)

2(δ−1) , δ ≥ 0

Bivariate t C(u1, u2; δ) = τδ(τ
−1(u1), τ−1(u2)), δ ∈ [−1, 1]

3. Copula-Based Model for Count Time Series Data
3.1. Gaussian Copula Marginal Regression Model

The Gaussian copula provides a mathematically convenient framework to handle
various forms of dependence, for example, in time series analysis. To model the time
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series data, Masarotto and Varin [15] describe a Gaussian copula model that emphasizes
the regression setting when covariates are present. Let us consider a regression model
with count time series Yt as the response variable with Xt as the vector of covariates or
independent variables, then the regression model can be represented as:

Yt = g(Xt, ϵt; Θ), t = 1, 2, . . . , n (2)

where g(·) represents a function of covariates Xt and the error ϵt which captures the serial
dependence. Further, Θ represents the vector of marginal model parameters and reduces
to a scalar under the Poisson distribution, i.e., θ = λ.

3.2. Copula-Based Bivariate Model

The bivariate integer-valued time series model was constructed via copula theory.
Suppose we observe a series of 2-dimensional vector, {Y t}n

t=1, where Y t = (Y1t, Y2t)
′ for

t = 1, 2, . . . , n. Assume that each series {Y1t}n
t=1 and {Y2t}n

t=1 follows a copula-based first-
order Markov process. Then, the mean vector µt, and the covariance matrix, say, Γ(t, t − 1),
are defined below:

µt = E(Y t) =

[
E(Y1t)
E(Y2t)

]
,

and

Γ(t, t − 1) = COV(Y t, Y t−1)

=

[
COV(Y1t, Y1,t−1) COV(Y1t, Y2,t−1)
COV(Y2t, Y1,t−1) COV(Y2t, Y2,t−1)

]
.

The diagonal elements in the covariance matrix represent the autocovariance within
each time series, whereas the off-diagonal elements represent the cross covariance between
the two time series. Hence, observing both serial dependence and cross-correlation, the joint
probability distribution of Y1t and Y2t given Y1,t−1 and Y2,t−1, respectively, for t = 1, . . . , n
is given by:

f (y1t, y2t|y1,t−1, y2,t−1) =
∫ V−1(F+

1,t)

V−1(F−
1,t)

∫ V−1(F+
2,t)

V−1(F−
2,t)

V2(z1, z2, R)dz2dz1, (3)

where V−1 denotes the inverse cdf of the normal distribution, with V2(., R) being the pdf
of the bivariate normal distribution. Here, R denotes the correlation matrix associated with
the joint distribution capturing the cross-sectional dependence and is given by:

R =

[
1 ρ
ρ 1

]
,

where ρ is a dependence parameter Gaussian copula function that describes the cross-
sectional dependence between the two count time series. Also, F+

i,t = F(yit|yi,t−1) and
F−

i,t = F(yit − 1|yi,t−1), for i = 1, 2, where:

F(yit|yi,t−1) =
F12(yit, yi,t−1)− F12(yit, yi,t−1 − 1)

ft−1(yi,t−1; θ)
,

is the conditional cdf of Yit given Yi,t−1, for i = 1, 2, and

F12(yit, yi,t−1) = C(Ft(yit), Ft−1(yi,t−1); δ),
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where C(.; δ) is a bivariate copula function with dependence parameter δ, describing
the serial dependence in a single time series, and θ denotes the vector of the marginal
parameters and reduces to a scalar under the Poisson distribution, i.e., θ = λ. This proposed
model can be used to analyze bivariate count time series data with counts following any
marginal distribution.

4. Inference

Parameter estimation has been conducted by maximizing the likelihood function. The
log-likelihood function is constructed using copula theory. However, such a function has no
closed form, so its maximization does not follow the standard theory [16]. The maximization
technique used is presented next.

Using the conditional density function mentioned in Equation (3) for t = 1, the joint
distribution of Y11 and Y21 is given by

f (y11, y21) =
∫ V−1(F+

1,1)

V−1(F−
1,1)

∫ V−1(F+
2,1)

V−1(F−
2,1)

V2(z1, z2, R) dz2 dz1, (4)

and for t = 2, . . . , n, the conditional bivariate distribution of Y1t = y1t and Y2t = y2t given
Y1,t−1 = y1,t−1 and Y2,t−1 = y2,t−1 is given by

f (y1t, y2t|y1,t−1, y2,t−1) =
∫ V−1(F+

1,t)

V−1(F−
1,t)

∫ V−1(F+
2,t)

V−1(F−
2,t)

V2(z1, z2, R) dz2 dz1. (5)

Hence, combining Equations (4) and (5), the likelihood function is given by

L(ϑ; y) = f (y11, y21).
n

∏
t=2

f (y1t, y2t | y1,t−1, y2,t−1), (6)

where ϑ = (θ′, δ1, δ2, ρ)′; here, θ is the vector of marginal parameters, and δ1 and δ2 are the
serial dependence parameters to deal with the first and second time series, respectively.
The bivariate dependence between the two time series is captured by ρ. Therefore, taking
the log of the function in (6), we can construct the log-likelihood function as follows:

log L(ϑ; y) = l(ϑ; y) = log f (y1t, y2t) +
n

∑
t=2

log f (y1t, y2t | y1,t−1, y2,t−1). (7)

Maximizing the log-likelihood function in (7) provides ML estimates for the proposed
class of model. However, within the log-likelihood function, there exists a bivariate normal
integral function that does not have a closed form as shown in (3). Hence, we evaluate the
bivariate integral function using the standard randomized importance sampling method
presented by Genz and Bretz [17]. This method has been proven to be effective with
dimensions less than ten. Hothorn et al. [18] implement this procedure in a package
mvtnorm, available at CRAN. The package consists of a function, pmvnorm, for the
computation of multivariate normal probabilities. Then, the parameter estimates, i.e., ϑ̂,
can be obtained as

ϑ̂ = arg max
ϑ

l(ϑ; y).

This maximization technique produces a numerically calculated Hessian matrix that
provides the Fisher’s information matrix (FIM) as shown by Silva and Diniz [19]. Using
the inverse of the FIM yields standard errors of the ML estimates of ϑ. In the next section,
we evaluate the effectiveness of the proposed class of models through a comprehensive
simulation study.
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5. Simulation Studies

A comprehensive simulation study is conducted to evaluate the proposed estimation
method and validate the asymptotic properties of the parameter estimates. We first consider
the bivariate Poisson count time series data. For each univariate time series, we consider a
first-order stationary copula-based Markov model, where a copula family is used for the
joint distribution of consecutive observations, and then we couple these two time series
using a bivariate copula function at each time point. Here, λ1 and λ2 denote the means of
two marginal distributions; δ1 and δ2 measure the serial dependence within each time series;
and ρ measures the cross-correlation between the two time series. The Gaussian copula
is selected as the candidate copula family with true parameters (λ1 = 4, λ2 = 6, δ1 = 0.5,
δ2 = 0.4, ρ = 0.5). Assuming the process is stationary, the marginal distributions’ parameters
θ is set to be constant across time. Simulations are performed using sample sizes of 100, 500,
and 1500 while replicating them 1000 times. For each of the above five parameter estimates,
the standard error (SE), mean square error (MSE), and mean absolute error (MAE) are
calculated, and the results are displayed in Table 2. The SE is the standard deviation of
the estimates over 1000 replications. The MSE measures the average squared difference
between the estimated values and the actual value, while MAE measures the average
absolute difference between the estimated values and the actual value. Mathematically, we
can define the SE, MSE and MAE as given below:

SE =

√
∑m

i=1(θi − θ̂i)2

m − 1
, MSE =

1
m

m

∑
i=1

(θi − θ̂i)
2, MAE =

1
m

m

∑
i=1

| θi − θ̂i |,

where θ̂i is the estimated value of the parameter and m is the number of replications. We
conduct another simulation setting using Gaussian copula as the candidate copula family
with true parameters (λ1 = 3, λ2 = 5, δ1 = 0.6, δ2 = 0.4, ρ = −0.5). In this simulation setting,
we consider the negative cross-correlation between two time series. The corresponding
simulation results are displayed in Table 3.

Table 2. Parameter estimates using Gaussian copula for univariate and joint distribution with Poisson
marginals for positive cross-correlation.

Sample Size Parameter Estimate SE MSE MAE

100

λ1(4) 4.092 0.376 0.149 0.309
λ2(6) 6.077 0.406 0.171 0.327

δ1(0.5) 0.428 0.067 0.009 0.08
δ2(0.4) 0.347 0.074 0.008 0.072
ρ(0.5) 0.459 0.071 0.007 0.066

500

λ1(4) 4.098 0.175 0.04 0.162
λ2(6) 6.074 0.182 0.039 0.157

δ1(0.5) 0.437 0.031 0.005 0.063
δ2(0.4) 0.355 0.033 0.003 0.047
ρ(0.5) 0.458 0.032 0.003 0.048

1500

λ1(4) 4.104 0.105 0.022 0.124
λ2(6) 6.084 0.105 0.018 0.106

δ1(0.5) 0.438 0.016 0.004 0.061
δ2(0.4) 0.358 0.018 0.002 0.042
ρ(0.5) 0.453 0.019 0.002 0.046
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Table 3. Parameter estimates using Gaussian copula for univariate and joint distribution with Poisson
marginals for negative cross-correlation.

Sample Size Parameter Estimate SE MSE MAE

100

λ1(3) 3.132 0.398 0.176 0.335
λ2(5) 4.988 0.365 0.133 0.295

δ1(0.6) 0.501 0.062 0.014 0.101
δ2(0.4) 0.338 0.079 0.010 0.081
ρ(−0.5) −0.448 0.072 0.008 0.072

500

λ1(3) 3.136 0.186 0.053 0.185
λ2(5) 4.978 0.161 0.026 0.129

δ1(0.6) 0.510 0.028 0.009 0.089
δ2(0.4) 0.351 0.033 0.003 0.051
ρ(−0.5) −0.448 0.033 0.004 0.059

1500

λ1(3) 3.141 0.111 0.032 0.152
λ2(5) 4.972 0.094 0.009 0.077

δ1(0.6) 0.513 0.015 0.007 0.086
δ2(0.4) 0.353 0.019 0.002 0.047
ρ(−0.5) −0.441 0.018 0.004 0.055

Tables 2 and 3 illustrate that the parameter estimates are converging to true values, and
the standard error decreases as the sample size increases. The results show that the estimates
become more and more robust as the sample size increase. Figures 1 and 2 show the quantile
plots of the estimated parameters. They are approximately normally distributed.
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Figure 1. Q-Q plots of the ML estimates for n = 500 with positive cross-correlation.
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Figure 2. Q-Q plots of the ML estimates for n = 500 with negative cross-correlation.

6. Real-Data Application

We apply our proposed bivariate model to analyze bivariate weather data acquired
from Mobile Regional Airport Station in Alabama at https://www.wunderground.com/
history/monthly/us/al/mobile/KMOB, accessed on 6 April 2023. The data consist of
average daily temperature and humidity values from January 2022 and ending in February
2023. These averages are computed from daily 15 min interval readings. The daily tem-
perature averages are given on the degree Fahrenheit scale (◦F), while the daily humidity
average is expressed as a percent. Both variables are on a continuous scale and converted
to discrete count data. The data conversion is considered to fit counts that are defined by
levels ranging from 0 to 5 as shown in Table 4. We categorize the data in this way because
we usually define values like that on any given day or time to fall into one of those groups.
Erhardt et al. [20] considered a similar transformation of the temperature data into copula
data in their paper. Figure 3 shows the daily level of the humidity and temperature for the
first three months of 2022, from January to March.

Table 4. Data count converted in scale.

Interval Level Temperature Humidity

x < 45 0 34 12
45 ≤ x < 55 1 61 31
55 ≤ x < 65 2 73 69
65 ≤ x < 75 3 117 111
75 ≤ x < 85 4 129 126

x ≥ 85 5 10 75

https://www.wunderground.com/history/monthly/us/al/mobile/KMOB
https://www.wunderground.com/history/monthly/us/al/mobile/KMOB
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Figure 3. greenPlot of humidity and temperature levels for the first 3 months of 2022.

Figure 4 shows the relationship between temperature and humidity for the weather
data. There appears to be a relationship between the temperature and humidity for the
given months but, apparently, the relationship is not linear. In Figure 5, we observe that the
distributions of temperature and humidity are relatively the same except when the two
atmospheric variables are at levels zero and five.
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Figure 4. Contour plots of the relationship between temperature and humidity for selected months of
2022 and 2023.
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Figure 5. Boxplot of temperature and humidity data.

Table 5 represents the parameter estimates for the fitted univariate model for tempera-
ture and humidity, choosing the Gaussian copula as the candidate copula family with a
Poisson marginal distribution. Here, λ1 and λ2 denote the means of two marginal distribu-
tions; δ1 and δ2 measure the serial dependence within each time series for temperature and
humidity, respectively.

Table 5. Gaussian copula marginal regression model for temperature and humidity.

Parameter Estimate SE

λ1 1.020 0.118
δ1 0.902 0.009
λ2 1.169 0.068
δ2 0.745 0.021

These results suggest that the estimated Poisson mean temperature and humidity are
around the 50s in degrees Fahrenheit.

Table 6 represents the parameter estimates for the fitted bivariate model choosing
Gaussian copula as the candidate copula family with Poisson marginals.

Table 6. Parameter estimates with Poisson marginals.

Parameter Estimate SE

λ1 2.677 0.121
λ2 3.293 0.067
δ1 0.920 0.009
δ2 0.754 0.020
ρ 0.501 0.044

Table 6 also displays the standard errors associated with the parameter estimates
for the bivariate copula model fitted using the Gaussian copula as the chosen copula
family. Notably, both marginal and copula parameter estimates exhibit robust standard
errors but more reliable parameter estimates. The temperature range around 60 degrees
Fahrenheit holds greater relevance than the temperature around the 50s in the city of
Mobile, AL. The same can be said for the city’s humidity. Hence, this alternate structure
better underscores the joint relationship indicator that was ignored. The inclusion of other
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pertinent variables would enhance the climate and ecosystems models, making it more
compelling for preparedness efforts.

7. Conclusions

In this manuscript, we propose a bivariate count time series model, which was built
using copula theory. The Gaussian copula is used as the candidate copula family to
capture serial dependence as well as the cross-correlation between the two time series.
The model performs equally well on modeling both positive and negative cross-correlations.
Simulated examples are conducted to evaluate the likelihood-based estimation method with
importance sampling to evaluate the bivariate normal integral. To prove the effectiveness
of the proposed model, bivariate counts of temperature and humidity are analyzed.
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