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ABSTRACT

DEVELOPMENT OF VIBRATION AND SENSITIVITY ANALYSIS CAPABILITY 

USING THE THEORY OF STRUCTURAL VARIATIONS

by

Ting-Yu Rong 

Old Dominion University, 1994 

Director: Dr. Gene J. W. Hou

In the author’s previous work entitled "General Theorems of Topological 

Variations of Elastic Structures and the Method of Topological Variation," 1985, some 

interesting properties of skeletal structures have been discovered. These properties have 

been described as five theorems and synthesized as a theory, called the theory of 

structural variations (TSV). Based upon this theory, an innovative analysis tool, called 

the structural variation method (SVM), has been derived for static analysis of skeletal 

structures (one-dimensional finite element systems).

The objective of this dissertation research is to extend TSV and SVM from one­

dimensional finite element systems to multi-dimensional ones and from statics to vibration 

and sensitivity analysis. Meanwhile, four new interesting and useful properties of finite 

element systems are also revealed. One of them is stated as the Gradient Orthogonality
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Theorem of Basic Displacements, based upon which a set of explicit formulations are 

derived for design sensitivities of displacements, internal forces, stresses and even the 

inverse of the global stiffness matrix of a statically loaded structure. The other three new 

properties are described as the Evaluation Theorem of Principal Z-Deformations, the 

Monotonousness Theorem of Principal Z-Deformations and the Equivalence Theorem of 

Basic Displacement Vectors and Eigenvectors, based upon which a new approach, called 

the Z-deformation method, is developed for vibration analysis of finite element systems. 

This method is superior to the commonly used inverse power iteration method when 

adjacent eigenvalues are close. Explicit formulations for eigenpair sensitivities are also 

derived in accordance with the Z-deformation method.

The distinct feature of TSV and SVM is that the analysis results for a loaded 

structure can be obtained without any matrix assembling and inverse operations. This 

feature gives TSV and SVM an edge over the traditional finite element analysis in many 

engineering applications, where the repeated analysis is required, such as structural 

optimization, reliability analysis, elastic-plastic analysis, vibration, contact problems, 

crack propagation in solids.
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Chapter 1 

INTRODUCTION

1.1 Historical Backgrounds

Structural analysis, as a branch of engineering science, has had a history of 

development for more than 100 years. Many methods have been developed for handling 

stress analysis, vibration analysis, dynamic analysis, buckling analysis and so on. 

Generally speaking, these methods may be categorized into three groups: displacement 

method, force method and their combinations. These approaches were widely investigated 

in a traditional manner in early years. Later, the advances of computing devices have 

changed the focus of research to search for numerical solutions with the aid of 

computers, leading to the booming development of the finite element method [1 , 2 ], 

which is known as the modem structural analysis or the computer aided structural 

analysis.

However, neither traditional nor modem approaches can avoid assembling and 

solving a set of simultaneous equations to obtain the responses of a loaded structure. 

These approaches are inconvenient for structural modifications. When a large-scale 

structure undergoes some structural modifications, the system equations need to be 

reassembled and re-solved, demanding a vast amount of computing time. But structural

1
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2

modifications ( variations) are indispensable in many engineering applications, such as 

structural optimization, structural reliability analysis, elastic-plastic analysis, contact 

problems, crack propagation in solids and so on. Therefore, there has arisen a 

challenging problem: is it possible to develop an analysis tool which is free from 

assembling and solving any simultaneous equations? As a part of this effort, engineering 

scientists had placed their efforts in the past to facilitating, instead of eliminating, this 

time-consuming and repeated analysis procedure. Many researchers, e.g., Householder 

[3], Haley [4], Holnicki [5] and others developed various approaches to alleviate the 

burden of the reanalysis during the past 40 years. Probably, the most interesting advances 

in this aspect were made by Majid and his coauthors [6 ]-[8 ], which partially avoid 

reanalysis when a structure undergoes certain sort of structural variations. However, 

none of the methods mentioned above can completely eliminate the need of assembling 

and solving the simultaneous equations for structural analysis.

Nevertheless, Rong [9] made a breakthrough in this regard in 1985 by establishing 

a set of General Theorems of Topological Variations of Elastic Structures, which led to 

the development of an innovative method, the structural variation method, to directly 

obtain the displacements and stresses of a loaded structure without the need of assembling 

and solving any simultaneous equations.

About fifteen years ago, the beauty of Green’s function [10] of a differential 

equation lured the author to think about a new technique to answer the seemingly 

unanswerable question mentioned above. If the Green’s function is available, the solution 

of the differential equation can be obtained extremely easily for any source term of the
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equation. In structural mechanics, Green’s function is also called the influence function. 

The influence functions of internal forces in a structure are most useful for structural 

engineers. In the conventional methods, the calculation of an influence function is 

actually equivalent to the matrix inverse operation. Nevertheless, the author has found 

that there is a distinctive relationship between the influence function of an internal force 

in the structure and the stiffness of the structural element with which the internal force 

is measured. According to this relationship, if the corresponding stiffness is treated as 

an external load applied to the structure, it will induce a deflection which is exactly the 

influence function of the internal force of concern. This stiffness-load was named the 

two-point load [9, 11, 12] for skeletal structures , while in this dissertation, it is called 

the intrinsic load for general finite element systems. Based upon this relationship, the 

author put forth a new and very efficient method for influence function calculations [1 1 , 

12] and won the Prize of Advance in Science and Technology awarded by the Ministry 

of Railroads of China in 1986. A further investigation has shown that the intrinsic 

load used for constructing influence functions has many useful features related to the 

properties of structural systems. These features led to the establishment of the theory of 

structural variations (TSV) [9]. A new concept, called the subelements of a structural 

element was introduced in this theory, which paved the way to the development of a new 

analysis tool, called the structural variation method (SVM). The so-called subelements 

can be viewed as the downward extension of the conventional finite element concept, 

playing a key role in the new theory.
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1.2 Scope of Study 

The essence of TSV and SVM is the construction of the Green’s functions ( 

influence functions) of the internal forces in a finite element system without matrix 

inverse operations. This has been achieved in [9] for static analysis of skeletal structures 

( 1-D finite element systems). The focus of the dissertation is the extension of TSV and 

SVM from 1-D finite element systems to multi-dimensional ones and from static analysis 

to vibration analysis. Further, static and vibration design sensitivity analyses based upon 

TSV and SVM are also developed in this dissertation.

1.3 Dissertation Outline 

This dissertation has five major parts, Chapters 2 through 6 . Chapter 2 presents 

a concise review of the early work on the theory of structural variations [9], serving as 

reference for the further developments. Although this work treats only the skeletal 

structures, it provides the basic concepts and the fundamental theorems applicable to 

general finite element systems.

Chapter 3 extends the theory of structural variations for static analysis from 

skeletal structures to 2-D finite element systems. A general approach to establish 

subelements for any finite element models is also presented in this chapter.

Chapter 4 discusses explicit formulations for design sensitivities of finite element 

systems in static analysis. Based on the fundamental theorems given in Chapters 2 and 

3, this chapter reveals an additional property of finite element systems, which is 

summarized as the Orthogonality Theorem of Basic Displacements. With this new
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theorem, a set of explicit formulations for design sensitivities are developed for 

displacements, internal forces, stresses and even the inverse of the global stiffness matrix 

of a statically loaded finite element system. Another property of finite element systems, 

stated as the Evaluation Theorem of Principal Z-Deformations, is also proven in this 

chapter. This theorem is important to the practical applications of SVM.

Chapter 5 extends the theory of structural variations for solving vibration 

problems of finite element systems. Two more interesting and useful properties of finite 

element systems, described as the Monotonousness Theorem of Principal Z-Defor- 

mations and the Equivalence Theorem of BD Vectors and Eigenvectors, are proven 

in this chapter, based upon which a new method, called the Z-deformation method, is 

developed for calculating eigenpairs. This new method is superior to the commonly used 

power iteration method when the adjacent eigenvalues are close.

Chapter 6 discusses design sensitivities of eigenpairs of finite element systems. 

It provides a set of explicit formulations for the calculation of eigenpair sensitivities, 

based upon the developments in Chapters 2-5.

The last chapter, Chapter 7, gives a summary of the dissertation and indicates the 

future direction for research.

An appendix is attached to this dissertation, summarizing the proofs of the 

fundamental theorems outlined in Chapter 2.
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Chapter 2 

FUNDAMENTAL THEOREMS OF THE THEORY OF 

STRUCTURAL VARIATIONS

Any structure can be described by its configuration, rigidity and support 

condition. Any change of these, called structural variation, will alter the load-carrying 

capability of the structure. It is the objective of this study to examine the effect of 

structural variations on the load-carrying capability of the structure. Among all the 

possible structural variations, the following three types of elementary structural variations 

are the most important ones:

Type I. Change the rigidity of an element, and if necessary, reduce it to zero, leading 

to the removal of the element from the structural system;

Type n. Add a new element to the structural system;

Type HI. Add a new constraint ( or support) to the structural system, or remove an old 

one from it.

In fact, through the above three types of structural variations, a simple structure 

can be extended into a complicated one or vise versa. Therefore, study of these three 

types of structural variations can be a building block for better understanding of 

structural analysis and modification. The theory of structural variations, abbreviated as

6
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TSV, has been established in [9] to describe how a structure changes its responses, i.e., 

displacements, internal forces and stresses, when it is undergoing the cited three types 

of structural variations.

The theory is established based upon a fresh concept, called the subelements. 

Any structural element or typical finite element can be decomposed into subelements. 

The concept of the subelements can be also viewed as the downward extension of the 

usual finite element concept. Through the subelement, one can reveal some interesting 

intrinsic properties of finite element systems, as stated by five fundamental theorems in 

this dissertation. These theorems constitute a complete set of explicit formulations 

sufficient to predict the corresponding responses of any structure undergoing structural 

variations. In fact, a new analysis tool, called the structural variation method ( SVM 

) can be developed based upon the theory of structural variations. This method eliminates 

the need of assembling and solving simultaneous equations which are indispensable in the 

commonly used finite element solution procedures. The theory is very promising in many 

engineering applications, such as structural reanalysis, design sensitivity analysis, 

structural optimization, reliability, elastic-plastic analysis, contact problems, propagation 

of cracks in solids, etc. This theory has been initiated for skeletal structures in [9] for 

static analysis, whereas this dissertation will extend it to vibration analysis and vibration 

sensitivity analysis.

This chapter gives a short description of the fundamental theorems established in 

TSV, using the planar beam element system as an illustrative example. Chapter 3 will 

generalize these theorems to general finite element systems.
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2.1 Basic Concepts

Basic concepts and terminology used for the development of the theory of 

structural variations are introduced here.

2.1.1 Subelements

Consider a beam element system with n nodes and m elements. Use Greek letters 

a, fi, ••• to denote the element number and i , j  its end-nodes as shown in Fig. 2.1, where 

the local coordinates of element a as well as the global coordinates are also indicated. 

The node i is always treated as the origin of the local coordinates of the beam element 

throughout the dissertation. The formulations for finite element analysis can be found in 

any finite element analysis textbook ( e.g., Ref. 2 ) :

7v77

Figure 2.1 A Beam Element System
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P=k°d° (2.1)

Ka=(T“)Tk“Ta 

K = £  Ka= £  (TOTPT0

(2.2)

(2.3)

K D =P (2.4)

where P , da ( Fig. 2 .2 ) and k“ are the end-force vector, the nodal displacement vector 

and the element stiffness matrix of element a in local coordinates, respectively, while P, 

D and K  the applied nodal force vector, the nodal displacement vector and the global 

stiffness matrix of the system in global coordinates, respectively. The superscript T 

stands for transpose. The symbol T“ denotes the transformation matrix associated with 

the element a ( Fig. 2 . 1 ):

o ( X

Figure 2.2 A Beam Element

T«= To 0

O T 0

(2.5a)

where Tg is the transformation matrix of coordinates:
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T ^
cosfl sin# 0  

-sin# cos9 0  

0  0  1

(2.5b)

and ka is defined as

k“=

EA
L

0 0
-EA

L
0 0

0
12EI
L 3

6 EI
L 2

0
-12EI

L 3

6 EI
L 2

0
6 EI 4EI

0
- 6 EI 2EI

L 2 L L 2 L

-EA
L

0 0
EA
L

0 0

0
-12EI - 6 EI

0
12EI - 6 EI

L 3 L 2 L 3 L

0
6 EI 2EI

0
- 6 EI 4EI

L 2 L L 2 L

(2 .6)

where E is Young’s modulus, A the cross-section area, I the moment of inertia, L the 

length of the element and 6 the angle between the local x-axis and the global X-axis.

Three special vectors, denoted by e“, e? and ef in local coordinates associated 

with element a, are introduced here:

e } s [ - l ,  0, 0 , 1 ,  0 ,  0 T (2.7a)

eS ss [ 0, 1, L/2, 0 , - 1 ,  L/2 ]T (2.7b)

e? -  [ 0, 0, -1 , 0 , 0 , I f  (2.7c)

along with three scalers, denoted by W“, W£ and Wf, which are defined as

W“ =  EA W?=_  12EI
L L 3

Then, it is easy to prove that

w?=JE. (2 .8)
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3

k“= £  W?e?(e?)T (2.9)
«-i

or
3

k“= £  k“=h“W“(h“)T (2.10)

where

(2.11)

(2.12)

W“ =  diag( W?, Wf, W ?). (2.13)

Therefore, the matrix k? in Eq. (2.11) can be considered as the element stiffness matrix 

of a subdivided element ( having the same length as the parent element a  ). This 

subdivided element is called the subelement and denoted by the symbol ® , s= l,2 ,3 . 

The corresponding e“ is called the subelement vector and W“ the subelement stiffness 

modulus ( or simply modulus) of subelement © .

In the global coordinate system, the counterparts of e“ and h“ are denoted by E“ 

and H“, respectively, and they are related by

2.1.2 Generalized Deformations, Internal Forces and Intrinsic loads

Three quantities related to deformation, internal force and a load proportional to 

the subelement vector are introduced here:

E“=(T“)Te“

Ha=(T°)Th“ (2.15)

(2.14)

and therefore, from Eqs. (2.2), (2.10) and (2.15), one has

K °=H “W°(H“)T. (2.16)
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Z“= [  Z?, Zf, Z | ]T =  (h“)Td“ = (H^T) (2.17)

F“= [ F “, F |, Ff ]T =  W“Z“ (2.18)

and

P ^W ?E ?, s= l,2 ,3 (2.19)

where Z“ is called the Z-deformation vector ( ZD vector), F“ the generalized internal 

force vector ( GIF vector) of element a, which has been proven to be the internal forces 

at the middle section of the beam element [9], and P? is the intrinsic load vector of 

subelement (f), which was called the two-point load vector in [9]. This load vector is 

determined as the product of the subelement features E“ and W“ only, which does not 

correspond to any external loading condition of the structural system, but has been 

proven to be helpful in the development of the theory of structural variations.

Please note that throughout the dissertation, when matrices ( or vectors ) o f 

different dimensions appear together in an operation, the matrix ( or vector ) o f lower 

dimension is supposed to be extended to a matrix o f the same dimension as the higher one 

by inserting zero-entries in appropriate locations. For instance, the matrix (K° ) 6x6 in

(K)3ax3n= £  K° should be considered to be extended to a matrix (Ka)3nx3n with some

zero-entries inserted in the positions where (K“)6xS has no contributions to K; so is the 

matrix (H° ) 6x3 in Z“=(H a)TD, where D is of 3nxl.

From Eqs. (2.1), (2.10), (2.17) and (2.18), one can calculate the nodal forces of 

element a  by using the following formula

m

(2.20)
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Therefore, the matrix h° or H° can be called the transfer matrix of element a. Equation 

(2 .2 0 ) may be rewritten in a partition form in accordance with the two end-nodes i and 

j of element a  as:

f = f r = h“F“ = K

; r K

F“ (2.21)

where ft and f? stand for the end-force vectors at the end-nodes i and j of element a , 

respectively, and

h?=
- l 0 0 l 0 0

0 1 0
; h ? -

0 - 1 0

0 L/2 - 1 0 L/2 1

(2.22)

2.1.3 Constraint-Subelements and Support-Subelements

A constraint-subelement is a special case of a regular subelement, having the 

following distinct features:

=  oo = 00

Figure 2.3 Constraint-Subelement / Support-Subelement
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(1) A constraint-subelement, denoted by the symbol (?), can connect two nodes R and 

R' into one in its axial direction t as shown in Fig. 2.3(a);

(2) Its length, L, equals zero, while its stiffness modulus, W?, equals infinite, i.e.,

L=0 and W?=oo; (2.23)

(3) Its subelement vector, e?, in its local coordinates is

e?=[ -1, 1 ]T (2.24)

where the values -1 and 1 correspond to the two degrees of freedom of the nodes R and

R' in its axial direction t, respectively; in the global coordinates, this subelement vector 

is symbolized by E?. If node R' in Fig. 2.3(a) is connected to the rigid ground at which 

the structure is supported, as shown in Fig. 2.3(b), then, the constraint-subelement (?) 

will function as a support; therefore, in this case it should be called the support- 

subelement, useful to specify a boundary condition.

Note that the constraint-subelement (?) in Fig. 2.3 represents a translational 

constraint-subelement; if it is a rotational constraint-subelement, then the values - 1  and

1 in e? correspond to the rotational degrees of freedom at node R and R \  respectively,

and the direction t is the z-axis.

Assembling all the subelements, one has from Eq. (2.3)

K=EK“=H\VHT (2.25)

where W and H are the global stiffness modulus matrix and the global transfer

matrix, respectively:

W sd iag (W \ W2, -  ) (2.26)

H = [ H \  H2, ••• ]. (2.27)
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It is interesting to see that Eq. (2.25) is quite similar to Eq. (2.16), but standing in the 

global level.

2.1.4 Basic Displacements and Basic Internal Forces

If a six-component intrinsic load vector P? of subelement (?) is placed on the 

corresponding degrees of freedom of the two nodes of element a, the structural system 

will deform. The resultant global displacement vector is denoted by V? as

V?=K"'P? (2.28)

which is called the basic displacement vector of subelement (?). A special quantity 

pertaining to the Z-deformation of subelement (?) is denoted by the symbol Z?? :

Z f t s ^ T V -  o ,j8= l,2 ,...,m ; r ,s= l,2 ,3 . (2.29)

where the displacement, D, in Eq. (2.17) is substituted by the basic displacement vector, 

V?, of subelement (?). In case of (?)=(?), Z?? is called the principal Z-defonnation.

The symbol (J), r= l,2 ,3 , is used to denote a degree of freedom of a node I , ( 

e.g., r = l  for X-direction, r= 2  for Y-direction and r= 3  for the rotation about Z-axis, 

respectively ). Note that the symbol (?) for a degree of freedom is distinct from the 

symbol (?) for a subelement in the superscript in Greek.

A unit-load vector is symbolized by P?, in which the only non-zero component 

is placed at (?) with a value of 1. The 3x1 generalized internal force vector P  induced 

by a unit-load P? is called the basic internal force vector of element a  and particularly 

denoted by Ft?= [  F??, Ff?, F??]T where the components Ff?, Ff r and Ff? are related to 

the subelements of element a. If Ft? is known for all the DOFs, then the generalized
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internal force vector F“ induced by any external load vector P =  [ P}, Pj, P3, P | ]T 

can be calculated by

F = E E ^ '  <2-30)
t - 1 r - l

2.1.5 Additional Explanations on the Notations Used in the Dissertation

At this moment, some explanations should be made to clarify the notations with 

two columns of subscript and superscript, e.g., F?J, Z??, etc.

(1) A notation with two columns of subscripts and superscripts are needed to 

indicate a quantity pertaining to both a subelement and a degree of freedom, or 

involving two subelements. For instance, F?? stands for the basic internal force of 

subelement (?) induced by a unit-load vector P? applied at the degree of freedom (J); this 

case involves one subelement (?) indicated by the first column of subscript and 

superscript and one degree of freedom (') indicated by the second column of subscript 

and superscript.

Another example for this case is V?'r, which stands for the component of the basic 

displacement vector V? of subelement (?) at the degree of freedom (J). However, one 

should notice the difference between Ffr and V?f; the former is a component of basic 

internal force vector acting in the subelement (?), while the latter a component of the 

basic displacement vector at the degree of freedom (J).

The symbol Z ft stands for the Z-deformation of the subelement (?) indicated by 

the first column of subscript and superscript due to the basis displacement vector of the 

subelement (?) indicated by the second column of subscript and superscript. Note, as 

indicated in Subsection 2.1.4, that the second columns of subscript and superscript, \ and
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?, in the notations Ffr and Z°f„ respectively, have different meanings because (?) with 

the Greek letter /? stands for a subelement, while (?) for a degree of freedom.

(2) Since each beam element a  has three subelements 0 ,  s = 1,2,3, the three basic 

internal forces of these subelements, F^, s = 1,2,3, constitute a basic internal force 

vector of the element a  induced by the unit-load vector P?. This vector is denoted by the 

symbol F??, 3x1, where the d o t" . " under the Greek letter a  stands for nothing but a 

space filler to hold the first and the second columns of subscript and superscript in their 

proper places. Likewise, the three components Vfr of element a, s= l,2 ,3 , at (?), 

constitute a 3x1 vector denoted by VS?.

Another example for the notation with a dot is ZS?, representing the 3x1 Z- 

deformation vector of element a , which consists of the Z-deformations of the three 

subelements 0 ,  s = 1,2,3, due to the basic displacement vector of subelement (?).

(3) When the d o t" .  " is placed as a subscript in the second column of subscript 

and superscript, e.g., Z??, it represents a row vector of the three Z-deformations of 

element (?), Z?J, s = 1,2,3, due to the three basic displacement vectors V“ of the 

subelements 0 ,  s= l,2 ,3 , respectively. Therefore, according to this regulation, the 

notation Z?? stands for the 3x3 matrix of the vectors Z5“, s = 1,2,3, or the three row 

vectors Z??, r = 1,2,3.

2.2 Fundamental Theorems

The basic concepts introduced in the previous section bring to light some 

interesting features of finite element systems. These features are collectively stated in five
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fundamental theorems which constitute a complete set of explicit formulations sufficient 

to carry out the elementary structural variations of Types I, II and m . These theorems 

have been proven in [9] for skeletal structures and are outlined here for reference, and 

their short proofs are also given in the Appendix of this dissertation. The five 

fundamental theorems will be extended to general finite element systems in Chapter 3.

2.2.1 General Identity Relationships in Finite Element Systems

There are three general identity relationships among the quantities described in 

the previous sections for finite element systems. These relationships have been 

established in [9] and stated as three theorems, which are useful for the conventional 

structural analysis as well as for the theory of structural variations.

Theorem 1. The Reciprocal Theorem o f Basic Displacements and Basic Internal Forces: 

In a finite element system, the value of the component V“'r of the basic 

displacement vector V“ at the degree of freedom ('r) is identical to the s* 

component of the basic internal force vector R j  of element a , i.e.,

Vfr=Ffr or V ^ R j .  (2.31)

Theorem 1 indicates that V“ is actually the influence coefficient vector of the 

generalized internal force F“. The physical meaning of Theorem 1 is as follows. If the 

intrinsic load vector P j is applied to the element a, the displacement component at the 

degree of freedom (J) induced by this load will be always numerically equal to the s* 

force component of the element a  induced by a unit-load applied at the degree of 

freedom (f). A pictorial explanation of Theorem 1 is given in Fig. 2.4 where the intrinsic
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Figure 2.4 Pictorial Statement of Theorem 1
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load vectors are applied at element 2 , while the unit-load is placed at degree of freedom 

(,), and the corresponding identities are shown in the middle of the figure.

Therefore, the generalized internal force produced by any external load P  may be 

calculated by

F?=(V?)TP or F“=V“P (2.32)

where V“, 3x3n, is the matrix of the three row vectors (V?)T, s = 1,2,3. Equation (2.32) 

can be extended to the entire structure:

F=V P=W Z (2.33)

where Eq. (2.18) has been used; F, V, Z and W are the collections of F*, V°, Z° and 

W°, respectively, a = 1 , 2 while P is the applied load vector defined in the global 

coordinate system.

Theorem 2. The Explicit Decomposition Theorem on the Inverse o f the Global Stiffness 

Matrix:

The inverse of the global stiffness matrix K of a finite element system can 

be expressed explicitly in terms of the global basic displacement matrix V and the 

global diagonal stiffness modulus matrix W, i.e.,

K_1=V t W_1V. (2.34)

Therefore, the displacement vector D induced by any external load P may be calculated 

by using any of the following four formulas, as a result of Eqs. (2.33) and (2.34),

D=K",P=V t W"1VP=Vt W '1F=V t Z. (2.35)
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Theorem 3. The Reciprocal Substitution Theorem o f Z-deformations:

In  a finite element system, any pair of Z-deformations formed from the basic 

displacements of any two subelements can be substituted one for another via their 

stiffness moduli, i.e.,

W?Z??=W?Z^ or Zf?=Z?fW?/W?. (2.36)

Theorem 3 is found to be helpful for the discussions of the theorems for the 

structural variations.

2.2.2 Theorem and Formulation for Structural Variations of Type I

Theorems 1 and 2 indicate that F and D induced by any external load P  may be 

simply calculated via V, where V is an intrinsic property of the structure and independent 

of external loads. Therefore, it is possible to obtain the modified responses of a loaded 

structural system undergoing the structural variations of Types I, II and m  by modifying 

V alone. This subsection presents the explicit formulation used to modify V when the 

structure undergoes the structural variations of Type I.

Theorem 4. The Theorem on the Structural Variations o f Type I:

The new basic displacements of a finite element system subjected to the 

variation in the stiffness modulus of a subelement (“), W“=W “+AW“, are given by 

t?= V t(l+ m :)/(l+ m ?Z “ ) (2.37)

and

v ? = v f-v :z t? m :/( l+ m ^ rr) , (?)*(?) (2.38)

where m?=AW?/W? is the variation factor of (“); V? and V? stand for the new basic 

displacement vectors of subelements (?) and (?), respectively.
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Note that hereafter all the new quantities after undergoing structural variations 

will be denoted by the original symbol with an additional overhead mark " A

As indicated by Eq. (2.14), the stiffness modulus W“ is a function of the physical 

properties, E, A and I, of the element a. Consequently, all the three subelements of 

element o will be altered if the properties E, A and I of element a  are changed. In this 

case, Theorem 4 can be repeatedly applied three times to complete the variations of Type 

I. Furthermore, setting m“= -l in Eqs. (2.37) and (2.38) implies the removal of the 

subelement (?). Therefore, application of Eqs. (2.37) and (2.38) in conjunction with 

m“= -l for s=  1,2,3 will result in removing the entire element a .

2.2.3 Theorem and Formulation for Structural Variations of Type II

Two types of new elements are considered in the Type II structural variations. 

The first one is called the branching element. This new element is only partially 

connected to the original structure, as shown in fig. 2.5(a). Thus, this element increases 

the number of nodal points of the original structure. The second one is called the 

connecting element, as shown in Fig. 2.5(b), which is completely surrounded by the 

existing structure. Therefore, no new nodes are added to the original structure after 

adding the element a.

In the case of adding a branching element a with the end-nodes i and j, the basic 

displacements associated with the added element a  itself are:

and the basic displacements of element j3 in the original structure will become

V?i=hfTS

0 , k * j

(2.39)

(2.40)
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t&=V?i(G“)T 

V £=V £, k * j

V?i =  [ V?j, V?j, ]
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(2.41)

(2.42)

(2.43)

and likewise for V!i, V?i and others ( see Subsection 2.1.5 ); and

1 0 -Lsinfl 

0 1 Lcosfl 

0  0  1

(2.44)

where L is the length of the element a and 6 the angle between the local coordinate, xl5 

and the global one, Xj.

a )

original
structure

( b )  ,

original
structure

Figure 2.5 (a) Branching Beam Element; (b) Connecting Beam Element

In the case when a connecting element a  ( with the end-nodes i and j ) is added 

to the system, this structural variation can be carried out through the addition of its
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subelements © , s = 1,2,3- The new basic displacement vector is formulated for the new 

subelement ®  as

Note that the difference between Eqs. (2.47) and (2.28) is that the effect of the new 

subelement (“) has not been included in Eq. (2.47), but included in Eq. (2.28).

In short, the theorem pertaining to the structural variations of type II is 

summarized as follows.

Theorem 5. The Theorem on the Structural Variations o f Type II:

When a  branching element is added to a structural system, the basic displace­

ments remain unchanged except for those associated with the new degrees of 

freedom of the new element, Eqs. (2.39)-(2.42); if a connecting subelement is added 

to the structural system, the basic displacements are modified by its auxiliary basic 

displacement vectors, Eqs. (2.45) and (2.46).

(2.45)

and for the subelements in the original structure as 

V ?=V ?-V :Zt?/(l+Z^), (f)^(t) (2.46)

where il* is called the auxiliary basic displacement vector of subelement Q , defined

as

^ ? = K “1PJ=VTW'1VP? (2.47)

and

(2.48)
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2.2.4 Formulations for Structural Variations of Type m

The Type m  structural variations consider the addition as well as the removal of

axial direction t, as shown in Fig. 2.3. The following will discuss them separately.

2.2.4.1 Inserting a Constraint-Subelement / Support-Subelement:

When a constraint-subelement (?) is inserted into a  structural system, the 

basic displacement vector of a subelement (f) of the original system is given as:

which can be readily obtained from Eq. (2.35), while Z??=(E?)TVf, Z??=(E?)TV? and 

Z?S=(E*)T(V y .

2.2.4.2 Removing a Constraint-Subelement / Support-Subelement:

Upon removing a constraint-subelement (?) from a structural system, the new 

basic displacements of a subelement (f) in the original structure becomes:

a constraint-subelement / support-subelement (?) between two nodes R and R' along its

f f = V ? - f ? Z ? f# (2.49a)

or in a 3x3n matrix form

p = \ e .  (Z?f)T(V?)T/Z?? 

where V? is the auxiliary basic displacement vector of (?): 

(2.49b)

(2.50)

(2.51)

where

7 ^ = W ? Z T ? /(£  (T g ^ Z S ? ) (2.52)

T f s  -(hDTl?

R ?=  [ cos0, svad, 0 ]T for a translational (?)

(2.53)

(2.54a)
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or R ?=  [ 0 , 0 ,  1 ]T for a rotational (?) (2.54b)

and, V“ and V? are the original basic displacement vectors of (“) and (?), respectively; 

q is the total number of the elements connected to the support node R; R? is the 

projecting vector and 0 the angle between (?) and X-axis ( see Fig. 2 .3 ); (H | ) 3X3 is the 

partition of H* of element 0, associated with the node R ( see Eq. (2.22) ) and 

Z!?=(H3)TV? is the Z-deformation vector of element /3 from V?.

2.3 Structural Variation Method ( SVM )

Based upon the concepts and theorems introduced in previous sections, an 

innovative method for structural analysis is developed. The analysis procedure of the new 

method may be described as follows. Select an arbitrary element from the structural 

system to be analyzed and fix one of its ends on the ground. This branching element is 

treated as the initial structure whose basic displacements can be found from Eq. (2.39). 

Since elements can be added to the initial structure to build the entire structure of 

interest, Theorem 5 can be repeatedly used allowing to establish the basic displacements 

of the entire structure. Subsequently, the support conditions can be modified as needed 

by using Eqs. (2.49) and (2.51). With V being available for the entire structure, one can 

calculate the F, f“ and D induced by any applied force P  readily from Eqs. (2.33), (2.20) 

and (2.35), without incurring any matrix assembly and inversion. If any structural 

modifications are needed, the corresponding explicit expressions ( Theorems 1 - 5 )  can 

be repeatedly used to generate the new V and, consequently, the new responses are 

obtained without any matrix assembly and inversion, either. Since the new analysis
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procedure is developed based upon the theory of structural variations, it is called the 

structural variation method ( SVM ) hereafter. An illustrative example is given here 

to explain the structural variation method.

Illustrative Example

A simple beam system is shown in Fig. 2.6(d). The beam is descretized into two 

elements and supported at both ends with different boundary conditions. The lengths of 

both elements are L. The rigidities of the two elements are El, and EI2, respectively.

Since the axial degrees of freedom are not involved in the problem calculations, 

they are ignored in the following derivation for simplicity.

With the given data, the subelement vectors and transfer matrices for elements 1 

and 2  are obtained as

e ,= e ,=  [ 1 L/2 -1 L/2 ]T; e^=el= [ 0  -1 0 1 ]T

1 0 1

h ‘= hi =  h2 =

1
ft (N 

1 
^ L/2 - 1

h '

1
<N m

- 1 0

L/2 1

where a line of dots is used to partition the matrix according to h2 and h2. Furthermore, 

the subelement stiffness moduli and the coordinate transformation matrix are obtained as

’ 12EIj
0

"12EI,
0

w != L 3 W2= L 3

0
Eli

*

0
El*

L L
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t j  =  n  = 1 0  

0  1

The structural analysis of the beam structure subjected to p = l  is processed as follows. 

Step 1. Select element 1 as the initial structure, as shown in Fig. 2.6(a), whose basic 

displacement matrix is given by Eq. (2.39) as

- 1  0  

L/2 1

( a )

( b )

( c )

( d )

y

© ©

11 2 3

© © W\

P = 1
l E' l  2 e i 2 3

3  © ©
- —  L — h —  L -

3'

X

Figure 2.6 Structural Variation Process of a Beam System
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Step 2. Add element 2 to the initial structure as a branching element, as shown in Fig. 

2.6(b). The basic displacements of the new element are obtained by using Eqs. (2.40), 

(2.39) and (2.44) as

- 1  0  

L/2 1

1 L 

0  1

whereas the basic displacements of the old element, element 1 , are modified as

VH=vi2(a2)T= - l  o
3L/2 1

Therefore, the basic displacement matrix of the new structure shown in Fig. 2.6(b) is

V =

' - 1  0 - 1 0 ‘

V 1 _ L/2 1 3L/2 1

V 2
0 0 - 1 0

0 0 
node 2

L/2
node 3

1 _

where the line of dots partitions the V matrix into two submatrices corresponding to node 

2 and node 3 as indicated underneath the matrix. The line of dots is used here for 

clarification.

Step 3. Add a support-subelement (*) at node 3 as shown in Fig. 2.6(d) to build the final 

structure. The auxiliary basic displacement vector V * accounting for the insertion of the 

support-subelement can be found by using Theorem 2 as
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-1 L/2 0 0 1 / 1 2 5 0 0 0 -1 0 -1 0

= L3 0 1 0 0 0 1/L25 0 0 L/2 1 3L/2 1

e i2 -1 3L/2 -1 L/2 0 0 1/12 0 0 0 -1 0

1 0 0 1 0 0 0 1/L2 _ 0 0 L/2 1 _

= L 3 * 5 3 7 + ! 3 +
T

6? ’ 2L£’ 35 3 ’ 2L5 2L

where 5=V l2- Therefore, the corresponding Z-deformation, Z ^ , is obtained as

As a result, the new basic displacements for element 1 can be obtained from Eq. (2.49)

Similarly, the basic displacement matrix for element 2 can be obtained as

65
3

2L% 2L

whereas Z*1 and Z™ are obtained as 

Z“ = (E ^ t (V1)t = [ -1, 3L/2 ]

Z“ =(E?)T( V y = [ - l ,  L /2 ].

as

3(3+|)

V‘=V1-(Z»l)T(Vy/Z“ = 1 2L

(1 -5 07 + | ( 2 M )L  (1+40 ; 0
4 4

node 2
4

node 3
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5 9 o 3(3+0
1 2 2L 2L

7+? _5L _9 0 (19+0
4 4 4
node 2 node 3

Thus, the final basic displacement matrix of the structure is

Vfcul = V1

V2 final

= j _  
7+?

.(9 + 2 0
2

9
2L

0 3(3+0
2L

(2 M )L
4

(1+40
4

0 (1 -5 0
4

5
2

9
2L

0 3(3+0
2L

_5L
4

_9
4

0 19+?
4

node 2 node 3

Step 4. Subjected to the load, P =  [ 1, 0, 0, 0 f ,  the generalized internal force vector 

of the structure is given by Eq. (2.33) as

'-(9+20/2  9/2L 0 3(3+?;

F = V P =  J_
7+? 5/2

-5L/4

9/2L 

-9/4 0 19+04

Y '  -9+202 ‘

0 (2?-l)L/4

0 5/2

0 -5L/4

1

7+?

Step 5. The Z-deformation vector Z and the displacement vector D are found by using 

Eqs. (2.33) and (2.35), respectively, as

1/12? 0 0 0

1
1 /VO + to </Y
r to

1

W 'F  =  111 0 1/L2? 0 0 (2?-l)L/4
E^ 0 0 1/12 0 5/2

0 0 0 1/L2 1
1 r; i.
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_ L3
£1 ,(7^)

9+2| 2 |-1
24 4L

5 |
24

- i i
4L

L3
12EIj(7+|)2

21+31|+4f2

-21+39£+6|2

0

(21+66£+9f2)
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Chapter 3

GENERALIZATION OF THE THEORY OF STRUCTURAL 

VARIATIONS TO MULTIDIMENSIONAL FINITE 

ELEMENT SYSTEMS*

In the previous chapter, the concepts and fundamental theorems of TSV have been 

described via the skeletal structures ( 1-D finite element systems). Nevertheless, these 

concepts and theorems are also applicable to multidimensional finite element systems. 

However, in this case, the characteristics of subelements ( subelement vector and 

subelement stiffness modulus) must be reestablished for each specific element model of 

interest. This chapter will discuss how to establish general subelements and show how 

to generalize the formulations of the fundamental theorems to the multidimensional finite 

element models. Only a 2-D constant strain triangular element model in linear isotropic 

elasticity is used as an illustrative example in this chapter. However, the procedure and 

the formulations developed here are extendable to plate, shell elements and other 

multidimensional finite element models, provided their subelements can be clearly 

characterized.

* The contents of this chapter has been presented in [13] and accepted for publication in AIAA Journal.

33
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Note that the formulations of Theorems 1-4 in any finite element system will 

remain the same as those in 1-D systems, because they do not explicitly involve the 

specific features of subelements. However, the formulation of Theorem 5 needs some 

modifications due to the distinct features of each element model under consideration. 

Therefore, the discussion in this chapter will focus on the basic concepts of 2-D 

subelements ( Sections 3.2 and 3.3 ) and the formulation of Theorem 5 for 2-D finite 

element systems ( Section 3 .4 ). This study generates new subelements from an existing 

finite element model, the constant strain triangular element. The basic formulations for 

constant strain triangular element systems are listed in Section 3.1 for a recollection, 

while the detail of description can be found in any text books on the finite element 

method, e.g., [1]. Section 3.5 will give a description of structural variations of Type HI 

in 2-D finite element systems and Section 3.6 will present an illustrative example to show 

how the structural variation method works for multidimensional finite element systems.

The last section of this chapter will provide a general procedure for generating 

subelements and their characteristics from finite element models in general.

3.1 Basic Formulations for Constant Strain 

Triangular Finite Element Systems

Consider a finite element system of n nodes and m triangular elements. Use a, 

& -  to denote the element number and i, j ,  m its vertices as shown in Fig. 3.1. The 

formulations of the finite element method for a typical constant triangular element 

system
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are well-known ( see, e.g., [1] ) :

CXx

i

Figure 3.1 A Triangular Element

« = [  ex ey y ^  ]T=BD 

a = [  ux <ry ]T=Mc 

K“=A tB TMB 

f“=K°D

(3.1)

(3.2)

(3.3)

(3.4)

K = £ K “
a>l

KD =  P

M =

B=

1 V 0

V 1 0 E

0  0
\ - v
2

(1 -^ )

b, 0 bi 0 bm O '

0  c; 0  c, 0  CmID
C; bj Cj ^ c b_m m

j - y » . c;= - Xj +  Xn,

_1_
24

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

where e is the strain vector, a the stress vector, M  the elastic matrix, E the Young’s 

modulus, v the Poisson’s ratio, A the area, f“ the nodal force vector, K° the element 

stiffness matrix, x; and y; the coordinates of the vertices of element a, where i, j  and m 

are in cyclic permutation; K, D and P  are the global stiffness matrix, the nodal 

displacement vector and the applied load vector, respectively. The superscript T stands 

for transpose. The following will introduce the subelements pertaining to constant 

triangular elements.

3.2 2-D Subelements

Introduce an orthogonal matrix Q such that Q’MQ becomes a diagonal matrix. 

For the particular M defined in Eq. (3.7), one has

Q -
1 1 0

1 - 1  0

0 0 2

with which

QTMQ=diag( %E/(l-y), %E/(l+*0, V4E/(l+i»)). 

Then, Eq. (3.3) can be rewritten as 

K“= H “W“(H“)T 

where H“ is the transfer matrix of element a and defined as

(3.10)

(3.11)

Ha=ABtQ 't =  I 
2

b. c. b. c. bm ci i j j m m
b. -c. b. -c. bm -c1 1 J  J O  o

ci b; C: b. Cm bi i j j a o

(3.12)
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Q"’=
1 1 0

1 - 1  0

0  0  1

W“=diag( W?, Wf, W f) =  i Q ^ Q
A

Et
2 A(l-i>)

W ? s  EL
2A(l+jr)

_  Et
2A(1 +v)

Denote each column in H“ by a vector E“ s = 1,2,3: 

E fsV ifb i C; bj Cj bm cm]T 

E f=  V̂ [ b; -C; bj -ctj bm-cm]T 

Ef=V^[ Ci b; cj bj cm bm ]T.

Thus, one has

H“= [ Ef E“ E“ ].

Consequently, Eq. (3.11) yields
3

K“= £  K“
i*i

(3.13)

(3.14)

(3.15a)

(3.15b)

(3.15c)

(3.16)

(3.17)

where the subelement stiffness matrix K“ is given as

K ^ W tE t(E ^ )T, s=  1,2,3. (3.18)

The matrix K“ in Eq. (3.17) may be regarded as the element stiffness matrix of a 

subdivided element ( having the same vertices as the parent element a  ), as has been 

done for beam subelements. Furthermore, the vector, Et, and the parameter, Wt, may 

be identified as the subelement vector and stiffness modulus, respectively.
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Note that the relations between the 2-D triangular element and its subelement 

stiffness matrices defined by Eqs. (3.17) and (3.18), respectively, are identical to those 

for the one-dimensional beam elements. Therefore, many concepts and theorems given 

in the previous chapter for structural variations can be extended here for 2 -dimensional 

triangular elements.

3.3 Generalized Internal Forces, Z-deformations and 

Intrinsic Loads for 2-D Finite Element systems 

The generalized internal force vector, F“, the Z-deformation vector, Z°, and the 

intrinsic load vector, P?, for triangular element systems are defined, respectively, as

F“= [  F“ F | F“ ]T=  tQ a  (3.19)

Za=[ Z? Zf Zf ]T s  (H“)T) (3.20)

P?=W?E?. (3.21)

From Eqs. (3.19), (3.2), (3.1), (3.12), (3.13) and (3.20), one has

F“=  tQ TMBD=W°(H“)TD=W aZa. (3.22)

Therefore, it turns out that W“ is still the coefficient matrix between the generalized 

internal force vector F“ and the Z-deformation vector Za of element a. Furthermore, 

collecting P ,  Za and Wa, for all elements, a = l ,2 , - ,  m, to make their global 

counterparts, denoted by F, Z and W ( diagonal), respectively, one has the same global 

relationship as that for 1-D systems:

F=W Z. (3.23)
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With F“ and Z“ known, from Eqs. (3.19), (3.1) and (3.12), the stress vector a and strain 

vector € are calculated by

o-=Q~1F“/t; f=Q Z7A  (3.24)

The other terms introduced in the theory of structural variations, such as the basic 

displacement vector and the basic internal force vector for 2-D systems, are defined by 

the same way as those in the previous chapter for 1-D systems. To avoid repetition, they 

are not reiterated here.

3.4 Theorem 5 for 2-D Finite Element Systems 

The fundamental theorems described in Chapter 2 for skeletal structures are also 

valid for the general finite element systems. Nevertheless, Theorem 5 needs to be 

modified to account for the specific features of the subelements in use. This section will 

discuss this aspect in detail. The discussion here is applicable to not only the 2-D element 

under consideration but also other types of element models.

Figure 3.2 (a) Branching Element; (b) Connecting Element

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

Theorem 5 deals with the responses of a structural system subjected to the 

structural variations of Type II. This type of structural variations involve two cases as 

have been described in Chapter 2 for 1-D systems. In the first case, a new triangular 

element, say a, branches out from two original nodes i and j, and a new node m is added 

to the structure at the same time; the element added in this way is called the branching 

element as shown in Fig. 3.2(a). In the second case, a new element a  is added to the 

structure by connecting three existing nodes i, j and m without introducing any new node 

as shown in Fig. 3.2(b); this type of element is called the connecting element. In the 

following, formulations will be derived to find the new basic displacement matrix V after 

the structure being added with a branching or a connecting element. To this end, 

however, the concept of constraint-subelement introduced in Subsection 2.2.3 for 1-D 

finite element systems will be extended here for 2-D finite element systems.

3.4.1 Addition of a Branching Element

With the concept of the constraint-subelement described in Subsection 2.1.3, the 

local structure of a hinge joint, say j, can be regarded as a pair of constraint-subelements 

(t), t= l  ( x-direction) and t= 2  ( y-direction), as shown in Fig. 3.3 (a); the nodes R and 

j are actually located at the same point. Thus, a branching element can be treated as the 

combination of a simply supported element a  as shown in Fig. 3.3(b) or (c) and a 

constraint-subelement (?) between R and j with t= l  for Fig. 3.3(b) or t= 2  for Fig. 3.3- 

(c). Therefore, adding a branching element to the system can be carried out through two 

steps. First add a simply supported element a  and then a constraint-subelement (?).
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Step 1: adding a simply supported element

To add a simply supported element to a 2-D system, one should notice two facts 

that every intrinsic load vector P? is a self-equilibrized load set, which may be verified 

directly from the definition (3.21), and that any self-equilibrized load set applied to the 

degrees of freedom of a simply supported element ( the new element added to the 

original system ) produces no displacements at the degrees of freedom of the original 

system. According to these facts, the six degrees of freedom of the simply supported 

element a  may be divided into two groups. For example, based upon the simply 

supported element shown in Fig. 3.3(b), the first group, group A, includes the 

constrained degrees of freedom (J), (D and (j) which are connected to the original system

Figure 3.3 (a) A Pair of Constraint-Subelements Acting as a Hinge;

(b) and (c) Simply Supported Elements

and the second group, group B, (*), (?) and (?) which are the free and new degrees of 

freedom added to the original system. To derive the components of the varied Va 

pertaining to the degrees of freedom of group B, one may first express the nodal force
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vector f“ in terms of the generalized internal force vector F“ by using Eqs. (3.4), (3.11) 

and (3.22):

f“=H°'W<X(H°‘)1D = H “P  (3.25)

or in the partition form,

P =
f°* A H a

= H “F“=
faI B H b

F° (3.26)

where subscripts A and B indicate that the associated quantities are separated according 

to the degrees of freedom in groups A and B, respectively. In fact, for the simply 

supported element shown in Fig. 3.3(b), H* and Hg are defined by Eq. (3.12) as

(3.27a)

while Hg and Hg for the simply supported element shown in Fig. 3.3(c) are written as

b- b. c. fb . b. C.1I l I j j j

H °= 1 
A 2

Cj -Cj bi • TT°= 1> “ B — 
2

b  b  cm m in

3  - ci bj. cm -cm b mid m m

h : = 1

b i b i

1 
_ 

O

’c j " Ci J
?

__
_i

c i b; j H |= ^ bm bm Cm

xT
___

i b i cj_ _Cm " Cm

(3.27b)

Thus, from Eq. (3.26), one has

fg=HgF“. (3.28)

One may apply the unit-load P{ to those degrees of freedom in group B, which may be

regarded as fg in Eq. (3.28). Consequently, F“ in Eq. (3.28) is equal to as defined

in Subsection 2.2.4, i.e.,

P ^ H g F ^  , for (|) €  B (3.29)
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where B represents the group B of degrees of freedom. Collectively, Eq. (3.29) can be 

expressed in a matrix form as

where I  is a 3x3 unit matrix and R ?  stands for the 3x3 matrix of the three basic internal 

force vectors R j  induced by the three Pj applied at (!)=(?), (?) and (?) individually. 

According to Theorem 1, the desired basic displacement components pertaining to the 

degrees of freedom in group B of the element a, denoted by V??, are identical to those 

in R?. Therefore, V?? can be obtained from Eq. (3.29) as (H£)-1,

Similarly, for the case of the simply supported element shown in Fig. 3.3(c), group B 

consists of degrees of freedom (*), (?) and (?), and

Next, one can proceed to derive the new basic displacement matrix V0 associated 

with the original structure after the simply supported element a  being added to it. Before 

doing so, however, it is worthwhile mentioning that the displacements of the modified 

structure induced by any load applied to the original structure remain the same as those

I=H gR ? (3.30)

(bm+c£) , -(bjbm+cjcm) , 2A

(3.31)

- ( b ^ c l ) ,  2 A , (bjbm+cjcm)

(3.32)
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of the original structure. Thus, the modified basic displacement vector, of any original

subelement (f), is identical to V? of the original structure. Furthermore, the simply 

supported element a  is subjected to no deformation if the external force applies at the 

original degrees of freedom of the system, because the nodal forces at the degrees of 

freedom of group B are zero. Consequently, Za=(H°)TD=0 as indicated by Eq. (3.24). 

Therefore, (h » T )a+ (h s T )b= o> where DA and DB are the displacement components at 

degrees of freedom of groups A and B, respectively. Thus, one has

DB= - (H g ) -W fc A=«°DA (3-33)

where for the case of Fig. 3.3(b), fl“ is obtained as

0 “=-(HS)-t (H3 t =  1 c b- -b.m j j
0  -c, -c.

(3.34)

whereas for the case of Fig. 3.3(c), fl“ is given as

1F = _ L

-c b cm m m

-b; 0  -b.

cj b „  -C;
m  J

(3.35)

Equation (3.33) can also be represented as

(Db)t=(Da) W  (3.36)

which relates any displacements pertaining to the degrees of freedom in group B to those 

in group A. Therefore, the new components of V? at the degrees of freedom of group 

B, denoted by Vf?, a 1x3 matrix, can be obtained by using Eq. (3.36) as

V??=V^(Q“)T, 0 * a ,  r=  1,2,3 (3.37)
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where V ^, a 1x3 matrix, is a row vector of the original components of V? at the degrees 

of freedom of group A. Collecting the three row vector equations (3.37) for element j8 , 

one has

t£ = V ^ (Q “)T , (3.38)

where ^5? and V ft  are the matrices of the three row vectors and r=  1,2,3, 

respectively.

Step 2: inserting a constraint-subelement

To continue the derivation of adding a 2-D branching element to a structure, a 

constraint-subelement (?) should be inserted between the node R of the simply supported 

element a  and the node j of the original structure in x-direction ( Fig. 3.3(b)), or in y- 

direction ( Fig. 3 .3(c)). The procedure of adding a constraint-subelement has been 

discussed in Subsection 2.2.4 and Eq. (2.49) therein is also applicable for 2-D systems 

of concern.

3.4.2 Addition of a Connecting Element

When a connecting element a  is added to the system, no new nodes are created. 

Therefore, the formulas derived in Eqs. (2.45) and (2.46) can be directly applied here 

to derive the new basic displacements by adding one subelement at a time to the 

structure.

As a conclusion, the derivation given in this section can be summarized in the 

following theorem.

Theorem 5. The Theorem on the Structural Variations o f Type II ( for 2-D finite 

element systems):
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When a simply supported element is added to a system, the basic displace­

ments of the original structure remain unchanged. However, the additional 

components, Eqs. (3.36) and (3.31) or (3.32), corresponding to the new degrees of 

freedom should be added to the original ones. If a constraint-subelement or a con­

necting subelement is inserted among the original nodes, the basic displacement 

vectors can be determined or modified by the Eqs. (2.45), (2.46) and (2.49).

The Type in  structural variations in a 2-D system have also two cases to be 

considered. The first case is to insert a constraint-subelement / support-subelement, 

symbolized by (?), between two nodes R and R' of the system along its axial direction 

t, as shown in Fig. 2.3. Equation (2.49) derived in Subsection 2.2.3 can be directly 

applied to 2-D systems without modification.

The second case is to remove an existing support-subelement (?) from the system; 

the corresponding formulation, Eq. (2.51), is still applicable, but modifications are 

needed to obtain the new coefficient 17??.

Upon removing a support-subelement (?) from the system, the basic dis­

placements of a subelement (?) will become

3.5 Structural Variations of Type HI in 2-D Systems

(3.39)

where

i/i»s w jz ?? / ( £  ( r y w 'z s ? ) (3.40)

T?= -flE©1*? (3.41)
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R ?= [ cosfl, sin0  ]T (3.42)

where V“ and V* are the original basic displacement vectors of (?) and (?), respectively; 

q is the total number of the elements around the support node R; 6 is the angle between 

(?) and x-axis ( Fig. 2 .3 ); ( Hf ^  is the partition of IF3 corresponding to the node R, 

and Z£?=(H*)TV? the Z-deformation vector of element /? from V?. Equation (3.39) is 

quite general and can be applied to any finite element system. The proof of Eq. (3.39) 

is detailed in Appendix.

A plane stress problem with two constant strain triangles, shown in Fig. 3.4(c), 

has the following properties, E=1.0, v=0.3 and t=1.0. The problem is to find the 

stresses a and the displacements D induced by the load P given in Fig. 3.4(c). Based 

upon the given information, one has the initial data: ^ = - 1 , b2= l ,  b3= 0 , ^ = - 1 , 

C2 = 0 , C3 = l  and A=0.5 for element 1; and b3= —1, b2=0, b4 = l ,  C3 = 0 , C2= - l ,  c4= l  

and A =0.5 for element 2. Furthermore, W1= W2 =diag( 10/7, 10/13, 10/13). The 

solution procedure is listed as follows.

3.6 Illustrative Example of a 2-D Problem

CaD

Figure 3.4 Structural Variation Process of a Finite Element System
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Step 1. Assume that the initial structure is made of element 1 which is simply supported 

at points 1 and 2 ( Fig. 3.4(a)). The degrees of freedom of group B are (J), (?) and d) 

for element 1. Substituting the related data of element 1 into Eq. (3.31) yields

V‘=

1

3
.

 ̂
i

1 0 : 0  1

(vS)T --
1 0 = 0  - 1

(vS)T 0 0

oCN

Lm J node 2 node 3

Note that the components of V associated with node 1 are all zero. Hence, they are 

ignored in the V matrix.

Step 2. Add the simply supported element 2 to the initial structure, as shown in Fig. 

3.4(b), where the double circles surrounding the node R indicate that the node R is free 

in x-direction. The degrees of freedom in group A are (?), (?) and (?) in this case, while 

those in group B are (*), (?) and (?). Equation (3.36) provides a means to establish the 

basic displacements accounting for the new element, element 2 .

0 1 : 0 1 1 0

1
1 o

 

° 
1

V i? = V i^ (« 1)T= 0  -1  i 0 - 1 0  0 = 1 : 0 0

2 0  : 0_ _ 1 0 1_ 2 : 2 0

node 3 © (?) node 4

v??=
2
0

-2

(?)

1 1 

1 - 1

0 °.
node 4

where the matrix ft1 is given by Eq. (3.34) as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



49

C4 -b4 b4" 1 - 1 1

c4 b2 -b2 = 1 0 0

0"11O
 

___
1

0 0 1

Thus, the basic displacement matrix V of the structural system in Fig. 3.4(b) is

- 1 1 ,  0 0 ,  1 0 ,  0

1 1 , 0 0 , - 1
OO

2

ONO

to 0 2 ,  0

2

O*O 00

1 ,  1
0

O**
O 00

1 , - 1
- 2

OO 00 OO

(?) node 2 node 3 node 4

Step 3. Construct V of a new structure with the constraint-subelement (?) being inserted 

between nodes R and 2 in x-direction. First, a pair of unit forces, E?=[ -1,1 ]T are 

applied at (?) and (?) ( Fig. 3.4(b) ) to calculate the corresponding auxiliary basic 

displacement vector^? by using Eq. (2.35): t r?=VTW"1VE?=[-14.16 : 1.4,0.0 : -5.2, 

1.4 : -6 .6 , -1.4 ]T which implies Z??=(E?)TV?=(-l)x(-14.6)+lx(1.4)=16. Next, use 

Eq. (2.26) to calculate Z?f from V? for every (?) needed in Eq. (2.49); they are [ 2 ,0 , - 

2, -2 ,0 ,2  ]. Finally, Eq. (2.49) is evaluated for the final basic displacement matrix of the 

desired system ( Fig. 3.4(c)):

. 8 2 5 , 0 : . 6 5 , . 8 2 5 : . 8 2 5 , . 1 7 5

1 . 0 , 0 : 0 , - 1 . 0 : 0 , 0
. 1 7 5 , 0 : 1 . 3 5 , . 1 7 5 : 1 . 1 7 5 , - . 1 7 5

. 1 7 5 , 0 : - . 6 5 , . 1 7 5 : . 1 7 5 , . 8 2 5

0 , 0 : 0 , 0 : 1 . 0 , - 1 . 0

- . 1 7 5 , 0 : . 6 5 ,  - . 1 7 5 : . 8 2 5 , . 1 7 5
node 2 node 3 node 4
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Step 4. Obtain <r and D for the structure subjected to the load, P = [ 0 .5 ,0 .5  ]T, applied 

at (2) and (£). The generalized internal forces are first obtained by using Eq. (2.35) as 

F = V P = [ 0.5, -0.5, 0.0 : 0.5, -0.5, 0.0 ]T.
element 1 element 2

The stresses in elements 1 and 2 are then calculated separately based on Eq. (3.24) as

1 1 0 0 . 5 ' o'
ff1=Q“1F 1/t= 1 - 1 0 - 0 . 5 = 1

0 0 1 0 . 0 . 0 .

o2=Q"1F2/t= [  0, 1, 0 ]T.

Finally, the displacements of the structure are obtained as 

D =V TW"1F = [ -0.3, 0.0 : 0.0, 1.0 i -0.3, 1.0 ]T.
node 2 node 3 node 4

3.7 The General Procedure of Generating Subelements for 

Multidimensional Finite Element Systems 

The theorems and formulations presented in the previous sections can be easily 

generalized for finite element models in general, provided that their element stiffness 

matrix Ka can be expressed as the contribution of subelement stiffness matrices K“. 

However, the subelements generated from different element models will have different 

values of E t and W?. In the following, a general procedure will be given for generating 

the subelements from any element model whose element stiffness matrix is expressed as 

Ka=  j 0 BTMBdfi, where Q is the element volume and the elastic matrix M  is symmetric 

and positive definite. By using the dimensionless local coordinates [1], K° may be 

expressed as
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Ka= j j j iB1MBdet(J)d|dijdf (3.43)

where det(J) is the determinant of Jacobian matrix J . The matrix K“ can also be evaluat­

ed by Gauss quadrature with N points in the sum of several constant matrixes:

K“= |; E E H iHjHn ( BTMBdet(J)) \W a  (3.44)

where H;, Hj and H,,, are the Gaussian weight coefficients and ( ) indicates that 

the bracketed quantity is evaluated at the Gaussian point (&, ijj, f j .  For simplicity, let 

k ^ B ^ M B  represent the general term of the constant matrices ( evaluated at a Gaussian 

point) in Eq. (3.44), where <f> stands for a scaler factor. Since M  is symmetric and 

positive definite, there exists an orthogonal matrix Q of the same dimension as that of 

M, making Q’MQ diagonal [14]. Therefore, one can rewrite the k  as a product of H and 

diagonal matrix W:

k=(/)BTM B= (BTQ-T)(<^Q^V1Q)(CT1B) =HWHT (3.45)

where

H = B tQ"t = [  E j_ ] (3.46)

W = = diag( W„ W2,~ ,W ,) (3.47)

where q is the rank of M. Thus, the subelement stiffness matrix k, is defined as

k,=W ,E,(EJT s = 1,2,—, q (3.48)

then, one has

k = £ k ,  (3.49)
s-1

where W, is a diagonal element of W, serving as the subelement stiffness modulus, and 

E, is a column vector of H, serving as the subelement vector. However, the expression 

(3.48) represents only one term in Eq. (3.44), corresponding to one Gaussian point.
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More specifically, this term may be denoted as (kf)ijm, where ijm corresponds to the 

Consequently, the K° of a finite element model can be expressed in terms of 

subelement stiffness matrices as

(3.50)
N N N q

K#= E E E E ^ i -
m«l j» l i«l »»1

It should be noted that the matrix Q plays a very important role in constructing the 

subelements.

The matrix Q for an isotropic and homogeneous solid can be expressed as

Q=

l / v / 3 1 / a/ 2 - 1 / a/ 6 0 0 0

1 / a/ 3 - l / v / 2 - l / v / 6 0 0 0

1 / a/ 3 0 2 / a/ 6 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

(3.51)

while the corresponding M is given as

M =
(1 + v ) ( l - 2 v )

1 Y Y 0 0

y 1  y 0  0

Y y 1  0  0

0 0 0 8 0
0 0 0 0 8
0  0  0  0  0

(3.52)

where y=v/(l-v) and 8 = (l-2 j>)/(2 (l-y)).
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Chapter 4

EXPLICIT FORMULATIONS FOR DESIGN SENSITIVITIES 

IN STATIC ANALYSISt

4.1 Introduction

There are many publications, e.g., [16] and [17], on structural design sensitivity 

analysis. In those works, sensitivity derivations are obtained by solving linear 

simultaneous equations. This chapter, however, will derive a set of explicit formulations 

for the static design sensitivities of displacements, internal forces and stresses. There is 

no need to assemble and solve simultaneous equations in these formulations. These 

formulations are derived based upon a new theorem, the Gradient Orthogonality Theorem 

which will be proved in Section 2.4.

Assume that the finite element equation of a structural system is

K(b)D(b)=P(b) (4.1)

and the performance function to be differentiated is given as

=lW b, D(b)) (4.2)

where b is the design variable vector, K the global stiffness matrix, D the nodal

t  The contents of this chapter has been presented in [15],

53
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displacement vector and P the external nodal load vector. The sensitivity of ^  to b is

calculated by the chain rule as

d^ _ dD ( 4  3 )
db 3b 3 D d b ‘

Note that in this dissertation the derivatives with respect to a vector are defined the same 

way as those in Appendix 1 of [16].

The derivatives dD/db in Eq. (4.3) can be obtained by the following equation, 

which is obtained by differentiating Eq. (4.1):

K dD  = _ d K D+^ -
db db db

However, the new concepts and theorems of structural variations introduce an interesting 

intrinsic property of finite element systems, i.e., the Gradient Orthogonality Theorem of 

Basic Displacements, based on which the explicit formulations for sensitivity analysis can 

be derived. The beam element and the constant strain triangular element will be used as 

samples to facilitate the discussion and derivation. The resultant formulations, however, 

can be extended to other finite element models.

Assume that a finite element system of plane beams or constant strain triangular 

elements has n nodes and m elements. According to the theory of structural variations, 

each element a  has three subelements, (“), s= l,2 ,3 , and each subelement has a stiffness 

modulus, W“. To obtain the explicit formulation of dD/db in Eq. (4.3), one can define 

a vector w representing all the subelement stiffness moduli:

w = [  W{, W2, - ,  W3 ]T. (4.4)
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The design variable vector b may be taken as either the sizes or the material properties

of the elements. In this case, the theory of structural variations has shown that w is a

function of b. Thus, the sensitivity can be obtained through w as

A  = y y  d dW° (4.5)
db 3 W“ db

where d W , , a = l ,  2 ,-,m  and s = 1,2,3, are known ( see Eqs. (2.8) and (3.14), or 
db

Eq. (2-10) in [9 ]). Therefore, the sensitivity problem now focuses on how to obtain

Since the displacement vector D is expressed explicitly in terms of the basic

displacement matrix V ( see Eq. (2.35)):

D =V TW 1VP (4.6)

3D 9Vone can explicitly formulate ------ , i f -------  is known explicitly. Consequently, the
aw ; aw?

3Vderivation will start with how to f in d  , which is the main objective of the
aw ;

following theorem.

4.2 The Gradient Orthogonality Theorem of Basic Displacements

For convenience, use matrix C to represent Kronecker 8: 

c  =  [C$ 3,0X30. (4.7)

where Cft= 1, if © =(?) or CfT= 0, if (f) & (?), in which (f) and (?) represent the subele­

ments of elements a  and /?, respectively, s and r=  1,2,3. An additional symbol C £ 

denotes the 1x3m row vector corresponding to (?) in the matrix C,

Coe9 —  r p « l  p a l  p a a  p kan  *i
*♦ — L '-'•I* ^ i2 )  *“ > ^ * i )  "*) '-'*3 J

= [ 0, 0 , - ,  1 , •••, 0 ]. (4.8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



56

By using this notation, one can easily prove the following simple relationships:

Cf.W=W^C“: (4.9a)

C f.W ^ C ^ /W ?  (4.9b)

3W  =(Cf.)TCf. (4.10a)
aw 5“ 
a w -1 =-(Cf.)TC?J(W? )2 (4.10b)
aw,°

v T(croT= v t  (4 .ii)

where the diagonal matrix W is the global stiffness modulus matrix. Note that the vector

w in Eq. (4.4) is different from W. Furthermore, the vector V“ in Eq. (4.11) is the basic

displacement vector of subelement (f), which stands as a row vector in V, corresponding

to (“) and defined in Eq. (2.28) as

V“= K _1P? (4.12)

where P? is the intrinsic load vector of subelement (“):

P?=W?E“ (4.13)

and E“ is the subelement vector of subelement (“). The detailed definitions of V“ and P?

have been given in Chapters 2 and 3.
a y

Next, to fin d  , one can use the definition of derivatives and Theorem 4
dw;

given in Chapter 2 to obtain

-£Zl = [ fVf-Vf)/AWr ] w h e n © * ©
3W“

= -{  VTZT?m?/[ (l+m ?Z~)AW ? ] }  |AW>̂

=-VtZtf/W “
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where m“=AW“/W“ and goes to zero as AW?, the variation of W?, goes to zero; V?

denotes the new basic displacement vector of subelement (?) of the modified structure

whose subelement (?) takes a new stiffness modulus as W?+AW?, and Z fr is the Z-

deformation of subelement (?), induced by V? as

Z ^ = (E 0 TVf. (4.14)

In terms of matrix C, the derivative of V? can be rewritten as 

a
—  =V?(C??-Z??)/W?. (4.15)
aw?

It is easy to verify that Eq. (4.15) is also valid for the case when (?)=(?) by repeating

the same deriving procedure as has been done for the case when (?) ̂  (?). Collecting the

expressions of Eq. (4.15) for all the subelements /3= l,2 ,-,m  and r=l ,2 ,3 ,  yields

— =V?(C?I-Z?:)/W? (4.16)
3W?

or

av = [(C 3 t-(Z?:)t](V?)t/W? (4.17)
aw?

where Z f. represents the row vector of Z-deformations of subelement (?), which is a 

product of E? and V:

Z f .= [  Z?|, Z%  ~, Z?? ] =(E?)TVT. (4.18)

a vThe gradient of the basic displacements  has an inherent property, being stated m
aw?

the following theorem.

Theorem 6 . Gradient Orthogonality Theorem o f Basic Displacements’.

The gradient of the basic displacement matrix V of a structural system with 

respect to any of its subelement stiffness modulus W? is orthogonal to the matrix V
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itself with respect to the inverse of its global stiffness modulus matrix W ( diagonal 

), i.e.,

I H w 'Y s O. (4.19)
a w f

Proof.

From Eqs. (4.16), (4.18), (4.9b) and noting Eqs. (4.11)-(4.13), one has

i X I w t y  = v :(c t:-z r.)w -iv /w t 
aw r

=VtCt:V/(Wt)2-V“(Et)TVTW-IY/W“

= \ m v m 2- v m TK lm 2

= v t(v r)T/(wr)2-vr(v:)T/(W“) 2

where Theorem 2 in Chapter 2 has been used, i.e.,

K '1=VTW'1V. (4.20)

90

90

Figure 4.1 Geometrical Interpretation of the Gradient Orthogonality Theorem 

By manipulating Eq. (4.19) one can have another form of the theorem, which interprets 

Eq. (4.19) in terms of forces and deformations.
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The global Z-deformation vector is always normal to the hyperplane, II, 

formed by the gradients of the basic internal forces of a structural system with 

respect to the design variables, i.e.,

where FIJ represents the global basic internal force vector induced by the unit-load vector 

p{ applied at the DOF ({) and Z i s  the corresponding global Z-deformation vector. The 

theorem has a geometrical interpretation as shown in Fig. 4.1, where Z stands for the 

global Z-deformation vector.

Premultiplying and postmultiplying Eq. (4.19) by (P')T and by P |, respectively,

yield

Since P*r is a unit-load vector acting at the degree of freedom ({), the multiplication, VP{, 

gives a vector of the entire components of V at ({). And according to Theorem 1 ( see 

Chapter 2 ), this vector is the global basic internal force vector K'r. The theory of 

structural variations has shown that the basic internal forces and the Z-deformations are 

related ( see Eq. (2.33)) by

( )Tz:;=o (4.21)
db

Proof.

3 (Vp/r)T W 'V P^O . (4.22)

(4.23)

Therefore, one has from Eq. (4.22)

(4.24)
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Premultiplying the above equation by (dw?/db)T and summing it for all the subelements 

yield the conclusion, Eq. (4.21):

£ £  >T z : '  = ( d F  '  f z : ; = o .  (4 .25)
«.1 1 aw,“ db db

If an external load P is independent of the design variable vector b, the

orthogonality relationship still holds true for F  and Z induced by P, i.e.,

( f E ) TZ = 0  (4.26)
db

which can be proven by the same procedure as the one derived above.

4.3 Explicit Formulations for Design Sensitivities 

Based on the Gradient Orthogonality Theorem, one can establish a set of explicit 

formulations for sensitivity analysis to be discussed below.

4.3.1 Explicit Formulation for Design Sensitivity of Inverse Matrix K' 1

The derivative of the inverse matrix K ’1 of the global stiffness matrix K  with 

respect to the stiffness modulus W“ of any subelement (“) is formulated as

O U tl =-V?(V“)T/(W“)2. (4.27)
a w r

Proof.

By taking derivative of Eq. (4.20) with respect to W“ and noting Eqs. (4.19), 

(4.10b) and (4.11), one has

( V^vV-'V)3K -1 _  a
a w “ aw,“
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_  3V T ^ y - l y _ ^ . y T  3 W  1 y _ |_  y T y y - l  dV
3w “ a w ;  a w ;

= -v T(C^)Tc ^ v /(w r ) 2

= -v :(vt)t/(wt)2.

4.3.2 Explicit Fonnulation for Design Sensitivity of Displacement Vector D

First, consider dD/dW“. From Eqs. (4.1), (4.20) and (4.27), one has 

dD d
aw ; aw,a(K'*P)

a K "1 p + K ’1 9P
a w ; a w ;  

= -v :(v :)t p/(W“)2 + k -1

r)P= -v :z : /w :+ v Tw -iv . o raw ;

where Z; is the Z-deformation induced by the external load P, i.e., Z;=(V^)TPAV“. 

Using Eq. (4.5) and above expression yields

—  = [ - f f  ( VJZJ/W;+VTW ‘V —  ) ] d w »°
db a w ; ~ d T

or rewriting it in the matrix form, one has the final formulation :

dD = y Tw-1( .z #dW  + y  dP ) (4.28)
db db db

where

Z ^diag(Z t), (;)= (}),© ,-,(?). (4.29)
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4.3.3 Explicit Formulation for Design Sensitivity of Generalized 

Internal Force Vector F

In the theory of structural variations, the element internal forces or stresses are 

calculated via the generalized internal forces F, while F  is explicitly formulated through 

V (Eq . (2 .33 ) ) :

F=VP. (4.30)

Note that for a skeletal structure, F, called the mid-section internal force vector, 

is the global internal force vector at the middle-span sections of the beam elements which 

was denoted by F in [9].

The derivative of F with respect to W“ can be derived from Eqs. (4.30) and 

(4.17) as

3F -  9  -(VP)
aw; aw?

=(—  )P + v . ap
aw; awr

3P=[(ct:)T-(z^)T](vr)Tp/w“ +v

= [(C£)T-(Z£)T]Z“+ v

aw; 

ap
aw;

Using Eq. (4.5) yields

or

dF =  y  y  [(C^)T-(Z ^ )T)Z;+V  — ] dW “ 
db h k  aw; ~w

=[ I - ZT ]Z#d^  +V  d£ (4.31)
db db db
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where I, 3mx3m, is a unit-matrix and Z, 3mx3m, is the global Z-deformation matrix 

pertaining to all the subelements of the system:

Z = [ Z ^ ] = H ¥  (4.32)

where

ZtfsCESfV? (4.33)

and H is the global transfer matrix of the system:

H = [ E i ,E j ,~ ,E ? ] .  (4.34)

4.3.4 Explicit Formulation for Design Sensitivity of Stresses in a Triangular 

Element

Equation (4.31) is general and applicable to any finite element models. However,

the relationship between F and a differs from one element model to another one.

Considering a constant strain triangular element of an isotropic material, Eqs. (3.24) and

(2.32) have shown that

(4.35)

where t is the thickness of element a , and

F“=V°P (4.36)

where F“, 3x1, is the generalized internal force vector of element a, i.e., a subset of F, 

and (V“)3:i2n the basic displacement matrix of element a, a subset of V, while Q in this 

case is a matrix:

1 1 0 1 1 o'
Q = i 1 -1 0 Q*= 1 -1 0

2
0 0 2 0 0 1

(4.37)
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Thus, the sensitivity of element stresses a can be obtained from Eqs. (4.35), (4.36) and

(4.31):

—  = JL (1 Q̂F0)
db db t

=  J. Q ' 1 ^  - J_Q ' F* dt 
t db t 2 db

= { t(c:?)T-(z:?)T]z# dw . f  dt_ +v« dP j (4 38)
t db t db db

where Cl?, 3mx3, stands for a portion of C and ZI?, 3mx3, a portion of Z, which 

correspond to subelements © , s= l,2 ,3 , of element a.

Thus, one can directly obtain the sensitivities of K*1, D, F  and a from the explicit 

formulations, Eqs. (4.27), (4.28), (4.31) and (4.38), respectively, provided that V is 

obtained by the SVM, which requires neither assembling nor solving simultaneous equa­

tions.

4.4 The Evaluation Theorem of Principal Z-Deformations in 

Static Systems

In Chapter 2, a question has been left open to be clarified: whether the term 

(l+ m “Z^t) can become zero. If so, and Z“  could not be determined by Eqs. (2.37) 

and (2.38). Fortunately, it can be proven that the principal Z-deformation, Z„, has a 

finite value for all W“, 0< W “< oo. This observation represents an important feature of 

finite element systems, being stated as the following theorem.
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Note: to simplify the notations, from  now on the superscripts in Greek o f any key 

symbol will be dropped, e.g ., Ws will be simplified asW s,Z £ a s  Za and so on so forth, 

where the element number a is dropped and the subscript s is regarded as a subelement 

number in the global order. Nevertheless, when the element number becomes important, 

its superscript a in the notation will be restored as before.

Theorem 7. The Evaluation Theorem o f Principal Z-Deformations ( static systems ): 

In  a finite element system, the principal Z-deformation Z„ of any subelement 

s is subject to

0 <  Z„ <  1 (4.49)

and varies monotonously with W„ i.e.,

^  >  0, for all W, >  0 . (4.50)
dW,

Proof.

By the definition of Z-deformations and the Explicit Decomposition Theorem on 

the inverse of the global stiffness matrix one has 

Z„ =(EJTVS 

=(ES)TK'1P„

= (E /V TW-1VE,W,

=  £ ( Z J 2WS/Wr
r-1 p 

= (Z J 2 +  £ ( Z 5r)2W,/Wr, ( r * s )
r=l

= (Z J 2 +  S >  0 (4.51)

where p is the total number of subelements and S stands for the sum, i.e.,
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s = £ ( z Ij 2w ;w r >0, r^s. (4.52)

Thus, from Eq. (4.51) one has 

(Z J 2 - Z„ +  S = 0

from which one further has

Z„ =  % (1  ±V r = 4 S "  )• (4.53)

Since Z„ is a positive real number due to Eq. (4.51), S must be subjected to

0 <  S <  1  (4.54)
4

which implies 0 <  Z„ <  1. Thus, with Eqs. (4.53) and (4.54) one arrives at the 

conclusion (4.49). To prove the second part of the theorem, Eq. (4.50), one should take 

advantage of Eq. (2.37) of Chapter 2, from which one has the varied Z-deformation due 

to AW, as

Z„=Z„( W“+AWJ

(4.55)

By the definition of derivatives and Eq. (4.55), one has

=lim ( (,Z?(1* ..- j - Z„ )/(m,WJ ) |
1 -i.m  7  •1+m^ u

=  Z „(1-Z J/W ,.

Thus, Eqs. (4.49) and (4.56) lead to the conclusion (4.50).

(4.56)
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This theorem is illustrated in Fig. 4.2, in which Z and W represent any principal 

Z-deformation and the corresponding stiffness modulus, respectively. From Eq. (4.49) 

and Fig. 4.2, one can see that the principal Z-deformation, Z“ , of a real subelement Q , 

whose stiffness modulus is subject to 0 <  W“ <  oo, must be limited to 0 <  Z“  <  1. 

And with the variation factor m“ >  -1, the term (1+m tZ^) never becomes zero.

Figure 4.2 Limits and Monotonousness of Principal Z-deformations in Static Systems

4.5 Illustrative Example 

A square plate with an edge length L=1.0, Young’s modulus E=1.0, Poisson’s 

ratio v=0 . 3  and thickness t=  1 .0 , is discretized into two triangular elements as shown 

in Fig. 4.3. It has been analyzed by using SVM in Chapter 3 and its V, F and D have 

been obtained as

F=[0.5, -0.5, 0.0 i 0.5, -0.5, 0.0]T
element 1 element 2
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D = [ -0.3, 0.0 i 0.0, 1.0 : -0.3, 1.0 ]
node 2 node 3 node 4

.825, 0 : .65,

(Soo .825, .175

1 .0 , 0 : o, - 1 .0 : 0, 0

.175, 0 : 1.35, .175: 1.175, -.175

.175, 0 : -.65, .175: .175, .825

0, 0 : 0 , 0 : 1 .0 , - 1 .0

-.175, 0 : .65, - .175: .825, .175

node 2 node 3 node 4

Figure 4.3 A Triangular Finite Element System

Now, find i®  by using Eq. (4.28), where b = [  t1( ]T; U and tj are the thicknesses
db

of elements 1 and 2, respectively, and t1=t2 =1.0 at the current design. From the same 

example given in Subsection 3.6 of Chapter 3, one has already had the initial data:

.5 .5 0 0 0 -.5

0 0 .5 -.5 .5 0

0 0 .5 -.5 -.5 0

.5 -.5 0 0 0 -.5

0 0 0 .5 .5 .5

0 0 0 .5 -.5 .5
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where the components of H  at node 1 have been dropped in the purpose of calculating 

ITVT.

1 f 10 1 0 1 0 1 0 1 0  1 0

I 7 13 13 7 13 13

) 1 0 1 0 1 0 1 0 1 0
T

13 13 7 13 13

1 0 1 0 1 0
0 0 0

7 13 13

0 0 0
1 0 1 0 1 0

7 13 13

dw _  
db

d£ = 0
db

Z = W 1F = [ .35, -.65, 0, .35, -.65, 0 ]T 

Z#=diag( .35, -.65, 0, .35, -.65, 0 ). 

Substituting them into Eq. (4.28) yields

dD =-VTW'*Z# =
db db

.36125,

0 ,
.22750,

.93875,

.28875,

.06125,

-.06125

0

.22750

-.06125

.58875

-.93875

One can see that the result for f®  is the exact derivative for this simple example,
db

without rounded error.
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One may be interested in verification of the orthogonality, Eq. (4.26 ), by 

employing the above example. From the above obtained information, one has

Z = H TVT=

Then, Eq. (4.31) gi

.8255, 0 , .175,

0 , 1 , 0 ,
.325, 0 , .675,

.175, 0 , -.175,

0 , 0 , 0 ,
-.175, 0 , .325,

.175, 0 , -.175

0 , 0 , 0

-.325, 0 , .325

.825, 0 , .175

0 , 1 , 0

.175, 0 , .675

=[I- 7.T]7.# dw = 
db db

.0875, -.0875

0 , 0

-.0875, .0875

-.0875, .0875

0 , 0

.0875, -.0875

Therefore, the product of ^  and Z is obtained as
db

(iE )Tz=
db

.0875, 0, -.0875, -.0875, 0, .0875 

-.0875 , 0, .0875, .0875 , 0, -.0875

'  .35 

-.65 

0  

.35 

-.65 

0

0

0
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Chapter 5

VIBRATION ANALYSIS USING THE THEORY 

OF STRUCTURAL VARIATIONS*

5.1 Introduction

This chapter will present a new method based upon the theory of structural 

variations for calculating eigenvalues and eigenvectors ( eigenpairs ) of finite element 

systems in solid mechanics. For convenience, this method is called the Z-deformation 

method.

Although there exist a number of methods [19]-[21] for computing eigenpairs of 

finite element systems, some questions still remain to be investigated. For example, one 

of the most commonly used methods to solve a few lowest eigenpairs of structural 

systems is the inverse power iteration method. However, the convergence rate of the 

inverse power method [19] strongly depends on the closeness of the adjacent eigenvalues 

and the initial guess for the eigenvector. Even with the shifting technique, this method 

still performs very poorly in terms of accuracy and efficiency when the adjacent eigen­

values are very close.

* The contents of this chapter has been presented in [18].
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The proposed Z-deformation method is not an iteration method but a procedure 

of successive advances. This method can provide as many eigenpairs as needed just like 

the inverse power method, however, without the shortcomings mentioned above.

The new method is based on an interesting and useful property of finite element 

systems, which is stated as the Monotonousness Theorem of Principal Z-deformations 

and will be proven in this chapter by using the theory of structural variations established 

in the previous chapters. The so-called Z-deformation is a technical term defined in 

Section 2.1 of Chapter 2 and Section 3.3 of Chapter 3, representing a sort of generalized 

deformations of an element. The Z-deformations discussed in the previous chapters are 

about the structural systems with positive stiffness moduli. However, to extend the initial 

theory of structural variations to include vibration analysis, the concept of the negative 

stiffness of subelements has to be introduced into the system. The subelement with 

negative stiffness will be called the mass-subelement which is related to the inertial 

properties of the system.

5.2 Mass-Subelements

Suppose that an eigensystem is described by

( K - XM )D =0 (5.1)

where M  is the mass matrix ( symmetric ), D the nodal displacement vector and X the 

parameter to be determined for eigenvalues Xi, i= l ,  2, ..., N, where N is the total 

number of eigenpairs of the system. For simplicity, M is assumed to be a lumped mass 

matrix and the eigenvalues are arranged in an ascendant order:
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^  Xfj (5.2)

As discussed in Chapters 2 and 3, the global stiffness matrix is the matrix K 

which is composed of p number of subelements in a static system. In this chapter, 

however, the global matrix is the matrix (K-XM) which includes the negative stiffness 

matrix, -XM. The negative stiffness, -XMk ( the k-th non-zero diagonal element of -XM 

), can be regarded as the contribution of a special subelement to the global stiffness 

matrix ( K-XM). This special subelement is called the mass-subelement and denoted by 

(“), where the subscript s implies the subelement number of this mass-subelement and 

is always arranged after the p subelements with positive stiffness, i.e., for mass- 

subelements (“), p+1 <  s <  p+N . Its subelement vector E, and stiffness modulus W, 

are defined as follows:

where the values -1 and 1 in E, correspond to two degrees of freedom; one of them is 

associated with the mass-subelement (“) and the other is the degree of freedom of the 

ground, respectively. One can see that the distinction of a mass-subelement from a 

typical subelement in static systems is that a mass-subelement may have a negative stiff­

ness modulus depending on the value of the parameter X, while in static systems every 

stiffness modulus should be positive ( see Eqs. (2.8) and (3.14)).

Thus, an eigensystem is composed of p subelements with positive stiffness moduli 

and N mass-subelements with negative moduli; therefore, the total number of 

subelements of an eigensystem will be p+N . The global stiffness matrix (K-XM) may

E»s  [ -1 , 1 ]T (5.3)

W5=  -XMk, s=p+k; k= l,2 ,~ ,N (5.4)
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or may not be non-singular, depending on the value of X. However, they are all 

legitimate subelements and therefore all the formulas and theorems established in the 

TSV can also be applied here to the eigensystems, except for the case when X takes some 

special values, i.e., eigenvalues X=Xj, i= l,2 ,- ,N , which make (K-XjM) singular.

To find out these special values, i.e., the eigenvalues, a new computational 

procedure can be derived by taking advantage of some intrinsic properties of finite 

element systems, including those already established in the foregoing chapters and the 

new one to be proven below.

5.3 The Monotonousness Theorem of Principal Z-deformations for Eigensystems 

The Evaluation Theorem of Principal Z-Deformations proved in Chapter 4 states 

that the principal Z-deformation, Z„, of any subelement (?) with its subelement stiffness 

modulus W ,>0, l< s < p ,  is always less than or equal to 1 and has the nature of 

monotonousness. In an eigensystem, the Z„ of a mass-subelement (“), p+1 <  s <  

p+N , may encounter some W, which may be negative, ranging from - «  to » ,  i.e., 

-oo<W ,< +  oo ,o r-oo< X <  +  oo.ln this case, however, the nature of monotonousness 

still holds true almost everywhere as stated in the following theorem.

Theorem 8 . The Monotonousness Theorem o f Principal Z-deformations 

( for eigensystems):

In an eigensystem, the derivative of the principal Z-deformation, Z„, of any 

mass-subelement with respect to its stiffness modulus W, is always greater than zero, 

except at N singular points which correspond to the eigenvalues, i.e.,
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> 0  except at X=Xi, i= l,2 , N; p + l< s < p + N  (5.5)
dW,

^  | ,  . . .  = 0 (5.6)
dW. '

Proof.

For convenience, use Kx to denote (K-XM) with X ̂  Xj, so, Kx is non-singular and 

rewrite Eq. (5.4) as

W, = XW„ s = p + l,  p+ 2 , - ,  p+ N  (5.8)

where

W, s  -Mk, k=  s - p. (5.9)

Therefore, a differential dW, can be given as

dW, =  W,dX. (5.10)

From Eqs. (2.28), (2.19), (2.29), (4.27) and (5.10), one has

^  = J U oejX )
dW, dW,

=  ^ ( ( E J W W )

dKx‘ dX
= ( E / (  -dT dW ;)E .W , +  ( E J W 'V E ,

=  (EJT( V  3K^  dWr ) A  E.W, + '£  (Z„)2/Wr
4?i aw r dX dW, %

P-N - P P*N
=-(E JT[ £  Vr(Vr) X W »/( (Wr)*W,) ]E, +  £  (Zsr)2/Wr +  Y  (Z.r)2/Wr

r-p+1 r»l r-p+1

p+N P P*N
=  - £  ( ( E / W W W , ) + £  <ZJ!/W, +  £  (Z J ’/W,

r.p+1 r*l r-p+1
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p*N p p»N

= - 5 3  (Zir)2/Wr+ £ ( Z sr)2/Wr+  5 3  (Z„)2/Wr
r-p*l r*l r-p*l

(z„)V w , > o.
r -l

The last equation has shown the conclusion, Eq. (5.5). To show the conclusions, Eqs. 

(5.6) and (5.7), one needs to recall Eqs. (4.55) and (4.56) given in Chapter 4. Since Eq.

(4.55) holds for any real number of W„ it leads to the conclusion, Eq. (5.7) for

eigensystems. And therefore, Eq. (4.56) leads to Eq. (5.6), too. Then the theorem is 

proven.

Figure 5.1 Monotonousness of Principal Z-Deformations in Eigensystems

Thus, one has a typical plot for Z„ vs. W, for eigensystems, as shown in Fig. 

5.1, in which Z and W stand for the principal Z-deformation of any (“) and the corre­
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sponding stiffness modulus, respectively. By comparing Fig. 4.2 to Fig. 5.1, it is an 

interesting observation that the former is a special case of the latter one when W“ >  0, 

and therefore, a system with positive stiffness moduli is a special case of a general 

system with unbounded stiffness moduli.

5.4 The Z-Deformation Method for Vibration Analysis

A new method for calculating eigenpairs is provided here, based on the 

Monotonousness Theorem described in the previous section. In this method, the 

eigenvectors are identified as the basic displacement vectors. The procedures to calculate 

the eigenvalues and eigenvectors are discussed respectively in Subsections 5.4.1 and 

5.4.2, while an equivalent eigensystem will be introduced for the calculation of higher 

order eigenpairs in Subsection 5.4.3.

5.4.1 Method for Finding the Fundamental Eigenvalue

The monotonousness of principal Z-deformations gives a hint to find the lowest 

eigenvalue Xi ( Fig. 5.1 ) by using a simple successive approach, starting from 

Z(X=0)=0 and stopping at Z=-oo. This approach depends on neither the ratio X ^  nor 

the initial guess for the eigenvector. The Z-deformation corresponding to any value of 

X can be computed by using the explicit formulations, Eqs. (2.37) and (4.55).

To implement this approach, one can devise a variety of recurrence formulas for 

X to reach X! in successive steps. One of such formulas is suggested below. For 

simplicity, in the following discussion one will use the letters Z and x to represent any 

principal Z-deformation and the corresponding X, and the letter to represent the Z
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evaluated at xk, where k is the step number in the calculation. Suppose that one has 

already known Zk=Z(xk), xk< \ j  ( see Fig. 5 .2 ), then one can have an interpolation for 

Z(x) based upon the Z values at xk.2, xk_, and xk as follows.

Z(x)=(A+Bx)/(l+ax), xk.2 < x < x k (5.11)

where the constants A, B and a are determined by a curve fitting Z(x^  through Zk.2(xk.2), 

Zk-i(xn )  and Z ^xJ, resulting in Eq. (5.12). For simplicity, these three pairs of values 

are simply denoted as (Z1; Xj), (Zj, x j  and (Z3, x3), respectively, in Fig. 5.2 and in the 

following equations.

A 2 ll  §12 813 V
B

—
821 §22 §23 Z2

a 831 832 833 h .

where

§11=  x 2x 3( Z 3 - Z 2 ) /A  

§21=  (x2Z2-x3Z 3)/A

§ 31=  (x3-X2)/A

g 12=  x1x3(Z 1-Z3)/A

§ 2 2 =  ( x 3 Z 3- X i Z j ) / A  

§ 32=  (Xl-X3)/A  

§ 13=  x iX2(Z2-Z 1)/A

§ 23=  ( X A - X j ^ / A  

§ 33=  (X2-X i)/A

A  =  XjX2(Z 2-Z  j ) + x  jX3(Z j-Z 3) + x2x 3(Z 3- Z 2) .
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By approximating Z4 =jSZ3 in Eq. (5.11), where 0 >  1 is an arbitrary factor indicating the 

step length from x3 to X4 , the next step, X4 ( Fig. 5.2), is determined from Eq. (5.11) as 

x4 =(j8 Z3-A)/(B+ai8 Z3) (5.13)

which provides a new estimated value, , approaching towards X,. Next, one has to 

compute the true Z4 from Eq. (4.55) with X=x4 to keep Z4 on the true Z-X curve. Then, 

one can use Zj, Z3 and Z4 to obtain xs, and so on so forth until xk-xt l  <  e, where e is 

a tolerance, e.g., 10'10; therefore X,= xk+e will be achieved.

Figure 5.2 Advancing Steps towards X!

When xk gets close to X,, grows very rapidly to In this situation, a more

efficient recurrence formula would rather be used:

=  Xt . ,  +  ( 1 - 1 )  Zt (5-14)
0
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which comes from an approximation Z(x)=A/(l-ax) where A and a  are certain new 

constants determined by requiring Z(xk)= Z k for the last two steps. This new 

approximation gives a function with steeper slope compared to that in Eq. (5.13).

5.4.2 Proof of the Equivalence between BD Vectors and Eigenvectors

On obtaining Xb one can find the corresponding eigenvector D, by taking 

advantage of another property of eigensystems, the equivalence between BD vectors and 

eigenvectors, being proven below.

Theorem 9. The Equivalence Theorem ofBD  Vectors and Eigenvectors:

In an eigensystem with the \  known, the BD vector, V„ of any mass-subelem- 

ent (“) with its W,-*+ oo, p + l  <  s <  p+N , is just the eigenvector D; corresponding 

to Xj, i.e.,

Di =  V.!w>_±c. , i—1,2,-**, N; p + l< s < p + N . (5.15)

Proof.

Let a single stiffness modulus, W, of (“), be increased by an increment 

AWi=^W ,=|X iW„ where f  is an arbitrary parameter and \  is the eigenvalue. Let the 

basic displacement vector of the mass-subelement (“) with W,+AW, be denoted by V,. 

Then, its new stiffness modulus of the perturbed subelement is W,(l + £)=XjW,(l + |)  =- 

XiMk( l+ |) ,  where the subscript k is the DOF number to which the mass-subelement (“) 

is attached. According to the theory of structural variations, must satisfy the 

following equation:

[K-XiM+£XiW ,E,(Ejr)1̂ i=XiWIEf(l + |)

or
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[K -X M t. +  £ XjW„E1(E,)TV s= XjW,E„( 1 +  £). (5.16)

Premultiplying Eq. (5.16) by (D;)T yields 

S W W f * ,= (1^ . ( 1 +£)

where (K-XjM)Dj=0 has been used. If (Dj)TE,?fO, then one has from the above equation

Equation (5.18) shows that the BD vector V, of any mass-subelement (“) with W ,(l+£) 

is an eigenvector for all possible values of £ except at £=0. To be specific, let £ 

approach +  a>, i.e., W,-»±oo. In this situation, Eq. (5.17) leads to £„= 1. Thus, the 

equivalence (5.15) is proven. Nevertheless, the D; as an eigenvector obtained from Eq. 

(5.15) should be normalized by requiring (DJ^M D^l for its standard normalization.

In practical computations, V, with W,=XiW, is only a symbol, because its 

components will theoretically approaches ± »  ( see Fig. 5 .1 ). However, V, |w>_±.  has 

a limit ( by the Evaluation Theorem and the Monotonousness Theorem). Therefore, with 

the Xj and V, known, the eigenvector D; can be obtained by

where Theorem 4 has been used. So, D; is actually obtained simultaneously with

(5.17)

Substituting Eq. (5.17) into Eq. (5.16) gives

[ K - W ,  +  XiW ,E /l+£)=X iWsE,(l+£)

from which one has

[K-X;M]V,=0. (5.18)

(5.19)
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As to the requirement (D ^ ^ ^ O , one can see from Eq. (5.3) that (Di)"̂ E,= (D^, 

the component of D; at DOF k where (“) resides. So, to meet this requirement one can 

take any mass-subelement, at which D; has a non-zero component. As an example, for 

this purpose, one may choose a DOF at which the displacement vector D ^ , produced by 

the weight of the mass, has its maximum component in magnitude. And this D** can be 

computed easily by using Eq. (2.35).

The actual procedure of calculating eigenpairs by the Z-deformation method starts 

with X! and Dp On obtaining the first eigenpair, Xj and D„ one may need the higher 

order eigenpair. The higher order eigenpair may be obtained by constructing a new 

eigensystem, which considers X2 and D2 of the previous eigensystem as the lowest 

eigenpair of the new system, which is called the equivalent eigensystem. This 

equivalence will be proven in the following subsection.

5.4.3 Proof of the Equivalent Eigensystem for Next Eigenpairs

In an eigensystem with the first eigenpair Xt and D, known, its second 

eigenpair X2 and D2 are the lowest eigenpair of a new eigensystem described by

( K - XM* )D=0 (5.20)

where

(5.21)

Proof.

Suppose that Xt and D, are the lowest eigenpair satisfying

(K -X ,M )D != 0 (5.22)
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where Dj has been normalized, i.e.,

(D,)TMD1=1 (5.23)

and that and DJ are the lowest eigenpair of Eq. (5.20), i.e.,

( K - X X  )D;=0. (5.24)

Premultiplying Eq. (5.24) by (Dj)T yields

(D1)TKDj=0 (5.25)

where Eq. (5.23) has been used. Then, premultiplying Eq. (5.22) by (D[)T yields

(D1)TM Di=0 (5.26)

where Eq. (5.25) has been used. Equation (5.26) indicates that Dj and D* are M-orthogo-

nal to each other. Use the symbol Y* to denote the set of all admissible displacement

vectors in Eq. (5.24) and Y° the subset of Y*, whose members are all M-orthogonal to 

Dj. According to Rayleigh’s Quotient Theorem,

\ ; =  min (D *)T K p ‘ for all D*6  Y*. (5.27)
(D*)T M 'D *

Since X[ and D[ are the solution of Eq. (5.24), they satisfy Eq. (5.27), then due to Eq.

(5.26), one has DJ£Y°. Therefore, X* may also be expressed by

X;= min (p(>)T K p ° for all D°GY°. (5.28)
(D°)T M*D°

However, due to D °€ Y° and Eq. (5.21), one will see that the denominator in Eq. (5.28) 

can be rewritten as:

(D^1M*D°=(D°)1MD0-(D0)tMD1(D1)1MD0

=(D°)TMD°.

Thus, Eq. (5.28) becomes
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x;=  min (D°)T K D° for all D°6 Y°
(D°)T M  D°

=  X2 (5.29)

where Rayleigh’s Quotient Theorem has been used again for X2.

Thus, repeating the same procedure with the equivalent eigensystem of Eq.

(5.20), as done for Xj and D1} will yield X2 and D2 of the original eigensystem, and so 

on so forth until the last one. According the concept of subelements introduced in 

Chapters 2 and 3, the additional mass-subelement pertaining to the additional term of 

M D ^ , ) ^  in Eq. (5.21) in the equivalent eigensystem should have a subelement vector 

as MD, and a subelement stiffness modulus as 1.

5.5 Computational Procedure

Based on the derivations given in the previous sections one can summarize the 

following steps for computing the eigenpairs by the Z-deformation method.

Step 1. Build up the basic displacement matrix of the given structural system with 

X=0 by the structural variation method presented in Chapter 2.

Step 2. Choose one DOF of the system, say r, where a mass-subelement is 

located, for calculating the first eigenpair. To specify this DOF, find the D^, produced 

by the weight of the mass as usually done in conventional methods [16] by using Eq.

(2.35). And the DOF on which D ^t has its maximum component in magnitude should 

be taken as the DOF r.
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Step 3. Take Xi=0, and two other arbitrary values for xk, k=2,3 ( see Fig. 5.2 

), which are near X=0, then evaluate the corresponding Z* by using Eqs. (2.37) and 

(4.54).

Step 4. Use Eq. (5.13) with a selected 0, e.g., 10, to calculate x4 ( see Fig. 5.2 

), moving one step towards Xb

Step 5. Evaluate Z4 at x4 by using Eqs. (2.37) and (4.54) again to obtain the exact 

Z-deformation at x4. This step guarantees the moving point ( Zt , xt ) to stay at the exact 

Z-X curve ( see Fig. 5 .2 ).

Step 6 . Use X; and Zj, i=2,3,4, to obtain xs to move one more step towards Xb 

Repeat steps 4 to 6  with a selected tolerance e, e.g., 10"12, until xk-xt l  <  e and 

to arrive at Xj=xk±e.

Step 7. If Zk is found to be a large positive number, then pull the corresponding 

xk back for one step and switch to Eq. (5.14) to calculate x4 and continue on Step 5.

Step 8 . On obtaining Xb use Eq. (5.15) to obtain the corresponding eigenvector

Db

Step 9. After obtaining the first eigenpair Xj and Db introduce a new mass- 

subelement into the eigensystem, whose subelement vector is MDj and the corresponding 

modulus W is 1 ( see Eq. (5.21)) to form an equivalent eigensystem, and repeat steps 

3-8 on it to obtain the second eigenpair, and so on so forth until the desired one is 

obtained.
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5.6 Illustrative Example

Following the procedure given in Section 5.5, the plane frame eigensystem shown 

in Fig. 5.3 has been analyzed by the Z-deformation method, and as a comparison, the 

inverse power method [16] has also been used to solve the same problem. The 

eigensystem is made of a lumped mass, M =1.0, and four beams which have identical 

properties, L=1.0, EA=100.0 and EI=0.01, except that the EI2 of element 2 is 

different. Three cases will be discussed below. Case 1 has EI2 equal to 0.011 which 

makes the first two eigenvalues very close, case 2  leads to a situation of a repeated 

eigenvalue with EI2=EI, and case 3 with EI2=10.0 > El gives a situation that the first 

two eigenvalues are quite different.

L L

Figure 5.3 An Eigensystem
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Case 1: EI2=0.011.

In this case, the similarity in the structure produces a pair of close eigenvalues 

as follows ( obtained by the Z-deformation method ):

Xj =200.240000000 

Dt= [ 1., 0., 0. ]T 

X2=200.251780488 

D2= [ 0., 1., -.036585365854 ]T.

Thus,

Xj/X^O.999529.

In this example, the DOF, r, in step 1 for the proposed procedure was chosen to 

be the vertical DOF at the mass M. To obtain the lowest eigenpair, \ x and D, as listed 

above, the Z-deformation method took only 17 advancing steps with j8=10 and e= 10'12, 

while the power method ran 454452 iteration cycles with the initial D0= [ 1, 1,1 ]T. The 

CPU time ratio TZ/TP was about 1:217, where Tz stands for the time spent by the Z- 

deformation method and TP by the inverse power method.

The intermediate values of the first eigensolution performed by the Z-deformation 

method for this case are tabulated in Table 5.1. Note that at step 14, the value of x14 

calculated by Eq. (5.13) is a little bit larger than the true X1; which results in a large 

positive value of Z14, i.e., 0.277715747031D+10. Consequently, as suggested by step 

7 in Section 5.5, the value x14 recalculated based upon Eq. (5.14).
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Table 5.1. Computations by Z-deformation Method in Case 1

No. Xfc Ax—Xfc-Xfc.i Zfc AZ—Zfc-Zfc.i

.250000000000D+00 

.250000000000D+00

0 .0

1 .250000000000D +00

2 .500000000000D+00

3 .489010452281D+01

4 .400896932810D+02

5 . 143081716066D+03

6 . 192548088943D+03

7 . 199443264049D+03

8 .200160040067D+03

9 .200232001132D+03

10 .200239200084D+03

11 .200239920008D+03

12 .200239992001D+03

13 .200239999201D+03

14 .200240000072D+03

15 .200239999920D+03

16 .200239999992D+03

17 .200239999999D+03

.439010452281D+01 

.351995887582D+02 

. 102992022785D+03 

.494663728769D+02 

.689517510587D+01 

.716776018416D+00 

.719610648246D-001 

.719895243714D-002 

.719923582295D-003 

.719924740054D-004 

.720035743029D-005 

.871233226007D-006 

.719217614047D-006 

.719218011336D-007 

.719217344116D-008

.0

-. 125006250313D-002 

-.250325423050D-002 

-.250325423050D-001 

-.250325423050D+00 

-.250325423050D+01 

-.250325423050D+02 

-.250325423050D+03 

-.250325423049D+04 

-.250325423039D+05 

-.250325426825D+06 

-.250325050983D+07 

-.250316006069D+08 

-.250572273015D+09 

.277715747031D +10 

-.250572148442D +10 

-.250572357653D+11 

-.250568872359D+12

-. 125006250313D-002 

-.125319172737D -002 

-.225292880745D -001 

-.225292880745D+00 

-.225292880745D+01 

-.225292880745D+02 

-.225292880745D+03 

-.225292880744D +04 

-.225292880734D +05 

-.225292884522D +06 

-.225292508300D+07 

-.225283500971D+08 

-.225540672408D +09 

.302772974333D +10 

-.225514921141D + 10 

-.225515142809D + 11 

-.225511636594D + 12

Case 2: EI2=EI=0.01.

In this case, the intermediate values of the eigensolutions performed by the Z- 

deformation method are tabulated in Table 5.2, from which the eigenpairs obtained by 

Z-deformation method are below.

\ , =  200.239999999

D i=[ 1., 0., 0. ]T

X2=  200.239999999
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D2= [0 . ,  - l . , 0 . ] T.

Therefore, one has a pair of repeated eigenvalues, i.e.,

X1/X2=1.0.

Table 5.2. Computations for X, by Z-Deformation Method in Case 2

No. xk Ax=xk-xt l  Zk AZ=Zk-Zk.1

0 0.0 .0

l 0.250000000000D+00 .250000000000D+00 -. 125006250313D-002 -.125006250313D-002

2 0.500000000000D+00 .250000000000D+00 -.250325423050D-002 -.125319172737D-002

3 0.489010452281D+01 .439010452281D+01 -.250325423050D-001 -.225292880745D-001

4 0.489010452281D+01 .43901045228ID +01 -.250325423050D-001 -.225292880745D-001

5 0.400896932810D+02 .351995887582D+02 -.250325423050D+00 -.225292880745D+00

6 0.143081716066D+03 . 102992022785D+03 -.250325423050D+01 -.225292880745D+01

7 0.192548088943D+03 .494663728769D+02 -.250325423050D+02 -.225292880745D+02

8 0.199443264049D+03 .689517510587D+01 -.250325423050D+03 -.225292880745D+03

9 0.200160040067D+03 .716776018416D+00 -.250325423050D+04 -.225292880745D+04

10 0.200232001132D+03 .7I9610648258D-001 -.250325423084D+05 -.225292880779D+05

11 0.200239200084D+03 .719895242628D-002 -.250325423869D+06 -.225292881560D+06

12 0.200239920008D +03 .719923715224D-003 -.250325437442D+07 -.225292895055D+07

13 0.200239992000D+03 .719916636172D-004 -.250294513883D+08 -.225261970139D+08

14 0.200239999194D+03 .719441371189D-005 -.248510315240D+09 -.223480863852D+09

15 0.200239999887D+03 .692954955639D-006 -.177507711466D+10 -.152656679942D+10

16 0.200239999325D+03 -.562109846669D-006 -.296688679875D+09 .147838843478D+10

17 0.200239999989D+03 .101525730210D-006 -.177507641592D+11 -.159756870445D+11

18 0.200239999999D+03 . 101525774615D-007 -. 177509740544D +12 -. 159758976385D +12

The advancing procedure towards X, is 18 steps, about the same as that in the 

case 1. However, the second eigenpair was obtained extremely easily. Actually, no 

advancing steps were performed for X2 and D2, because the Z-deformation Z0 at the 

initial step x0 in the equivalent eigensystem becomes satisfying the requirement of
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Eq. (5.6) at once and implying that the first eigenvalue of the equivalent system 

X[=x0 =XI, i.e., X2 equals X! of the original system. In the present case, the Z- 

deformation at the initial step, Xo=Xo+0, is less than -l.OxlO130 in the equivalent 

eigensystem derived from the known first eigenpair. Besides, the BD vector obtained 

by Eq. (5.19) is the corresponding eigenvector D[ of the equivalent system, i.e., the 

second eigenvector D2 of the original system.

The inverse power method gave the same repeated eigenvalue as that by Z- 

formation method, but with different eigenvectors:

D !=[ .624695047554, .780868094430, 0 ] T 

D2= [-.780868094430, .624695047554, 0 ]T.

The CPU time ratio, TZ/TP, was about 18:7.

Case 3: EI2=1000EI=10.0.

In this case, the intermediate values of the first eigensolution performed by the 

Z-deformation method are tabulated in Table 5.3. The eigenpairs obtained by the Z- 

deformation method are 

Xj =200.239999999 

D ,= [ 1., 0., 0. ]T 

X2=230.5685643068 

D2 = [ 0 . ,  1., -1.49401794616 ]T.

Therefore,

X1/X2=0.8684618.
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The inverse power method took 191 iteration cycles to give the same results as 

those by the Z-deformation method, but spent much less time; the CPU time ratio, T /T p, 

was about 18:1.

Table 5.3. Computations by Z-deformation Method in Case 3

No. xk Ax x t-X|-_i Zfc AZ ~  Zfc-Zfr.i

0 . 0 . 0

1 0.250000000000D+00 .250000000000D+00 -. 125006250313D-002 -.125006250313D-002

2 0.500000000000D+00 .250000000000D+00 -.250325423050D-002 -.125319172737D-002

3 0.489010452281D+01 .439010452281D+01 -.250325423050D-001 -.225292880745D-001

4 0.400896932810D+02 .351995887582D+02 -.250325423050D+00 -.225292880745D+00

5 0.143081716066D+03 . 102992022785D+03 -.250325423050D+01 -.225292880745D+01

6 0.192548088943D+03 .494663728769D+02 -.250325423050D+02 -.225292880745D+02

7 0.199443264049D+03 .689517510587D+01 -.250325423050D+03 -.225292880745D+03

8 0.200160040067D+03 .716776018416D+00 -.250325423050D+04 -.225292880745D+04

9 0.200232001132D+03 .719610648241D-001 -.250325423027D+05 -.225292880722D+05

10 0.200239200084D+03 .719895242017D-002 -.250325421392D+06 -.225292879089D+06

11 0.200239920008D+03 .719923784544D-003 -.250325629594D+07 -.225293087455D+07

12 0.200239992001D+03 .719924366308D-004 -.250320622453D+08 -.225288059493D+08

13 0.200239999195D+03 .719443346497D-005 -.248774033176D+09 -.22374197093 ID +09

14 0.200239999989D+03 .794172592578D-006 -. 186537753111D+11 -.184050012779D+11

15 0.200240001258D +03 .126913880649D-005 .159122160316D+09 .188128974714D+11

16 0.200239999999D+03 .966110049759D-008 -.186538525757D+12 -.167884750446D+12

From the above three example cases, it has been observed that the proposed 

method, Z-deformation method, is superior to the commonly used power method when 

the adjacent eigenvalues are close, and can easily handle the repeated eigenpairs. 

Nevertheless, when the ratio of the adjacent eigenvalues is small, the power iteration 

method is very efficient. Therefore, the combination of the two methods is expected to 

be the best choice for the vibration analysis of finite element systems.
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Chapter 6

EXPLICIT FORMULATIONS FOR DESIGN SENSITIVITIES 

IN VIBRATION

Although there are quite a few publications available on the eigenpair design 

sensitivities of finite element systems [16, 17, 22], the methods presented in those 

publications require to solve a set of simultaneous equations; this chapter will derive a 

set of explicit formulations for the computation of eigenpair sensitivities with respect to 

sizes and masses of the elements of an eigensystem in terms of the BD vectors of the 

system. In the new method, the sensitivity calculations involve neither assembling nor 

solving any set of simultaneous equations.

The eigenvalue and eigenvector design sensitivities will be discussed in Sections

6.1 and 6.2, respectively. Each section first presents a general explicit formulation and 

then follows with two special cases in which a stiffness design variable and a mass design 

variable are considered, respectively. Numerical examples are given in Section 6.3.

6.1 Eigenvalue Design Sensitivities

6.1.1 General Explicit Formulation

Subsection 5.4.2 has proven that if an eigenvalue \  of the system is known, then 

the BD vector of any mass-subelement (“) with its stiffness modulus W ,= a> is the

92
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corresponding eigenvector D;. Based upon this special feature, the explicit formulation 

of eigenvalue design sensitivities can be derived. For convenience, the regular symbol 

V, is used to denote the BD vector pertaining to a mass-subelement (“ ) with its stiffness 

modulus W,= oo. Then, according to Eq. (5.15), one has:

D;=V,. (6.1)

However, the eigenvector given by Eq. (6.1) is not yet normalized. The corresponding 

normalized eigenvector, denoted by Y;, can be defined as

Y ^ V SG 1/2 (6.2)

where

G s(V ,)1MVI. (6.3)

It can be shown that

(Yi)TMYi= l .  (6.4)

Since Y; is an eigenvector, it must satisfy Eq. (5.1), i.e.,

(K-XjMJY; =  0. (6.5)

Taking the derivative of Eq. (6.5) with respect to a single design variable b gives

[ K-XM-PObM ]Yi +  (K -X iM )^ = 0 (6.6)

where ( X, stands for the derivative with respect to b. Premultiplying Eq. (6 .6 ) by OQ7

gives

(YOW-XsK-OOMlYi =0  (6.7)

which implies

(XiX=(Yi)T[Kb-X K ]Y i (6 .8 )

where Eqs. (6.4) and (6.5) have been used.
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Since the term [K-XjM], denoted as Kx, is considered as the global stiffness 

matrix of the eigensystem in the context of the theory of structural variations, as 

discussed in Section 5.3, Kx can be expressed in terms of the transfer matrix H  and the 

stiffness matrix W ( see Eq. (2.25)), i.e.,

KX=HWHT (6.9)

where H and W should include both the regular subelements and the mass-subelements. 

Then, Eq. (6 .8 ) can be rewritten as 

(Xj) i= (Y D W bffrYi

or

(XDH Z . ) X Z ,  (6.10)

where the symbol -  over the letter W in Eq. (6 .10) implies that \  keeps constant during 

the process of differentiation and Z .; is the vector of the Z-deformations of all 

subelements of the system from Y;, i.e.,

Z .—EFYj. (6 . 1 1 )

Equation (6 .10) is a general formulation for the eigenvalue sensitivity calculation. 

If the design variable b takes a specific design parameter, e.g., I0, the moment of inertia 

of element a, or a certain lumped mass, M*, the calculation of (X^ can be further 

simplified. The following two subsections will discuss these two special cases.

6.1.2 Explicit Formulation for Eigenvalue Sensitivities with Respect to 

a Stiffness Variable

In this case, the moment of inertia of an element a  is considered as the only 

design variable b, i.e., b = Ia. There are only two subelements of element a, which
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involve bending and shear, say k and k + 1 , whose subelement stiffness moduli are 

functions of I0. The subelement numbers k and k+1 are in the global order and 

correspond to the subelements ©  and © , respectively. Then, from Eq. (2.8), one has 

(Wr);=0, r * k ,  k+1 (6.12a)

(Wk)^=12E/L3 =Wk/Ia (2.12b)

and

(Wk+1);=E/L=W k+1/Ia. (6.12c)

Thus, one has

w ;= d iag( 0, •••, 0, 12E/L3, E/L, 0, •••, 0 ) . (6.13)

Substituting Eq. (6.13) into Eq. (6.10) gives 

( \ i)b=(Z.i)TWbZ.i

=(Z.;)Tdiag( 0, - ,  0, 12E/L3, E/L, 0, •••, 0 )Z.;

= 1 2 E ( Z ki) 2/ L 3 +  E ( Z (k + i )i) 2/ L  ( 6 . 1 4 )

where and Z ^ ^  are the Z-deformations of the two subelements ©  and ©  which 

can be obtained from Y;, respectively.

6.1.3 Explicit Formulation for Eigenvalue Sensitivities with Respect to 

a Mass Variable

In this case, the lumped mass at a node r is considered as the only design

variable, i.e., b=M r. There are only two mass-subelements related to translations, say

k and k+1, whose subelement moduli are functions of M,. From Eq. (5.8), one has 

w ;= -d iag(0 ,-,0 ,l,l,0>-,0)X i (6.15)

(xx=(z..fw;z
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=-Xi(Z.i)Tdiag( 0 ,- ,0 ,1, 1,0,- ,0  )Z.;

= -[(Z ki)2+(Z(k+1/ ] X i (6.16)

where and Z^+1)i are the Z-deformations of the two mass-subelements k and k+1, 

respectively, which can be obtained from Y;.

6.2 Explicit Formulation for Eigenvector Design Sensitivities 

This section will derive the explicit formulation to calculate eigenvector design 

sensitivities using the theory of structural variations. The resultant sensitivity equation 

will eliminate the need of assembling and solving any set of simultaneous equations 

which is required by the commonly used sensitivity analysis techniques. In the following 

subsections, the general explicit formulation will be derived first and then two special 

cases which consider an element stiffness and a lumped mass as design variables will be 

discussed, as done in the previous section.

6.2.1 General Explicit Formulation

Note that in this section, the symbols ( )' and ( )b are used to denote the 

differentiations with respect to a subelement stiffness modulus Wr and a design variable 

b, respectively. Then, by taking derivative of Eq. (6.2), one has

W & =(G -mV.)'b

= g-i/2(v j ; +  v ,(g-i/2);

=G-1/2(v jb - ^ g-3/2v .g ;

=G-1/2(Y.); - G-3/2V,[ (VjTVTOb + Vi(V,)XV. ]

=G-1/2[ (VX - G-%(vyM(yx ] - v ^ v . c v j X v .
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=G m[ I-YiOQ’M  ](WX - ViYjCYDXYi
p*N

=G '1/2{ £  [ I - Y iO T  ](V,);(Wr); } - V iY ffW Y ,
r-1

where I  is an nxn unit-matrix, p is the total number of subelements with positive moduli, 

and N is the total number of mass-subelements of the eigensystem. Furthermore, the term 

(V,)' can be replaced by V /C ^ -Z J ^ r ) ' 1 as proved by Eq. (4.15). Therefore, the (Y ^ 

can be rewritten as
p*N

( Y i ) b - G ' 1/2{  [  I  -  Y . O Q T M  ][£ V /C Ii-Z„)(Wr)-I(Wr); ] } - ^ ( Y ^ Y ;

r»l

or alternatively,

( Y i ) ; = G - 1/2[  I - Y j(Y j)* T V I  ]VW 1(C!I-ZfJwi - 1/ 2 Y i( Y i) T M bY i ( 6 . 1 7 )

where w has been defined by Eq. (4.4), and C?s and Zf, are two diagonal matrices

defined as

C *= d iag (C „), r= l,2 ,~ ,p + N  (6.18)

Zf,2sdiag( Z „ ), r= l ,2 ,- ,p + N  (6.19)

where C „= l and C„=0 for r ^ s  as indicated in Eq. (4.7)). Note that the vector w is 

a function of Xj, as defined by Eq. (5.8). Therefore, Wb involves (X)b which has been 

given by Eq. (6.10). Equation (6.17) gives a general formulation for eigenvector 

sensitivity calculations. The following two subsections will demonstrate its application.

6.2.2 Explicit Formulation for Eigenvector Derivatives with Respect to 

a Stiffness Variable

Let the moment of inertia of element a be considered as the only design variable,

i.e., b = Ia. In this case, there are only two subelements, say k and k+1, whose 

subelement stiffness moduli are functions of b. Then, one has
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(Wr)^=0, r ^ k ,  k+1 and r < p  (6.20a)

(Wk);=12E/L3 =Wk/Ia (6.20b)

(Wk+1X=E/L=W k+1/Ia (6.20c)

(WX=-(Xi);Mri), p + l< r < p + N  (6.20d)

CM-ZM=0 (6.21)

M ; = 0  (6 .2 2 )

where Eqs. (2.8), (5.4), (4.7) and (5.7) have been used for derivation. With the aid of 

Eqs. (6.20)-(6.22), one obtains

w ;=[ 0,-,0,W k/Ia,Wk+1/Io,0,-,0,-(Xi);M1,-,-(Xi);MN ]T. (6.23)

Therefore, one has

V W -H C f.-Z O w ^-V ^/^  - \ +lZ ^ +l)J I a
p+N

- [ ^ O W J K X ^ X J ,  r * s .  (6.24)
r«p+l

Substituting Eq. (6.24) into Eq. (6.17) gives the final formulation for the calculation of 

the desired eigenvector derivative

(Yi)b=G-1/2[Yi(Yi)1M -I]{V kZkl/Ia
p+N

+V k+1Z( k + l ) i ^ o  + [  £ O W  H M A ] } ,  r* s .  ( 6 . 2 5 )

r*p+l

6.2.3 Explicit Formulation for Eigenvector sensitivities with Respect to 

a Mass Variable

Let the lumped mass at node j  be considered as the only design variable, i.e., 

b=Mj. In this case, two mass-subelements, say k and k+1, whose subelement stiffness 

moduli are functions of b. These two mass-subelements are located at two DOFs, say f
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and f+ 1 , respectively. With this information, one can obtain the following relations 

from Eqs. (2.8) and (5.4) as

(Wr);=0, l < r < p  (6.26a)

(Wr̂ =-(Xi)bM(r.p), p + l< r< p + N ; r ^ p + k , p+ k+ 1  (6.26b)

( W r) ^ = - ( X i) ^ M (r.p) - X i ,  r= p + k , p + k + 1 . (6.26c)

Consequently, Eq. (6.24) can be rewritten as

VW-1(C 'i- Z j > ;=  -[ g ( V rZ J ][OO^XJ -Pg 1VrZ„/M,p, r* s .  (6.27)
r-p+l r«p*k

Furthermore, it is easy to see that

M^=diag( 0, - ,  0, 1, 1, 0, , 0 )  (6.28)

where the two non-zero components correspond to the two degrees of freedom, £ and

I +1. As a result, one has

(Yj)TMbYi=(Yit)2+(Yi(f+1))2 (6.29)

where Y;, and Yi(,+1) are the components of Y; at DOFs of £ and £+1, respectively. 

Substituting Eqs. (6.27) and (6.29) into Eq. (6.17) gives the final formulation for the 

calculation of the sensitivity of the normalized eigenvector, (Y-X-

(YX=G-I/2[ Y t f . f N l  -I ]{ [ g  (VrZrJ][(XX/Xi ] }
r-p»l i-p*k

" (Yjf)2+(Yi{f+1))2 ], r* s .  (6.30)

To use Eqs. (6.10), (6.14), (6.16), (6.25) and (6.30), one has to obtain the

eigenpair \  and D; first. The Z-deformation method given in Chapter 5 should be used 

for this purpose.
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6.3 Illustrative Examples 

Two examples are given here to verify the equations derived above. The first 

example is a simple frame eigensystem ( Fig. 6.1). The second one is a building 

structure ( Fig. 6 .2 a ) modeled as a plane frame.

Wm/A

L

Figure 6.1 A Frame Eigensystem

Example 1

The plane frame eigensystem ( Fig. 6.1) is made of a lumped mass M =1.0 and 

two beams which have identical properties except that their moments of inertia are 

different but quite close, A=2.0, E=1.0, L=1.0, It=1.0xl04  and I2=1.01xl04. This 

similarity in the structure produces a pair of close eigenvalues.

The total number of subelements is p+ N = 8  where p = 6  and N =2. The mass- 

subelement used for finding the first eigenpair is (^), i.e., s= 2  which is the 8 -th 

subelement in the global order. The design variable b is I2. The first eigenpair has been 

obtained by using the Z-deformation method given in Chapter 5 as
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Xi =2.000301497511 ±  1012

Y,=[0.705933135990, -0.708278481610, -1.06064996191]1 

and the corresponding V, is

V,=[0.996688667408D+00, -.100000000000D+01, -.149750414484D+01]1. 

Note that the zero components of any vector or matrix, e.g., Yj and V„ at the fixed 

nodes 1 and 3 are ignored in this example for simplicity.

Now, find (XjX and (Y,)b, where the design variable b= I2 involves two 

subelements, k=5 and k + 1= 6 . From the information given above and the results of the 

first eigenpair obtained by the Z-deformation method, one has the initial data needed for 

using Eqs. (6.14) and (6.25) as 

M=diag( 1, 1, 0 )

Ek=[ 1.0, 0.0, 0.5 ]T 

Efc+1= [0 .0 , 0.0, 1.0 f  

E7=[-1.0, 0.0, 0.0 ]T 

Zkj=(Ek)TY1 =0.175608155954 

Z(k+1)i=(^+0^!=1.06064996192  

Zk,=(Ek)TV,=0.247936594990 

Z(k+i),= (Ek+1)TV,=1.49750414484 

Z7,=(E7)tV,=-0.996688667408

Vk=[.208832960639D+9, -.209526771802D+9, -.313767209729D+9]T 

Vk+!=[• 105110281036D+9, -.105459492323D+9, -. 157926027118D+9]T
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V7= [. 138551353074D-h 13, 139011666495D+13, -.208170547090D+13Jr 

G= (VJ^MV,=1.9933882997405.

Substituting the above data into Eqs. (6.14) and (6.25) gives the desired sensitivities of 

the first eigenpair with respect to I2 as 

(k&=  12E(ZkI)2/L3+E(Z(k+1)1)2/L 

=  1.495037031077

(Y1);=G'1/2[Y1(Y1)1M -I]{VkZks/I2+Vk+1Z(k+1)A + V 7Z7i(X1) A }

=[-.116882156351D+4, -.116495088904D+4, .203190847803D+2]1.

Example 2

This example is a building structure modeled as a plane frame ( Fig. 6 .2 a). The 

size and the material properties are given as 

Lj =7.2; ^ = 5 .1 3 ; Lj=4.5 

AjeBB=0.2125; ĉolumn=0.2025 

Ibeun=9.15xl0-3; Icoimnn=3.24xl0'3 

E=2xlOn

M3=M 5 =M 8 =M 9 =M n =M 12=104

M2 =M 7 =M 10=2.0x104

M14=M 1j=1.35x104

and

M13=2.7x104 
where M; is the lumped mass at the node i.
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Figure 6.2 (a) An Eigensystem; (b) Eigenvector; (c) Eigenvector Sensitivity
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This eigensystem has been analyzed by using the Z-deformation method combined 

with Eqs. ( 6 . 1 4 )  and ( 6 . 2 5 ) .  The first eigenvalue X j  and its sensitivity with respect to the 

moment of inertia of the element between nodes 5  and 6  have been obtained as 

X j  = 3 4 0 . 5 5 9 3 6 3 7 2 2  

( X 1) b = 9 7 9 0 . 3 2 9 6 9 6 9 6 .

The first eigenvector Yt and its sensitivity (Yj)i with respect to the moment of inertia of 

the element between the nodes 5 and 6  are given in Fig. 6.2(b) ( for Yt ) and Fig. 6.2(c) 

( for (Y,)b), respectively, but only the horizontal components of Yj and (Y ^  at the 

nodes 6 , 5, 9, 12 and 15 are shown in the figures.
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Chapter 7 

CONCLUSIONS AND REMARKS

7.1 Conclusions

(1) The dissertation has extended the theory and the method of structural 

variations established in [9], 1985, from skeletal structures to general finite element 

systems and from static analysis to vibration analysis and design sensitivity analysis.

(2) It suggests a new direction of research in finite element problems, treating 

finite elements from a new point of view, i.e., subelements.

(3) The new analysis tool, the structural variation method, developed in [9] and 

extended in this dissertation, has distinct features; it eliminates the need of matrix 

assembly and inversion which are indispensable in the commonly used FEM. This 

feature makes the structural variation method a favorable choice for structural 

modifications and sensitivity calculations in many analysis and design processes, such as 

those in structural optimization, structural reliability analysis, elastic-plastic analysis, 

contact problems, propagation of cracks in solids, etc. For instance, the solution of a 

discontinuous structure with a crack as shown in Fig. 7.1 can be obtained from that of 

the original structure without the crack by removing a constraint-subelement (*), which
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holds the structure in contact by connecting nodes R and R’ together. This task can be 

done easily by using Eq. (3.39).

Figure 7.1 A Crack Formed by Removing a Constraint-Subelement

(4) The structural variation method is inherently suitable for parallel 

computations. The basic displacement matrix V of the final structural system shown in 

Fig. 7.2(b) can be built up by parts. First, the basic displacement matrices V1, V2, V3 

-  of individual parts are built separately and parallelly, as shown in Fig. 7.2(a), then 

these parts are assembled together by using constraint-subelements to obtain V for the 

final system shown in Fig. 7.2(b), i.e., Vfaul =  V1 4- V2 4- V3 4- - ,  where the symbol

Figure 7.2 Building Basic Displacements by Parts
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+  is used to imply the topological " addition ". It is interesting to note that V1, V2, V3 

-  for the individual parts may be stored in a computer separately for reference.

(5) The dissertation has established a set of explicit formulations for design 

sensitivity analysis for static finite element systems, which can be used in the engineering 

areas where design sensitivity analysis is needed.

(6 ) This dissertation has revealed the following interesting properties of 

eigensystems.

(a) The Monotonousness Theorem of Principal Z-Deformations for eigensystems, i.e., 

Eqs. (5.5)-(5.7). This theorem provides a mathematical foundation for using the Z- 

deformation method for eigenpair analysis.

(b) The equivalence between the BD vectors and the eigenvectors, i.e., Eq. (5.15). This 

observation gives a convenient way to find an eigenvector when the corresponding 

eigenvalue is known; actually, it is obtained simultaneously with the eigenvalue if the Z- 

deformation method is used.

(c) The equivalent eigensystem for finding the higher order eigenpairs. This equivalence 

permits the higher order eigenpair to be found by repeating the same computation 

procedure as that for the previous one.

Based on these properties, the dissertation has established a new numerical 

method, the Z-Deformation method, for calculating eigenpairs. This method is a proce­

dure of successive advances, whose performance does not depend on the closeness of the 

adjacent eigenvalues. The theory and the examples given in this dissertation have shown
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that the Z-deformation method is superior to the inverse power iteration method when 

adjacent eigenvalues are close.

(7) This dissertation has derived explicit formulations for eigenpair design 

sensitivities of eigensystems in terms of basic displacement vectors, which can be used 

in combination with the Z-deformation method for eigenvector design sensitivity 

computations.

7.2 Remarks

Simple examples for analysis including sensitivity analysis have been given in the 

dissertation to validate the theory of structural variations. However, this dissertation does 

not suggest using SVM for a simple analysis of an unchanging structure. This is because 

the matrix V constructed by SVM is actually the Green’s functions of all the internal 

forces of the structure of interest ( as Theorem 1 implies ). Therefore, V gives much 

more information than what is required by a simple analysis, and hence needs more 

computer space for data storage and more efforts for computation. It is not suitable to 

compare SVM to the conventional displacement method based upon a simple analysis 

because they have different purposes and capabilities.

The structural variation method represents a new structural analysis tool, more 

efficiently than the conventional displacement method, to handle engineering problems 

which require structural variations and repeated analyses. Such engineering problems 

include design sensitivity analysis, structural optimization, vibration analysis, plastic- 

elastic analysis, structural stability analysis, structural reliability analysis, contact
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problems, crack propagation in solids, etc. Each specific application requires research 

efforts to establish explicit expressions based on SVM. Chapters 4-6 in this dissertation 

represent the development of SVM for vibration analysis and design sensitivity analysis. 

Some other applications of SVM have also been presented, e.g., [18,23-25 ]. However, 

these applications are only part of the potential applications of TSV and SVM. Further 

efforts are needed to extend TSV and SVM to more broad engineering applications.
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APPENDIX

This appendix gives short proofs of the 5 theorems used in Subsections 2.2.1-2.2.3, 

which have been given in [9] in Chinese. The notations already defined in previous 

sections will not be restated herein.

A .l Theorem 1. Suppose that a Pj is applied at ('), then the corresponding 

displacement vector, denoted by D{, is determined by D j=K ‘̂ .  According to Eqs. 

(2.18), (2.19) and (2.28), one has

(A.l)

which is just Eq. (2.31).

A.2 Theorem 2. It has been shown in Eq. (2.25) that

K=HW HT (A.2)

where H may involve constraint- or support-subelements and 

H = [H I,H 2, - . H " ] . (A. 3)

Then, one has the conclusion for Theorem 2 by the following derivation. 

K ^ K 'K K 1

=K '1HWHt K ' 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

= K ‘H W W IWHTK i

=(K‘1HW)W'1(K'1HW)T

= v Tw 1v .

A.3 Theorem 3. According to the definitions (2.29) (2.28) and (2.19), one has the 

conclusion:

=(E?)TK-1E?W?

=W “(E“)TK '1EfW?/W“

=(K‘1P^)rE?W?/Wt

=(Vt)TE?W?AV“

=Z*W?/W?.

A.4 Theorem 4. Suppose W“ is changed into W =W “+AW“ where AW“ stands for any 

increment of W?, then, from the definition of the BD vector, the new one, must 

satisfy the following equations 

(K+AK)V?=P?+AP?

= E“(W“+AW“)

= P t(l+ m t) .

However, due to the variation of a single W“, one has 

AK= AK“= E“(E^)TAW“= P?m“(E?)T.

Therefore, one has

(K+Pjm“(E3 1)V7 = P j(l+ m “).

Premultiplying the last equation by K ' 1 yields
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+K-1P;(1+m?)

=-V?m?2~+V?(l+m?) 

=V?( l+m?-m?2??). (A.4)

Premultiplying the above equation by (E?)T yields 

2 “ = Z tt(l+ m :-m ? 2 “ )

from which, one has

£“ =Z“ /(l+m?Z“ ). (A.5)

Substituting Eq. (A.5) into Eq. (A.4) yields Eq. (2.37); and repeating the same procedure 

and noting AP?=0 when W“ varies will give Eq. (2.38).

A.5 Proof of equations (2.45) and (2.46) ( part of Theorem 5 ).

Let the new connecting subelement (?) have its W?, E? and P?=W?E?, then, 

through the similar procedure as has been done for Eq. (A.4), one has

or

(K+r?(E?m?=p?

or

KV?=P?(l-2“ ).

Therefore, one has

V?=K'IP?(1-Z“ )

(A. 6 )

where V? is the auxiliary basic displacement vector which can be obtained directly from 

Theorem 2 as
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t “= K 1Pj= V TW 1VP^. (A.7)

Premultiplying Eq. (A.6 ) by (E“)T yields 

2~ = Z ~ /(1+ Z ~ ) (A.8 )

where

Z“ - ( E “)T̂

Substituting Eq. (A.8 ) into Eq. (A.6 ) yields Eq. (2.45), i.e.,

^ = t : / ( i + z s (A. 10)

(A.9)

and going through the similar procedure gives Eq. (2.46).

A . 6  Proof of equation (2.49a) ( another part of Theorem 5 ).

A constraint-subelement or support-subelement (?) is a special case of a 

connecting beam subelement with W ?=a>  ( Fig. 2.3 ). Actually, one can treat it as 

W?-*oo. So, before it becomes oo, Eq. (2.46) can apply to the case of adding (?) with 

W ? <  oo. Thus, one has

V?=[V?-Z??(V?)7(1+(Z??)*)] | (A. 11)

where

(t?)*=K '1E?W ?=t?W ?

t?sK -*E?

(Z??)*=(E?)T(^?)*

=(E?)TV?W?

=Z??W?.

Thus, one has

(t?)'/(l+ (Z ??)')= t?W ?/(l +Z??W?)
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(A. 12)

Substituting Eq. (A. 12) back into Eq. (A. 11) yields Eq. (2.49a).

A.7 Proof of equation (2.51)/(3.39).

Again, let the support-subelement (?) ( Fig. 2.3 ) be treated as W?-*oo. Then, 

before W? becomes oo, Eq. (2.38) can apply to the removal of (?) by setting m ?=-l. 

Therefore, one has

where and Z?? have been defined in Subsection 2.1.5.

Suppose there are in total q elements numbered /S=l,2,*--, q around the node R 

where the support-subelement (?) is to be removed ( Fig. 2.3 ). From Eq. (2.20), one 

has the nodal force vector f3 expressed in terms of F® as

or in global coordinates, denoting the counterpart of f3 by , the above equation can 

be rewritten as

V?=Vt+V?Z?:/(l-Z??).

Using Theorem 3 to substitute Z^?W“/W? for Z?“ in Eq. (A. 13), one has 

V“=V“+V?WtZ^?D?

(A. 13)

(A. 14)

where

D?=1/((1-Z??)W?) 

or in the component form for any DOF (J), 

^ r= V fr+V?;wtZT?D?

(A. 15)

(A. 16)

or

V fJ=V ^+V “ WaZ??D? (A. 17)

(A.18a)
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(A. 18b)

Then, the nodal force vector due to a unit-load vector PJ applied at any DOF (J)

should be expressed by Eq. (A. 18b) in the notations defined in Subsection 2.1.4, as

G ^ = H ( A .  19)

Thus, the force vector at node R ( part of G^ ), denoted by G£, is obtained by

partitioning according to the node R as

G |=H |F?;. (A.20)

Projecting Gi  onto the direction (?) by using R? and T? gives the force component in this

direction as

(R?)TG *=(R ?M F?'r

=-(I?)Tf? |. (A.21)

Nevertheless, according to Theorem 1, Eq. (A.21) can be rewritten as

(R?)TGi=-(T?)TV?<r. (A.22)

Equation (A.22) is a general expression for the nodal force component associated with

element |3 in a given direction (?), valid for the node R either with the support-

subelement (?) or without it. Applying Eq. (A.22) to the node R after removing (?), then

the total of these components from all elements connected to it must be balanced, i.e.,

£ (R ? )TG {b -£ (T ?)TV?'r=0 (A.23)
0*1 0*1 

and using Eq. (A. 17), one has

[ (Tf)7^  ] - [ £  ( T f ^ Z ? ;  ]V?'D? =0. (A.24)
0*i 0*i

Nevertheless, according to Eq. (A.22), the first part of Eq. (A.24) is the total force 

component from all the elements around R before removing the support-subelement (?),
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it should be balanced with the basic internal force of (*); therefore, from Theorem 1, it 

must be equal to V“ , i.e.,

- £ ( (A. 25)
fl-i

Thus, from Eqs. (A.25) and (A.24) one has 

[ l - ^ V z W  ]V“ =0 

from which comes

D?=1/(J^(T?)TW?Z?D. (A.26)
0*1

Substituting Eq. (A.26) back into Eq. (A. 14) and letting W?-*oo, one has

v ° + v?w?ẑ /( ĵ cr& ẑei)
0-1

= V :+ V ^ S  (A.27)

which is just Eq. (2.51). If T? and R“ take their definitions given in Subsection 3.5 

instead of those given in Subsection 2.2.3, the above proving procedure will give the 

same result as Eq. (A.27) for 2-D triangular element systems.
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