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Bioenergetic functions in 
subpopulations of heart 
mitochondria are preserved in 
a non-obese type 2 diabetes rat 
model (Goto-Kakizaki)
N. Lai   1,2,3,5,7*, C. M. Kummitha3, F. Loy8, R. Isola8 & C. L. Hoppel4,5,6

A distinct bioenergetic impairment of heart mitochondrial subpopulations in diabetic cardiomyopathy 
is associated with obesity; however, many type 2 diabetic (T2DM) patients with high-risk for 
cardiovascular disease are not obese. In the absence of obesity, it is unclear whether bioenergetic 
function in the subpopulations of mitochondria is affected in heart with T2DM. To address this issue, a 
rat model of non-obese T2DM was used to study heart mitochondrial energy metabolism, measuring 
bioenergetics and enzyme activities of the electron transport chain (ETC). Oxidative phosphorylation in 
the presence of substrates for ETC and ETC activities in both populations of heart mitochondria in T2DM 
rats were unchanged. Despite the preservation of mitochondrial function, aconitase activity in T2DM 
heart was reduced, suggesting oxidative stress in mitochondria. Our study indicate that metabolic 
function of heart mitochondria is unchanged in the face of oxidative stress and point to a critical role of 
obesity in T2DM cardiomyopathy.

Patients with type 2 diabetes mellitus (T2DM) are vulnerable to heart disease and have a two-fold risk for several 
vascular diseases1. Heart failure is the main cause of death in 65% of the diabetic population, highlighting the 
need to understand the causes of diabetic cardiomyopathy2. Metabolic abnormalities in diabetic hearts contrib-
ute to the development of impaired contractility observed in diabetic-related cardiomyopathies3,4. In particular, 
dysfunction of mitochondrial bioenergetics has been related to the pathogenesis of diabetic cardiomyopathy5, as 
heart contraction depends mostly on ATP produced by the mitochondrial oxidative phosphorylation system4.

Reduced cardiac efficiency and mitochondrial energetics, increased fatty acid oxidation, and increased lipid 
content occur in both obese and type 2 diabetic patients6. These cardiac abnormalities have been associated with 
obesity and T2DM, but it is not clear whether mitochondrial alterations were strictly related to obesity or insulin 
resistance. A relationship between obesity and mitochondrial dysfunction has been established7 in human heart. 
In that study, enzymatic measurements in right atrial tissue showed a reduced complex I activity of the electron 
transport chain in young and old obese patients in comparison to young and old healthy control groups7. In 
contrast, impairment of myocardial contractility function has been associated with mitochondrial dysfunction in 
T2DM rather than in obese patients5. Positron emission tomography studies8,9 on human heart are consistently 
indicating that both obesity and insulin resistance are contributing to an alteration of heart substrate utilization. 
In addition to the PET studies, magnetic resonance spectroscopy10 studies provide evidence for a correlation 
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between diastolic dysfunction and cardiac triglyceride levels which are higher in healthy obese subjects and lean 
and obese diabetic patients than lean healthy subjects11,12.

Cardiac abnormalities in obese and type 2 diabetic patients have been investigated with animal models of obe-
sity and type 1 diabetes (T1DM) and T2DM6 in which cardiac contractile efficiency and mitochondrial metab-
olism showed progressive declines13,14 with an increased reactive oxygen species (ROS) production and lipid 
peroxidation. Although both model of type 1 and 2 are used to study diabetic cardiomyopathy, differences in bio-
energetic function exist between them. In T1DM mice fed a regular chow diet, cardiac dysfunction was reported 
without any mitochondrial respiration defects, but in T2DM mice fed with high-fat diet, insulin resistance was 
accompanied by impairment of oxidative phosphorylation5. Nevertheless, these studies did not investigate the 
subpopulations of heart mitochondria (subsarcolemmal and interfibrillar), which have been reported to be dif-
ferently affected by cardiomyopathy in hamster15 and mice with T1DM16 and T2DM17.

Among the animal models18 of diabetic cardiomyopathy, Goto-Kakizaki (GK) rats6,19 have the unique fea-
ture of being insulin-resistant without obesity20,21. The GK model was reported to have a mild cardiomyopathy 
characterized by diastolic dysfunction20. Increased susceptibility to oxidative stress was observed in GK heart 
mitochondria22, but bioenergetic functions were not reported.

A previous study in skeletal muscle of GK rats showed preserved bioenergetic function in both mitochondrial 
subpopulations23. In the current study, we evaluated bioenergetic function in heart mitochondrial subpopulations 
of the same non-obese diabetic GK rats at 18 and 28 weeks and found that metabolic function is preserved in both 
subpopulations of mitochondria despite induced mitochondrial stress.

Results
Animal model.  The animal model characteristics are reported in Table 1. The body and heart weight of dia-
betic (GK) rats is significantly reduced in comparison to the control (W) rats at both 18 and 28 weeks. The body 
and heart weight of GK rats does not change from 18 to 28 weeks, while those of W rats significantly increases by 
24%23 and 28%, respectively. The GK rats are hyper-insulinemic and hyperglycemic at 18 and 28 weeks.

For both group of rats, the insulin tolerance test with the time profile of blood glucose concentrations is 
reported in Fig. 1. Blood glucose concentration is normalized to the basal blood glucose concentration meas-
ured before insulin injection. In the first 20 minutes of the test, the normalized blood glucose content in GK was 
significantly higher than that observed for W. The basal glucose concentration of W and GK was 7.5 ± 0.6 and 
12.6 ± 0.4 mM.

Unit

Wistar GK Wistar GK

18 wk 28 wk

Body weight [g] 474 ± 47 350 ± 23* 590 ± 58# 389 ± 21*

Heart weight [g] 0.97 ± 0.1 0.8 ± 0.09* 1.24 ± 0.13# 0.81 ± 0.06*

Insulin [ng mL−1] 2.8 ± 1.4 5.9 ± 1.6* 2.4 ± 2.1 5.5 ± 1.1*

Glucose [mM] 6 ± 1 16.5 ± 2.3* 6.5 ± 1.7 17.4 ± 3*

Table 1.  Animal characteristics: body23 and heart weight, insulin and glucose concentrations23 in blood. Data 
are mean ± SD (n = 6). Influence of insulin resistance within same age (p < 10−3): (*) Statistically different from 
control. Influence of age within group (p < 10−5): (#) Statistically different from 18 weeks.

Figure 1.  Time profile of blood glucose content after bolus injection of insulin. Insulin tolerance tests 
is performed on random-fed control (Wistar) and diabetic (GK) rats at 12 weeks. Animals are injected 
subcutaneously with human regular insulin (1.85 U/kg body weight). Blood glucose is measured before and 
after injection (n = 4). The basal glucose concentration of Wistar and GK rats is 7.5 ± 0.6 and 12.6 ± 0.4 mM, 
respectively (n = 4). Mean ± SD. (*) Statistically different from Wistar.
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Mitochondrial yield and enzymes.  The yield of SSM and IFM did not differ in GK and W rats or with age 
(Table 2). CS and SDH activities were similar in GK and W rats at 18 and 28 wk. At 18 wk, the activity of aconitase 
was significantly reduced in both subpopulations of mitochondria of GK rats in comparison to the control group 
(Table 2), whereas at 28 wk in IFM, it was significantly lower in GK than W; there is a trend toward significance 
between SSM GK and W rats.

Immunoblotting.  To confirm that the expression of mitochondrial aconitase was unaltered in our T2DM 
lean diabetic model, we determined ACO-2 (aconitase) content by immunoblotting in subpopulation of mito-
chondria isolated from rat hearts at 28w (Fig. 2). In both SSM and IFM the ACO-2 expression was not different 
in GK rats as compared to W rats, despite a tendency to be higher in GK SSM, albeit not statistically significant.

Oxidative phosphorylation.  Oxidative phosphorylation for heart muscle SSM and IFM was measured 
using substrates for complex I (glutamate Table 3), I, II, III, and IV in both GK and W rats (Figs. 3 and 4) at 18 
and 28 weeks. The state 3 and 4 respiratory rates in SSM were similar in the GK rats compared to those in the W 
(Table 3). Also, in GK and control rats at both ages, SSM respiration rates obtained with a saturated concentra-
tion of ADP increased ~20% and were comparable (Fig. 4), indicating that ADP under state 3 conditions is not 

W GK W GK

18 wk 28 wk

Mitochondrial Yield [mg gww−1]

SSM 16.7 ± 2.1 17.8 ± 5.3 14.4 ± 2.4 15.2 ± 1.5

IFM 23.1 ± 2.2 23.0 ± 6.1 20.7 ± 1.2 18.8 ± 2.3

Isolated mitochondria [mU mg−1]a

Citrate Synthase SSM 1912 ± 198 2123 ± 263 2151 ± 353 2310 ± 305

IFM 2365 ± 195 2284 ± 406 2742 ± 213 2745 ± 364

Succinate Dehydrogenase SSM 297 ± 38 304 ± 33 328 ± 36 349 ± 30

IFM 361 ± 28 313 ± 57 393 ± 20 384 ± 19#

Aconitase SSM 761 ± 132 542 ± 107* 845 ± 51 700 ± 68

IFM 803 ± 174 489 ± 75* 1056 ± 112# 797 ± 80*,#

Table 2.  Yields and enzyme activities of subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria. aThe 
mitochondrial yields and enzymatic activity of the subpopulations of heart mitochondria is normalized to gram 
of wet weight of heart muscle (gww) and mitochondrial protein (mg), respectively. Data are mean ± SD (n = 6). 
Influence of insulin resistance within same age (p < 5 10−3): (*) Statistically different from Wistar. Influence of 
age within group (p < 5 10−3): (#) Statistically different from 18 weeks.

Figure 2.  Immunoblotting of aconitase (ACO-2) protein in heart muscle SSM and IFM at 28 weeks. 
Control (W) and diabetic (GK) groups are represented with open and grey bars, respectively. Representative 
immunoblotting for SSM (a) and IFM (b) and densiometric analysis of SSM (c) and IFM (d) of ACO-2 protein. 
Data are normalized to the intensity obtained with the housekeeping gene COX4. (n = 4–5). Full-length western 
blots are presented in Supplementary Fig. S2. Data are mean ± SD.
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saturating. With the addition of an uncoupler, the respiratory rates did not increase, indicating that oxidative 
phosphorylation is limited by oxidation in both groups of rats. In the IFM of both groups of rats, the results were 
similar to those obtained for SSM. Thus, in this model of T2DM oxidative phosphorylation rates were unaffected 
by insulin resistance (Figs. 3 and 4).

The state 3 respiration rate obtained with saturated concentration of ADP (i.e. High ADP, Table 3), was signif-
icantly correlated to the activity of CS (r2 = 0.63, p < 10−5) or SDH (r2 = 0.65, p < 10−5) with a slope of the linear 
relationship significantly different from zero in both cases. The RCR of both groups was higher than 10, indicating 
that both populations of mitochondria are highly coupled. The ADP/O ratio is the same for both populations of 

Unit

W GK W GK

18 wk 28 wk

SSM

State 3 [pmolO2 s−1 mg−1] 1723 ± 301 2041 ± 218 2035 ± 197 2244 ± 143

State 4 [pmolO2 s−1 mg−1] 160 ± 18 200 ± 48 150 ± 31 157 ± 35

RCR [-] 11 ± 3 11 ± 2 14 ± 3 15 ± 5

ADP/O [-] 3.07 ± 0.19 2.86 ± 0.34 2.82 ± 0.2 3.03 ± 0.27

High ADP [pmolO2 s−1 mg−1] 2177 ± 255 2554 ± 341 2257 ± 229 2647 ± 222

DNP [pmolO2 s−1 mg−1] 1942 ± 268 2513 ± 320 2273 ± 329 2607 ± 357

IFM

State 3 [pmolO2 s−1 mg−1] 2259 ± 231 2026 ± 430 2490 ± 189 2551 ± 200#

State 4 [pmolO2 s−1 mg−1] 219 ± 67 198 ± 47 185 ± 33 156 ± 41

RCR [-] 11 ± 5 10 ± 1 14 ± 3 18 ± 6

ADP/O [-] 2.99 ± 0.16 2.99 ± 0.24 3.11 ± 0.5 3.05 ± 0.3

High ADP [pmolO2 s−1 mg−1] 2821 ± 345 2647 ± 609 2890 ± 305 3042 ± 211

DNP [pmolO2 s−1 mg−1] 2767 ± 379 2512 ± 580 2922 ± 493 3191 ± 343

Table 3.  Oxidative phosphorylation using glutamate in heart muscle subsarcolemmal mitochondria (SSM) and 
interfibrillar mitochondria (IFM) in control (W) and diabetic (GK) rats. The respiratory rate is normalized to 
the content (i.e. mg) of heart mitochondrial protein. (#) Statistically different from 18 weeks.

Figure 3.  State 3 (a,b) and State 4 (c,d) respiration rates of heart muscle SSM and IFM at 18 and 28 weeks. 
Notation as in Fig. 2. Complex I substrate (malate and pyruvate, P); Complex II (succinate and rotenone, SR); 
Complex III (duroquinol and rotenone, DHQR); Complex IV (TMPD, ascorbate and rotenone, (TMPD + A)R. 
(n = 6), Mean ± SD. (#) Within the group statistically different from 18 weeks.
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mitochondria (Table 3). The ADP/O ratios determined for complexes I, II, and III substrates were similar in GK 
and W rats for both subpopulations of mitochondria (Fig. S1).

Fatty acid oxidation.  The respiration rate of SSM and IFM are measured in the presence of a long-chain 
fatty acid (FA) substrates: palmitoylcarnitine (PCN) or palmitoyl-CoA (PCoA) to study mitochondrial fatty acid 
oxidation. In both subpopulations of mitochondria, fatty acid oxidation in the presence of malate for both PCN 
or PCoA was similar in GK and W rats (Fig. 5) at 18 and 28 wk.

Electron transport chain.  The activity of the ETC complexes was evaluated with specific spectrophoto-
metric assays. In SSM and IFM of GK rats, the activity of the ETC components of a) complex I, II, III, and IV; b) 
linked complex I and III (NCR), c) flavin protein domain of complex I (NFR); d) linked complex II and III (SCR); 
e) complex II (SDH) were similar to those of the W (Fig. 6) at 18 and 28 wk.

Discussion
This study focused on subpopulations of heart mitochondria of GK rats to compare their bioenergetics with that 
of control rats at 18 and 28 weeks. Heart mitochondria were obtained from the same rats investigated in a previ-
ous study on skeletal muscle mitochondria23.

In SSM and IFM heart mitochondria of non-obese diabetic rats (GK) bioenergetic function was similar to 
the control group both at the age of 18 and 28 weeks. This was true with substrates for complex I, II, III, and 
IV, as well as of fatty acid oxidation. Electron transport chain activities were unchanged in GK confirming that 
mitochondrial bioenergetic function was preserved. The reduced aconitase activity in GK heart mitochondrial 
subpopulations indicates that despite the presence of oxidative stress, the bioenergetic function was preserved.

Animal model.  In our work, GK rats were resistant to a decrease in blood glucose level after a bolus injec-
tion of insulin (Fig. 1). The delayed effects of the administered insulin on glucose levels in blood suggested the 
presence of insulin resistance. Also, the hyperglycemia and hyperinsulinemia observed in the GK rats at both age 
groups confirmed the metabolic characteristics of this T2DM model. In previous GK rat studies, skeletal24,25 and 
heart26 muscle as well as liver27 and adipose tissue28 were insulin-resistant.

The GK rat exhibits spontaneous moderate hyperglycemia hyperinsulinemia and high plasma triglyceride lev-
els21,29 without abnormal elevated content of non-esterified fatty acids (NEFA). GK hearts have been consistently 
reported to be hypertrophied26,29, elevated cardiac NEFA and triglycerides with alteration of cardiac structure 
and function30. Thus, there are several evidence supporting that the GK rats represent a reliable model of diabetic 
cardiomyopathy29 in absence of obesity.

Figure 4.  High ADP concentration (a,b) and uncoupled (c,d) respiration rates of heart muscle SSM and IFM at 
18 and 28 weeks. Notation as in Fig. 2. Complex I substrate (malate and pyruvate, P); Complex II (succinate and 
rotenone, SR); Complex III (duroquinol and rotenone, DHQR); Complex IV (TMPD, ascorbate and rotenone, 
(TMPD + A)R. (n = 6), Mean ± SD. (#) Statistically different from 18 weeks.
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The reduced heart weight in diabetic rats was also found in another study on GK hearts20 with a similar age 
to our group. These findings are consistent with another rat model of cardiomyopathy in which the reduced 
mass was attributed to the lack of insulin on heart myocyte growth and protein synthesis31. In contrast, GK male 
rats at 47 weeks were reported to have similar heart weight to the control group26. The difference between our 
group and that of the previous study appears to be age related because the rats of our study were several months 
younger (28 weeks). Indeed, GK heart weight were reported to be increased, decreased or unaltered for different 
age groups29,32.

Mitochondria function.  Cardiac mitochondrial dysfunction has been reported in obese subjects with33 and 
without insulin resistance7, but the contribution of hyperglycemia and obesity to this dysfunction remains to be 
determined34. Also, these reports are relevant for T2DM patients who are not obese and who are regarded to be 
at high risk for cardiovascular disease35,36. An age-dependent relationship between cardiomyopathy and heart 
mitochondrial dysfunction was reported in cardiomyopathic hamsters at 17 and 30 weeks, but not as early as 
4 weeks15. Thus, we investigated diabetic heart subpopulations of mitochondria in GK rats, a non-obese model 
of T2DM, at 18 and 28 weeks. The unchanged mitochondrial function and enzymatic activity of the electron 
transport chain complexes (Fig. 6) are consistent with data of a study on aorta mitochondria of GK rats showing 
a respiration rate with complex I and β oxidation substrates similar in GK and control rats37.

In both group of rats, SSM and IFM respiration rate were similar with a trend to be higher in IFM. This was 
mainly related to the CS and SDH activities which were similar in both SSM and IFM (Table 2). The effect of the 
specific activity of mitochondrial marker enzymes (i.e. CS and SDH) on mitochondrial respiratory rate was con-
firmed by the significant correlation between mitochondrial enzyme marker and respiration rate. In a previous 
study38 on dog heart mitochondria similar respiratory rates in SSM and IFM were accompanied by similar CS 
activity of SSM and IFM.

Susceptibility of heart SSM and IFM to cardiomyopathy has been shown to be different in obese and insulin 
resistant animal models. Cardiomyopathy studies with animals without insulin resistance reported dominant 
dysfunction of IFM in comparison to SSM in heart of hamster15 and mouse with T1DM16,39. In T1DM mice, mito-
chondrial respiration with complex I and complex III substrates were reduced only in IFM16. In contrast, obese 
T2DM mice had reduced state 3 respiration rate and electron transport chain activities in SSM with no change in 
IFM17. Also, in heart mitochondria40 of T2DM patients, only SSM respiration rate in presence of complex I or FA 
substrates was compromised, whereas IFM was preserved in obese and insulin resistant patients. Overall, these 
data suggest that mitochondrial function is spatially sequestered in T2DM heart. Differences associated with 
animal models and factors such as obesity are determinant of the mitochondrial dysfunction.

Oxidative stress.  Diabetic cardiomyopathy is characterized by alteration of substrate utilization and mito-
chondrial function accompanied by oxidative stress41. A previous GK study reported a high susceptibility of heart 

Figure 5.   ADP unsaturated (a,b) and saturated concentration (c,d) respiratory rates of lipid substrates in heart 
muscle SSM and IFM at 18 and 28 weeks. Notation as in Fig. 2. Malate and palmitoylcarnitine, PCN; malate, 
palmitoyl-CoA and carnitine (P-CoA + C).
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mitochondria to lipid peroxidation in the presence of induced oxidative damage22, whereas lipid peroxidation 
products are used as biomarkers of oxidative stress. It has been suggested that the greater susceptibility of dia-
betic heart mitochondria to oxidative damage was caused by a limited antioxidant potential related to a lower 
co-enzyme Q and glutathione contents22,42, but mitochondria function was not examined. In our study, a reduced 
mitochondrial aconitase activity in GK rats (Table 2) confirmed the presence of heart mitochondrial oxidative 
stress in this animal model of T2DM. The iron sulfur cluster of aconitase is sensitive to oxidation by superoxide43 
which mediates the inactivation of aconitase. Inactivated aconitase is then degraded by Lon protein in the mito-
chondrial matrix44. Thus, the lower aconitase activity is compatible with a higher inactivation rate induced by 
oxidative stress. Furthermore, a study in 14 week-old GK rats45 reported reduced aconitase activity in the aorta 
and kidney whereas it was unchanged in the heart. In our study, reduced aconitase activity was observed at 18 
weeks suggesting a time-dependent process leading to oxidative stress of heart mitochondria that is not evident at 
14 weeks. As with our observations at 18 weeks, aconitase decreased activity is present in 28 weeks-old rats, too, 
confirming that in TDM2 non-obese rats ongoing oxidative stress impairs the function of this important enzyme.

The immunoblotting assay on mitochondrial ACO-2 confirmed a similar aconitase protein expression in 
mitochondria of both diabetic and control rats (Fig. 2). Thus, it is reasonable to exclude the possibility that the 
reduced aconitase activity in GK was related to low aconitase expression caused by other factors as, for instance, 
hypoxia inducible factor which might regulate the aconitase expression46,47.

Animal models of obesity and T2DM showed an increase of oxidative stress in the presence of cardiac lipid 
accumulation with increased fatty acid oxidation6,33,48. In our study, myocardial mitochondria enzymatic activity 
of GK rats suggested the presence of oxidative stress even when the animals were consuming normal diet and 
not obese. An increase of ROS production could be related to insulin resistance rather than to a myocardial over-
load41; GK rats have been described as myocardial insulin-resistant19. In support of this view, in the absence of 
insulin resistance, a mouse model of T1DM49 and patients with type 1 diabetes50 did not exhibit oxidative stress. 

Figure 6.  The enzymes activity of ETC of isolated heart SSM and IFM at 18 and 28 weeks. Rotenone-sensitive 
NADH-cytochrome c reductase (NCR); NADH ferricyanide reductase (NFR); Antimycin A-sensitive succinate-
cytochrome c reductase (SCR); Complex II activity (CII); total complex II with exogenous coenzyme Q 
(CII + Q); Complex III (CIII); Complex IV (CIV). ¶(P < 0.05) GK-18wk vs. GK-28wk; (n = 6) Mean ± SD.  
(#) Within the group statistically different from 18 weeks.
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The deleterious interaction of ROS and endoplasmic reticulum stress are suggested to contribute to diastolic 
dysfunction in diabetic cardiomyopathy51, as has been reported in GK rats20. Cardiomyopathy observed in GK 
appears mild but still significantly affects contractility. In the presence of an induced infarction, contractility 
dysfunction was greater in GK than that in control rats, suggesting that heart failure progression is accelerated in 
this animal model of T2DM52.

An increase of ROS production has been reported to be related to mitochondrial dysfunction due to uncou-
pling53 because superoxide can also be produced as a byproduct of oxidative phosphorylation. In our study, oxi-
dative stress is present in the absence of mitochondrial uncoupling (Table 2). Our data support the view that 
oxidative stress was not generated by dysfunction of both subpopulations of mitochondria. Previous studies 
reported that diabetes selectively causes oxidative stress in IFM mitochondria, accompanied by a reduction of 
respiration, transmembrane potential, and an increase of mitochondrial transition pore opening16,39. It is note-
worthy that mitochondrial transition pore opening has been suggested to be a consequence of oxidative damage 
rather than the cause54.

Therefore, T2DM did not induce an overt mitochondrial impairment in GK rats, suggesting that in lean 
insulin-resistant individuals mitochondria retain healthy features. Indeed, it has been shown that heart mito-
chondria of GK rats are even more resistant to calcium overload than are controls55, thus indicating that these 
mitochondria can better counteract the deleterious effects of diabetes.

In presence of obesity and T2DM conditions mitochondrial dysfunction occurs whereas in the absence of obe-
sity, heart mitochondrial function is unchanged and highlights the critical role for obesity in T2DM. Therefore, 
our study suggests that insulin resistance does not lead to mitochondrial dysfunction in absence of obesity.

Materials and Methods
Animals.  A non-obese model of type 2 diabetes mellitus (T2DM), Goto-Kakizaki (GK) rats, and Wistar (W) 
colony rats (Charles River) as control group were used in this study. GK rats’ manifest spontaneous skeletal mus-
cle and hepatic insulin resistance, mild hyperglycemia, and normal lipidemia. The genetic background of the 
GK rats is that of Wistar. The GK rats were obtained by selective breeding of Wistar rats with the highest blood 
glucose levels during an oral glucose tolerance test over many generations56.

The insulin tolerance test was performed on regularly fed rats which were not starved overnight prior to the 
experiment. Experiment was initiated around 9:00AM, rats were not allowed to eat during the course of the 
experiment. Rats were challenged with a subcutaneous injection of insulin (1.85 U insulin/Kg of body weight). 
Blood samples from tail vein puncture were obtained at different time points after insulin injection to measure 
glucose concentration57,58.

Twelve male GK and W rats were housed in the Animal Resource Center facilities of Case Western Reserve 
University with 12:12-h light-dark cycle and were fed a standard diet chow (Prolab Isopro RMH 3000, LabDiet, St. 
Louis, MO) ad libitum. GK and W rats were euthanized by decapitation at 18 wk (n = 6) and 28 wk (n = 6) of age. 
All procedures were approved by Case Western Reserve University Institutional Animal Care and Use Committee 
and performed in accordance with the National Research Council guidelines for care and use of laboratory ani-
mals in research. It should be noted that plasma insulin content and bioenergetics of both populations of skeletal 
muscle mitochondria have been published by our group23.

Buffers.  Buffers: the relaxing buffer Chappell-Perry (CP1) (100 mM KCl, 50 mM MOPS, 5 mM MgSO4, 1 mM 
ATP, and 1 mM EGTA59), CP2 (Buffer CP1 plus 0.2% defatted BSA) and KME (100 mM KCl, 50 mM MOPS and 
0.5 mM EGTA, pH 7.460) were used for isolation and storage of mitochondria. The respiration buffer (80 mM KCl, 
50 mM MOPS, 1 mM EGTA, 5 mM KH2PO4, and 1 mg/mL defatted BSA, pH 7.461) was used for mitochondrial 
oxygen uptake measurements.

Mitochondrial isolation.  The subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) were isolated 
from heart muscle as described previously62 with modifications including the use of a modified Chappell-Perry 
buffer63 and trypsin to treat myofibrillar pellets38. Mitochondrial protein concentration was determined using the 
Lowry method with bovine serum albumin as standard64.

Oxidative phosphorylation assays.  Mitochondrial oxygen consumption was measured using a 
Clark-type oxygen electrode (YSI model 53) embedded in a glass metabolic chamber containing 0.1–0.25 mg 
mitochondrial protein in a final volume of 0.5 mL of respiration buffer. The chamber temperature was maintained 
at 30 °C with a circulating water bath61.

The respiration rate of SSM and IFM was measured in the presence of substrates and inhibitors38. The assays 
with complex II, III, and IV substrates were performed with rotenone to inhibit complex I.

Glutamate was used because among the complex I substrates, it is the only substrate that does not require any 
further additions for the analysis of oxidative substrate. It has its own transporter through the inner membrane 
and in the matrix it is dehydrogenated by glutamate dehydrogenase yielding NADH, which is then oxidized by 
complex I of the ETC65.

Both low and high ADP concentration were used to stimulate mitochondrial respiration. Because a high 
ADP concentration does not allow to observe the transition from state 3 to 4 in polarographic systems with O2 
concentrations near air-saturation, a low ADP concentration was selected to reach state 3 in coupled mitochon-
dria avoiding O2 depletion within the chamber during State 4. Also, with saturated ADP concentration (i.e. High 
ADP), the state 3 respiratory rate is expected to be higher than that obtained with unsaturated concentration 
because of the specific ADP affinity to adenine nucleotide translocator and mitochondrial enzymes. Thus, in our 
study, State 4 is equivalent to a leak state (LT) with ATP hydrolysis and state 3 indicates the condition under which 
coupled mitochondria are stimulated with ADP (P)66.
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Respiratory control ratio (RCR, State 3 divided by State 4) was used to determine the coupling of mitochon-
drial oxidation and phosphorylation. An enzymatic method67 was used to determine the concentration of ADP 
and AMP for the calculation of the ADP/O ratio (number of ADP moles added for the number of moles of oxygen 
atom consumed), which is an index of the efficiency of oxidative phosphorylation68.

Preparation of samples and enzymatic assays.  Mitochondrial enzyme activities were measured as 
described previously61,69–71 for both SSM and IFM. Citrate synthase (CS)69 and electron transport chain enzyme 
activities were measured in mitochondrial samples treated with cholate: CI, complex I – rotenone-sensitive; 
CIII, complex III - antimycin A-sensitive decylubiquinol‐cytochrome c reductase; NCR, rotenone-sensitive 
NADH-cytochrome c reductase; SCR, antimycin A-sensitive succinate-cytochrome c reductase; NFR, 
NADH-ferricyanide reductase; SDH, succinate dehydrogenase; aconitase; CII, thenoyltrifluoroacetone(TTFA)‐
sensitive succinate‐Q reductase; CII + Q, TTFA-sensitive complex II with exogenous coenzyme Q1. The donors 
and acceptors span specific regions of the ETC69–71. The ETC activity components were determined using bio-
chemical kinetics principles: CIV activity was determined as a first-order reaction relationship, whereas the activ-
ity of the other ETC components was determined with a zero-order reaction relationship.

Immunoblotting.  Isolated SSM and IFM mitochondria from 28 weeks old GK or Wistar rats were diluted 
1:3 in loading buffer (4% SDS, 20% glycerol, 160 mM dithioerythrol, 125 mM Tris-Cl (pH 6.8), bromophenol 
blue 0.004%). Samples were then sonicated for 3 min and subsequently heated for 10 minutes at about 76–78 °C 
for denaturation. Sample’s proteins were then separated by electrophoresis on 4–20% Mini-PROTEAN® TGX™ 
precast polyacrylamide gels (Biorad, Hercules, CA, USA), and then transferred on PVDF membranes, which 
were blocked for 2 hours with 5% milk in Tris buffered saline with 0.1% Tween 20 (TBS-T). Then incubation 
with primary antibodies followed overnight at 4 °C. The following antibodies were used: anti-Aconitase-2 rabbit 
polyclonal antibody (Proteintech, dilution 1:1000); anti-COX IV rabbit polyclonal antibody (Invitrogen, dilution 
1:1000). Secondary antibodies (goat anti-rabbit peroxidase conjugate 1:2000, Sigma-Aldrich) were incubated for 
1 hour at room temperature. Detection of protein signals was achieved by using the ECL Prime chemilumines-
cence kit (GE Healthcare) and images acquisition using a Fujifilm Luminescent Image Analyzer LAS4000 System 
(Fujifilm, Tokyo, Japan). Immunoreactive bands were analyzed for densitometry with Image Studio Lite Software 
(LI-COR, Nebraska, USA). Proteins quantification was expressed as the relative intensity of protein signals nor-
malized to the expression of the housekeeping gene COX IV.

Statistical analysis.  The results are reported as means ± standard deviation. Differences between control 
and diabetic rats at different ages were evaluated with two-way ANOVA with Bonferroni-Holm correction for 
multiple comparisons. Differences between control and diabetic rats at different time points of the insulin test 
were estimated with a two-tailed student t-test. A regression analysis was performed to determine whether a cor-
relation exists between a mitochondrial marker enzyme (i.e. CS and SDH) and respiration rate. Differences were 
considered statistically significant at p < 0.05.
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