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We report the first measurement of target single spin asymmetries of charged kaons produced in semi-inclusive
deep inelastic scattering of electrons off a transversely polarized 3He target. Both the Collins and Sivers moments,
which are related to the nucleon transversity and Sivers distributions, respectively, are extracted over the kinematic
range of 0.1 < xbj < 0.4 for K+ and K− production. While the Collins and Sivers moments for K+ are consistent
with zero within the experimental uncertainties, both moments for K− favor negative values. The Sivers moments
are compared to the theoretical prediction from a phenomenological fit to the world data. While the K+ Sivers
moments are consistent with the prediction, the K− results differ from the prediction at the 2-sigma level.

DOI: 10.1103/PhysRevC.90.055201 PACS number(s): 24.70.+s, 14.20.Dh, 24.85.+p, 25.30.Rw

I. INTRODUCTION

Significant progress has been made in recent years
on our understanding of the transversity distribution as
well as transverse-momentum-dependent parton distributions
(TMDs) of the nucleons [1,2]. The nucleon transversity
distribution [3], which represents the correlation between the
quark transverse spin and the nucleon transverse spin, is
suppressed in inclusive deep inelastic scattering experiments
due to its chiral-odd nature. While it was recognized that
polarized Drell-Yan experiments [3,4] and Semi-inclusive
deep inelastic scattering (SIDIS) experiments can both access
the transversity distribution, our current knowledge on this
distribution is mainly obtained from SIDIS.

The SIDIS processes, in which a hadron is detected in
coincidence with the scattered lepton [5–9], also involve
another chiral-odd object, the so-called Collins fragmentation
function [10], to ensure helicity conservation. This allows
the extraction of the transversity distribution, provided that
the Collins fragmentation function is sizable. The Collins
fragmentation functions were extracted to be significant by
experiments at Belle [11] and at BaBar [12].

Pioneering efforts have been devoted towards the mea-
surement of transversity distributions by the HERMES and
COMPASS Collaborations in dedicated SIDIS experiments
using transversely polarized targets [13–15]. A modulation of
the form sin(φh + φS), the Collins moment, where φh and φS

are the azimuthal angles of the detected hadron and the nucleon
spin with respect to the lepton scattering plane, corresponds to
a convolution of the transversity distribution and the Collins
fragmentation function. Another important leading-twist TMD
is the so-called Sivers function [16], which represents the
correlation between the nucleon transverse spin and the quark
transverse momentum. It can be extracted through another
angular modulation called the Sivers moment with the form
of sin(φh − φS). Although the Sivers function is odd under
the time-reversal operation without exchanging the initial and
final states [10], it is allowed in the presence of QCD final-state
interactions (FSI) between the outgoing quark and the target
remnant [17–20].

*Corresponding author: yxzhao@jlab.org
†Deceased.

Results from the HERMES and COMPASS experiments
have clearly shown the presence of the sin(φh + φS) and
sin(φh − φS) modulations from proton targets [13–15]. In
remarkable contrast, much smaller modulations were found
from deuteron targets [21], suggesting that the process is flavor
dependent. To shed new light on the flavor structure of the
transversity and Sivers functions, it is important to extend
SIDIS measurements to a polarized 3He target, whose spin
comes predominantly from the neutron.

The first such measurement was carried out on a polarized
3He target in Hall A at the Jefferson Laboratory, and results for
the charged pion SIDIS production have already been reported
[22,23]. In this paper, we present the results on the azimuthal
asymmetries in charged kaon SIDIS production. Since kaons
contain strange quarks, the role of sea quarks in the nucleons
with respect to the Collins and Sivers effects can be explored.
The HERMES Collaboration [14] observed that the Collins
effect from the proton target for K+ is larger than that for π+,
while for K− the Collins effect is small and consistent with
zero. They also reported that the Sivers effect for K+ from the
proton target is large and positive, but very small for K− [13].
The COMPASS Collaboration reported that the Collins and
Sivers effects for K+ and K− production from the polarized
deuteron target are consistent with zero [21]. Results from
this work using a polarized 3He target will provide important
new information to study the flavor-dependent behavior of the
Collins and Sivers effects.

II. EXPERIMENT

The data were collected during experiment E06-010 at
Jefferson Lab, Hall A. The experiment was conducted from
November 2008 to February 2009 using a 5.9-GeV electron
beam with an average current of 12 μA and a transversely
polarized 3He target. Scattered electrons were detected in the
BigBite spectrometer which was at 30o to the beam right
(facing the beam dump) with a momentum acceptance from
0.6 to 2.5 GeV/c. Coincident charged hadrons (π±, K± and
protons) were detected in the High Resolution Spectrometer
(HRS) [24], which was at 16◦ to the beam left with a central
momentum of 2.35 GeV/c. The electron beam helicity was
flipped at a rate of 30 Hz. The unpolarized beam was achieved
by summing the two helicity states, which differ by less than
100 ppm per 1-hour run in beam charge.
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The polarized 3He target consisted of a 40-cm-long glass
cell containing ∼10 atm of 3He and a small amount of N2

to reduce depolarization [24,25]. The ground state of the
3He nuclear wave function is dominated by the S state, in
which the proton spins cancel each other and the nuclear
spin is mostly carried by the neutron [26]. Three pairs of
Helmholtz coils were used in the experiment for producing
the holding magnetic field in any direction. During the
experiment, the target spin direction was oriented to transverse
and vertical directions in order to enlarge the azimuthal angular
coverage φS . 3He nuclei were polarized by spin exchange
optical pumping of a Rb-K mixture [27]. Nuclear magnetic
resonance (NMR) measurements, calibrated by the known
water NMR signal and the electron paramagnetic resonance
method, were performed to monitor the target polarization
while the target spin direction was flipped every 20 minutes
through adiabatic fast passage. An average in-beam target
polarization of (55.4 ± 2.8)% was achieved during the
experiment.

The BigBite spectrometer consisted of a single open dipole
magnet, eighteen planes of multiwire drift chambers organized
in three groups and a scintillator plane sandwiched between
lead-glass preshower and shower calorimeters. The magnetic
field from the dipole, combined with tracking information
from the drift chambers, was used to reconstruct the momenta
of charged particles. Timing information for the scattered
electrons was provided by the scintillators, and the electron
trigger was formed by summing signals from two overlapping
rows of preshower and shower blocks [28]. The angular
acceptance of the BigBite spectrometer was about 64 msr for
a 40-cm target, which was essential to enlarge the azimuthal
angular coverage φh for hadrons, given the small (∼6 msr)
angular acceptance of the HRS. A clean sample of electrons
was achieved by using two-dimensional cuts on the preshower
energy Eps and the momentum-dependent ratio E/p in which
E and p are the total energy deposit in the calorimeter and
the reconstructed momentum, respectively. After combining
all the cuts, the π− contamination in the electron sample was
less than 1%.

The HRS configured for hadron detection consisted of
two drift chambers for tracking, two scintillator planes for
timing and triggering, a CO2 gas Čerenkov detector, and
two layers of lead-glass calorimeter for electron rejection,
an aerogel Čerenkov detector for pion rejection, and a ring
imaging Čerenkov detector for hadron (pion, kaon, proton)
identification [29]. In addition, coincidence time of flight
(CTOF) between scattered electrons and hadrons was also
recorded for hadron identification. Figure 1 shows the CTOF
spectrum. It describes the difference between the measured
time of flight of the hadron and that of the expected kaon
based on the electron timing. Therefore, the kaon peak is
centered at zero and the proton, which is slower than the kaon,
is peaked at a negative value. By applying a “pion rejection” cut
on the aerogel detector, pions were strongly suppressed, and
the contamination of π+ (π−) in the K+ (K−) sample was
less than 2% (5%). The random coincidence contamination
in the K+ (K−) sample was less than 4% (1%), and the
coincidental proton contamination in the K+ sample was
negligible.
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FIG. 1. (Color online) 3He(e,e′h+)X coincidence timing spec-
trum after a cut on the aerogel detector to remove pions, where h

represents detected hadron. The kaon selection cuts are shown as the
two vertical lines. The top right subplot shows only K+ and π+ peaks
in a relatively small CTOF range.

III. DATA ANALYSIS

The SIDIS event sample for the analysis was selected by
requiring (1) four-momentum-transfer squared Q2 > 1 GeV2,
(2) virtual photon-nucleon invariant mass W > 2.3 GeV,
and (3) the missing mass of undetected final-state particles
W ′ > 1.6 GeV. The kinematics coverage for K+ is shown
in Fig. 2. After all the cuts, the total number of accepted
SIDIS events were about 10 000 and 2000 for K+ and K−,
respectively. The data were analyzed by using an azimuthally
unbinned maximum likelihood estimator (MLE) [30]. Due to
the low statistics of the K− sample, the data were binned in
one kinematical bin, while for K+ the data were binned in
four bins of xbj . The central values for various kinematical
variables are listed in Table I.

The likelihood was formed by the φh and φS dependent
yield as shown in Eq. (1),

yield(φh,φS) = ρσa±(φh,φS)

⎛
⎝1 + P

2∑
j=1

εjAj (φh,φS)

⎞
⎠ ,

(1)

bjx
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FIG. 2. (Color online) Correlation between xbj and kinematics

variables (Q2, Pt , z) for K+, where xbj = Q2

2P ·q , Pt =
√

�Ph

2 − ( �q· �Ph

|�q| )2,

z = P ·Ph

P ·q , P is the four-momentum of the initial nucleon, q is the
four-momentum of the virtual photon, Ph is the four-momentum of
the detected hadron.
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TABLE I. Tabulated central values for kinematical variables
xbj , y, Q2, z, Pt , W , W ′, where y = q·P

l·P , W = √
(P + q)2, W ′ =√

(q + P − Ph)2, and l is the four-momentum of the incoming lepton.

xbj y z Q2 Pt W W ′

(GeV2) (GeV) (GeV) (GeV)

K+ 0.137 0.85 0.48 1.29 0.46 3.0 2.08
K+ 0.190 0.81 0.51 1.69 0.40 2.85 1.96
K+ 0.250 0.77 0.53 2.11 0.33 2.69 1.83
K+ 0.324 0.73 0.56 2.60 0.26 2.51 1.69

K− 0.210 0.80 0.51 1.83 0.38 2.80 1.93

where ρ is the target density, σ is the unpolarized cross
section, a±(φh, φS) is the acceptance for target spin state
±, Aj (φh, φS) is the j th azimuthal angular modulation,
sin(φh + φS) or sin(φh − φS), P is the target polarization,
and εj is the amplitude of each modulation. The φh and
φS definition follows the Trento conventions [31]. The MLE
method has been used for charged pion analysis [23] and has
been checked through Monte Carlo simulations. The results
extracted from MLE take into account the unbalanced beam
charge associated with two target spin directions and the data
acquisition live-time. The 3He Collins and Sivers moments
were then obtained by correcting the dilution from unpolarized
N2 gas in the target cell. The nitrogen dilution factor is defined
as

fN2 ≡ ρN2σN2

ρ3Heσ3He + ρN2σN2

, (2)

where ρ is the density of the gas in the production target
cell and σ is the unpolarized SIDIS cross section. The ratio of
unpolarized cross sections σN2/σ3He was measured in dedicated
runs on targets filled with known amounts of unpolarized N2

or 3He gas. The fN2 in this experiment was determined to be
about 10%.

The dominant systematic uncertainty in our measure-
ment was the contamination from photon-induced charge-
symmetric e± pairs, of which the e− was detected in BigBite.
The yield of (e+, K±) coincidences was measured directly
by reversing the magnetic field of BigBite, and hence the
contamination of photon-induced electrons in the electron
sample was determined. The contamination for K− detection
was 14 ± 7%. Hardly any events were observed in the latter
three bins for K+ detection from calibration runs which
indicated that the contamination in these bins was small. To be
conservative, the contaminations were given by a limit in these
bins with the assumption that the contamination decreases
linearly through four bins. The photon-induced electron
contamination for K+ was determined to be 18.6 ± 8.3%,
<10%, <5%, <3%, respectively for the four xbj bins.
Since this contamination is primarily from photon-induced
pair production, it carries the same asymmetry as photon
production. The asymmetry contamination correction for K−
and the first bin of K+ was given by the asymmetry from
high energy γ -K± coincidence events. Additional experi-
mental systematic uncertainties include (1) π− contamination
in the electron sample, (2) π± contamination in the K±
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FIG. 3. (Color online) The extracted Collins and Sivers moments
on 3He are shown together with their statistical errors and systematic
error bands for both K+ and K− electro-production. The Sivers
moments are compared to theoretical predictions from a phenomeno-
logical fit to the world data.

sample, (3) random coincidence contamination in the (e−,
K±) coincidence sample, (4) target density fluctuations, (5)
detector response drift caused by radiation damage to the
BigBite calorimeter, (6) target polarization, and (7) bin-
centering effects. The quadrature sum of these uncertainties
is quoted as the “experimental” systematic uncertainty for our
measurement.

For the asymmetry extraction from Eq. (1), we only in-
cluded sin(φh + φS) and sin(φh − φS) modulations by neglect-
ing other modulations, including sin(3φh − φS) modulation at
twist 2 [32], sin(φS) and sin(2φh − φS) modulations at twist 3,
Cahn cos(φh) and Boer-Mulders cos(2φh) modulations from
unpolarized cross section. The leakage from the longitudinal
polarized target single spin asymmetry (AUL) due to the small
longitudinal component of the target polarization was also
neglected. These effects were estimated by varying each term
within an allowed range derived from the HERMES proton
data [33], assuming that the magnitude of each term for the
neutron is similar to that of the proton. These effects were
summed in quadrature to yield the “fit” systematic uncertainty,
which is dominated by the sin(φS) term.

IV. RESULTS

The extracted 3He Collins and Sivers moments are shown
in Fig. 3 and tabulated in Table II. The error bars represent
statistical uncertainties. Experimental systematic uncertainties
combined in quadrature from different sources are shown
as a band labeled “Exp.”. Systematic uncertainties due to
neglecting other modulations are shown as a band labeled
“Fit”. The K+ Collins and Sivers moments are consistent with
zero within error bars, while for K− these moments are found
to favor negative values at the 2-sigma level. In addition, the
asymmetries presented in this paper are from 3He. To obtain
the polarized neutron asymmetries, one needs to take into
account the dilution effect due to scattering of electrons from
the protons inside 3He [34].

The Sivers moments from the 3He target are compared
to theoretical predictions from a phenomenological fit to
the world data [35,36]. While the K− results contain con-
tributions from unfavored fragmentation processes, the K+
results contain contributions from both favored and unfavored
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TABLE II. Tabulated 3He results for the central kinematical variable xbj . The format for the tabulated results follows “central value” ±
“statistical uncertainty” ± “experimental systematic uncertainty (systematic uncertainty due to fit model)”.

xbj Collins moment Sivers moment

K+ 0.137 0.16 ± 0.13 ± 0.024(0.003) 0.078 ± 0.13 ± 0.017(0.005)
K+ 0.190 0.082 ± 0.083 ± 0.01(0.002) −0.019 ± 0.083 ± 0.0065(0.004)
K+ 0.250 0.0009 ± 0.063 ± 0.003(0.002) 0.0074 ± 0.063 ± 0.006(0.003)
K+ 0.324 −0.075 ± 0.074 ± 0.006(0.002) −0.019 ± 0.07 ± 0.006(0.002)

K− 0.210 −0.21 ± 0.10 ± 0.03(0.009) −0.25 ± 0.10 ± 0.039(0.01)

fragmentation processes. The theoretical calculations have
included contributions from both favored and unfavored
fragmentation processes, however the uncertainties due to the
kaon fragmentation functions [37] are not fully estimated. The
higher-twist contributions are not considered. While K+ Sivers
moments are consistent with the prediction, K− results differ
from the prediction at the 2-sigma level. Although the K−
Sivers asymmetry was observed to be nonzero at 2-sigma level,
one has to be aware that the sea quarks’ densities are small
in our kinematic range. Due to the lack of information on
the Collins fragmentation function for kaons, no theoretical
predictions on the Collins moments are currently available.
Our data on the Collins moments will provide independent
inputs for a future global analysis to extract flavor-dependent
transversity distributions. Although with large uncertainties
for the K− Collins and Sivers moments, the results are
still surprising compared to our current knowledge of the
effects of sea quarks and unfavored fragmentation functions.
Current experimental and theoretical studies on the Collins
and Sivers effects are limited in the leading twist formulism;
however, higher-twist effects due to the strange quark mass
effects or low Q2 coverage could be important. Therefore,
to fully understand the sea quark flavor dependence of the
Collins and Sivers moments, high-precision kaon data are
required for transversely polarized proton, deuteron, and 3He
targets.

V. CONCLUSION

In summary, we have reported the first measurement of
target single spin asymmetries of charged kaons produced in
SIDIS using a transversely polarized 3He target. Our data show
that the Collins and Sivers moments for K+ are consistent
with zero within the experimental uncertainties, while the K−
results favor negative values. While the statistics for the 6-GeV
E06-010 measurements were limited, experiment E06-010 laid
the foundation for future 12-GeV SIDIS experiments at JLab
[38]. These future SIDIS experiments will provide us a unique
opportunity in mapping the kaon Collins and Sivers moments
to much higher precision and also allow for a study of higher-
twist effects.
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