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Abstract: Implementation of dynamic spectrum access (DSA) in cognitive radio (CR) systems requires
the unlicensed secondary users (SU) to implement spectrum sensing to monitor the activity of the
licensed primary users (PU). Energy detection (ED) is one of the most widely used methods for
spectrum sensing in CR systems, and in this paper we present a novel ED algorithm with an adaptive
sensing threshold. The three-event ED (3EED) algorithm for spectrum sensing is considered for
which an accurate approximation of the optimal decision threshold that minimizes the decision error
probability (DEP) is found using Newton’s method with forced convergence in one iteration. The
proposed algorithm is analyzed and illustrated with numerical results obtained from simulations
that closely match the theoretical results and show that it outperforms the conventional ED (CED)
algorithm for spectrum sensing.

Keywords: energy detection; spectrum sensing; cognitive radio; dynamic spectrum access; adaptive
decision threshold

1. Introduction

The expansion of wireless communication systems in all sectors of modern society over the past
decade has prompted an increased demand in spectrum resources. In this context, the traditional
static allocation of the radio frequencies leads to inefficient use of the spectrum [1,2], and cognitive
radio (CR) systems have emerged as a meaningful alternative for improving the efficiency of spectrum
usage through dynamic spectrum access (DSA) [3]. DSA allows the access of secondary users (SU) to
licensed frequency bands when these are not actively used by licensed primary users (PU), and relies
on spectrum sensing, which is performed by the SU to detect the presence of active PU.

Among the methods used for spectrum sensing, energy detection (ED) [4–8] is the most commonly
used one, due to its simplicity as well as its almost universal applicability. Alternative spectrum
sensing approaches use eigenvalue-based algorithms [9], covariance-based detection methods [10,11],
cyclostationary feature detection [12,13], or compressive sensing [14,15]. A thorough and very recent
survey on most known spectrum sensing methods can be found in [16].

An important drawback of the ED method is implied by its sensitivity to noise uncertainty [17],
which has led to improved ED algorithms that outperform the classical energy detection (CED)
method [4]. These include the modified ED method for spectrum sensing in [18], which uses the
average value of the ED test statistic over multiple sensing events, as well as the three-event ED (3EED)
algorithm in [19], which decides that a PU is active if the ED test statistic exceeds the sensing threshold
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in three consecutive sensing events that include the current sensing event along with the sensing
events immediately before and after it. To improve the performance of ED in the presence of Laplacian
noise, [20] proposes a spectrum sensing algorithm in which the square of the received signal amplitude
in the ED test statistic is replaced by an exponent that ranges between 0 and 2. Furthermore, adaptive
ED approaches have been established for dynamic scenarios, which adjust the duration of the sensing
window based on the PU on/off activity [21] or change the sensing threshold in response to changes
in the noise characteristics [22,23].

In this paper, we present a new adaptive ED algorithm for spectrum sensing, which is based on
the 3EED algorithm [19], but in which the sensing threshold is adapted similar to [22], to optimize the
decision error probability (DEP), which is a weighted sum of the probabilities of missed detection and
false alarm [22,23]. We note that obtaining an accurate analytical expression for the optimal threshold
is elusive as the expressions involved in finding the sensing threshold do not have closed-form
expressions and require approximations. In order to underline the novelty of the current work, we
will enumerate its contributions as compared to the previous similar and related works. In [22],
the authors proposed a threshold adaptation method by minimizing the DEP under the Gaussian
approximation, but for the simple CED algorithm. Hence, an exact expression of the threshold could
be obtained directly as a solution of the optimization equation, using the properties of the Q-function.
However, for more efficient algorithms than CED, regularly having more complex expressions for DEP,
the optimization equation is not analytically solvable. Therefore, in this paper, we aim at extending
the method from [22] to a more complex and efficient ED algorithm, such as 3EED [19]. Under the
Gaussian approximation, the DEP for any ED algorithm can be written as an expression based on
several Q-function terms. First, we have to prove that DEP is a convex function in the threshold
value and then, we propose the use of a numerical method, such as Newton’s method, to iteratively
determine the root of the analytically unsolvable optimization equation. However, the main drawback
of iterative methods is the increased operating time, which is a critical issue for the spectrum sensing
algorithms. In order to overcome this problem, we propose in this paper a transformation of the
optimization function, such that the Newton’s method for the transformed function converges faster.
By analyzing the monotonicity of the optimization function, we determine a transform that linearizes
the function around the root. Thus, we manage to reduce the number of iterations to the minimum
possible, i.e., one iteration. As a prior validation step for the current research, in [24], we tested
only empirically the performance of the adaptive threshold 3EED algorithm, where we derived the
threshold value by using a brute-force search. Finally, in the current paper, we derive an analytical
approximate expression of the adaptive threshold for 3EED by using a fast convergence numerical
method. Moreover, we consider that this method can be generalized for most if not all ED-based
spectrum sensing algorithms.

The rest of the paper is structured as follows: in Section 2, we briefly present the CED and 3EED
algorithms for spectrum sensing, followed by a discussion on optimizing the sensing threshold in
Section 3. The proposed 3EED algorithm with an adaptive threshold is formally stated in Section 4. In
Section 5, we illustrate the performance of the proposed algorithm with numerical results obtained
from simulation and compare it to that of the adaptive CED in [22], and we conclude the paper with
final remarks in Section 6.

2. Spectrum Sensing by Three-Event Energy Detection (3EED)

Let y(n) be the signal at the SU receiver, which consists of an active PU signal with average power
σ2

s corrupted by additive white Gaussian noise (AWGN) variable with variance σ2
n when the channel

is busy, or just of the AWGN when the channel is idle (PU is not active). We denote by Ei the value
of the received signal energy estimated during the i-th sensing slot that consists of N samples, λ the
ED sensing threshold, and qi the binary decision variable {0,1} for the i-th spectrum sensing slot. With
these notations, in CED correct detection of the PU signal (active/inactive) implies setting qi = 1, that
is, the channel is “busy”, if Ei > λ when y(n) is implied by an active PU signal corrupted by noise, and
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qi = 0, that is, the channel is “idle”, if Ei ≤ λ when y(n) corresponds to a noise only term. We note that,
when the number of samples N is sufficiently large, the tail region of the probability density function
of the received signal energy Ei for values above the sensing threshold is approximated by a normal
distribution [25] such that the standard Q-function [26] can be used to approximate the probabilities of
detection and false alarm for CED as [18]

PCED
f a

(
λ, σ2

n

)
= Prob[Ei > λ|channel is “idle”] = Q

 λ
N − σ2

n

σ2
n

√
2
N

 (1)

and

PCED
d

(
λ, σ2

s , σ2
n

)
= Prob[Ei > λ|channel is “busy”] = Q

 λ
N − σ2

s − σ2
n

(σ2
s + σ2

n)
√

2
N

. (2)

As the name suggests, the 3EED algorithm [19] relies on ED in up to three consecutive sensing
slots to decide if the signal y(n) at the SU receiver is implied by an active PU signal or not. Specifically,
similar to CED, if the energy in the current spectrum sensing slot i exceeds the sensing threshold,
Ei > λ, then the 3EED algorithm decides that a PU is active and sets qi = 1. However, if Ei ≤ λ, the
algorithm checks the energy level estimated in the previous slot, Ei−1, to decide that a PU signal is
active and set qi = 1 if Ei−1 > λ, or to move on to the next time slot i + 1 to estimate Ei+1 and make the
final decision that PU signal is active setting qi = 1 if Ei+1 > λ, or inactive setting qi = 0 if Ei+1 ≤ λ.
Thus, if the PU signal is identified as active in any of the three consecutive sensing slots, i, i − 1,
and i + 1, the algorithm returns qi = 1 corresponding to a “busy” channel, while if the PU signal is
determined to be inactive in all three consecutive time slots the algorithm returns qi = 0 corresponding
to an “idle” channel. The formal statement of the 3EED algorithm is given in Algorithm 1.

Algorithm 1 The 3EED Algorithm for Spectrum Sensing
Input: sensing threshold λ

Output: output result

1: for each spectrum sensing slot i do
2: Estimate received signal energy Ei and save its value
3: if Ei > λ then
4: Set qi = 1 −→ PU active/Channel “busy”
5: else
6: Read Ei−1 (saved in slot i-1)
7: if Ei−1 > λ then
8: Set qi = 1 −→ PU active/Channel “busy”
9: else

10: Estimate Ei+1
11: if Ei+1 > λ then
12: Set qi = 1 −→ PU active/Channel “busy”
13: else
14: Set qi = 0 −→ PU not active/Channel “idle”
15: return qi

The probabilities of false alarm and detection for the 3EED algorithm for spectrum sensing are
expressed in terms of the probabilities of false alarm and detection for the CED algorithm, PCED

f a and

PCED
d , respectively as [19]:
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P3EED
f a = PCED

f a +
(

1− PCED
f a

)
·(

T − B− 1
T − B

PCED
f a +

1
T − B

PCED
d

)
· (3)[

1 +
T − B− 1

T − B

(
1− PCED

f a

)
+

1
T − B

(
1− PCED

d

)]
and

P3EED
d = PCED

d +
(

1− PCED
d

)
·(

1
B

PCED
f a +

B− 1
B

PCED
d

)
· (4)[

1 +
1
B

(
1− PCED

f a

)
+

B− 1
B

(
1− PCED

d

)]
,

where T represents the total duration of the transmission cycle that consists of B consecutive slots
during which the channel is busy followed by a number of T− B slots in which the channel is idle. We
note that the ratio α = B/T represents the spectrum utilization ratio of the PU (that is the fraction of
time the channel is actively used by the PU).

The decision threshold λ is determined based on a desired performance level that is specified in
terms of a target probability of false alarm value, Pf a, as it is usually the case with constant false alarm
rate (CFAR) detectors [19],

λ =
[

Q−1
(

1 + 3
√

Pf a − 1
)√

2N + N
]

σ2
n . (5)

We note that the threshold must be adapted when changes in the noise variance occur, in order
to keep the probability of false alarm at the desired value. We also note that, by considering only the
probability of false alarm in setting the sensing threshold, the SU is favored, since by setting the value
of Pf a low the SU has more chances of utilizing the spectrum. However, in the case of a mis-detection,
when the PU is active but the channel is incorrectly detected as “idle”, the SU transmission will
interfere with the active PU signal and will negatively affect the PU performance. Thus, in order
for spectrum sensing to be beneficial to both PU and SU, threshold setting should consider both the
probability of false alarm and the probability of mis-detection.

3. Optimizing the 3EED Sensing Threshold to Minimize the Decision Error Probability

To optimize the decision threshold of the 3EED algorithm for spectrum sensing we use the DEP
as the performance metric, which is formally defined as [22]:

Pe

(
λ, α, σ2

s , σ2
n

)
= (1− α) P3EED

f a + α
(

1− P3EED
d

)
. (6)

Analyzing expression (6) we note that the DEP is a function of the sensing threshold λ, the
PU spectrum utilization ratio α, the average power of the PU signal σ2

s , and the noise variance σ2
n .

Furthermore, both terms in the DEP expression (6) are related to decision errors in the spectrum
sensing process:

• The first term in (6) is implied by the probability of false alarm and corresponds to the case when
a given sensing slot is found busy without an active PU transmission in this slot. False alarms
occur only when the channel is idle and the term is weighted by the 1− α factor corresponding to
the fraction of time when the PU is not active.

• The second term in (6) corresponds to the probability of mis-detection and is associated with
the case when a given sensing slot is found idle while an active PU transmission is actually in
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progress in this slot. Mis-detections occur when the channel is busy and the term is weighted by
the α factor corresponding to the fraction of time when the PU is active.

Thus, the DEP provides a trade-off between the false alarm and mis-detection performance, and allows
optimization of the decision threshold for the 3EED algorithm by setting it to minimize the DEP (6),
that is

λopt = arg min
λ

Pe

(
λ, α, σ2

s , σ2
n

)
. (7)

Introducing (3) and (4) in (6), we rewrite the expression of DEP as

Pe

(
λ, α, σ2

s , σ2
n

)
= (1− α)

{
1 +

[
PCED

f a

(
λ, σ2

n

)
− 1
]3
}

+ α
[
1− PCED

d

(
λ, σ2

s , σ2
n

)]3
, (8)

For the sake of simplicity, let us introduce two variables denoted as a(λ, σ2
n) and b(λ, σ2

s , σ2
n),

which are the arguments of the Q-function in (1) and (2), respectively, and expressed as

a(λ, σ2
n) =

λ√
2Nσ2

n
−
√

N
2

(9)

and

b(λ, σ2
s , σ2

n) =
λ√

2N (σ2
s + σ2

n)
−
√

N
2

. (10)

Using the expressions (9) and (10), we can rewrite the DEP function from (8) as following:

Pe

(
λ, α, σ2

s , σ2
n

)
= (1− α)

{
1 + [Q (a)− 1]3

}
+ α [1−Q (b)]3 , (11)

We note that finding an accurate closed-form expression for λopt is elusive as the expression of
the DEP metric to be optimized has already been approximated when expressions of P3EED

f a and P3EED
d

in terms of the Q-functions have been used to obtain (11), and resorting to further approximations
of the Q-function in terms of simpler elementary functions will affect the accuracy of the optimal
threshold value obtained. Thus, we focus on numerical optimization of the DEP metric (11), which
takes advantage of its convexity properties.

Specifically, we notice that the DEP function has four variables, i.e., λ, α, σ2
s , and σ2

n . However, the
optimization aims only at the threshold variable, λ. Therefore, the other three variables are assumed to
be constant for this optimization. In order to perform the threshold optimization, the DEP function
from (6) and (11) has to be a convex function in λ. Therefore, we provide the next theorem.

Theorem 1. The DEP function given by (11) is a convex function in λ.

Proof. Let us introduce the following notations for the functional terms from (11):

T1 (a) = 1 + [Q (a)− 1]3

T2 (b) = [1−Q (b)]3 (12)

Analyzing the second derivative of both functions from (12) with respect to a and b, respectively,
one can notice that both have a unique and identical inflection point (i.e., the solution of T′′1 (a) = 0 and
T′′2 (b) = 0). The value of this common inflection point is the solution of the following transcendental
equation for x = a or x = b:

2Q′ (x) = x [Q (x)− 1] (13)
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An approximate value for the solution of the Equation (13) can be obtained using numerical
methods or graphically, i.e., x0 = 0.76527.... Considering this approximate value of x0 and using the
relations in (9) and (10), we can determine the values of the inflection point values of λ

(1)
in f lec and λ

(2)
in f lec

for the functions T1 (a) and T2 (b), respectively, from (12):

λ
(1)
in f lec =

√
2Nσ2

n

(
x0 +

√
N
2

)

λ
(2)
in f lec =

√
2N
(

σ2
s + σ2

n

)(
x0 +

√
N
2

)
(14)

In order to evaluate the convexity of the functions from (12), we have to estimate the values in the
inflection points, given by (14), of the first derivative of these functions with respect to λ, respectively,
denoted as T′1

(
λ = λ

(1)
in f lec

)
and T′2

(
λ = λ

(2)
in f lec

)
. Analyzing these first derivative functions, we

noticed that T′1
(

λ
(1)
in f lec

)
< 0 and T′2

(
λ
(2)
in f lec

)
> 0. Therefore, it results that T1 (λ) is convex in λ for

λ ≥ λ
(1)
in f lec and T2 (λ) is convex in λ for λ ≤ λ

(2)
in f lec.

Also, we note that the DEP expression from (11), with the notations from (12), is a linear
combination of the two convex functions T1 (λ) and T2 (λ) for the intersection set λ

(1)
in f lec ≤ λ ≤ λ

(2)
in f lec:

Pe

(
λ, α, σ2

s , σ2
n

)
= (1− α) T1

(
λ, α, σ2

n

)
+ αT2

(
λ, α, σ2

s , σ2
n

)
, (15)

We also know that the spectrum utilization ratio of the PU is a positive number, i.e., α ∈ [0, 1] and
therefore, both coefficients of the linear expression from (15) are positive numbers.

Finally, Theorem 2.10 from page 52 in [27] states that a linear combination of two convex functions
on a set, with non-negative coefficients, is also a convex function. Hence, we can conclude that the
DEP expression from (11) is a convex function in λ on the set λ

(1)
in f lec ≤ λ ≤ λ

(2)
in f lec.

Now, because the DEP function is convex as stated by Theorem 1, we can determine the optimum
threshold from (7) by solving the following equation to find the critical points of the DEP (6):

∂Pe
(
λ, α, σ2

s , σ2
n
)

∂λ
= 0 (16)

Next, using the DEP expression from (11) we obtain

∂Pe

∂λ
= 3 (1− α) [Q(a)− 1]2

dQ(a)
da

∂a
∂λ

− 3α [Q(b)− 1]2
dQ(b)

db
∂b
∂λ

(17)

where a(λ, σ2
n) and b(λ, σ2

s , σ2
n) were previously introduced in (9) and (10).

Using the expression of the first derivative of the Q-function

dQ(x)
dx

= − 1√
2π

e−x2/2 (18)

the threshold optimization Equation (16) becomes

Q(a)− 1
Q(b)− 1

= A(α, γ)e−(b
2−a2)/4 (19)

where γ = σ2
s /σ2

n is the signal-to-noise ratio (SNR) and
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A(α, γ) =

√
α

1− α
·

√
1

1 + γ
. (20)

We note that Equation (19) is transcendental, which makes it difficult to find a closed-form solution
for the optimal threshold λopt, and the alternative is to obtain a numerical solution for it as discussed
in the following section.

4. Numerical Approach to Finding the Optimal 3EED Sensing Threshold

The numerical approach used to find λopt, the optimal threshold for the 3EED spectrum sensing,
is based on the application of Newton’s iterative method [28] for Equation (19) rewritten as

Q(a)− 1
Q(b)− 1

− A(α, γ)e−(b
2−a2)/4︸ ︷︷ ︸

f (λ)

= 0 . (21)

As the rate of convergence for Newton’s method is quadratic, with proper initialization, a solution
to (21) that approximates well the optimal sensing threshold λopt can be found in only a few iterations
of the type [28]

λn+1 = λn −
f (λn)

f ′ (λn)
. (22)

Furthermore, the proposed approach uses the Q-function approximation [29]

Q(x) ∼=
(
1− e−1.4x) e−x2/2

1.135
√

2πx
, x ≥ 0 (23)

to rewrite the Q(a) and Q(b) terms in (21).
We have to note that the initialization of Newton’s iterative method, used to solve the optimization

equation from (21), and its convergence are strongly related to the convexity of the DEP function.
According to the DEP function’s convexity demonstrated in Theorem 1, we know that the best
initialization values of λ should be the values of the inflection points, i.e., either λ

(1)
in f lec or λ

(2)
in f lec given

in (14). However, for the analytical derivation of the optimum value of λ, the use of λ
(1)
in f lec or λ

(2)
in f lec in

the expressions of the optimization function from (21) and its derivative function would have complex
expressions. Instead, we prefer to use the values of λ for which the argument variables a and b in the
optimization Equation (21) take null values, i.e., a = 0 or b = 0. Hence, all terms multiplied by a or
b will be eliminated from the final expressions. The λ values that are the solutions for the equations
a(λ, σ2

n) = 0 and b(λ, σ2
s , σ2

n) = 0, denoted as λa,0 and λb,0, respectively, result from (9) and (10) as

λa,0 = Nσ2
n (24)

and

λb,0 = Nσ2
n (1 + γ) (25)

It is important to note that the difference between the values of λa,0 and λb,0 and the values of

λ
(1)
in f lec and λ

(2)
in f lec is almost neglectable. Using the expressions from (14), (24) and (25), it can be easily

demonstrated that the relative difference between these values is given by:

λ
(2)
in f lec − λb,0

λ
(2)
in f lec

=
λ
(1)
in f lec − λa,0

λ
(1)
in f lec

=
x0

x0 +
√

N
2

(26)
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Considering that x0 = 0.76527... and N takes values of the order of tens of thousands samples,
then it results in a value for the relative difference in (26) that is less than 1%.

Hence, considering all the above, we will use the values of λa,0 and λb,0 as initial values for
Newton’s method.

Since (23) is valid only for positive arguments of the Q-function and the arguments a(λ, σ2
n)

and b(λ, σ2
s , σ2

n) in (21) can take both positive and negative values, as can be observed from (9) and
(10), the approximation is applied in conjunction with the symmetry property of the Q-function,
Q(−x) = 1− Q(x). Specifically, the following three distinct cases will be analyzed separately to
provide a numerical solution for Equation (21): (i) b < a ≤ 0, (ii) a > 0, b ≤ 0, and (iii) a > b ≥ 0.

We have to note that the domain of λ values is separated into these three sub-domains ((i), (ii),
and (iii)), where the value of λa,0 delimits cases (i) and (ii) and λb,0 delimits cases (ii) and (iii).
Therefore, λa,0 will be used as the initial value for the iterative method in case (i) and λb,0 will be used
as the initial value for the iterative method in case (iii). Instead, for case (ii), we can use either λa,0 or
λb,0 as the initial value, because the minimum DEP can be reached from either side of the interval with
a similar accuracy.

4.1. Case (i) b < a ≤ 0

Using the symmetry property of the Q-function, Equation (21) can be rewritten as:

f (λ) =
Q(−a)
Q(−b)

− A(α, γ)e−(b
2−a2)/4 = 0, (27)

which, upon using the approximation (23) becomes:

1− e1.4a

a
b

1− e1.4b − A(α, γ)e−3(b2−a2)/4︸ ︷︷ ︸
fi(λ)

= 0 (28)

Denoting the function in the left-hand side of (28) by fi(λ), and initializing Newton’s iteration
with the value λa,0 from (24) we obtain

fi (λa,0) =
1.4b (λa,0)

e1.4b(λa,0) − 1
− A(α, γ)e−0.75b2(λa,0) (29)

f ′i (λa,0) =
0.98√
2Nσ2

n

b (λa,0)

e1.4b(λa,0) − 1
− 1.4√

2Nσ2
n (1 + γ)

·

1− e1.4b(λa,0) + 1.4b (λa,0) e1.4b(λa,0)(
e1.4b(λa,0) − 1

)2


+

3A(α, γ)

2
e−3b2(λa,0)/4b (λa,0)

1√
2Nσ2

n (1 + γ)
(30)

The derivative f ′i (λa,0) is given by the expression (30), which, together with (29), can be used to

start Newton’s iterations (22) to obtain a numerical solution for the optimal sensing threshold λ
(i)
opt.

4.2. Case (ii) a > 0, b ≤ 0

Following a similar approach as in the previous case but in which the symmetry property of the
Q-function is used only for the Q(b) term, Equation (21) is rewritten in this case as:

f (λ) =
1−Q(a)
Q(−b)

− A(α, γ)e−(b
2−a2)/4 = 0, (31)
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for which approximation (23) implies that

fii(λ)︷ ︸︸ ︷
b

e1.4b − 1
·
[

1.135
√

2π −
(
1− e−1.4a) e−a2/2

a

]
− A(α, γ)e−(3b2−a2)/4 = 0 (32)

Denoting the function in the left-hand side of (32) by fii(λ), and initializing Newton’s iteration
with the value λb,0 from (25) we obtain

fii (λb,0) =
1.135

√
2π

1.4
−
[
1− e−1.4a(λb,0)

] e−0.5a2(λb,0)

1.4a(λb,0)
− A(α, γ)e0.25a2(λb,0) (33)

The derivative f ′ii (λb,0) is given by expression (34), which, together with (33), can now be used to

start Newton’s iterations (22) to obtain a numerical solution for the optimal sensing threshold λ
(ii)
opt .

f ′ii (λb,0) = − 1
2
√

2Nσ2
n (1 + γ)

·

1.135
√

2π −

(
1− e−1.4a(λb,0)

)
e−

a2(λb,0)
2

a (λb,0)



+

(
1− a2 (λb,0)

) (
1− e−1.4a(λb,0)

)
e−

a2(λb,0)
2

1.4
√

2Nσ2
na2 (λb,0)

− e−1.4a(λb,0)e−
a2(λb,0)

2
√

2Nσ2
na (λb,0)

(34)

−
A(α, γ)a (λb,0)

2
√

2Nσ2
n

e
a2(λb,0)

4

In case (ii), we have used λb,0 as the initial value, but we can obtain similar expressions for fii (λ) and
f ′ii (λ) with λa,0 as the initial value, as in (33) and (34), respectively, with similar performance results
for Newton’s method.

4.3. Case (iii) a > b ≥ 0

In this case, the approximation from (23) can be used directly in (21) to rewrite it as expression (35).
Denoting the function in the left-hand side of (35) by fiii(λ) and initializing it in this case with the
same value λb,0 in (25) we obtain the expressions for fiii(λb,0) and f ′iii(λb,0) as shown in (36) and (37),
respectively, which can be used to start Newton’s iterations (22) to obtain a numerical solution for the
optimal sensing threshold λ

(iii)
opt .[

1.135
√

2π −
(
1− e−1.4a) e−a2/2

a

]
· b

1.135
√

2πb−
(
1− e−1.4b

)
e−b2/2

− A(α, γ)e−(b
2−a2)/4

︸ ︷︷ ︸
fiii(λ)

= 0 (35)

fiii (λb,0) =
1

1.135
√

2π − 1.4
·

1.135
√

2π −

(
1− e−1.4a(λb,0)

)
e−a2(λb,0)/2

a (λb,0)

− A(α, γ)ea2(λb,0)/4 (36)



Sensors 2020, 20, 3614 10 of 16

f ′iii (λb,0) = e−a2(λb,0)/2

(1.135
√

2π−1.4)
√

2Nσ2
n a(λb,0)

·


[

1−e−1.4a(λb,0)
]
[a2(λb,0)+1]

a(λb,0)
− 1.4e−1.4a(λb,0)


− 1.96

2(1.135
√

2π−1.4)
2√

2Nσ2
n(1+γ)

·

1.135
√

2π −

(
1−e−1.4a(λb,0)

)
e−a2(λb,0)/2

a(λb,0)


− A(α,γ)a(λb,0)ea2(λb,0)/4

2
√

2Nσ2
n

(37)

4.4. One-Step Numerical Solution and the 3EED Algorithm with Adaptive Threshold

The rate of convergence for Newton’s iterations and the number of steps n needed to find a
numerical solution λ

(j)
opt to the optimal sensing threshold for each of the three cases outlined in the

previous sections depend on the monotonicity of the corresponding f j(λ) function,

λ
(j)
opt
∼= λn+1 = λn −

f j(λn)

f ′j (λn)
, j ∈ {i, ii, iii}, (38)

as well as on the initialization

λ
(j)
0 =

{
λa,0 for case j = i
λb,0 for cases j = ii, iii

(39)

In order to improve convergence and minimize the overhead associated with finding the optimal
sensing threshold, we propose to use the alternative function

Fj(λ) = ln
[
1 + | f j(λ)|

]
(40)

having the derivative expressed as

F′j (λ) =
f j(λ) · f ′j (λ)

| f j(λ)|+ f 2
j (λ)

, (41)

which yields a good approximation for the optimal sensing threshold in only one iteration

λ
(j)
opt
∼= λ1 = λ

(j)
0 −

Fj(λ
(j)
0 )

F′j (λ
(j)
0 )

, j ∈ {i, ii, iii}. (42)

This approach was prompted by empirical observations that are discussed in Section 5.1 and
takes advantage of the monotonicity of f j(λ), which, along with proper choice of the initial value λ

(j)
0 ,

amount essentially to a linearization of the function that yields the optimal threshold around its root.
Noting that the functions f j(λ), j ∈ {i, ii, iii}, that approximate f (λ) in (21) are all monotonically

decreasing, and that they overlap at the edges of the definition intervals for a and b, that is

fi (λa,0) = fii (λa,0) , and

fii (λb,0) = fiii (λb,0) , (43)

the proposed approach identifies first which approximation case j is applicable ({i, ii, or iii}), and
determines the one-step numerical solution for the optimal sensing threshold λopt using (42). Once the
sensing threshold is found, the 3EED Algorithm 1 is applied with the value λopt to make a decision on
the PU activity and channel availability. The approach is formally stated as Algorithm 2.
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Algorithm 2 The 3EED algorithm with adaptive threshold

Input: N, α, σ2
n , σ2

s

Output: output result

1: Use (24) and (25) to obtain λa,0 and λb,0.
2: Use (32) and (33) to obtain fii (λa,0) and fii (λb,0)
3: if fii (λa,0) < 0 and fii (λb,0) < 0 then
4: j = i in (42) and λopt = λ

(i)
opt

5: else if fii (λa,0) > 0 and fii (λb,0) < 0 then
6: j = ii in (42) and λopt = λ

(ii)
opt

7: else if fii (λa,0) > 0 and fii (λb,0) > 0 then
8: j = iii in (42) and λopt = λ

(iii)
opt

9: Apply Algorithm 1 with sensing threshold λopt
10: return qi output by Algorithm 1

5. Simulations and Numerical Results

In this section, we present numerical results obtained from simulations that support the proposed
approach for one-step threshold calculation and illustrate the performance of the 3EED algorithm with
an adaptive threshold. The algorithm is also compared to the adaptive CED algorithm in [22] as well
as with the “Brute-force” adaptive 3EED algorithm [24] in which an exhaustive search is implemented
in Matlab to obtain the value of λopt instead of the proposed one-step approach.

The parameter values used in the simulations are: the number of samples in a sensing slot
N = 65, 537, the SNR γ is between −25 dB and −15 dB, and T = 500 slots. The signal transmitted by
the PU is implemented using binary phase shift keying (BPSK) modulation, and 2500 sensing slots
were considered in each transmission sequence in all simulations.

5.1. Sensing Threshold Calculation

Figure 1 shows the values of the optimal sensing threshold λopt that minimizes the DEP, as a
function of α, the spectrum utilization ratio, for SNR values of −25 and −20 dB, corresponding to the
proposed approach discussed in Section 4, the “Brute-force” approach in [24], and the adaptive CED
approach in [22]. From this figure we note that the values of the sensing threshold obtained using the
proposed approach closely match those obtained using the “brute-force” approach [24] for values of
α between 0.2 and 0.7, in particular for α around 0.5, and support the application of the numerical
approach presented in Section 4 for threshold calculation with minimal overhead. We also note that,
according to studies performed on GSM channels [30] or in the industrial, scientific and medical (ISM)
bands [31], this is the range of values for the spectrum utilization ratio α that is of practical interest for
SU access to licensed spectrum.
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Figure 1. Optimum threshold as a function of α. (a) SNR γ = −25 dB, (b) SNR γ = −20 dB.

5.2. Decision Error Probability

Figure 2 shows the values of the DEP Pe as a function of the SNR γ for different values of the
spectrum utilization ratio α, for the proposed 3EED algorithm with an adaptive threshold as well
as for the adaptive CED algorithm in [22]. Based on the plots shown in Figure 2 we first note that
the values of the DEP obtained through Monte Carlo simulations closely match the analytical values
of the DEP implied by (6) for the proposed 3EED algorithm with an adaptive threshold or by the
corresponding DEP expression in [22], for all SNR and α values. We also note that the proposed 3EED
algorithm with an adaptive threshold outperforms the adaptive CED algorithm in cases of practical
interest corresponding to spectrum utilization ratios above 0.2 and below 0.7, with maximum gain of
the proposed algorithm in terms of the DEP of about 1 dB achieved for α around 0.5. Furthermore,
for both the proposed 3EED algorithm with an adaptive threshold and the adaptive CED algorithm,
the value of the DEP becomes less sensitive to changes in the spectrum utilization ratio α as the SNR
values increase.
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Figure 2. Decision error probability (DEP) for adaptive algorithms as a function of signal-to-noise ratio
(SNR). (a) α = 0.1, 0.5, and 0.9; (b) α = 0.2, 0.3, and 0.4; (c) α = 0.6, 0.7, and 0.8.
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Figure 3 shows the dependence of the DEP on the spectrum utilization ratio α for two different
SNR values γ = −23 dB and −20 dB. As it can be observed, the DEP decreases with increasing SNR
for both the proposed 3EED algorithm with an adaptive threshold and the adaptive CED algorithm.
Furthermore, the proposed algorithm outperforms the adaptive CED one for all values of the spectrum
utilization ratio α. We note that, for each value of α, the corresponding DEP values are minimum since
the optimal sensing threshold is used for that α, as discussed in Section 3.
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Figure 3. DEP as a function of the spectrum utilization ratio α. (a) SNR γ = −23 dB; (b) SNR
γ = −20 dB.

6. Conclusions

A new ED algorithm for spectrum sensing in CR systems is presented in the paper. The proposed
algorithm employs an adaptive sensing threshold that is optimized to minimize the DEP and has
minimal overhead, since the value of the optimal threshold is found through a one-step iterative
method.
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Numerical results obtained from simulations are presented to illustrate the performance of the
proposed algorithm and to compare it to the adaptive CED algorithm. The results show that the
proposed algorithm outperforms the CED algorithm for spectrum sensing, resulting in lower values
for the DEP for all values of the spectral utilization ratio that are of practical interest for CR systems
providing SU access to licensed spectrum.

We intend to implement and validate the proposed algorithm using SDR platforms from the
USRP family. In this context, we will also focus on the optimization of the expressions used in the
algorithm to estimate the decision threshold for minimizing the computational complexity and the
sensing time.
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2. Marţian, A.; Crăciunescu, R.; Vulpe, A.; Suciu, G.; Fratu, O. Access to RF White Spaces in Romania: Present
and Future. Wirel. Pers. Commun. 2016, 86, 693–702. [CrossRef]

3. Zhao, Q.; Sadler, B.M. A Survey of Dynamic Spectrum Access. IEEE Signal Process. Mag. 2007, 24, 79–89.
[CrossRef]

4. Urkowitz, H. Energy Detection of Unknown Deterministic Signals. Proc. IEEE 1967, 55, 523–531. [CrossRef]
5. Digham, F.F.; Alouini, M.S.; Simon, M.K. On the Energy Detection of Unknown Signals Over Fading

Channels. IEEE Trans. Commun. 2007, 55, 21–24. [CrossRef]
6. Cao, K.; Qian, P.; An, J.; Wang, L. Accurate and Practical Energy Detection over α− µ Fading Channels.

Sensors 2020, 20, 754. [CrossRef]
7. Wasilewska, M.; Bogucka, H. Machine Learning for LTE Energy Detection Performance Improvement.

Sensors 2019, 19, 4348. [CrossRef]
8. Huang, H.; Zhu, J.; Mu, J. A Novel Sensing Strategy Based on Energy Detector for Spectrum Sensing. Appl.

Sci. 2019, 9, 4634. [CrossRef]
9. Zeng, Y.; Liang, Y.C. Eigenvalue-Based Spectrum Sensing Algorithms for Cognitive Radio. IEEE Trans.

Commun. 2009, 57, 1784–1793. [CrossRef]
10. Bishnu, A.; Bhatia, V. Grassmann Manifold-Based Spectrum Sensing for TV White Spaces. IEEE Trans. Cogn.

Commun. Netw. 2018, 4, 462–472. [CrossRef]
11. Jin, M.; Guo, Q.; Xi, J.; Li, Y.; Yu, Y.; Huang, D. Spectrum Sensing Using Weighted Covariance Matrix in

Rayleigh Fading Channels. IEEE Trans. Veh. Technol. 2015, 64, 5137–5148. [CrossRef]
12. Jerjawi, W.A.; Eldemerdash, Y.A.; Dobre, O.A. Second-Order Cyclostationarity-Based Detection of LTE

SC-FDMA Signals for Cognitive Radio Systems. IEEE Trans. Instrum. Meas. 2015, 64, 823–833. [CrossRef]
13. Al-Habashna, A.; Dobre, O.A.; Venkatesan, R.; Popescu, D.C. Second-Order Cyclostationarity of Mobile

WiMAX and LTE OFDM Signals and Application to Spectrum Awareness in Cognitive Radio Systems. IEEE
J. Sel. Top. Signal Process. 2012, 6, 26–42. [CrossRef]

14. Sharma, S.K.; Lagunas, E.; Chatzinotas, S.; Ottersten, B. Application of Compressive Sensing in Cognitive
Radio Communications: A Survey. IEEE Commun. Surv. Tutor. 2016, 18, 1838–1860. [CrossRef]

http://dx.doi.org/10.1109/COMST.2016.2559525
http://dx.doi.org/10.1007/s11277-015-2638-1
http://dx.doi.org/10.1109/MSP.2007.361604
http://dx.doi.org/10.1109/PROC.1967.5573
http://dx.doi.org/10.1109/TCOMM.2006.887483
http://dx.doi.org/10.3390/s20030754
http://dx.doi.org/10.3390/s19194348
http://dx.doi.org/10.3390/app9214634
http://dx.doi.org/10.1109/TCOMM.2009.06.070402
http://dx.doi.org/10.1109/TCCN.2018.2816642
http://dx.doi.org/10.1109/TVT.2014.2379924
http://dx.doi.org/10.1109/TIM.2014.2357592
http://dx.doi.org/10.1109/JSTSP.2011.2174773
http://dx.doi.org/10.1109/COMST.2016.2524443


Sensors 2020, 20, 3614 16 of 16

15. Arjoune, Y.; Kaabouch, N. Wideband Spectrum Sensing: A Bayesian Compressive Sensing Approach. Sensors
2018, 18, 1839. [CrossRef]

16. Arjoune, Y.; Kaabouch, N. A Comprehensive Survey on Spectrum Sensing in Cognitive Radio Networks:
Recent Advances, New Challenges, and Future Research Directions. Sensors 2019, 19, 126. [CrossRef]
[PubMed]

17. Tandra, R.; Sahai, A. SNR Walls for Signal Detection. IEEE J. Sel. Top. Signal Process. 2008, 2, 4–17. [CrossRef]
18. López-Benítez, M.; Casadevall, F. Improved Energy Detection Spectrum Sensing for Cognitive Radio.

IET Commun. 2012, 6, 785–796. [CrossRef]
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