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Abstract: There is an emerging interest in using hyperspectral data for land cover classification.
The motivation behind using hyperspectral data is the notion that increasing the number of narrowband
spectral channels would provide richer spectral information and thus help improve the land
cover classification performance. Although hyperspectral data with hundreds of channels provide
detailed spectral signatures, the curse of dimensionality might lead to degradation in the land cover
classification performance. Moreover, in some practical applications, hyperspectral data may not be
available due to cost, data storage, or bandwidth issues, and RGB and near infrared (NIR) could be
the only image bands available for land cover classification. Light detection and ranging (LiDAR)
data is another type of data to assist land cover classification especially if the land covers of interest
have different heights. In this paper, we examined the performance of two Convolutional Neural
Network (CNN)-based deep learning algorithms for land cover classification using only four bands
(RGB+NIR) and five bands (RGB+NIR+LiDAR), where these limited number of image bands were
augmented using Extended Multi-attribute Profiles (EMAP). The deep learning algorithms were
applied to a well-known dataset used in the 2013 IEEE Geoscience and Remote Sensing Society (GRSS)
Data Fusion Contest. With EMAP augmentation, the two deep learning algorithms were observed to
achieve better land cover classification performance using only four bands as compared to that using
all 144 hyperspectral bands.

Keywords: land cover classification; hyperspectral; EMAP; augmented bands; LiDAR; data fusion

1. Introduction

Hyperspectral data have been used for chemical agent detection and classification [1,2], small target
detection [3,4], fire damage assessment [5,6], anomaly detection [7–13], border monitoring [14], change
detection [15–18], and mineral map abundance estimation on Mars [19,20]. Land cover classification
is another application area where hyperspectral data are used extensively [21]. To improve land
cover classification, the use of light detection and ranging (LiDAR) data and the fusion of LiDAR and
hyperspectral data have been considered by several works [22–27]. Because some land covers differ
among themselves with respect to their height, height could be a valuable piece of information.

There is also an increasing interest in adapting deep learning methods for land cover classification
after several breakthroughs have been reported in a variety of computer vision tasks such as image
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classification, object detection and tracking, and semantic segmentation. The authors of [28] described
an unsupervised feature extraction framework, with the name “patch-to-patch convolutional neural
network (PToP CNN)”, which was used for land cover classification using hyperspectral and LiDAR
data. The authors of [29] introduced a spectral-spatial attention network for image classification using
hyperspectral data. In this network, while the recurrent neural network (RNN) part with attention
can learn inner spectral correlations within a continuous spectrum, the CNN part is for the saliency
features and aims to extract spatial relevance between neighboring pixels in the spatial dimension.
The authors of [30] used convolutional networks for multispectral image classification. The authors
of [31] provided a comprehensive review on land cover classification and object detection approaches
using high-resolution imagery. The performances of deep learning models were evaluated against
traditional approaches, and the authors concluded that the deep-learning-based methods provided
an end-to-end solution and showed better performance than the traditional pixel-based methods by
utilizing both spatial and spectral information, whereas traditional pixel-based methods resulted in
salt-and-pepper-type noisy land cover map estimates. A number of other works have also shown that
semantic segmentation classification with deep learning methods are quite promising in land cover
classification [32–35].

Researchers also utilized spatial information in hyperspectral data via the use of Extended
Multi-attribute Profiles (EMAPs) [36]. EMAPs, which are based on morphological attribute filters,
generate augmented bands from hyperspectral image bands and have found a considerable interest
in land cover classification [37–42]. In the event that limited image bands are available, EMAP
augmented bands from these limited image bands could be beneficial. A recent application of using
EMAP-augmented bands for soil detection due to illegal tunnel excavation can be found in [43].
Because the number of image bands is too high in hyperspectral data, the number of EMAP augmented
bands becomes too high as well. For this reason, works utilizing EMAP have generally applied
dimension reduction techniques to extract the most useful information from the EMAP augmented
bands [38]. The fusion of hyperspectral and LiDAR data was proposed by the authors [44] and was
applied to the 2013 IEEE Geoscience and Remote Sensing Society (GRSS) Data Fusion Contest dataset.
All 144 hyperspectral bands were used in EMAP augmentation and the overall accuracy was found to
be 90.65%.

Even though using hyperspectral data provides rich and distinctive information that can point
subtle differences for land cover classification that would otherwise be impossible to identify using
RGB image bands only or even using multispectral image bands, there is a price that comes with
it. The high dimensionality in hyperspectral data due to the presence of hundreds of bands could
result in the curse of dimensionality phenomena [37,45], especially if there is limited training data
when training models with the classifiers for land cover classification. In this situation, the available
training data could look sparse relative to the large space volume formed by the high dimensional
data. This could potentially result in lower classification performances than anticipated when all
hyperspectral bands are used. To mitigate this issue, several works have applied dimension reduction
techniques to hyperspectral data [45,46], as well as to the EMAP augmented bands [36,38]. Moreover,
hyperspectral sensors are expensive and demand large data storage and computational resources and
times. Considering that some applications, such as pest damage assessment by farmers, have limited
budgets and the use of hyperspectral sensors could be costly and off-limits for them, using fewer image
bands like RGB and near infrared (NIR) for land cover classification via advanced algorithms that can
utilize both spatial and spectral information from these fewer image bands would be invaluable.

In this paper, we summarized the evaluation of land cover classification performance of
two CNN-based deep learning algorithms when only a few bands, namely RGB+NIR bands and
RGB+NIR+LiDAR bands, were available, and when EMAP was applied to those limited bands to
generate the augmented bands. This is different from the EMAP application described by the authors
of [36–43] since, in those works, all hyperspectral image bands were augmented followed by dimension
reduction of the features extracted from the augmented bands. Extensive performance comparisons
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were conducted for the cases when all hyperspectral bands were used for land cover classification in
contrast to EMAP-augmented bands only and RGB+NIR bands alone. Additionally, the impact of
adding LiDAR on the classification performance of the three cases was examined. These three cases
are: (a) Limited number of bands (RGB+NIR) vs. (RGB+NIR+LiDAR), (b) EMAP-augmentation of
RGB+NIR vs. EMAP augmentation of RGB+NIR+LiDAR, and (c) hyperspectral bands vs. hyperspectral
bands+LiDAR. We used the 2013 IEEE GRSS Data Fusion Contest dataset [44] in the investigations.
Two conventional classification algorithms, Joint Sparse Representation (JSR) [14] and Support
Vector Machine (SVM) [47], were also applied to the same dataset for the EMAP-augmented cases.
The contributions of this paper are as follows:

• We provided a comprehensive performance evaluation of two CNN-based deep learning methods
for land cover classification when a limited number of bands (RGB+NIR and RGB+NIR+LiDAR)
were used for augmentation with EMAP. The evaluation also included detailed classification
accuracy comparisons when limited bands were used only and when all hyperspectral bands
were used without EMAP.

• We showed that, with deep learning methods using fewer number of bands and utilizing
EMAP-based augmentation, it is quite possible to arrive at highly decent accuracies for land cover
classification. This eliminates the need for hundreds of hyperspectral bands and reduces it to
four bands.

• We demonstrated that, even though adding LiDAR band to RGB+NIR bands for EMAP
augmentation made a significant impact with conventional classifiers, JSR and SVM, for land
cover classification, no considerable impact was observed with the deep learning methods
since their classification performances were already good when using the EMAP-augmented
RGB+NIR bands.

The rest of this paper is organized as follows. In Section 2, we review the two deep learning
methods, EMAP, and the 2013 IEEE GRSS Data Fusion Contest Data. In Section 3, we summarize our
findings. Finally, we conclude our paper with a few remarks.

2. Methods

2.1. Our Customized CNN Method

For this CNN-based method, we used the same structure that was used in our previous work [39].
Only the filter size in the first convolution layer was changed accordingly to be consistent with the
input patch sizes. This CNN model has four convolutional layers, with various filter sizes and a fully
connected layer with 100 hidden units as shown in Figure 1. When we designed the network, we tried
different configurations for the number of layers and the size of each layer and selected the one that
provided the best results. We did this for all the layers (convolutional and FC layers). The choice of
“100 hidden units” was the outcome of our design studies. This model was also used for soil detection
due to illegal tunnel excavation, as described in [48]. Each convolutional layer utilizes the Rectified
Linear Unit (ReLu) as the activation function. The last fully connected layer uses the SoftMax function
for classification. We added dropout layer for each convolutional layer with a dropout rate of 0.1 to
mitigate overfitting [49]. It should be noted that the network size changes depending on the input size.
In Figure 1, the network should be the same for 5 × 5 as for 7 × 7. The only difference would be that
the first layer is deleted. For 3 × 3, the first two layers are deleted. The number of bands (N) in the
input image can be any integer number.
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Figure 1. Our customized conventional neural network (CNN) model.

2.2. CNN-3D

CNN-3D is a CNN-based method [50] with two convolutional layers and two fully connected layers.
The two convolutional layers have pooling units and all of its four layers have ReLu units. Figure 2
shows the architecture of this second CNN-based method that is used for land cover classification.
This network was used in hyperspectral pixel classification before. The details have been described by
the authors of [50]. Due to the use of pooling layers, the patch size cannot be too small. Otherwise,
the later layers will not have any impacts.
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2.3. EMAP

For a grayscale image f and a sequence of threshold levels {Th1, Th2, . . . Thn}, the attribute profile
(AP) of f was obtained by applying a sequence of thinning and thickening attribute transformations to
every pixel in f as follows:

AP( f ) =
{
φ1( f ), φ2( f ), . . . φn( f ), f , γ1( f ), γ2( f ), . . . γn( f )

}
(1)

where φi and γi (i = 1, 2, . . . n) are the thickening and thinning operators at threshold Thi, respectively.
The EMAP of f was then acquired by stacking two or more APs using any feature reduction technique
on multispectral/hyperspectral data, such as purely geometric attributes (e.g., area, length of the
perimeter, image moments, shape factors), or textural attributes (e.g., range, standard deviation,
entropy) [36,39–41] as shown in (2). Further technical details about EMAP can be found in [36,39–41].

EMAP( f ) =
{
AP1( f ), AP2( f ) . . . APm( f )

}
(2)

When generating the EMAP-augmented bands in the conducted investigations, no feature
dimension reduction process was applied to the hyperspectral data (such as Principal Component
Analysis) because the hyperspectral bands of interest were only RGB+NIR instead of all the
hyperspectral bands available. EMAP was directly applied to these limited number of bands
(RGB+NIR) with the selected attribute profiles, which were the ‘area (a)’ and ‘length of the diagonal of
the bounding box’ (d) [43]. The lambda parameters in EMAP for both ‘area’ and ‘length of the diagonal
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of the bounding box’ attributes were arbitrarily chosen. For the ‘area’ attribute, which is related to
modeling spatial information, the higher number of extrema (lambda parameters) contains more detail,
whereas the smaller number smooths out the input data. In this work, smoothing was favored and
the lambda parameters for the area attribute of EMAP, which is a sequence of thresholds used by the
morphological attribute filters, were set to 10 and 15, respectively. For the ‘length of the diagonal of
the bounding box’ attribute, which is related to the shape of the regions, the lambda parameters were
set to 50, 100, and 500. With these two attributes and their parameter settings, 10 augmented bands
were generated for a single band image. The total number of image bands becomes 11 when including
the original single band image, Because the resultant EMAP augmented bands were few in number,
no feature dimension reduction process was applied to the augmented EMAP bands and all of the
EMAP augmented bands were used with the deep learning classifiers.

2.4. Dataset

The hyperspectral image dataset for the University of Houston area and the corresponding LiDAR
data were used in this paper. This dataset, together with its ground truth land cover maps, were
obtained from the IEEE GRSS Data Fusion package [44] and were used in the 2013 IEEE Geoscience and
Remote Sensing Society Data Fusion Contest. The hyperspectral data in this dataset contain 144 bands
ranging in wavelength values from 380 mm to 1050 nm with a spectral width of 4.65 nm and a spatial
resolution of 2.5 m per pixel. The LiDAR data contain the height information and have a resolution
of 2.5 m per pixel. Table 1 displays the number of training and test data pixels per land cover class
provided in this dataset. There were 15 land cover classes which were identified and named by the
contest. These classes and their corresponding training and test datasets (each pixel in the training and
test dataset had its own land cover class label) were fixed. The training data set included 2832 pixels
and the test dataset includes the remaining 12,197 labeled pixels. Figure 3a shows the color image,
and Figure 3b,c show the color image with ground truth land cover annotations for both the training
and test dataset. The brightness and contrast of the color image in Figure 3 was adjusted for better
visual assessment.

Table 1. Number of pixels per class in the IEEE GRSS data. Total number of unlabeled pixels is 649,816,
and total number of pixels is 664,845.

Class

Name Number Color Legend Samples

Train Test
Healthy grass 1 198 1053
Stressed grass 2 190 1064
Synthetic grass 3 192 505

Tree 4 188 1056
Soil 5 186 1056

Water 6 182 143
Residential 7 196 1072
Commercial 8 191 1053

Road 9 193 1059
Highway 10 191 1036
Railway 11 181 1054

Parking lot 1 12 192 1041
Parking lot 2 13 184 285
Tennis court 14 181 247

Running track 15 181 473
1–15 2832 12,197
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Figure 3. Color image for the University of Houston area with ground truth land cover annotations of
test data.

In the hyperspectral image, the investigations with the four bands (RGB+NIR) correspond to the
narrow hyperspectral bands, which were directly retrieved from hyperspectral data. These bands are
Red (R), Green (G), Blue (Blue), and NIR, and the band numbers in the hyperspectral data for RGB and
NIR bands are (R), #30 (G), #22 (B), and #103 (NIR).

We would like to mention that there is another dataset known as Trento data that contains
both hyperspectral and LiDAR images. However, the Trento dataset is no longer publicly available
to researchers.

2.5. Performance Metrics

For classification performance evaluation of the deep learning methods with EMAP-augmented
bands and all other band combinations, we used overall accuracy, OA, which is the ratio of the sum of
correctly classified pixels from all classes to the total number of pixels in the test data. In addition to
OA, we also generated average accuracy, AA, value which corresponds to the average of individual
class accuracies, which is also known as ‘balanced accuracy’. The last performance metric was the
well-known Kappa (K) coefficient [51].

3. Results

3.1. Our Customized CNN Results

Table 2 shows our customized CNN model [48] classification results for the test dataset with six
different sets of image bands. These six different sets of image bands are: (a) RGB+NIR (four bands),
(b) RGB+NIR+LiDAR (5 bands), (c) 44 EMAP-augmented bands (RGB+NIR bands augmented to
44 bands with EMAP, 11× 4 = 44), (d) 55 EMAP-augmented bands (RGB+NIR+LiDAR bands augmented
to 55 bands with EMAP), (e) 144 hyperspectral bands, and (f) 144 hyperspectral bands+LiDAR
(145 bands). The results in Table 2 consist of two parts. The first part corresponds to the resultant
performance metrics (OA, AA, and Kappa), and the second part corresponds to the correct classification
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accuracy for each land cover type using the investigated band combinations with our customized
CNN model. Figures 4 and 5 show these results using bar chart type of plots. When applying the
customized CNN model, two different patch sizes were investigated, 3 × 3 and 5 × 5, respectively.
In Figures 4 and 5, the value in parenthesis after the band combination type corresponds to patch size.
As an example, (p3) indicates a patch size of 3 × 3.
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Figure 5. Classification accuracy for each land cover type with our customized CNN model using the
investigated band combinations.

The highest classification accuracy was found to be with the 44 EMAP-augmented bands case
using the 3 × 3 patch size, followed by the 55 EMAP-augmented bands case with 3 × 3 patch size.
Among the 15 different land covers, two land covers, synthetic grass and tennis court, had perfect
correct classification followed by close-to-perfect classification accuracy for soil land cover. The lowest
classification accuracy was found to be for highway class. Figure 6 shows the estimated land cover
maps for the whole image with our customized CNN model. The estimated land cover map with the
highest overall accuracy for each image band set is shown in Figure 6.
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Table 2. Classification results obtained by our customized CNN model for the considered test dataset with six different sets of image bands. Bold numbers indicate
best performing datasets for each row.

Bands 4 Band 4 Band+Lidar 44 Band EMAP 55 Band EMAP 144 Band 144 Band+Lidar

Patch Size 3 5 3 5 3 5 3 5 3 5 3 5

OA (%) 0.7844 0.8108 0.7990 0.7990 0.8792 0.8602 0.8602 0.8429 0.8148 0.8050 0.7878 0.8097
AA (%) 0.8103 0.8364 0.8224 0.8264 0.8982 0.8830 0.8840 0.8670 0.8436 0.8365 0.8202 0.8365

K 0.7661 0.7947 0.7818 0.7825 0.8694 0.8487 0.8492 0.8304 0.8001 0.7898 0.7713 0.7949

(ID)-Class Type (%)

1-Healthy grass 0.8224 0.8234 0.8205 0.8224 0.8310 0.8310 0.8234 0.8310 0.8158 0.8262 0.8167 0.8234
2-Stressed grass 0.8449 0.8449 0.8421 0.8459 0.8393 0.8205 0.8487 0.7162 0.8449 0.8402 0.8355 0.8421
3-Synthetic grass 0.9426 0.9109 0.9485 0.8792 1.0000 1.0000 0.9941 0.9980 0.9861 0.9287 0.9762 0.9822

4-Trees 0.9252 0.9195 0.8958 0.9223 0.9896 0.9271 0.9574 0.9261 0.9157 0.9299 0.9271 0.9138
5-Soil 0.9792 0.9934 0.9735 0.9915 0.9943 1.0000 1.0000 0.9991 0.9848 0.9991 0.9886 0.9943

6-Water 0.8462 0.9301 0.8462 0.9231 0.9510 0.9580 0.9650 0.9021 0.9301 0.9441 0.9441 0.9021
7-Residential 0.8647 0.8918 0.8909 0.8386 0.8647 0.9347 0.8750 0.8675 0.7687 0.8349 0.7724 0.7817
8-Commercial 0.5404 0.6277 0.5850 0.6068 0.7873 0.6021 0.6135 0.5470 0.6638 0.6980 0.5252 0.7227

9-Road 0.6959 0.7866 0.7592 0.7460 0.8659 0.8234 0.8527 0.8036 0.7224 0.7063 0.8083 0.7545
10-Highway 0.5531 0.5010 0.6120 0.5154 0.6844 0.6400 0.6371 0.8070 0.6091 0.4952 0.4373 0.6004
11-Railway 0.6803 0.7021 0.6774 0.6812 0.8634 0.8966 0.8681 0.8662 0.7676 0.7078 0.7277 0.7457

12-Parking lot 1 0.7166 0.8444 0.7301 0.8309 0.9193 0.9462 0.9452 0.8674 0.8357 0.7800 0.7954 0.7032
13-Parking lot 2 0.8035 0.8737 0.8316 0.8596 0.8842 0.8702 0.8877 0.8737 0.8596 0.9088 0.8035 0.8807
14-Tennis Court 0.9798 0.9919 0.9676 0.9838 1.0000 1.0000 1.0000 1.0000 0.9879 0.9595 0.9960 0.9514

15-Running Track 0.9598 0.9049 0.9556 0.9493 0.9979 0.9958 0.9915 1.0000 0.9619 0.9894 0.9493 0.9493
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3.2. CNN-3D (C3D) Results

Table 3 shows the classification results of the CNN-3D method [49] for the test dataset with
six different sets of image bands. With this method, two different patch sizes, 13 × 13 and 17 × 17,
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were investigated for three of the five sets of bands. As mentioned earlier, the patch sizes cannot be too
small due to the pooling layers in C3D. For instance, if the patch size is 7 × 7, the patch size will drop
to single digits after the first two layers, hence the network cannot function as desired. For the two
remaining band sets, which were 144 hyperspectral bands and the 144 hyperspectral bands+LiDAR,
the GPU memory was not sufficient for CNN-3D to run. Consequently, only the patch size of 7 × 7 was
considered for 144 hyperspectral bands and the 144 hyperspectral bands+LiDAR cases. Even though
comparing the 7 × 7 patch size results of these two image band sets with the 13 × 13 and 17 × 17 patch
size results of the other three image band sets would not be fair, we still included these results in
Table 3 to provide some rough idea about the impact of adding LiDAR band to the hyperspectral bands.
Figure 7 corresponds to the bar chart of the resultant performance metrics (OA, AA, and Kappa),
and Figure 8 shows the bar chart plot of the correct classification accuracy for each land cover type
using the investigated band combinations with CNN-3D model in Table 3.

Table 3. CNN-3D classification results for the test dataset with six different sets of image bands. Bold
numbers indicate best performing datasets for each row.

Bands 4 Band 4 Band+Lidar 44 Band EMAP 55 Band EMAP 144
Band

144
Band
+Lidar

Patch Size 13 17 13 17 13 17 13 17 7 7

OA (%) 0.7536 0.6179 0.7843 0.7066 0.8764 0.8634 0.8796 0.8755 0.8010 0.8000
AA (%) 0.7503 0.6767 0.7825 0.6933 0.8816 0.8530 0.8918 0.8756 0.8245 0.8243

K 0.7332 0.6634 0.7663 0.6824 0.8657 0.8515 0.8692 0.8648 0.7850 0.7840

(ID)-Class Type
(%)

1-Healthy grass 0.8006 0.8224 0.8291 0.7930 0.8215 0.8405 0.8310 0.8357 0.8433 0.8471
2-Stressed grass 0.8365 0.8026 0.8571 0.8449 0.7641 0.7575 0.7961 0.7735 0.8496 0.8600
3-Synthetic grass 0.5782 0.4396 0.6277 0.4990 0.9901 0.9980 0.9921 0.9683 0.7881 0.7842

4-Trees 0.9375 0.8627 0.9261 0.8930 0.9271 0.9252 0.9129 0.9290 0.8892 0.8902
5-Soil 0.9299 0.9375 0.9574 0.9403 0.9867 0.9877 0.9934 0.9962 0.9858 0.9886

6-Water 0.8252 0.7762 0.9021 0.7552 0.8601 0.7832 0.9441 0.8741 0.9790 0.9441
7-Residential 0.8424 0.8312 0.8526 0.8256 0.9160 0.8937 0.9226 0.8909 0.8657 0.8554
8-Commercial 0.5954 0.5090 0.7056 0.5024 0.7787 0.8053 0.7255 0.7578 0.5812 0.5793

9-Road 0.7573 0.8083 0.8074 0.8215 0.9292 0.9424 0.9207 0.9396 0.7677 0.8017
10-Highway 0.5792 0.3842 0.6274 0.4151 0.6892 0.6641 0.6844 0.7008 0.5956 0.4884
11-Railway 0.6309 0.5066 0.5968 0.5313 0.9839 0.8975 0.9810 0.9592 0.6973 0.7116

12-Parking lot 1 0.7666 0.7003 0.8002 0.7493 0.9222 0.9577 0.9385 0.9712 0.8271 0.8204
13-Parking lot 2 0.8035 0.7579 0.8421 0.7404 0.8596 0.8421 0.8667 0.7860 0.9228 0.9088
14-Tennis Court 0.8664 0.8421 0.8097 0.8502 0.9919 0.7976 0.9798 0.9757 0.9231 0.8907

15-Running Track 0.5053 0.1691 0.5962 0.2389 0.8034 0.7019 0.8879 0.7759 0.8520 0.9937Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 17 
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Figure 8. Classification accuracy for each land cover type with CNN-3D model using the investigated
band combinations.

With CNN-3D, the highest classification accuracy was obtained with the 55 EMAP-augmented
bands and 44 EMAP-augmented bands cases using a patch size of 13 × 13. The 55 EMAP-augmented
bands case was observed to have slightly higher accuracy than the 44 EMAP-augmented bands
case. The classification results with all other image band sets had relatively lower values. For the
55 EMAP-augmented bands case, the top three close-to-perfect correct classifications were for the soil,
synthetic grass, and tennis court land covers, whereas the lowest classification accuracy was for highway
class. In our customized CNN model results, similar observations were made with respect to the land
covers with best top three and the worst classification accuracies. Figure 9 shows the estimated land
cover maps with this method for the whole image. For image band sets with more than one investigated
patch window size, the one providing better classification performance is shown in Figure 9.
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3.3. Performance Comparison of Deep Learning Methods

Table 4 shows the highest classification accuracy values obtained with our customized CNN model
and CNN-3D method for each of the six image band sets. In five of these six cases, our customized
CNN method was observed to perform better than CNN-3D method. The CNN-3D performed better
than our customized CNN method only in the 55 EMAP-augmented bands case.

Considering the best classification results from any of the two deep learning methods in each
image band set, one interesting observation from Table 5 is that using RGB+NIR bands (four bands)
without LiDAR and using hyperspectral bands (144 bands) without the LiDAR resulted in slightly better
classification accuracies than the same cases which included LiDAR. For the 44 EMAP-augmented
bands case and 55 EMAP-augmented bands case, a similar observation was made when the average
accuracy and Kappa metrics were taken into consideration instead of the overall accuracy metric,
since these two metrics were found to be slightly higher in the 44 EMAP-augmented bands case in
comparison to the 55 EMAP-augmented bands case. For the overall accuracy metric, they were also
very close to each other in value. Considering the results with and without LiDAR in these three
cases, it was observed that including LiDAR did not seem to have a considerable impact with the
deep learning methods. This is somewhat not intuitive, since LiDAR was expected to bring valuable
information with respect to height. This could be because several of the 15 land covers in this dataset
are surface-level type land covers, meaning they have similar heights with the exception of trees,
residential, and commercial land covers. When looking at the classification accuracies of these three
land cover classes for the LiDAR-added cases to see whether LiDAR had any impact, mixed results
were also seen. It was anticipated that no significant impact of LiDAR would be observed with the
two deep learning methods because their classification performances were already good when using
RGB+NIR bands.
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By comparing the classification maps of Figures 6 and 9, it can be seen that our customized CNN
results look crisper due to the use of small patch sizes. In a nutshell, the two CNNs differed only in
the pooling layers. In our investigations, we found that the pooling layers did not help the overall
classification performance.

Table 4. Classification performance comparison of the two deep learning methods for the test dataset
with six different image band sets (best performances are highlighted in bold for each image band set).

CNN

Bands 4 Band 4 Band+LiDAR 44 Band EMAP 55 Band EMAP 144 Band 144 Band+
LiDAR

Patch Size C3D-13 CNN-5 C3D-13 CNN-5 C3D-13 CNN-3 C3D-13 CNN-3 C3D-7 CNN-3 C3D-7 CNN-5
OA (%) 0.7536 0.8108 0.7843 0.7990 0.8764 0.8792 0.8796 0.8602 0.8010 0.8148 0.8000 0.8097
AA (%) 0.7503 0.8364 0.7825 0.8264 0.8816 0.8982 0.8918 0.8840 0.8245 0.8436 0.8243 0.8365

K 0.7332 0.7947 0.7663 0.7825 0.8657 0.8694 0.8692 0.8492 0.7850 0.8001 0.7840 0.7949

3.4. Comparison with Conventional Methods

The deep learning methods’ best classification performances for 44 EMAP-augmented bands
and 55 EMAP-augmented bands cases were compared with two conventional methods, Joint Sparse
Representation (JSR) [14] and Support Vector Machine (SVM) [47], using the same two sets of
EMAP-augmented bands (44 and 55). JSR is more computationally demanding, as it exploits
neighborhood pixels for joint land type classification. In JSR, a 3 × 3 or 5 × 5 patch of pixels is used in
the S target matrix. The parameter s0 in Equation (13) of [52] is the design parameter, which controls
the number of sparse elements. Details of the mathematics have been described by the authors of [52].
We chose that parameter to be 10e-4. There were two SVM parameters, the penalty factor C and the
radial basis function (RBF) kernel width, γ, which were chosen to be 10 and 0.1, respectively. In addition
to these two conventional methods, classification results reported by two papers, which used this
same dataset with hyperspectral and LiDAR bands augmented with EMAP, were also considered for
comparison as well. Details of the JSR and SVM results have been described by the authors of [52].

The resultant overall accuracies of these methods are shown in Table 5. The two conventional
methods were observed to perform extremely close in accuracy to the deep learning methods for the
55 EMAP-augmented bands case. For the 44 EMAP-augmented bands case, on the other hand, the deep
learning methods’ performances were considerably better than the conventional methods. From Table 5,
it can be noticed that adding the LiDAR band to the RGB+NIR bands for EMAP augmentation made a
significant impact in overall classification accuracy with the conventional classifiers, JSR and SVM,
for land cover classification. However, no considerable impact was observed when adding the LiDAR
band to the the EMAP augmentation with the deep learning methods as discussed before.

In [44], the authors investigated three different combinations of hyperspectral bands for land
cover classification. Among these, the investigation which used the hyperspectral bands, additional
bands from LiDAR data, and the EMAP-augmented hyperspectral bands resulted in an overall
accuracy values of 90.65%, whereas the overall accuracy when using only the hyperspectral bands and
EMAP-augmented hyperspectral bands was 84.40%. In another paper [53], a graph-based approach
was proposed to fuse HS and LiDAR data for land cover classification. In [53], the authors used the
same dataset with three different band combinations. Their investigation with hyperspectral bands
only using SVM classifier had an accuracy of 80.72%. Our results using only hyperspectral bands are
in line with this result, since we reached an accuracy of 81.48% using our customized CNN method,
which provided slightly higher accuracy than their result. A second investigation described by the
authors of [53] used the morphological profiles of hyperspectral and LiDAR bands and reached an
accuracy of 86.39%.

In our case, even though only four bands (RGB+NIR) and five bands (RGB+NIR+LiDAR) were
used with EMAP for augmentation, decent classification accuracies of 87.92% (Our CNN) and 87.96%
(CNN-3D) were reached, respectively. These overall accuracy values are higher than the investigations
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described by the authors of [44,53], which used all hyperspectral bands and additional LiDAR bands
together with EMAP augmentation. This is quite impressive considering that we augmented only four
bands with EMAP instead of using all hyperspectral bands and additional bands from LiDAR and
still reached an overall accuracy of 87.92%. Our work shows that with deep learning methods using
a fewer number of bands and utilizing EMAP augmentation, it is possible to arrive at very decent
correct classification accuracies for land cover classification, eliminating the need of using hundreds of
hyperspectral bands. This could ultimately reduce computation and data storage needs.

Table 5. Comparison of the overall accuracies (%) of several methods.

Reference Dataset Adopted Algorithm
Adopted

Overall
Accuracy

[52] 44 EMAP (RGB+NIR) JSR 80.77
[52] 44 EMAP (RGB+NIR) SVM 82.64

This paper 44 EMAP (RGB+NIR) Our CNN 87.92
This paper 44 EMAP (RGB+NIR) CNN-3D 87.64

[52] 55 EMAP (RGB+NIR+LiDAR) JSR 86.86
[52] 55 EMAP (RGB+NIR+LiDAR) SVM 86.00

This paper 55 EMAP (RGB+NIR+LiDAR) Our CNN 86.02
This paper 55 EMAP (RGB+NIR+LiDAR) CNN-3D 87.96

[44]

Hyperspectral data; EMAP augmentation applied hyperspectral data
(Xh + EMAP(Xh)) MLRsub 84.40

Hyperspectral data; Additional bands from LiDAR data (Xh + AP(XL)) MLRsub 87.91
Hyperspectral data; EMAP augmentation applied hyperspectral data;

Additional bands from LiDAR data (Xh + AP(XL) + EMAP(Xh)) MLRsub 90.65

[53] Hyperspectral data SVM 80.72
Morphological Profile of hyperspectral and LiDAR data (MPSHSLi) SVM 86.39

Here, we compared the computational costs of different methods. We used a desktop PC with i7
quadcore CPU and a GPU (NVIDIA GeForce Titan X Pascal 12GB GDDR5X). The JSR and SVM results
only used CPU, and the CNN and C3D used GPU. Table 6 summarizes the computational times in
minutes. It can be seen that SVM were much faster than JSR because JSR needed a lot more time in
minimizing the sparseness constraint. The CNN and C3D times are similar and less than three minutes,
which might be misleading. It should be noted that the deep learning methods all used GPU, hence
the computational times are less than those conventional methods.

Table 6. Computational times in minutes for different methods and datasets. CNN and C3D used GPU,
whereas JSR and SVM used CPU only.

Computational
Times (min) 4 Band 4

Band+LiDAR
44 Band
EMAP

55 Band
EMAP 144 Band 144

Band+LiDAR

CNN <1 <1 ~1.5 ~1.5 ~3 ~3
C3D <1 <1 ~1 ~1.5 ~3 ~3
JSR 629.23 891.71 2248.17 2198.56 2210.15 2310.42

SVM 5.32 3.76 0.69 0.47 1.30 1.41

4. Conclusions

In this paper, we investigated the classification performance of two deep learning methods for
land cover classification, where only four bands (RGB+NIR) and five bands (RGB+NIR+LiDAR) were
used in terms of EMAP augmentation. In the performance evaluations, the RGB+NIR bands and
hyperspectral bands were used without EMAP as well. The results showed that, using deep learning
methods and EMAP augmentation, RGB+NIR (four bands) or RGB+NIR+LiDAR (five bands) can
produce very good classification performance, and these results are better than those obtained by
conventional classifiers such as SVM and JSR. We observed that, even though adding LiDAR band to
RGB+NIR bands for augmentation made a significant classification performance impact with respect
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to conventional classifiers (JSR and SVM), no significant impact was observed with the deep learning
methods, since their classification performances were already very good when using RGB+NIR bands.
This work demonstrated that using RGB+NIR (four bands) or RGB+NIR+LiDAR (five bands) with
EMAP augmentation is feasible for land cover classification, as the resultant accuracies are only a few
percentage points lower than some of the best performing methods in the literature which used the
same dataset and utilized all the available hyperspectral bands.

The fusion of different classifiers using decision level fusion [54] or pixel level fusion [55] could be
a good future direction. Parallel implementation of JSR and SVM using parallel processing techniques
could be another future direction.
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