
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Summer 2000

A Flowchart Structure for Modification of a MODSIM Process A Flowchart Structure for Modification of a MODSIM Process

Model Model

Murali K. Adatrao
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Computer Engineering Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Adatrao, Murali K.. "A Flowchart Structure for Modification of a MODSIM Process Model" (2000). Master
of Science (MS), Thesis, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/
m0ab-v555
https://digitalcommons.odu.edu/ece_etds/271

This Thesis is brought to you for free and open access by the Electrical & Computer Engineering at ODU Digital
Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations by an
authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.odu.edu%2Fece_etds%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.odu.edu%2Fece_etds%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/271?utm_source=digitalcommons.odu.edu%2Fece_etds%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

A FLOWCHART STRUCTURE FOR

MODIFICATION OF A MODSIM PROCESS MODEL

by

Murali K Adatrao
B.Tech. July 1996, Jawaharlal Nehru Technological University, Hyderabad, India

A Thesis Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirement for the Degree of

MASTER OF SCIENCE

COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
August 2000

Approved by:

ABSTRACT

A FLOWCHART STRUCTURE FOR
MODIFICATION OF A MODSIM PROCESS MODEL

Murali K Adatrao
Old Dominion University, 1997

Director: Dr. James F. Leathrum, Jr.

There are many software processes and software development models that support

the development of a software model prior to implementation. However, more often than

not, these practices are not followed resulting in a lack of documentation of the intended

functionality of the software. As a result, software often becomes a black box for later

developers. Even a simple bug fix can turn into an exhaustive task for the developers, as

they must attempt to infer the intended system behavior. New designers cannot make any

changes to the software or extend the software behavior, as the underlying model within

the software itself is unclear. An understanding of the underlying model helps both the

designers and programmers to do their job quickly and effectively.

This thesis proposes a model to describe an existing undocumented software system

developed in MODSIM III to facilitate future development efforts. The model provides a

way to understand the underlying model of the software system by first documenting the

software using flowchart constructs. The model also ensures designers and programmers

make respective changes in the flowcharts before implementing the proposed changes.

This helps document the recent architecture of the software process in the form of

flowcharts. The model is described in this thesis and demonstrated on the port simulation

PORTSIM.

This thesis is dedicated to my mother.

ACKNOWLEDGMENTS

I would like to thank my committee members for their patience in guiding my research

and editing of this manuscript. The untiring efforts of my major advisor who helped me

in all stages of this thesis deserve special recognition.

TABLE OF CONTENTS

Page

LIST OF TABLES. .VI

LIST OF FIGURES VII

Section

1. INTRODUCTION.
1.1 Overview.
1.2 How the Objectives are Achieved.
1.3 Section Overview.

I

.I
.3
.3

2.BACKGROUND.
2.1 MODSIM B L

2.2 PORTSIM.
2.3 Software Models.
2.4 Flowcharting.

3. PROCESS FOR MODIFICATION OF EXISTING
CODE USING FLOW DIAGRAMS.

3.1 MODSIM III Constructs and Flow Diagram Constructs....
3.2 Developing Flow Diagrams.
3.3 Modifying Code using Flow Diagrams.

4. DEMONSTRATION OF USING FLOW DIAGRAMS
FOR CODE MODIFICATION IN PORTSIM.

4.1 Ship Exiting Problem.
4.2 Dialog Boxes Closing Problem.

5. CONCLUSIONS.
5.1 Achievements.
5.2 Drawbacks and Possible Enhancements.

.5
.5

...6
..6
.11

.12
......12

.24
.31

...42
.42
,53

....66
...66
..68

BIBLIOGRAPHY ...70

APPENDIXES
A. PORTSIM PROCESS FLOW.
B. LIFE CYCLES OF GRAPHICAL WINDOW OBJECTS

IN PORTSIM.
C. PORTSIM CODE FOR RELATED FLOW DIAGRAMS.....

.72

...145
....156

....175

LIST OF TABLES

Table Page

1. Basic objects and their properties. ..15

2. Characteristics of "callForwardFlatcars" method.

LIST OF FIGURES

Figure

1. Waterfall model

Page

2. Booch's Macro development process

3. Booch's Micro development process .

4. Alternate representation of Booch's Macro development process10

5. Example 1: An Event. .21

6. Example 2: An Activity.

7. Example 3: A Condition..

8. Example 4: A Asynchronous call.

9. Example 5: A Selection.

.21

.21

22

.22

10. Example 6: Loop with an activity and an event. ... 23

11. Example 7: Representation of code where order of
data flow is hidden in library routines . .23

12. Result of applying steps 2 through 5 to "callForwardFlatcars" method...27

13. Program flow within "callForwardFlatcars" method..

14. Program flow within "Flatcars Processing".

.29

.30

15. Modified representation of Fig. 13.

16. Modified representation of Fig. 14.

35

.36

17. Revised representation of Fig. 13. .38

18. Revised representation of Fig. 14.

19. MODSIM III constructs showing the changes made in Figures 13 & 14...

39

.....41

20. Modified representation of Fig. A.55. ..46

Figure

21. Modified representation of Fig. A.56.

22. Modified representation of Fig. A,63.

Page

.....46

..47

23. Logical representation of Fig. A.53 when there is no cargo left to load...48

24. Modified representation of Fig. 20.

25. Modified representation of Fig. 21.

26. Modified representation of Fig. 22.

....50

.50

.51

27. Representation of BeClosed method using "Erase"

28. Modified representation of Fig. B.2.

29. Modified representation of Fig. B.3.

30. Modified representation of Fig. B.4.

56

.. 57

59

31. Representation of BeClosed method using "Dispose" .61

32. Modified representation of Fig. B.6a.

33. Modified representation of Fig. B.ga.

34. Modified representation of Fig. B.9a.

.....61

.63

.64

SECTION I

INTRODUCTION

1.1 Overview

This thesis proposes a systematic approach that can be followed during the modification

and maintenance of an undocumented, complex software system and is applied to

simulations developed in MODSIM III [13]. The process is demonstrated on a port

simulation, PORTSIM [12]. The objectives of this process are to abstract documentation

of the software in the form of process flow in order to understand the underlying model

and use it while developing the software. The documentation should provide required

information for the designers and the programmers for modeling and debugging. Here

debugging represents removing modeling errors but not coding errors. The document

should, however, help to isolate code containing coding errors. The model is specific to

MODSIM in order to capture the language constructs inherent in MODSIM, but new

models can be developed for other languages in a similar manner.

The main problem in working on undocumented software is that the tasks it performs are

identifiable, but the process of accomplishing those tasks is not known. In order to make

any changes in the software, it is necessary to understand the way in which the software

is accomplishing its tasks.

In software development models, the software system is first analyzed and designed from

the specifications before going into implementation phase, So by the time the software

This Thesis follows the IEEE Software Engineering Journal Model

reaches the implementation phase the designers have a good understanding of what is

happening in the system. Also, the programmers, if they are not the designers, can learn

about the system by referring to design documents. The design documents are also

helpful during debugging. By understanding the kind of bug the software is suffering

from, one can make a good guess on the part of the code that is causing the problem.

Hence there is a great need to document the undocumented software to continue to

develop the software effectively.

In most cases, designers design the system in accordance to the programming

environment that will be used to develop the system. Knowledge of the programming

environment enables one to adopt design strategies relative to the programming

environment. The way one documents the software should reflect the environment of the

programming language used in developing the software. By doing this, any changes

proposed by the designers through the documentation can be easily implemented by the

programmers. One should take care to make the software's document represent its

underlying model instead of the sequence of executable statements. If possible the system

should be divided into different logical groups while documenting. This helps to track a

bug during debugging once we understand the type of bug and also to speed up the

process of modification by only concentrating on the enclosing logical unit while making

changes to the system.

12 How the Objectives are Achieved

In the proposed model, the above mentioned requirements are met by first developing a

set of pictorial representations of MODSIM III constructs and using them in the

flowcharts to represent the program flow within the software. By doing this, the

flowcharts themselves provide the software's programming environment to the designers.

The programmers can easily convert any modifications in the flowcharts into MODSIM

III code as long as the designers design their modification within the boundary of the

pictorial set. A logical unit is constructed by referring to the related flowcharts from

within a flowchart.

1.3 Section Overview

Section 2 provides a brief introduction to the programming language, MODSIM III, used

to develop the software, PORTSIM, and to the software itself. It also provides an

overview of well-known software models and discusses whether PORTSIM can follow

any of the models. In the conclusion, the importance of flowcharts in documenting

PORTSIM is discussed.

Section 3 discusses in-depth the important MODSIM III language constructs and how

they can be represented pictorially. It later discusses how the pictorial representation of

MODSIM III constructs can be used in developing flow diagrams representing the

program flow within PORTSIM and how the resulting flow diagrams can be used in the

development process of the PORTSIM.

Section 4 provides examples on how to use the flowcharts for debugging and for

modeling the code to make improvements.

Section 5 gives the summary of the benefits and the drawbacks and possible solutions of

the proposed model.

SECTION 2

BACKGROUND

This section provides an introduction to MODSIM III programming language,

PORTSIM, a simulation tool developed to simulate military cargo flow through

commercial ports, and to the software engineering models that are used to develop

software systems. Finally, this section discusses how the present models are inefficient to

use in the development cycle of PORTSIM.

2.1 MODSIM III

MODSIM III is a modular, object-oriented, strongly typed, block structured, discrete-

event simulation language [5]. Every MODSIM III program contains a main module.

Programs can be divided into modules with each module supporting some particular

functionality. Any module can be compiled separately, making the maintenance of the

code easy. Each module may contain a number of objects. An object is an encapsulation

of data items which describe the state of the object and methods which describe the

interface of the object. MODSIM III also supports inheritance and polymorphism. Every

expression and method parameter is checked at compilation time for type consistency.

This strongly typed feature helps to identify errors at compilation time rather than at run

time. The scope and visibility of variables is restricted to the block in which they are

declared. The library modules and the language features provide all the capabilities for

developing discrete-event simulation models. MODSIM III demands that simulation

models be developed in terms of process. The process is capable of performing multiple

concurrent activities. The activities can be modeled to operate independently or in a

synchronized fashion. This process model helps to code a related group of activities in

one routine.

2.2 PORTSIM

PORTSIM is a database-driven, object-oriented, computer simulation [12]. The software

is being developed in MODSIM III. PORTSIM is useful for force deployment through a

given commercial port [14]. It is useful in estimating the time of embarkation and

disembarkation of a force, given the parameters of the port and the force [11]. The

purpose of this software is to study the effects of initial parameter values on the end

results. The software can be used to simulate either port of embarkation (POE) or port of

disembarkation (POD) operations, In either mode, we can either create a new scenario in

which PORTSIM relies heavily on the underlying database to get required data or load an

existing scenario for which PORTSIM reads data from the scenario file.

2.3 Software Models

There are many systematic development models that are being used for developing a

software model. The first model that was used to develop a software model is the

Waterfall model. The various stages involved in the Waterfall model is shown in Fig. I

[I]. Though the Waterfall model does have disadvantages, it showed that a systematic

approach in developing the software does make improvement in the quality of the code

and the time taken to develop the code. Other significant models which were developed

later are:

1. Spiral model [1], [2],

2. Booch method.

3. Object Modeling Technique (OMT) [10].

4. Object-Oriented Software Engineering (OOSE) [9].

5. Unified Modeling Language (UML) [7], [8].

UML is the result of combining the Booch, OMT and OOSE methods [3].

Fig. 1 Waterfall model

2.3. I Introduction to the Booch Model

This section discusses the Booch model as an example which uses Object-Oriented

Analysis and Object-Oriented Design [4]. The Booch model divides the process of

software development into two processes, namely;

1, Macro process.

2. Micro process.

Macro process: Booch's Macro development process [4] is shown in Fig. 2, which

describes the overall process of software development.

Fig. 2 Booch's Macro development process

Micro process: Booch's Micro development process is shown in Fig. 3 [4], which is

used to carry out iterati vely the activities in the Macro process.

Fig. 3 Booch's Micro development process

Actually, Booch's Macro process can be represented as shown in Fig. 4, where each

small circle represents a micro process. For each activity in macro process emphasis will

be given on different activity in the corresponding micro process.

Fig. 4 Alternate representation of Booch's Macro development process

10

In both the Booch method and the UML, the class diagram is used to specify static

relationships between classes in the design phase. Class diagrams do not represent

dynamic relationships such as when objects are created or invoke services of other

objects.

2.3.2 Software development Models and PORTSlM

From the above discussion, we can see that the present software development models are

useful for developing software from software's overall specification to final product. The

models actually start from a higher level model of the software and go down to

implementation or a lower level model in the later stages. Also, in any given

intermediate state of development the models seem to have a proper documentation for

the software under development. The absence of any such documentation for PORTSIM

and the software structure suggest that PORTSIM did not follow any of the development

methods mentioned above. So, to successfully use any of the development methods for

PORTSIM, we need to document the software by developing the higher level model of

the software from its implementation. As the software is already in an implementation

stage, deciding on which development method to use is difficult. Also, the higher level

model developed from the software may not be consistent with the higher level model

that may be developed if the chosen development method is actually used from the

beginning. So it is not wise to think of using any of the above mentioned development

methods in the modeling of PORTSIM. The only way left to document PORTSIM is to

represent the present architecture in such a way that it will be useful to identify the

underlying model, to identify the dynamic relationships between objects and also to

make future enhancements easily and successfully.

2.4 Flowcharting

Flowcharts help to represent the underlying model and the dynamic relationships

between objects, thus eliminating any need to develop a higher level model to make

future enhancements. Since PORTSIM is implemented in MODSIM III, it is necessary

to develop flowchart constructs to represent MODSIM III language constructs. By doing

this, the resulting flowchart representation of PORTSIM helps both designers and

programmers. Designers can now make changes in the flowcharts using the standardized

representation and programmers can convert the changes into MODSIM III constructs.

That is, flowcharts developed with a one-to-one relation between the flowchart

constructs and programming language constructs act like a common interface between

designers and programmers.

12

SECTION 3

PROCESS FOR MODIFICATION OF EXISTING CODE USING

FLOW DIAGRAMS

The modification process of existing software can be classified into bug fixes in the

software and modified behavior. Though both of these processes produce new problems

in the code if not done properly, the latter one is more prone to this effect, as care should

be taken to leave the functionality of the rest of the code unchanged. The first thing to do

when modifying existing code is to classify the purpose of modification into the

modification process for I) bug fixing or for 2) better performance. This section presents

the process of modeling existing MODSIM software for modification.

3.1 MODSIM III Constructs and Flow Diagram Constructs

For both modification processes, we need to understand the program flow within the

software code. An appropriate way to represent the program flow is by means of flow

diagrams. The complexity of the flow diagrams depends on the complexity of the

programming language in which the software is developed. Therefore, it is always a good

idea to understand the capabilities of the host language and adopt a notation that reflects

its capabilities as closely as possible. This helps to translate code into flow diagrams and

flow diagrams into code with consistency. PORTSIM, which will be used to demonstrate

the modification process, was developed using MODSIM III. The following section

discusses the MODSIM III constructs that need to be represented properly to reflect the

functionality of the code.

13

3.1.1 MODSIM 111 constructs

MODSIM III supports process-oriented simulation instead of event-oriented simulation

[5]. In case of an event-oriented simulation, passage of time is handled by scheduling the

next event for the object currently being processed. This type of timing model is well

suited to small models, but in the case of large models, where there is a lot of unrelated

event routines in-between, following a single object's behavior is more difficult.

MODSIM III simplifies larger models by allowing many aspects of an object's behavior

in a model to be described in one method that allows for the passage of time at one or

more points in its code. To support this concept, MODSIM utilizes several constructs to

handle timing issues between concurrent processes, which are not present in all

languages. There are also libraries to support capabilities like a Graphical User Interface

(GUI) and methods like NEW and DISPOSE for creating and destroying objects for

which it is undesirable to model the internal components in detail. The following section

discusses the constructs that MODSIM III contains to build simulation models.

3.1.1.1 MODSIM III constructs from the programmer's perspective

DEFINITIONS:

Activity: What occurs in the model as time elapses, No code is executed

Event: A point in time at which the state of the model changes in some way. Code is

executed, but time does not elapse.

14

In MODSIM III, a programmer has complete control of the simulation process with the

help of ASK, TELL and WAITFOR methods [5]. A call to an ASK method is similar to

that of a procedure call, i.e., when an ASK method is invoked, the calling code waits until

the method is executed completely. Simulation time is not allowed to elapse in an ASK

method. So an ASK method symbolizes the occurrence of an event. A call to a TELL

method is similar to that of an asynchronous call, i.e., when a TELL method is invoked,

the calling code does not wait for the completion of the method. Simulation time is

allowed to elapse in a TELL method using a WAIT statement, so a Wait statement

symbolizes the occurrence of an activity. A TELL method can also be scheduled to

execute at some time in the future. A call to a WAITFOR method is similar to that of a

procedure call with the ability to elapse simulation time, i.e„WAITFOR method has both

the required properties of TELL and ASK methods. One important use of TELL and

WAITFOR methods is that a programmer can achieve arbitrary synchromzation by the

use of TRIGGER objects within them. Triggers are used along with WAIT statements.

TRIGGERS can be used when some processes need to wait until a specific condition

occurs. A TRIGGER object can have any number of processes waiting for it. The

processes will continue to wait till the trigger object's TRIGGER method is invoked by

some other process.

Another important programming construct that needs to be represented carefully is the

selection construct. This construct is important because the program control may follow

any of the associated branches, depending on the result of the selection condition at a

given time. So if an activity, event or logical process occurs as a branch in the selection

15

construct, the program control may or may not go through that branch depending on the

result of the selection condition. Hence the branches could be alternate activities,

alternate events or alternate logical processes respectively.

3.1.1.2 MODSIM III constructs from the GUI developer's perspective

SIMGRAPHICS II is the MODSIM III'S graphics package [6j. Since MODSIM III is an

Object Oriented language, the graphical interface is also implemented using objects.

Many basic objects have already been provided. The most important ones are shown in

TABLE 1 below [6],

TABLE 1

Basic objects and their properties

OBJECT NAME PROPERTIES

WindowObj
Standard system window which acts as a container for all
graphical objects.

ImageObj Basic object used for static icons and backgrounds.

DynImageObj Basic graphic object used for animation.

DialogBoxObj
Receives various types of input from the user. Controls, such as
buttons, check boxes, list boxes etc. can be part of it.

PaletteObj Receives input from two-state palette buttons.

MenuBarObj Receives simple menu selections.

16

An instance of any of these objects can be made visible by calling their respective

DRAW methods and can be erased by calling their respective ERASE methods. In

SIMGRAPHICS II, a developer can have complete control on the behavior of graphical

objects with the help of the BeSelected, Acceptlnput and BeClosed methods. The

BeSelected method is automatically invoked when a graphical object is clicked on. This

method can be overridden to receive asynchronous input. Within a BeSelected method of

a graphical object, the LastPicked field can be checked to determine which control was

last clicked on. Depending on the control, a programmer can model the behavior of the

graphical object. AcceptInput method is used to retrieve synchronous input from a

graphical object. Acceptlnput returns the contents of the LastPicked field after the

selection has been made. However, if the graphical instance is erased or disposed,

Acceptinput returns NILOBJ [6]. BeClosed method is automatically invoked whenever a

user chooses to close a graphical object. This method can be overridden to change its

default behavior associated with a graphical object.

Of all the three methods, the behavior of the Acceptinput method cannot be changed.

This very fact makes the representation of data flow difficult if a dialog box uses both

Acceptinput and BeSelected methods in its life cycle. We cannot tell whether the selected

input is returned to the AcceptInput method first or to the BeSelected method. No matter

which of the two methods receive the selected input first, by the time the statement after a

call to Acceptlnput method is executed we can say that both the BeSelected and

AcceptInput methods are returned. So the point after a call to AcceptInput method can be

represented as the point of return for both Acceptlnput and BeSelected methods. So in

17

any situations where the actual implementation is hidden in the library routines, we

should look for the first point at which we are absolutely sure about the cumulative result,

i.e., we need to concentrate on final result rather than the actual sequence of data flow,

These issues complicate the modeling process.

3.1.1,3 MODSIM HI constructs from the designer's perspective

From the designer's point of view, a call to any type of method is a way of passing

messages from one object to another object or to itself. Objects respond to messages by

executing the associated code, which may in turn send messages. In some cases this

message sending will be so nested that it is a good idea to subdivide the code associated

with a message into logical processes where each logical process represents a set of

closely related messages. Closely related messages are messages that are used together to

accomplish a single target. In fact, any involved message can also be treated like a logical

process, so any system can be represented as sequence of logical processes that are to be

completed to get the results. The following section shows the notations for various

MODSIM III constructs.

18

3.1.2 Flow Diagram constructsfor MODSIM 111 constructs

This section shows the flowchart constructs that can be used to represent program flow

within the software developed in MODSIM III.

Flowchart Construct Purpose

Begin/End of logical process.

Represents an event within a logical process.

Represents an activity within a logical process.

Represents a logical process within a logical process.

Represents a logical process containing an activity.

Represents a condition within a logical process.

Represents an alternate event as a result of condition or

as a result of selection.

Represents an alternate activity as a result of condition or

as a result of selection,

Represents the point of return of multiple methods

irrespective of order of completion of the methods.

Represents an alternate logical process within a logical

process.

Represents an alternate logical process containing an

activity.

Represents the direction of flow of program control.

Represents that the program control will follow any of the

directed paths depending on the outcome of the selection

statement.

Represents an asynchronous call and hence the program

control continues to flow down without waiting for the

completion of process started by the branched arrow.

20

Flowchart Construct Purpose

Represents a terminator.

21

3.1.3 Flow Diagram Examples for MODSIM ill constructs

This section shows how the above notations can be used to represent different constructs

in MODSIM III.

Fig. 5 Example I: An Event

Fig. 6 Example 2: An Activity

Fig. 7 Example 3: A Condition

22

Fig. 8 Example 4: A Asynchronous call

OR

Fig. 9 Example 5: A Selection

23

Fig. 10 Example 6: Loop with an activity and an event

Fig. 11 Example 7: Representation of code where order of data flow is hidden in library

routines

3.2 Developing Flow Diagrams

This section describes the method of partitioning the code and representing it as a flow

diagram by using the code associated with a method from PORTSIM as an in depth

example. Two other examples can be found in Section 4.

3.2.1 Method

The following steps describe the way to develop flow diagrams from MODSIM III code.

I) Define the functionality of the method to be decoded by its object type, name, in-put

parameters, out put parameters and by the context of the code from which the method

is being called.

2) Go through the code and mark off the method calls;

3) Mark off the activities, events and the asynchronous calls from method calls.

4) Identify sets of method calls where available that are used to perform a single task

and name that set of methods depending on the task they are performing.

5) Identify any method calls that need to be further expanded (involved messages).

6) Construct the flow diagrams using the notations developed previously.

25

3.2. 2 PORTSIM Example

This following section shows the result of applying the above mentioned procedure of

converting code into flow diagrams to the method called "callForwardFlatcars" in

PORTSIM'S code.

Step 1

The characteristics of the method and their values are given in TABLE 2

TABLE 2

Characteristics of "CallForwardFlatcars" method

Functionality: This method is used for getting flatcars from the interchange yard to the

instance of a spur object to which this message is passed.

26

Steps 2 through 5

Fig. 12 shows the result of applying the steps 2 through 5 on the code shown in Fig. C.l.

The following comments are made for Fig. 12:

1) The statements in boxes represents synchronous method calls out of which statements

containing "Wait" represent activities and remaining statements represent events.

2) Asynchronous calls are represented by bold text.

3) Sets of method calls performing a single task are marked along with their names.

4) Statements in boxes that are followed by "expand" represents method calls that can be

treated as logical processes.

27

TELL METHOD callForwardFlatcars(IN interchangeYard:interchangeYardObj;IN ranGen:RandomObj);
BEGIN

WHILE (SimTime() &= (simBeginTime+ timeToSimulate))

WHILE (numFlatcarsCarryingVehicles = 0)

Wait for Train Classified Triggerl In IY Count. Flatcars with Vehicles as their First Cargo ',
END WHILE;

ELSIF (ordering = "Containers Only")

WHILE (numFlatcarsCarryingContainers = 0)

Wait for Train'Classified Trigger; In IY Count Flatcars with Container as their First Cargo

END WHILE;
END IF;
IF (status = "idle")

Start "Flatcars Processing"

END IF;
END WHILE;
TELL IYTri er TO Tri er;

Wait for,Locontotive; Wait for, Locomotiv'e amval at IY; Wait for'oupling Flatcars'at IY

IF (type = "OPEN STAGING")

ELSIF (type = "COVERED STAGING")

ELSE

TELL spurDoneTrigger TO Trigger;
ELSE

END IF;
END WHILE;

END METHOD lcallForwardFlatcars);
Fig. 12 Result of applying steps 2 through 5 to "callForwardFlatcars" method

28

Step 6

In this step, Fig. 12 is converted into flow diagrams using the previously adopted

notations. Fig. 13 represents the program flow within the "callForwardFlatcars" logical

process, with the identified logical processes in it marked properly. Fig. 14 represents the

program flow within the "Flatcar Processing" logical process, with the identified logical

processes in it marked properly. Every logical process in Fig. 13 and in Fig. 14 is

followed by a figure number, which represents the program flow within that particular

logical process.

29

Begin Call Forward Flatcars

NO
Simtime & (Simbegin

Time+Time To Simulate)

Vehicles onl Ordering Containers only

In IY Count Flatcars with
Vehicle as their First Cargo

In IY Count Flatcars with
Container as their First Cargo

Count = 0

Other

NO NO
Count = 0

Wait for Train Classified Trigger Wait for Train Classified Trigger

Is Spur Idle
NO

Change Status to Busy Wait for Spur Done Trigger

* Flatcars Processing (Fig. 14)

Change Status to Idle

End Call Forward Flatcars

Trigger Spur Done Trigger

Fig. 13 Program flow within "callForwardFlatcars*'ethod

30

Begin Flatcars Processing

*Build List of Flatcars at IY (Fig. A.19)

Is List Empty

NO Wait for 30 Minutes

Trigger IY Trigger

Wait for Locomotive

Wait for Locomotive arrival at IY

Wait for Coupling Flatcars at IY

Open Sta in Spur Type Covered Staging

Wait for Flatcars Switch to Spur

Apron
Wait for Flatcars Switch to Dock

Wait for Flatcars Switch to Berth

Wait for Flatcars to Uncouple

Give Back Locomotive

*Discharge Flatcar Contents (Fig. A.24)

End Flatcars Processing

Fig. 14 Program flow within "Flatcars Processing"

31

3.3 Modifying Code using Flow Diagrams

This section shows how flow diagrams developed in the above mentioned fashion can be

used to modify the code to fix a known bug.

3.3.1 Methodfor modifying code using Flow Diagrams

The following steps describe the way to use flow diagrams to fix bugs in MODSIM III

code.

I) Define and analyze the problem.

2) Identify the set of flow diagrams representing the code that may contain the bug.

3) Go through the flow diagrams keeping in mind the type of problem and identify the

problem causing segments within the flow diagrams.

4) Define the condition that needs to be satisfied to prevent the problem.

5) Change the flow diagrams so that the problem is rectified, The change may span more

than one flow diagram as we have divided the system into logical processes.

6) Run through the flow diagrams again and make sure that the original functionality is

not disturbed because of the changes made in the flow diagrams. Go to step 5 if the

original functionality is changed.

7) Now convert the modified flow diagrams into MODSIM III constructs using the

developed notations.

8) Execute the code with modifications and check if the problem is solved. If the

problem persists, go to step 3.

The following section shows how the above mentioned procedure is applied in solving a

problem.

32

3.3.2 PORTS1M Example: Call Forward Flatcars Problem

Step 1

Problem definition: Only the first available interchange yard is being serviced, and all

other available interchange yards are not serviced even though they have flatcars in them

and spurs are available for use.

From the problem definition, we may surmise that the first serviced interchange yard is

not allowing other interchange yards to get service or is forcing the code into an infinite

loop.

Step 2

The flow diagrams involving interchange yards are shown in Fig. A.14 and Figures A.16

through A.21.

Step 3

1) From step 1, we decide that we need to concentrate on loops in the flow diagrams.

2) From Fig. A.14, we can see that each available interchange yard is trying to get

served by a spur. But in order to understand the inner loop completely, we need to

understand A.16.

3) From Fig. A.16, we can see that each available spur is calling flatcars from the

interchange yard. Fig. A.16 points us to Fig. A.17, which expands the "call Forward

Flatcars" logical process.

33

4) From Fig. A.17, we can see that:

~ If the ordering is either "vehicles only" or "containers only," the program control

loops until there are flatcars in the interchange yard. However, we cannot say that

this flow diagram segment is the one that is causing the problem because we need

to solve the problem for interchange yards that have flatcars in them.

~ If the spur is idle, then its status is changed to "busy" before executing the

"flatcars processing" logical process and is changed back to "idle" after "flatcars

processing" logical process. The interchange yard then sends "spur done*'ignal.

~ If the spur is not idle, then the interchange yard waits until it receives "spur done"

signal.

5) From Fig. A.18, which expands the "flatcars processing" logical process, we can see

that:

~ If there are no more flatcars left within the interchange yard, the program control

loops until more flatcars are available in the interchange yard. We can say that

this segment of the flow diagram is the one that is causing the problem. By the

time the program control reaches the loop, the status of the spur is already marked

as "busy," making it unavailable to other interchange yards. There is no way of

getting out of this loop after all the flatcars in the interchange yard are

processed.

34

Step 4

The condition that needs to be satisfied to solve the problem is that an interchange yard

should make the spur, to which it is sending flatcars, available to other waiting

interchange yards after all of the flatcars in it are processed.

Step 5

We can remove the problem causing loop from the "Flatcars processing" logical process

and add it before the spur's status check in the "call Forward Flatcars" logical process.

This makes sure that the spur's status is marked "busy" only when there are flatcars in the

interchange yard. Figures 15 and 16 show the modified parts of the flow diagrams shown

in Figures 13 and 14.

35

Same as Fig 13

Wait for Train Classified Trigger Wait for Train Classified Trigger

YES

Change Status to Busy

Is Spur Idle """""'"""""""I NO

4 I ~ ~ ~ & ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Wait for Spur Done Trigger

Same as Fig. 13

Fig. 15 Modified representation of Fig. 13

36

rigger IY Trigger
l

Same as Fig. 14

Fig. 16 Modified representation of Fig. 14

Step 6

The model developed above satisfies the condition mentioned in step 4 by not allowing

any interchange yard to monopolize the use of the spurs. However, to understand whether

the above model leaves the original functionality of the "call Forward Flatcars" logical

process unchanged, it is necessary to understand the effect of shifting the position of

"Build List of Flatcars at IY" logical process along with the loop. From Fig. A.19, which

expands "Build List of Flatcars at IY" logical process, we can see that it is necessary to

understand the "Adding Flatcars with Vehicles" logical process. From figure A.20, which

expands the "Adding Flatcars with Vehicles" logical process, we can see that

I) While building the list of flatcars, flatcars are removed from the interchange yard, and

the capacity of the interchange yard is incremented by their length.

If after building a list of flatcars the spur is found to be busy, the interchange yard will

wait for a spur done signal. After receiving the signal it again loops back and builds

37

another list of flatcars, so the flatcars in the previous list were destroyed without being

processed.

Step 5 Revisited

We can change the condition for marking the spur's status as "Busy," without shifting the

loop from the "Flatcars Processing" logical process to the "call Forward Flatcars" logical

process, in such a way that the spur is marked busy only when there are flatcars in an

interchange yard. This can be done by marking the status of the spur as "Busy" after the

problem causing loop in the "Flatcars processing" logical process instead of in the "call

Forward Flatcars" logical process. Now, if the program control loops indefinitely when

there are no flatcars left to process in the interchange yard, the status of the spur will

remain as "Idle" making it available for other interchange yards. Also, we need to check

the status of the spur in the loop before building a list of flatcars from an interchange yard

to make sure that the spur is still available after waiting for thirty minutes for more

flatcars in the interchange yard. Figures 17 and 18 show the modified parts of the flow

diagrams shown in Figures 13 and 14.

38

! Same as Fig. 13

* Flatcars Processing (Fig. 18)
I

Is Spur Idle

Same as Fig. 13

NO

T
Wait for Spur Done Trigger

Fig, 17 Revised representation of Fig. 13

39

N

Is List Empty
)Yss

ait for 30 Minutes

rigger IY Trigger

Wait for Locomotive

Same as Fig. I4

Fig. 18 Revised representation of Fig. 14

Step 6 revisited

The alternate model developed above functions exactly like the original model when

there are flatcars in an interchange yard to process, and it also satisfies the condition

mentioned in step 4.

Step 7

Now we need to convert the flow diagrams shown in Figures 17 and 18 into MODSIM III

constructs using the notations developed. Fig. 19 shows the MODSIM III constructs

where the changes are indicated by bold italic text. The modified code is shown in Fig.

C.2.

Step S

The modified code was executed and found that the available spurs are servicing all

interchange yards with available flatcars.

TELL METHOD callForwardFlatcars(IN interchangeYard:interchangeYardObj;IN ranGen:RandomObj);
BEGIN

WHILE (SimTime() &= (simBeginTime+ timeToSimulate))

WHILE (numFlatcarsCarryingVehicles = 0)

Wait'for Tr'itin Classified Tiigge'r; In'IY Count Flatcars'with Vehiclei as their First Car'go

END WHILE;
ELSIF (ordering = "Containers Only")

WHILE (numFlatcarsCarryingContainers = 0)

Wait for'rain Classified Trigger', In IY Count Flatcars with Container as their First Cargo

END WHILE;
END IF;
IF (status = "idle") ~ Removed the call to spur status change in the IF construct

WHILE (stringOfFlatcars.numberIn = 0) ~ Start "Flatcars Processing"
IF (status = "idle")

E(VD IFI
IF (stringOfFlatcars.numberIn = 0)

END WHILE;

IF (type = "OPEN STAGING")

ELSIF (type = "COVERED STAGING")

ELS

END IF;

TELL spurDoneTrigger TO Trigger;
ELSE

END IF;
END WHILE; END METHOD {callForwardFlatcarsi;

Fig. 19 MODSIM III constructs showing the changes made in Figures 13 & 14

42

SECTION 4

DEMONSTRATION OF USING FLOW DIAGRAMS FOR

CODE MODIFICATION IN PORTSIM

This section demonstrates the use of the model developed in the previous section to fix

bugs and to modify the code using flowcharts. The "Ship Exiting Problem" as described

below demonstrates a second use of the model in fixing bugs similar to the "Call Forward

Flatcars" problem detailed in Section 3. The "Dialog Boxes Closing Problem," as

described later, demonstrates the use of the model in making improvements in the

software.

4.1 Ship Exiting Problem

Step 1

Problem definition: Ships are not leaving a port if they have remaining cargo space and

all cargo has been loaded onto a ship.

From the problem definition, we may surmise that this problem is due to either an infinite

loop or an inappropriate condition that allows a ship to leave the port.

Step 2

The flow diagrams involving ship life cycle are shown in Figures A.46 through A.78.

43

Step 3

1) From step 1, we decide that we need to concentrate on loops and conditions in the

flow diagrams.

2) From Fig. A.46 we can see that

~ The time the last cargo was loaded onto the ship is set to the present simulation

time.

~ A ship in the arrival list is then sent to dock at a berth.

In order to understand the docking process, we need to understand Fig. A.47.

3) From Fig. A.47 we can see that

~ If none of the berths are available for military use then the ship is added to ship

queue.

~ If any of the berths are available, berthing is done depending on the ship type.

In order to understand the berthing process for various types of ships, we need to

understand Figures A.48 through A.51.

4) From Figures A.48 to A.51, we can see that to understand these figures we need to

understand Fig. A.52.

5) From Fig. A.52, we can see that if a berth is available and suitable for the ship, then

~ The berth is marked busy.

~ The ship is served or loaded at that berth.

In order to understand the process of serving a ship, we need to understand Fig. A.53.

6) From Fig. A.53, we can see that

~ If space on the ship is not available, the ship is released from berth.

44

~ If space on the ship is available, then

~ Staging areas with maximum number of vehicles, containers and pallets ready

to load are selected.

~ If none of the cargo items are available then the program waits for sixty

minutes.

~ If any of the cargo items are available, those cargo items are call forwarded

from their respective staging areas.

~ Cargo items are loaded onto the ship.

~ If any of the cargo items are left on berth, those cargo items are sent back to

staging areas.

~ If the difference between present time and the time the last cargo item was

loaded is less than the maximum wait time for cargo of that ship, the above

process is repeated. Otherwise, the ship is released from the berth. This

implies that a ship is released from berth if none of the cargo items are

available within the maximum allowed wait time for cargo of the ship.

But in order to understand the processes of call forwarding cargo, loading cargo

and ship release, we need to understand Figures A.54, A.66 and A.78,

respectively.

7) From Fig. A.54, we can see that a call forward list is built depending on the ship type,

so to understand Fig. A.54 we need to understand Figures A.55, A.56 and A.63.

45

8) From Figures A.55, A.56 and A.63 we can see that

~ If the cargo items and the port assets required to load them onto the ship are not

available, the program again waits for sixty minutes and checks for the

availability of cargo items and the port assets required by them. This loop

continues till both the cargo items and the port assets required by them are

available.

We can say that this segment of the flow diagrams is the one that is causing the

problem. If there are no more cargo items left to occupy the present staging area,

from which the call forward list is being built, there is no way for the program control

to get out of this loop. So, the ship cannot be released from the berth once the

program control is caught in this loop.

Step 4

The condition that needs to be satisfied to solve the problem is that a ship should be

released from a berth when all of the cargo items in a staging area are loaded onto the

ship.

Step 5

We can remove the defective loop from the Figures A.55, A.56 and A.63 and convert it

into a condition statement as shown in Figures 20, 21 and 22, respectively. This will

allow a ship to be released from the berth when all the cargo items in a staging area are

loaded onto it by making the "Call Forward Cargo" process behave as a WAIT statement,

as shown in Fig. 23.

46

Fig. 20 Modified representation of Fig, A.55

Fig. 21 Modified representation of Fig. A.56

47

Begin Build Default Call Forward List

Number of Containers ready
to load = 0 & Vehicles Ready

to load = 0

Wait for 60 minutes NO

Number of Containers ready
to load = 0

NO
Number of Vehicles to Send =

MIN (12, Number of Vehicles Ready)

Number of Vehicles
to send = 0

Wait for 60
minutes

NO
*Send Vehicles to
berth (Fig. A.58)

NO

Number of Vehicles ready to
load = 0

*Send both Vehicles and Containers
(Fig. A.64)

Number of Containers to Send =
MIN (12, Number of Containers Ready)

Number of
Containers to send=0

NO

Wait for 60
minutes

"Send Containers to
berth (Fig. A.57)

End Build Default Call Forward List

Fig. 22 Modified representation of Fig. A.63

48

Begin Serve Ship at the Berth

Space for Container or Breakbulk
or RORO available on the Ship

NO

Get Open Staging Area with Maximum Vehicles Ready to Load

Get Open Staging Area with Maximum Containers Ready to Load

Get Open Staging Area with Maximum Pallets Ready to Load

Wait for 60 minutes

Maximum Number of Vehicles or
Containers or pallets ready & 0

Wait for 60 minutes

* Load Cargo (Fig. A.66)

Send Items to Staging Areas

Cargo items left on Berth & 0

NO

SimTime-Time last cargo loaded &
Max.wait time without loading* 60

*Ship Release Process (Fig. A.78)

End Serve Ship at the Berth

Fig. 23 Logical representation of Fig. A.53 when there is no cargo left to load

49

Step 6

From the understanding of Fig. A.53, we can see that we made the berth release the ship

when there are no cargo items left to load. However, to see whether the above model

leaves the original functionality of the call forward cargo process unchanged, it is

necessary to understand the purpose of using the loop during the preparation of call

forward list. From Figures A.55, A.56 and A.63, we can see that the loop is making sure

that the program waits for at least sixty minutes for more cargo to arrive at the staging

area. The model developed above is not supporting this minimum waiting period

functionality.

Step 5 Revisited

We can remove the loop and wait for sixty minutes if there are no cargo items left in the

staging area. Once the program control returns from the wait statement, we can check for

new cargo items in the staging area again. Figures 24, 25 and 26 show this new model.

Fig. 24 Modified representation of Fig. 20

Fig. 25 Modified representation of Fig. 21

51

Begin Build Default Call Forward List

Wait for 60 minutes

Number of Containers ready
to load = 0 & Vehicles Ready

to load = 0

NO

NO

Number of Containers ready
to load = 0

NO
Number of Vehicles to Send =

MIN (12,Number of Vehicles Ready)

Number of
Containers ready to

load = 0 8c

Vehicles Ready to
load = 0

Number of Vehicles
to send = 0

NO
Wait for 60

minutes
*Send Vehicles to
berth (Fig. A.58)

NO

Number of Vehicles ready to
load = 0

*Send both Vehicles and Containers
(Fig. A.64)

Number of Containers to Send =
MIN (12, Number of Containers Ready)

Number of
Containers to send=0

NO

Wait for 60
minutes

*Send Containers to
berth (Fig. A.57)

End Build Default Call Forward List

Fig. 26 Modified representation for Fig. 22

52

Step 6 Revisited

The alternate model developed above also makes the "Call Forward Cargo" process

behave as a WAIT statement when there are no more cargo items left to arrive at the

staging area, and it also satisfies the minimum waiting period for more cargo items to

arrive at the staging area.

Step 7

Now we can convert the flow diagrams shown in Figures A, 25 and 26 into MODSIM III

constructs using the notations developed. The MODSIM III code for these figures is

shown in Fig. C.3.

Step 8

The modified code has been executed and we found that the ships were leaving the port

when there is no more cargo left to load, irrespective of the remaining cargo space on

ships.

It should also be noted that this fix allows the code to operate as originally modeled.

However, this is not the correct port operation. A significant effort is required to develop

a new berthing/call forward model. This need was not uncovered until this modeling

effort allowed insight to the implementation model by the domain experts.

53

4.2 Dialog Boxes Closing Problem

Step 1

Problem definition: Users are not able to close any of the graphical windows that pop up

during the course of creating and running a scenario, by clicking on the window's close

button. Close buttons are simply the X buttons on the right hand top corner of the

graphical windows. The main graphical windows behave correctly; only the sub-windows

require examination.

From the problem statement, we may surmise that there is a difference in the object types

of the windows that are responding to the close buttons and the windows that are not

responding to the close buttons. The difference in the object types may be due to the

difference in the base object types or due to the difference in the way the objects are

derived from base object.

Step 2

The flow diagrams representing the functionality of various graphical window objects are

shown in Figures B.l through B.7.

54

Step 3

1) From step 1, we decide that we need to concentrate on the difference between the

graphical object types and the code associated with them.

2) From Figures B.l through B.7 we can see that

~ There is a difference in the base object types from which the graphical objects

shown in Fig. B.l and Figures B.2 to B.7 are derived. One is of WindowObj type

and another is of DialogBoxObj type.

~ The "cancel" button, which is being used to stop/cancel any process of modifying

the parameters of an object that the graphical window is representing, closes the

graphical window,

3) From Fig. B.l, which represents the functionality of a graphical object derived from

WindowObj, we can see that there is no explicit code written to respond to the close

button. Same is the case with Figures B.2 through B.7, which represent the

functionality of graphical objects derived from DialogBoxObj.

From Section 3.1.1,2, we know that whenever a user clicks on the close button of a

graphical object, the corresponding BeClosed method is called automatically. The default

action of the BeClosed method for the WindowObj object is to terminate the application.

Also, from problem definition, we infer that the graphical objects that are responding to

close buttons are of type WindowObj. Thus, we can infer that the default action of the

BeClosed method for the DialogBoxObj object is to do nothing.

55

Step 4

We need to overwrite the Beclosed method for the objects of type DialogBoxObj in such

a way that it actually helps to close the graphical window to which it belongs.

Step 5

The important decision has to be made about the complete functionality of the close

button before solving this problem. We should keep in mind that by achieving the

condition mentioned in step 4, we are actually changing the behavior of the dialog boxes.

Therefore, we need to concentrate on the consistent behavior of the dialog boxes. As

closing generally signifies that the graphical object and hence its services are not needed

anymore, it is a good idea to make the complete functionality of the close button same as

that of "cancel" button of that dialog box.

From Figures B.2 through 8.7, we can see that it is impossible to have a unique solution

for all types of dialog boxes and yet have their previous functionality unchanged. Thus,

the best way to solve this problem is by finding a solution for each type of dialog box.

1. Solution for instances of DialogBoxObj object:

In order to overwrite the default behavior of the BeClosed method of the DialogBoxObj

object, an additional object of type wrapDialogBoxObj is derived from DialogBoxObj

object with only its BeClosed method overwritten. The overwritten method should

contain code to make the AcceptInput return when a user clicks on the close button. This

can be achieved by either disposing the instance or erasing the instance within the

BeClosed method. However, from Figures B.2 through B.6 we can see that the instance

cannot be disposed as it is referred after AcceptInput returns, so the best way to make the

AcceptInput return is by erasing the instance in the Beclosed method. Fig. 27 shows the

representation of BeClosed method.

Solution for Fig. B.2:

From Fig. B.2, we can see that the above described modification alone is sufficient to

solve the problem for this type of instances of DialogBoxObj object. The solution is

achieved by simply changing the type of instances with behavior shown in Fig. B.2 from

DialogBoxObj to wrapDialogBoxobj. Fig. 28 shows the modified representation of Fig.

B.2.

Fig. 27 Representation of BeClosed method using "Erase"

57

Fig. 29 Modified representation of Fig. B.2

Solution for Fig. B.3:

From Fig. B.3, we can see that the loop has to be broken in addition to changing the type

of instance from DialogBoxObj to wrapDialogBoxObj to solve the problem for this type

of instances. The loop can be broken by checidng the returned value from the

Acceptinput method. If the returned object is of type NILOBJ, we exit from the loop

58

[3.1.1.2]. The returned object type has to be checked again outside the loop to make the

behavior of the close button the same as that of the cancel button. Fig. 29 shows the

modified representation of Fig. B.3.

Same as figure B.3

Fig. 29 Modified representation of Fig. B.3

59

Solution for Fig. 8.4:

From Fig. 8.4, we can see that for this type of instances we also need to check the object

type of the returned object from Acceptlnput method immediately after it returns in order

to make the behavior of the close button same as that of the cancel button. Fig. 30 shows

the modified representation of Fig. 8.4.

Fig. 30 Modified representation of Fig. 8.4

Solution for Fig. B.5:

From Fig. B.5 we can see that these types of instances are not accepting any input from a

user. So this kind of dialog boxes are to be left alone.

2. Solution for instances of objects derived from DialogBoxObj object:

As dialog boxes have an object type that is inherited from DialogBoxObj, we can simply

overwrite the BeClosed method in the inherited objects itself.

Solution for Fig. 8.6:

From Fig. B.6a, we can see that this type of dialog box is not referenced once after the

cancel button is pressed. Therefore, just copying the code for the cancel button into the

body of BeClosed method is sufficient to solve the problem. The code for the cancel

button can be achieved from the dialog boxes BeSelected method under the "cancel"

option. From Fig. B.6b, we can see that the functionality of cancel button is to dispose the

instance, so we dispose the instance in BeClosed method as shown in Fig. 31. Fig. 32

shows the modified representation of Fig. B.6a.

Fig. 31 Representation of BeClosed method using "Dispose"

Fig. 32 Modified representation of Fig. B.6a

62

Solution for Fig. B.7:

From Fig. B.7, we can see that these dialog boxes have two different types of behavior.

The two different behaviors are shown in Figures B.8a and B.9a, respectively. The

similarity between these figures is that in both cases the instances are referenced after the

Acceptlnput method returns, so we need to:

1) Erase the instance in BeClosed method, as shown in Fig. 27.

2) Check the returned object type from AcceptInput method for NILOBJ type.

The difference between Figures B.8a and B.9a is that the instances are disposed in Fig.

B.8a but are not in Fig. B.9a. We can see that this difference between Figures B.8a and

B.9a is due to the difference in the behavior of the cancel button in the corresponding

BeSelected methods, shown in Figures B.8b and B.9b respectively. From Fig. B,8b, we

can see that the function of the cancel button is to do nothing. From Fig. B.9b, we can see

that the functionality of the cancel button is to check for a closing condition and if the

condition is satisfied the instance is removed or else an error message is displayed. So, in

order to make the functionality of X button the same as that of cancel button, in the case

of Fig. B.8a, it is sufficient to erase the instance in BeClosed method and check the

returned object type from Acceptinput method for NILOBJ type in the loop of Fig. B.8a,

However, in the case of Fig. B.9a, we need to place the functionality of cancel button

within the loop if the returned object type from Acceptinput method is of type NILOBJ.

Figures 33 and 34 show the modified representations of Figures B.8a and B.9a,

respectively.

63

Fig. 33 Modified representation of Fig. B.ga

64

Fig. 34 Modified representation of Fig. B.9a

65

Step 6

The models developed above satisfy the condition mentioned in step 4 by making the

dialog boxes disappear whenever a user clicks on the close button of a dialog box. The

models developed above also makes sure that the functionality of the close button and the

corresponding cancel button is same.

Step 7

Now we can convert the flow diagrams shown in Figures 27 to 34 into MODSIM III

constructs using the notations developed. The codes for Figures 27 to 34 are shown in

Figures C.4 through C.9.

Step 8

The modified code has been executed, and we found that all dialog boxes are closing

when clicked on respective close buttons. Also, dialog boxes whose life cycles are

controlled by the underlying process are not closing by their close buttons.

66

SECTION 5

CONCLUSIONS

This section summarizes the important achievements of the developed flowcharts model

for pre-existing MODSIM software systems and later discusses drawbacks and possible

enhancements.

5.1 Achievements

This section discusses the benefits of the flowchart model developed in Section 3.

I) Flowcharts help to understand the underlying processes that are responsible for

accomplishing various tasks by the software.

2) The logical separation of processes helps to find the part of code that is most likely to

have a bug.

3) The logical processes help to understand the side effects, if any, of the proposed

solution to any given problem.

4) As whole processes are represented using flowcharts, it is quiet easy to understand the

underlying model of any process.

5) As needed, the flowcharts do carry the information about the programming language

environment and thus enable designers to model their solution accordingly.

6) The application of the developed method for modification consistently makes the

flowcharts represent the recent models of the processes in the software.

7) If the initial flowcharts are developed properly, incorporation of any changes in the

flowcharts into the software processes is mostly straightforward.

67

8) The developed method for modification does include all the three key phases of

software development, namely analysis, design and implementation. The method is

also iterative and incremental.

Previously when there was no model for debugging, the conceptual starting point to look

for defective code was the first executable statement of the software. As one keeps

working on the software, a good guess as to which module of the software may contain

the bug can be made. To identify the problem causing code segment, one has to check all

the possible defective code segments; this is mainly due to the message passing ability

between various objects. Even once one finds the potential problem causing code

segment, the probability that the first fix is the best and most effective fix is low, as the

proposed fix may affect the underlying model as one does not know the entire model the

software follows for its processes. However, once the model is established there is no

need to go through the code first, Instead, one goes through the developed flowchart

structure looking for the possible process model that may contain the bug. The process

model can be easily guessed from the definition of the problem. Thus, the developed

model is providing a relationship between the bugs and the PORTSIM process models.

This relationship saves lot of time in finding the problem causing code. Once the process

model is found, it is easy to pin point the problem causing structure and thus the code.

Once the problem causing structure is found, one can propose the necessary changes to

fix the bug without affecting the underlying model. It is the total picture of the underlying

related process models that enables the bugs to be fixed effectively.

68

5.2 Drawbacks and Possible Enhancements

This section discusses drawbacks in the method and possible solutions.

I) The effectiveness of the method depends on how well the initial flowcharts were

developed for each process. Conceptually, one could develop an automated method

for abstracting the flowchart structure from the code and then allow the developer to

fill in the resulting flowchart constructs according to the code.

2) Process models were developed when the requirement to work on that process came,

so complete understanding of all the processes in the software is not available. At

present, one does not know the complete Graphic User Interface (GUI) model and

the complete memory semantics within the software. To solve this problem, one can

develop models for all the processes within the software.

3) The flowchart constructs developed for MODSIM III language constructs do not

include all the available MODSIM III constructs, like monitors, thus restricting the

designers to the subset of available MODSIM III constructs. Development of

flowchart constructs after a thorough study of the MODSIM III language manual can

eliminate these restrictions.

4) There is currently no direct connection between the code and the flowcharts to

further facilitate the code identification process. Inserting comments around code

segments would provide a link between the code and the flowchart constructs. The

comments should refer to the particular flowchart construct that is representing the

code segment.

69

The developed model was useful in making modifications to the PORTSIM code by

abstracting documentation of the software in the form of process flow. This helps to

locate bugs in the code easily. The documentation captures the language constructs

inherent to MODSIM, thus acting as a common platform between designers and

programmers. The documentation helps to understand the underlying models of various

processes and also the relation between these processes. This helps to make

modifications in the code to fix bugs effectively. The model is currently being used by

the Virginia Modeling, Analysis and Simulation Center (VMASC) and Argonne

National Labs to continue PORTSIM development.

70

BIBLIOGRAPHY

1. Ian Sommerville, Software Engineering. Addison-Wesley Pub. Co., 1995.

2. Roger S. Pressman, Software Engineering A Practioner's Approach. McGraw-Hill

International Editions, 1997.

3. Jeremy L. Rosenberger, Sam's Teach Yourself Corba In /4 Days. Techmedia, 1998.

4. Grady Booch, Object Solutions Managing the Object-Oriented Project. Addison-

Wesley Pub. Co., 1998.

5. CACI Products Company. MODSIM Reference Manual. CACI Products Company,

La Jolla, CA, 1997.

6. CACI Products Company. SIMGRAPHICS II User's Manual. CACI Products

Company, La Jolla, CA, 1997.

7. "UML v1.3 Documentation", Rational Software Corporation, 2000.

http://www.rational.corn/uml/resources/documentation.

8. Boris Feldman, "UML FAQ", 2000. http://www.uml-zone.corn/umlfaq.asp.

9. Jacobson, "Object-Oriented Software Engineering", 2000.

http://wwwis.cs.utwente.nl: 8080/dmrg/OODOC/oodoc/oo-12.html.

10. "Summary of OMT", ICON Computing, Inc., 1995.

http://www.iconcomp.corn/papers/comp/comp 56.html.

11. Nevins, M„Macal, C. and Joines, J., "A Discrete-Event Simulation Model for

Seaport Operations", Simulation, vol. 70, no.4, pp.213-223, April 1998.

12. Nevins, M., Macal, C. and Joines, J., "PORTSIM: An Object-Oriented Port

Simulation." Proceedings of the /995 Summer Computer Simulation Conference, pp.

160-165, 1995.

71

13.Leathrum, J. and Joines, J., "Modeling Requirements in the Management of

Simulation Projects", Proceedings of the 1998 National Conference of the American

Society for Engineering Management, pp.37-42, October 1998.

14. Leathrum, J., R. Mielke, M. Meyer, J. Joines, C. Macal, and M. Nevins, "Stragies for

Integrating Commercial and Military Port Simulations", Proceedings of the 1998

National Conference of the American Society for Engineering Management, pp.98-

105, October 1997,

APPENDIX A

PORTSIM PROCESS FLOW

As a whole PORTSIM can be divided into three phases:

I) An initialization phase.

2) A simulation phase.

3) An output phase.

Fig. A. I represents the program flow of PORTSIM at macro level.

Fig. A.l

73

A.l Initialization phase

It is in this phase that we prepare PORTSM to run the scenario we want. For simplicity

and ease of understanding, this section deals only with POE-Standalone type. We can

either create a new scenario in which PORTSM relies heavily on the underlying

database to get required data or load an existing scenario in which PORTSIM reads data

from the scenario file. To clearly understand all parts of initialization phase, we will look

into the process of creating a new scenario,

As soon as we start PORTSIM, it is connected to the underlying database. When we

decide to create a new scenario, PORTSIM provides a dialog box, which guides us in

creating a new scenario. The various parameters that we have to decide upon are a

scenario name, a port and a terminal name, a force name and a list of ships upon which

the selected force has to embark, Fig. A.2 represents the flow of program control within

PORTSIM during the creation of new scenario.

Fig. A.2

Fig. A.3

76

Fig. A.4

77

Begin Flatbed Creation Process

Create Flatbed Object

Set Flatbed Parameters

Is Flatbed Same
As Previous One

(If Any) NO

*Classify Cargo (fig A.6) Increment number of Flatbeds to
Arrive

Add to Previous Flatbed's cargo
*Classify Cargo (fig A.6)

Dispose Flatbed

Add to Flatbed's cargo

First Cargo on
Flatbed is Container

Mark Flatbed as Carrying
Containers

Mark Flatbed as Carrying
Vehicles

Add Flatbed to Flatbed
Arrival List

End Flatbed Creation Process

78

Fig. A.6

Fig. A.6 shows how containers and vehicles are differentiated in PORTSIM. This type of

index-based classification is used for vehicles and containers only and not for pallets, as

both flatbeds and railcars are capable of carrying both vehicles and containers. Pallets are

carried by vans only.

79

Fig. A.7

80

Fig. A.8

Similar to that of Flatbed

Dispose Railcar

82

Begin Port Initialization Process

Get RR End Ramps

Get Truck End Ramps

Gate Initialization Process

Open Staging Initialization Process

Closed Staging Initialization Process

Interchange Yard Initialization Process

Spur Initialization Process

Berth Initialization Process

Container Handler Information

End Port Initialization Process

Fig. A.10

Each process mentioned above can be generalized as shown in Fig. A. 1 l.

83

Fig. A. I I

NOTE: After all of this initialization is done, PORTSIM checks if there is any other

scenario with same name. If there is, it asks us whether to overwrite the previous scenario

or not. Now comes the important part of this phase. As we can see from Fig. A.ll, all the

port assets are made unavailable for military use. It is our duty to decide which assets are

84

to be made available for military use. After this, PORTSIM is ready to simulate the

created scenario,

A.2 Simulation Phase

It is in this phase that we watch the simulation run to completion. In most cases, there is

little interaction with the software. Fig. A.12 shows the sequence of processes that

PORTSIM goes through during this phase.

Fig. A.12

86

Fig. A.13

The time 'T'n the above figure is with respect to the start of simulation time. If the

value of 'T's one, that method is executed one minute after the start of simulation.

87

Begin Interchange Yard (IY) /Spur Processing

NO
Number Of IY & 0

Get First/Next Interchange Yard (IY)

NO
IY Available

Flatcars Switched To Storage
NO

*Open Staging Spur/Flatcar Processing (fig A.16) Apron Spur/Flatcar Processing

Boxcars Switched To Storage NO

Covered Staging Spur/Boxcar Processing Apron Spur/Boxcar Processing

Number Of Remaining IY & 0

NO

End Interchange Yard (IY) /Spur Processing

Fig. A.)4

88

All the above mentioned 'spur type/railcar type processing'an be generalized as shown

in Fig. A.15.

NO

Fig. A.15

89

As an example, 'Open Staging Spur/Flatcar Processing'an be represented as shown in

the following figure.

NO

Fig. A.16

90

Begin Call Forward Flatcars

Simtime & (Simbegin
Time +Time To Simulate)

Vehicles onl Ordering Containers only

In IY Count Flatcars with
Vehicle as their First Cargo

In IY Count Flatcars with
Container as their First Cargo

Count = 0

Other

NO
Count = 0

NO

Wait for Train Classified Trigger Wait for Train Classified Trigger

Is Spur Idle
NO

Change Status to Busy Wait for Spur Done Trigger

aFlatcars Ihocessing (fig A.l 8)

Change Status to Idle

End Call Forward Flatcars

Trigger Spur Done Trigger

Fig. A.17

Begin Flatcars Processing

*Build List of Flatcars at IY (fig A.19)

Is List Empty

NO Wait for 30 Minutes

Trigger IY Trigger

Wait for Locomotive

Wait for Locomotive arrival at IY

Wait for Coupling Flatcars at IY

Open Sta in Spur Type Covered Staging

Wait for Flatcars Switch to Spur Wait for Flatcars Switch to Dock

Apron
Wait for Flatcars Switch to Berth

Wait for Flatcars to Uncouple at Spur

Give Back Locomotive

*Discharge Flatcar Contents(fig A.24)

End Flatcars Processing

Fig. A. 18

92

Fig. A.19

93

Fig, A.20

94

Fig. A.21

95

Fig. A.22

Fig. A.23

96

Fig. A.24

Begin Vehicle Processing

Offload Vehicles
Using End Ramp

Wait for End Ramp (ER) Wait for Container Handler (CH)

Wait for Driver Wait till Vehicle is Removed Using CH

Wait till Vehicle is Removed Using ER

Give Back Driver

Mark Vehicle as Not Inspected

Mark Vehicle as Unavailable to Load

NO Spur Type = Open
Staging/Storage

vOpen Staging Selection (fig A.31)

Transit to Open Staging

"Open Staging Parking Process
(fig A.32)

End Vehicle Processing

Fig. A.25

98

Fig. A.26

99

Begin Generate Convoy Vehicles

NO

Convoy Vehicles (CV)
To Arrive & 0

NO

Simtime &

S imB eginTime +
TimeToSimulate &
CV To Arrive & 0

NO

Vehicles Per Convoy
(VPC) Arriving & 0

CV To Arrive & 0

NO
Get Vehicle from Convoy Vehicle Arrival List

Mark Vehicle as Not Inspected *Processing at Gate
(fig A.28)

Mark Vehicle as Unavailable to Load

Decrement counters for CV and VPC to Arrive

"Processing of Vehicle
(fig A.30)

Wait for Convoy Vehicle Inter Arrival Time

End Generate Convoy Vehicles

Fig. A.27

Begin Processing at Gate

Idle Gates Available

Get First/Next Idle Gate
Busy Gates
Available

NO

NO
Gate Accepts Transport

Object
*Processing in Gate Queue (fig A.29)

Is Gate Previously Idle

Make Gate Busy

Wait for Service Time

Is Gate Queue Zero

NO Is Gate Previously

Pull First Transport Object &om Queue NO Remove from Busy Gates

Trigger Gate Trigger

Is Gate Previously Idle NO

Add to Idle Gates

End Processing at Gate

Fig. A.28

101

Fig. A.29

102

Fig. A.30

Fig. A.31

103

Fig. A.32

Fig. A,33

105

Fig. A.34

106

Fig. A.35

Fig. A.36

107

Fig. A.37

108

Fig. A.38

109

Fig. A.39

110

Fig. A.40

Fig. A.41

In Fig. 42, the program flow for "Covered staging area selection" process is similar to

that of "Open staging selection," and the program flow for "Covered staging area

parking" process is similar to that of "Container Open staging parking".

112

Fig. A.42

Begin Generate Trains

NO

Railcars
To Arrive & 0

NO

Simtime &

SimB egin Time +
TimeToSimulate &

Railcars To Arrive & 0

Create Train Object

0
Railcars Per Train
(RPT) Arriving & 0

Railcars To Arrive & 0

NO
Get Railcar from Railcar Arrival List

Add Railcar to Train

Decrement counters for Railcars and RPT

*Process Train at Interchange Yard (fig A.44)

Wait for Train Inter Arrival Time

End Generate Trains

Fig. A.43

114

Fig. A.44

115

Fig. A.45

116

Fig. A,46

117

Fig. A.47

118

Fig. A.48

119

Fig. A.49

120

Fig, A.50

121

Fig. A,51

122

Fig. A.52

123

Begin Serve Ship at the Berth

Space for Container or Breakbulk
or RORO available on the Ship

NO

Get Open Staging Area with Maximum Vehicles Ready to Load

Get Open Staging Area with Maximum Containers Ready to Load

Get Open Staging Area with Maximum Pallets Ready to Load

Wait for 60 minutes

Maximum Number of Vehicles or
Containers or pallets ready & 0

" Call Forward Cargo (fig A.54)

* Load Cargo (fig A.66)

Send Items to Staging Areas

Cargo items left on Berth & 0

NO

SimTime-Time last cargo loaded &

Max.wait time without loading* 60

*Ship Release Process (fig A.78)

End Serve Ship at the Berth

Fig. A.53

124

Fig. A.54

125

Fig. A.55

Fig. A.56

126

Begin Send Containers to Berth

NO Number of Containers to
Send & 0

*Add Container to Container Call Forward List (fig A.59)

Decrement Number of Containers to Send

NO Call Forward List is NOT
Empty

Remove First/Next Container from Call Forward List

Wait for Container Handler

*Transit Container Handler to Berth (fig A.61)

Wait for Finished Arrived Trigger

End Send Containers to Berth

Fig. A.57

127

N

N

Fig. A.58

128

Fig. A.59

Fig. A.60

129

Fig. A.61

Fig. A.62

130

Begin Build Default Call Forward List

Number of Containers ready
to load = 0 & Vehicles Ready

to load = 0

Wait for 60 minutes NO

Number of Containers ready
to load = 0

NO
Number of Vehicles to Send =

MIN (12, Number of Vehicles Ready)

Number of Vehicles
to send = 0

Wait for 60
minutes

NO
*Send Vehicles to
berth (fig A.58)

NO

Number of Vehicles ready to
load = 0

"Send both Vehicles and Containers
(Gg A.64)

Number of Containers to Send =
MIN (12, Number of Containers Ready)

Number of
Containers to sends

NO

Wait for 60
minutes

*Send Containers
to berth (iig A.57)

End Build Default Call Forward List

Fig. A,63

131

Begin Send both Vehicles and Containers

Decide on % of Containers &. Vehicles in the Number of Items to Send

Number of Items to Send = 0

NO Wait for 10 minutes

NO

Number of Items to Send & 0

% of Containers to Send & some
boundary value & number of

Containers readv & 0

NO
*Add Container to Container
Call Forward List (fig A.59)

% of Containers to Send &= some
boundary value &. number of

Vehicles readv & 0

NO
*Add Vehicle to Vehicle

Call Forward List (iig A.60)

Number of Vehicles ready = 0

NO *Add Container to Container
Call Forward List (fig A.59)

NO

Decrement Number of Items to
Send

Number of Containers ready = 0

*Add Vehicle to Vehicle
Call Forward List (fig A.60)

*Send Items to Berth (fig A.65)

End Send both Vehicles and Containers

Fig. A.64

132

Fig. A.65

133

Fig. A.66

134

Fig. A.67

135

Fig. A.68

136

Fig. A.69

137

Begin Load both Vehicles and Containers

NO
Number of items on Berth & 0

NO
Breakbulk & Container &

RORO space avaiL on ship&0

NO
Number of items left unchecked

on Berth & 0

Get First/Next Item on Berth

Vehicle
Cargo Tvpe

Container

Mark that Vehicles are
Present on Berth

Mark that Containers are
Present on Berth

NO
Size of Vehicle &=

Breakbulk or RORO
Space on Ship

Size of Container
&= Container
Space on Ship

NO

*Load Vehicle into Breakbulk or
RORO Space (fig A.74)

sContainer loading Process
(fig A.75)

*Adjust the available Capacities on Ship (fig A.71)

End Load both Vehicles and Containers

Fig. A.70

138

Fig. A.71

139

Fig. A.72

Fig. A.73

Begin Load Vehicle into Breakbulk or RORO Space

Remove Vehicle from Berth

NO

Available Breakbulk Capacity
& 0 & Available RORO

Capacity = 0

Decrement Available Breakbulk Capacity by Vehicle Size

NO

Available RORO Capacity &

0 4k Available Breakbulk
Capacity = 0

Decrement Available RORO Capacity by Vehicle Size

Decrement Available RORO Capacity by Vehicle Size

Wait for Driver

Wait for RORO Ramp

*Load Vehicle onto Ship (ftg A.77)

End Load Vehicle into Breakbulk or RORO Space

Fig. A.74

141

Fig. A.75

142

Fig. A.76

143

Fig. A.77

144

Fig. A.78

145

APPENDIX B

LIFE CYCLES OF GRAPHICAL WINDOW OBJECTS IN PORTSIM

The two important graphical window objects that are used extensively as a means of user

interface are WindowObj and DialogBoxObj.

B.l Life Cycle of instances of type WindowObj

This section shows the generic representation of life cycle of instances of type

WindowObj used in PORTSIM.

Fig. B. 1 Generic representation of Life Cycle of instances of WindowObj

146

B.2 Life Cycles of instances of type DialogBoxObj

There are two types of dialog box objects used in PORTSIM. One is of DialogBoxObj

object type that SIMGRAPHICS provides and another is of object types that are derived

from DialogBoxObj,

B.2.L Life CycLes ofinstances of type DialogBoxObj

This section shows the generic representation of the life cycles of instances of type

DialogBoxObj object.

Fig. B.2 Life Cycle of instances of type DialogBoxObj with no processing depending on

input

147

Fig. B.3 Life Cycle of instances of type DialogBoxObj with a loop and with unique

processing for 'Ok'nd 'Cancel'nput

148

Fig. B.4 Life Cycle of instances of type DialogBoxObj with processing for 'Cancel'nput

alone

Fig. B.5 Life Cycle of instances of type DialogBoxObj with no provision for accepting

input

150

B.2.2. Life Cycles of instances of Object types that are derivedfrom DialogBoxObj

This section shows the generic representation of the life cycles of instances of dialog

boxes of object types that are derived from DialogBoxObj object.

Fig. B.6a Life Cycle of instances of type derived from DialogBoxObj using BeSelected

method to accept input

151

Fig. B.6b Generic representation of Program Flow within the Begelected method of

object types shown in Fig. B.6a

152

Fig. B.7 Life Cycle of instances of type derived from DialogBoxObj using

'Update'unction

Fig. B.ga One of the generic representations of 'Update'unctions shown in Fig. B.7

153

1

v

I

Other inputs

Fig. B.8b Generic representation of Program Flow within the BeSelected method of

objects having 'Update'unction as shown in Fig. B.8a

154

Fig. B.9a One of the generic representations of 'Update'unctions shown in Fig. B.7

Fig. B.9b Generic representation of Program Flow within the BeSelected method of

objects having 'Update'unction as shown in Fig. B.9a

156

APPENDIX C

PORTSIM CODE FOR RELATED FLOW DIAGRAMS

The following Figures represent the actual PORTSIM code for modified flow diagrams,

except Fig. C.l, of Appendix A and Appendix B in Sections 3 and 4.

TELL METHOD callForwardFlatcars(INinterchangeYard:interchangeYardObj;IN
ranGen : Randomobj);
VAR
lo,hi : REAL;
temp : REAL;
stringofFlatcars : trainobj;
railcar railcarObj;
tangentLengthAvail : INTEGER;
len INTEGER;
j INTEGER;
tempTime REAL;
svcTime REAL;
typeNeeded BOOLEAN;
numFlatcarsCarryingVehicles : INTEGER;
numFlatcarsCarryingContainers : INTEGER;
cargo cargoobj;

BEGIN
WHILE (SimTime() &= (simBeginTime + timeToSimulate))
(If no flatcars in interchange yard,&
(wait until a train has been classified in the
interchange yard)
(This signifies that railcars are available to call
forward)
IF (ordering = "Vehicles/Unit Equipment Only")

IF (poeMode)
{Vehicles/Unit Equipment only accepted)
numFlatcarsCarryingVehicles := ASK interchangeYard TO

countFlatcarsCarryingvehicles();
WHILE (numFlatcarsCarryingVehicles = 0)

WAIT FOR trainClassifiedTrigger TO Fire;
ON INTERRUPT
END WAIT;
numFlatcarsCarryingVehicles := ASK interchangeYard TO

countFlatcarsCarryingvehicles();
END WHILE;

END IF;
ELSIF (ordering = "Containers Only")

IF (poeMode)
(Containers only accepted)
numFlatcarsCarryingContainers := ASK interchangeYard TO
countFlatcarsCarryingContainere();
WHILE (numFlatcarsCarryingContainers = 0)

WAIT FOR trainClassifiedTrigger TO Fire;
ON INTERRUPT
END WAIT;

numFlatcarsCarzyingContainers := ASK interchangeYard TO
countFlatcarsCarryingContainers();

END WHILE;
END IF;

ELSE
{Both Vehicles/Unit Equipment and Containers are accepted)

END IF;
IF (status = "idle")

{Set status to busy)
ASK SELF TO setStatus("busy");
tempTime := SimTime();
svcTime := 0.0;
{Build the appropriate stringOfFlatcars to send to spur)
NEW(stringOfFlatcars);
WHILE (stringOfFlatcars.numberIn = 0)

ASK SELF TO buildStringOfFlatcar(interchangeYard,stringOfFlatcars);
IF (stringOfFlatcars.numberln = 0)

{OUTPUT("Waiting for more items to be ready in
emptyRailcarStorage");)
WAIT DURATION 30.0,"
END WAIT;

END IF;
END WHILE;
(Let the system know that more items can be put in interchangeYard)
TELL IYTrigger TO Trigger;
{Obtain a locomotive resource and transit it to the IY)
WAIT FOR port.locomotiveQ TO Give(stringOfFlatcars,l);

(Processing Time to switch locomotive to IY)
IF (useProcessDistributionsForTransitTimes)
lo := switchSpurToIYTime.actualValue-

switchSpurToIYStdDev.actualValue;
hi := switchSpurToIYTime.actualValue +

switchSpurToIYStdDev.actualValue;
temp := ranGen.UniformReal(lo,hi);
IF (temp & 0.0)
temp := 0.0;

END IF;
ELSE

{Calculate the time based upon speed and distance of route)
{NEED TO ADD THIS}
{Until this is added, make transit time 0.0)
temp := 0.0;

END IF;
WAIT DURATION temP;
END WAIT;

{Processing Time to couple flatcars at IY}
lo := coupleAtIYTime.actualValue — coupleAtIYStdDev.actualValue;
hi := coupleAtIYTime.actualValue + coupleAtIYStdDev.actualValue;
temp := ranGen.UniformReal(lo,hi);
IF (temp & 0.0)

temp := 0.0;
END IF;
WAIT DURATION temp;
END WAIT;

IF (type = "OPEN STAGING") OR (type = "Open Staging") OR

(type = "OPEN STORAGE") OR (type = "Open Storage")
(Processing Time to switch flatcars to spur}
IF (useProcessDistributionsForTransitTimes)
lo := switchToSpurTime.actualValue

switchToSpurStdDev.actualValue;
hi := switchToSpurTime.actualValue +

switchToSpurStdDev.actualValue;
temp := ranGen.UniformReal(lo,hi);
IF (temp & 0.0)
temp := 0.0;

END IF;
ELSE

{Calculate the time based upon speed and distance of
(NEED TO ADD THIS}
(Until this is added, make transit time 0.0)
temp := 0.0;

END IF;
WAIT DURATION temp;
END WAIT;

ELSIF (type = "COVERED STAGING") OR (type = "Covered S
(Processing Time to switch flatcars to dock)
IF (useProcessDistributionsForTransitTimes)
lo := switchToDockTime.actualValue-

switchToDockStdDev.actualValue;
hi := switchToDockTime.actualValue +

switchToDockStdDev.actualValue;
temp := ranGen.UniformReal(lo,hi);
IF (temp & 0.0)

temp := 0.0;
END IF;

ELSE
(Calculate the time based upon speed and distance of
{NEED TO ADD THIS)
(Until this is added, make transit time 0.0)
temp := 0.0;

END IF;
WAIT DURATION temp;
END WAIT;

ELSE
(type = "APRON" oz type = "Apron")
(Processing Time to switch flatcars to Berth)
IF (useProcessDistributionsForTransitTimes)
lo := switchToBerthTime.actualValue

switchToBerthStdDev.actualValue;
hi := switchToBerthTime.actualValue +

switchToBerthStdDev.actualValue;
temp := ranGen.UniformReal(lo,hi);
IF (temp & 0.0)

temp := 0.0;
END IF;

ELSE
{Calculate the time based upon speed and distance of
{NEED TO ADD THIS)
{Until this is added, make transit time 0.0)
temp := 0.0;

END IF;
WAIT DURATION temp;

route)

taging")

route)

route)

END WAIT;
END IF;
{Processing Time to uncouple flatcars at spur)
lo := uncoupleAtSpurTime.actualValue

uncoupleAtSpurStdDev.actualValue;
hi := uncoupleAtSpurTime.actualValue +

uncoupleAtSpurStdDev.actualValue;
temp := ranGen.gniformReal(lo,hi);
IF (temp & 0.0)

temp := 0.0;
END IF;
WAIT DURATION temp;
END WAIT;

END WAIT;
{Make the locomotive available again)
ASK port.locomotiveQ TO TakeBack(stringOfFlatcars,l);
IF (poeMode)

(Wait for vehicles/containers to be discharged from flatcar's)
WAIT FOR SELF TO dischargeFlatcarContents(stringofFlatcars,ranGen);
END WAIT;
DISPOSE(stringofFlatcars);
(Cycle out empty flatcars)
(NOTE: This code needs to be added)

END IF)
(Set status "idle" to signify that spur is ready for next string)
{of railcars)
ASK SELF TO setStatus("idle");
{Update operational svcTime parameters)
svcTime := SimTime() — tempTime;
totalBusyTime := totalBusyTime + svcTime;
IF svcTime & maxServiceTime
maxServiceTime := svcTime;

END IF;

TELL spurDoneTrigger TO Trigger;
ELSE

WAIT FOR spurDoneTrigger TO Fire;
END WAIT;

END IF;
END WHILE;
END METHOD {callForwardFlatcars);

Fig. C.1 PORTSIM code for "ca)IForwardFlatcars" method

160

TELL METHOD callForwardFlatcars(INinterchangeYard:interchangeYardObj;IN
ranGen : RandomObj);
VAR
lo,hi : REAL;
temp : REAL;
stringOfFlatcars : trainObj;
railcar railcarObj;
tangentLengthAvail : INTEGER;
len INTEGER;
j INTEGER;
tempTime REAL;
svcTime REAI;
typeNeeded BOOLEAN;
numFlatcarsCarryingvehicles : INTEGER;
numFlatcarsCarryingContainers : INTEGER;
cargo cargoObj;

BEGIN
WHILE (SimTime() &= (simBeginTime + timeToSimulate))
(If no flatcars in interchange yard,)
(wait until a train has been classified in the
interchange yard)
{This signifies that railcars are available to call
forward)
IF (ordering = "Vehicles/Unit Equipment Only")

IF (poeMode)
(Vehicles/Unit Equipment only accepted}
numFlatcarsCarryingVehicles := ASK interchangeYard TO

countFlatcarsCarryingvehicles();
WHILE (numFlatcarsCarryingVehicles = 0)

WAIT FOR trainClassifiedTrigger TO Fire;
ON INTERRUPT
END WAIT;
numFlatcarsCarryingvehicles := ASK interchangeYard TO

countFlatcarsCarryingVehicles();
END WHILE;

END IF;
ELSIF (ordering = "Containers Only")

IF (poeMode)
(Containers only accepted)
numFlatcarsCarryingContainers := ASK interchangeYard TO
countFlatcarsCarryingContainers();
WHILE (numFlatcarsCarryingContainers = 0)

WAIT FOR trainClassifiedTrigger TO Fire;
ON INTERRUPT
END WAIT;
numFlatcarsCarryingContainers := ASK interchangeYard TO
countFlatcarsCarryingContainers();

END WHILE;
END IF;

ELSE
(Both Vehicles/Unit Equipment and Containers are accepted}

END IF;
IF (status = "idle")

(Set status to busy)
(ASK SELF TO setStatus("busy");) (Removed)
tempTime := SimTime();

svcTime := 0.0;
{Build the appropriate stringOfFlatcars to send to spur)
NEW(stringOfFlatcars);
WHILE (stringOfFlatcars.numberIn = 0)
IF(status = "idle") {" IF" construct added)

ASK SELF TO
buildStringOfFlatcars(interchangeYard,stringOfFlatcars)

END IF;
IF (stringOfFlatcars.numberIn = 0)

(OUTPUT("Waiting for more items to be ready in
emptyRailcarStorage");)
WAIT DURATION 30.0;
END WAIT;

END IF;
END WHILE;
(Let the system know that more items can be put in interchangeYard)
TELL IYTrigger TO Trigger;
ASK SELF TO setStatus("busy"); {Changed status hera)
(Obtain a locomotive resource and transit it to the IY)
WAIT FOR port.locomotiveQ TO Give(stringOfFlatcars,l);

{Processing Time to switch locomotive to IY)
IF (useProcessDistributionsForTransitTimes)
lo := switchSpurToIYTime.actualValue-

switchSpurToIYStdDev.actualValue;
hi := switchSpurToIYTime.actualValue +

switchSpurToIYStdDev.actualValue;
temp := ranGen.UniformReal(lo,hi);
IF (temp & 0.0)

temp := 0.0;
END IF;

EI SE
(Calculate the time based upon speed and distance of route)
(NEED TO ADD THIS}
{Until this is added, make transit time 0.0)
temp := 0.0;

END IF;
WAIT DURATION temp;
END WAIT;

{Processing Time to couple flatcars at IY)
lo := coupleAtIYTime.actualValue — coupleAtIYStdDev.actualValue;
hi := coupleAtIYTime.actualValue + coupleAtIYStdDev.actualValue;
temp := ranGen.UniformReal(lo,hi);
IF (temp & 0.0)

temp := 0.0;
END IFl
WAIT DURATION temp;
END WAIT;

IF (type = "OPEN STAGING") OR (type = "Open Staging") OR

(type = "OPEN STORAGE") OR (type = "Open Storage")

(Processing Time to switch flatcars to spur)
IF (useProcessDistributionsForTransitTimes)
lo := switchToSpurTime.actualValue

switchToSpurStdDev.actualValue;
hi := switchToSpurTime.actualValue +

162

switchToSpurStdDev.actualValue;
temp := ranGen.UniformReal(lo,hi);
IF (temp & 0.0)

temp := 0.0;
END IF;

ELSE
(Calculate the time based upon speed and distance
{NEED TO ADD THIS)
{Until this is added, make transit time 0.0)
temp := 0.0;

END IF;
WAIT DURATION temp;
END WAIT;

ELSIF (type = "COVERED STAGING") OR (type = "Covered
{Processing Time to switch flatcars to dock)
IF (useProcessDistributionsForTransitTimes)
lo := switchToDockTime.actualValue

switchToDockStdDev.actualValue;
hi := switchToDockTime.actualValue +

switchToDockStdDev.actualValue;
temp := ranGen.UniformReal(lo,hi);
IF (temp & 0.0)
temp := 0.0;

END IFl
ELSE

(Calculate the time based upon speed and distance
(NEED TO ADD THIS)
(Until this is added, make transit time 0.0)
temp := 0.0;

END IF;
WAIT DURATION temp;
END WAIT;

ELSE
(type = "APRON" or type = "Apron")
(Processing Time to switch flatcars to Berth)
IF (useProcessDistributionsForTransitTimes)
lo := switchToBerthTime.actualValue

switchToBerthStdDev.actualValue;
hi := switchToBerthTime.actualValue +

switchToBerthStdDev.actualValue;
temp := ranGen.UniformReal(lo,hi);
IF (temp & 0.0)

temp := 0.0;
END IF;

ELSE
{Calculate the time based upon speed and distance
{NEED TO ADD THIS}
{Until this is added, make transit time 0.0)
temp := 0.0;

END IF;
WAIT DURATION temp;
END WAIT;

END IF;
(Processing Time to uncouple flatcars at spur)
lo := uncoupleAtSpurTime.actualValue

uncoupleAtSpurStdDev.actualValue;
hi := uncoupleAtSpurTime.actualValue +

of route)

Staging")

of route)

of route)

163

uncoupleAtSpurStdpev.actualvalue;
temp := ranGen.UniformReal(lo,hi);
IF (temp & 0.0)
temp := 0.0;

END IF;
WAIT DURATION temp;
END WAIT;

END WAIT;
(Make the locomotive available again}
ASK port.locomotiveQ TO TakeBack(stringofFlatcars,l);
IF (poeMode)

(Wait for vehicles/containers to be discharged from flatcars}
WAIT FOR SELF TO dischargeFlatcarContents(stringofFlatcars,ranGen)
END WAIT;
DISPOSE(stringofFlatcars);
{Cycle out empty flatcars}
{NOTE: This code needs to be added)

END IF;
(Set status "idle" to signify that spur is ready for next string)
(of railcars)
ASK SELF TO setStatus("idle");
(Update operational svcTime parameters)
svcTime := SimTime() — tempTime;
totalBusyTime := totalBusyTime + svcTime;
IP svcTime & maxServiceTime
maxServiceTime := svcTime;

END IF;

TELL spurDoneTrigger TO Trigger;
ELSE

WAIT FOR spurDoneTrigger TO Pire;
END WAIT;

END IFl
END WHILE;
END METHOD (callForwardFlatcars);

Fig. C.2 Modified PORTSIM code for "callForwardFlatcars" method

164

WAITFOR METHOD callForwardCargo (IN streaml : RandomObj; IN myBerth
berthObj;IN vehStagingArea : stagingObj;IN contStagingArea
stagingObj;IN palletStagingArea : stagingObj);

(This method calls forward 12 items from the staging area at a time)
(If less than 12 items are available to be call forwarded from the
staging&
(area, then this method will take as many as are available.)
VAR

cont containerObj;
veh vehicleObj;
pallet palletObj;
cargo ANYOB0;
tempveh vehicleObj;
selectedRoute : routeObj;
tempreal REAL;
i,j INTEGER;
cnt INTEGER;
numItems INTEGER 4 of items in sta in available to be(g g

loaded)
contPct,vehPct,palletPct : REAL;
flag : BOOLEAN;
callForwardList : myQueueObj;

BEGIN
CASE typedesc

WHEN "Ctnr-NSS": (Fig. 24)
(Code before modification
WHILE (contStagingArea.numContainersReady = 0) OR

(numContainerHandlers = 0)
WAIT DURATION 60. 0
END WAIT;

END WHILE))
IF (contStagingArea.numContainersReady = 0) OR ("WHILE" construct}

(numContainerHandlers = 0) (replaced with "IF")
WAIT DURATION 60.0
END WAIT;

END IF;
(Checked again after waiting for 60 minutes)
IF NOT ((contStagingArea.numContainersReady = 0) OR

(numContainerHandlers = 0))
numItems := contStagingArea.numContainersReady;
IF (numItems & numContainerHandlers) OR (numItems & 12)

IF (numContainerHandlers & 12)
numItems := 12;

ELSE
numItems := numContainerHandlers;

END IF;
END IF;

(Obtain the containers that have been dwelled and are ready to
load,)

(discharge them from the staging area, and then transit them to
berth.}

(Code for sending Containers to Berth)
END IF;

WHEN "Ctnr-SS": (Fig. 24}
(Code before modification
WHILE (contStagingArea.numContainersReady = 0) OR

165

(numContainerHandlers = 0)
WAIT DURATION 60. 0
END WAIT/

END WHILEI)
IF (contStagingArea.numContainersReady = 0) OR ("WEIIE" construct)

{numContainerHandlers = 0) (replaced with "1F")
WAIT DURATION 60.0
END WAIT;

END IF;
(Checked again after waiting for 60 minutes)
IF NOT ((contStagingArea.numContainersReady = 0) OR

(numContainerHandlers = 0))
numItems := contStagingArea.numContainersReady;
IF (numItems & numContainerHandlers) OR (numItems & 12)

IF (numContainerHandlers & 12)
numItems := 12;

ELSE
numltems := numContainerHandlers;

END IF;
END IF;

(Obtain the containers that have been dwelled and are ready to
load,)

(discharge them from the staging area, and then transit them to
berth.)

(Code for sending Containers to Berth)
END IF;

WHEN "RO/RO": (Pig. 25)
(Code before modification
WHILE (vehStagingArea.numvehi clesReady = 0) OR (numDrivers = 0)

WAIT DURATION 60. 0
END WAIT;

END WHII E/)
("WHILE" construct replaced with "IF")
IF (vehStagingArea.numVehiclesReady = 0) OR (numDr'ivers = 0)

WAIT DURATION 60.0
END WAIT;

END IF;
(Checked again after waiting for 60 units)
IF NOT ((vehStagingArea.numVehiclesReady = 0) OR (numDrivers = 0))
i := 0; numItems := 0;
numItems := vehStagingArea.numVehiclesReady;
IF (numItems & numDrivers) OR (numItems & 12)
IF (numDrivers & 12)
numItems := 12;

ELSE
numItems := numDrivers;

END IF;
END IF;
(Obtain the vehicles that have been inspected and dwelled and are
ready to load,)

(discharge them from the staging area, and then transit them to
berth.)

(Code for sending Vehicles to Berth)
END IF;

WHEN "Breakbulk": (Fig. 25)
(Code before modification

166

WHILE (vehStagingArea.numVehi clesReady = 0) OR (numDrivers = 0)
WAIT DURATION 60. 0
END WAIT;

END WHILE;)
("WHILE" construct rep1aced with "ZF" }

IF (vehStagingArea.numVehiclesReady = 0) OR (numDrivers = 0)
WAIT DURATION 60.0
END WAIT;

END IFl
(Checked again after waiting for 60 units)
IF NOT ((vehStagingArea.numVehiclesReady = 0) OR (numDrivers = 0))
numItems := vehStagingArea.numVehiclesReady;
IF (numItems & numDrivers) OR (numItems & 12)
IF (numDrivers & 12)
numItems := 12;

ELSE
numltems := numDrivers;

END IF;
END IF;

{Obtain the vehicles that have been inspected and dwelled and are
ready to load,)

{discharge them from the staging area, and then transit them to
berth.)

{Code for sending Vehi cIes to Berth)
END IF;

OTHERWISE (Fig. 26}
{Need to have a mechanism for discharging both vehicles and
containers.)

{Use a distribution that will discharge a percentage of vehicles
equal to}

{the percentage of overall area in the ship it is supposed to load.)
{Code before modification
WHILE ((vehStagingArea.numVehiclesReady = 0) AND

(contStagingArea.numContainersReady = 0))
WAIT DURATION 60. 0
END WAIT;

END WHILE;)
("WHILE" construct rep1aced with "ZF"}
IF ((vehStagingArea.numVehiclesReady = 0) AND

(contStagingArea.numContainersReady = 0))
WAIT DURATION 60.0
END WAIT;

END IF;

(Checked again after waiting for 60 units&
IF NOT ((vehStagingArea.numVehiclesReady = 0) AND

(contStagingArea.numContainersReady = 0))
IF (contStagingArea.numContainersReady = 0)

{OUTPUT("Trying to send vehicles only");)
(Send only vehicles)
(limit the number of vehicles to call forward by: }

(1) ¹ of vehicles ready, 2) 12 maximum, 3) ¹ of drivers)
numltems ;= vehStagingArea.numVehiclesReady;
numItems := MINOF(numItems,12);
{numItems := MINOF(numItems,numDrivers);)
WHILE (numltems = 0)

167

WAIT DURATION 60.0;
END WAIT;
{Limit the number of vehicles to call forward by:)
(1) ¹ of vehicles ready, 2) 12 maximum, 3) ¹ of drivers)
numltems := vehStagingArea.numUehiclesReady;
numltems := MINOF(numItems,12);

END WHILE;

{Obtain the vehicles that have been inspected and dwelled and are
ready to load,)

(discharge them from the staging area, and then transit them to
berth.)

(Code for sending vehicles to berth)
ELSIF (vehStagingArea.numvehiclesReady = 0)
(OUTPUT{"Trying to send containers only");)
(Limit the number of vehicles to call forward by: }

(1) ¹ of containers ready, 2) 12 maximum, 3) ¹ of container
handlers)

numItems := contStagingArea.numContainersReady;
numItems := MINOF(numItems,l2);
WHILE (numItems = 0)

WAIT DURATION 60.0;
END WAIT;
numItems := contStagingArea.numContainersReady;
numItems := MINOF(numItems,12);
{numltems := MINOF(numItems,numContainerHandlers);)

END WHILE;

(Obtain the containers that have been dwelled and are ready to
load,)

(discharge them from the staging area, and then transit them to
berth.}

{Code for sending Containers to Berth)
ELSE

{Code for sending both containers and vehicles to the berth)
END IF;

END IF;
END CASE;

END METHOD (callForwardCargo);

Fig. C.3 Modified PORTSIM code for "cal)For)vardCargo"

168

DEFINITION MODULE aanimate;

wrapDialogBoxobj = OBJECT(DialogBoxobj);
OVERRIDE

ASK METHOD BeClosed;
END OBJECT {wrapDialogBoxobj);

END MODULE {aanimate)

IMPLEMENTATION MODULE aanimate;

OBJECT wrapDialogBoxObj;
ASK METHOD BeClosed; {Fig. 27)

BEGIN
ASK SELF TO Erase;

END METHOD;
END OBJECT;

OBJECT XXXXX;
ASK METHOD XXXXX;

VAR
dialogBox
wdialogBox

DialogBoxobj;
wzapDialogBoxobj;

BEGIN

NEW(wdialogBox); {Pig. 28)
ASK wdialogBox TO

LoadFromLibrary(library,"transportModesErrorDialog")
ASK portsimMainWin TO AddGraphic(wdialogBox);
item := ASK wdialogBox TO Acceptinput();
ASK portsimMainWin TO RemoveThisGraphic(wdialogBox);
DISPOSE(wdialogBox);

END METHOD;
END OBJECT;

END MODULE.

Fig. C.4 PORTSM code for Figures 27 and 28

169

IMPLEMENTATION MODULE aanimate;

OBJECT XXXXX;
ASK METHOD XXXXX;

VAR
dialogBox
wdialogBox2

DialogBoxObj;
wrapDialogBoxObj;

BEGIN

NEW (wdialogBox2);
ASK portsimMainWin TO AddGraphic(wdialogBox2);
REPEAT

item3 := ASK wdialogBox2 TO Acceptlnput();
IF item3 = NILOBJ
EXIT;

END IF;
UNTIL (ASK item3 ReferenceName = "ok") OR

(ASK item3 ReferenceName = "cancel");
IF item3 && NILOBJ

IF (ASK item3 ReferenceName = "ok")

ASK portsimMainwin TO RemoveThisGraphic(wdialogBox2);

ELSE
{Remove this dialog box}
ASK portsimMainWin TO RemoveThisGraphic(wdialogBox2);
DISPOSE(wdialogBox2);

END IF;
ELSE

ASK portsimMainWin TO RemoveThisGraphic(wdialogBox2);
DISPOSE(wdialogBox2};

END IF;

END METHOD;
END OBJECT;

END MODULE.

Fig. C.5 PORTSIM code for Fig. 29

170

IMPLEMENTATION MODULE aanimate;

OBJECT XXXXX;
ASK METHOD XXXXX;

VAR
dialogBox
wdialogBox

DialogBoxObj;
wrapDialogBoxObj;

BEGIN

NEW(wdialogBox);
ASK wdialogBox TO LoadFromLibrary(library,"scenarioExistsDialog");
ASK portsimMainWin TO AddGraphic(wdialogBox);
ASK wdialogBox TO Draw;
button := ASK wdialogBox TO AcceptInput();
IF button && NILOBJ
IF ASK button ReferenceName = "cancel"
flag := FALSE;

END IF;
ELSE
flag := FALSE;

END IF;
DISPOSE(wdialogBox);

END METHOD;
END OBJECT;

END MODULE.

Fig. C.6 PORTSM code for Fig. 30

DEFINITION MODULE aanimate;

shipRemoveDialogBoxObj = OBJECT(DialogBoxObj);
OVERRIDE

ASK METHOD BeSelected;
ASK METHOD BeClosed;

END OBJECT (shipRemoveDialogBoxObj);

END MODULE.

IMPLEMENTATION MODULE aanimate;

OBJECT shipRemoveDialogBoxObj;
ASK METHOD BeSelected;
VAR

BEGIN
cnt := ASK LastPicked Id;

CASE cnt
WHEN 1: (ok)

ASK portsimMainWin TO RemoveThisGraphic(SELF);
DISPOSE(SELF);

WHEN

WHEN 2: (cancel)
ASK portsimMainWin TO RemoveThisGraphic(SELF);
DISPOSE(SELF);

OTHERWISE
END CASE;

END METHOD (BeSelected);

ASK METHOD BeClosed; (Fig. 31)
BEGIN

ASK portsimMainWin TO RemoveThisGraphic(SELF);
DISPOSE(SELF):

END METHOD;
END OBJECT (shipRemoveDialogBoxobj);

OBJECT scenarioDialogBoxobj;
ASK METHOD BeSelected;
VAR

BEGIN
CASE ASK LastPicked Id

WHEN

WHEN 12: (removeShipButton)
NEW(shipRemoveDialogBox); (Fig. 32)
ASK shipRemoveDialogBox TO

LoadFromLibrary(library,"shipRemoveDialog");
(Initialize ship list)
shipTable := ASK SELF Child("shipTable",10);
shipListBox := ASK shipRemoveDialogBox Child("shipList",5);
NEW(shipTableItem);
shipTableItem := ASK shipTable FirstGraphic();
WHILE shipTableItem && NILOBJ
NEW(shipListBoxItem);
ASK shipListBoxItem TO SetText(shipTableItem.Label);
ASK shipListBox TO AddGraphic(shipListBoxItem);
shipTableItem := ASK shipTable NextGraphic(shipTableItem);

END WHILE;
ASK portsimMainWin TO AddGraphic(shipRemoveDialogBox);
ASK shipRemoveDialogBox TO Draw;

WHEN

END CASE;
END METHOD;

END OBJECT (scenarioDialogBoxobj);

END MODULE.

Fig. C.7 PORTSIM code for Figures 31 and 32

172

DEFINITION MODULE aanimate;

gateParamsDialogBoxObj = OBJECT(DialogBoxObj);
ASK METHOD updateGateParamsDialog(IN Num : INTEGER)
OVERRIDE

ASK METHOD BeSelected;
ASK METHOD BeClosed;

END OBJECT (gateParamsDialogBoxObj);

END MODULE.

IMPLEMENTATION MODULE aanimate;

OBJECT gateParamsDialogBoxObj;
ASK METHOD updateGateParamsDialog(IN Num : INTEGER);
VAR

BEGIN

ASK SELF TO Update;
REPEAT

item := ASK SELF TO AcceptInput();
IF item = NILOBJ

EXIT;
END IF;

UNTIL (ASK item ReferenceName = "cancel");
IF (ASK portsimMainWin IncludesGraphic(SELF))

ASK portsimMainWin TO RemoveThisGraphic(SELF)
END IF;

END METHOD;

ASK METHOD BeClosed;
BEGIN

ASK SELF TO Erase;
END METHOD;

END OBJECT (gateParamsDialogBoxObj);

END MODULE.

Fig. C.8 PORTSM code for Fig. 33

DEFINITION MODULE aanimate;

stagingparamsDialogBoxObj = OBJECT(DialogBoxObj);
ASK METHOD updateStagingParamsDialog(IN Num : INTEGER)
OVERRIDE

ASK METHOD BeSelected;
ASK METHOD BeClosed;

END OBJECT {stagingParamsDialogBoxObj);

END MODULE.

IMPLEMENTATION MODULE aanimate;

OBJECT stagingParamsDialogBoxObj;
ASK METHOD updateStagingParamsDialog(IN Num : INTEGER);
VAR

BEGIN

REPEAT
item := ASK SEI F TO AcceptInput();
IF item = NILOBJ

(Ensure at least one staging area is available before allowing
user to exit)

IF (availStagingAreas.numberIn & 0)
NEW(wdialogBox);
ASK wdialogBox TO

LoadFromLibrary(library,"selectStagingErrorDialog");
ASK portsimMainWin TO AddGraphic(wdialogBox);
item := ASK wdialogBox TO AcceptInput();
ASK portsimMainWin TO RemoveThisGraphic(wdialogBox);
DISPOSE(wdialogBox);

ELSE
IF (ASK portsimMainWin IncludesGraphic(SELF))

ASK portsimMainWin TO RemoveThisGraphic(SELF);
END IF;

END IF;
EXIT;

END IF;
UNTIL (ASK item ReferenceName = "cancel");

END METHOD (updateStagingParamsDialog);

ASK METHOD BeSelected;
VAR

BEGIN
CASE name

WHEN "ok":

WHEN "cancel":
(Ensure at least one staging area is available before allowing
user to exit}

IF (availStagingAreas.numberIn & 0)
NEW(wdialogBox);
ASK wdialogBox TO

LoadFromLibrary(library,"selectStagingErrorDialog");
ASK portsimMainWin TO AddGraphic(wdialogBox);

174

item ;= ASK wdialogBox TO AcceptInput();
ASK portsimMainWin TO RemoveThisGraphic(wdialogBox)
DISPOSE(wdialogBox);

ELSE
IF (ASK portsimMainWin IncludesGraphic(SELF))

ASK portsimMainWin TO RemoveThisGraphic(SELF);
END IF;

END IF;
WHEN

END CASE;
END METHOD (BeSelected);

ASK METHOD BeClosed;
BEGIN

ASK SELF TO Erase;
END METHOD;

END OBJECT (stagingParamsDialogBoxobj);

END MODULE.

Fig. C.9 PORTSIM code for Fig. 34

175

CURRICULUM VITA
For

MURALI K ADATRAO

NAME: Murali I Adatrao

DATE OE BIRTH: August 21, 1974

DEGREESt

Bachelor of Technology (Electronics and Communication Engineering), Jawaharlal

Nehru Technological University, College of Engineering, Hyderabed, Andhra Pradesh,

India, July 1996

	A Flowchart Structure for Modification of a MODSIM Process Model
	Recommended Citation

	tmp.1721060470.pdf.zqWrj

