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The study of exclusive π� electroproduction on the nucleon, including separation of the various structure
functions, is of interest for a number of reasons. The ratio RL ¼ σπ

−

L =σπ
þ

L is sensitive to isoscalar
contamination to the dominant isovector pion exchange amplitude, which is the basis for the determination
of the charged pion form factor from electroproduction data. A change in the value of RT ¼ σπ

−

T =σπ
þ

T from
unity at small −t, to 1=4 at large −t, would suggest a transition from coupling to a (virtual) pion to coupling
to individual quarks. Furthermore, the mentioned ratios may show an earlier approach to perturbative
QCD than the individual cross sections. We have performed the first complete separation of the four
unpolarized electromagnetic structure functions above the dominant resonances in forward, exclusive
π� electroproduction on the deuteron at central Q2 values of 0.6, 1.0, 1.6 GeV2 at W ¼ 1.95 GeV, and
Q2 ¼ 2.45 GeV2 atW ¼ 2.22 GeV. Here, we present the L and T cross sections, with emphasis on RL and
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RT , and compare them with theoretical calculations. Results for the separated ratio RL indicate dominance
of the pion-pole diagram at low −t, while results for RT are consistent with a transition between pion
knockout and quark knockout mechanisms.

DOI: 10.1103/PhysRevLett.112.182501 PACS numbers: 25.30.Rw, 11.55.Jy, 13.40.Gp, 13.60.Le

Measurements of exclusive meson production are a
useful tool in the study of hadronic structure. Through
these studies, one can discern the relevant degrees of
freedom at different distance scales. In contrast to inclusive
(e, e0) or photoproduction measurements, the transverse
momentum (size) of a scattering constituent and the
resolution at which it is probed can be varied independ-
ently. Exclusive forward pion electroproduction is espe-
cially interesting, because by detecting the charge of the
pion, even the flavor of the interacting constituents can be
tagged. Finally, ratios of separated response functions can
be formed for which nonperturbative corrections may
partially cancel, yielding insight into soft-hard factorization
at the modest photon virtuality, Q2, to which exclusive
measurements will be limited for the foreseeable future.
The longitudinal response in exclusive charged pion

electroproduction has several important applications. At
low Mandelstam variable −t, it can be related to the
charged pion form factor, FπðQ2Þ, [1] which is used to
test nonperturbative models of this “positronium” of light
quark QCD. In order to reliably extract Fπ from electro-
production data, the isovector t-pole process should be
dominant in the kinematic region under study. This
dominance can be studied experimentally through the ratio
of longitudinal γ�Ln → π−p and γ�Lp → πþn cross sections.
If the photon possessed definite isospin, exclusive π−

production on the neutron and πþ production on the proton
would be related to each other by simple isospin rotation
and the cross sections would be equal [2]. A departure
from RL ≡ σπ

−

L =σπ
þ

L ¼ ððjAV − ASj2Þ=ðjAV þ ASj2ÞÞ ¼ 1,
where AS and AV are the respective isoscalar and isovector
photon amplitudes, would indicate the presence of isoscalar
backgrounds arising from mechanisms such as ρ meson
exchange [3] or perturbative contributions due to transverse
quark momentum [4]. Such physics backgrounds may be
expected to be larger at higher −t (due to the dropoff of the
pion pole) or nonforward kinematics (due to angular mom-
entum conservation). Because previous data are unsepa-
rated [5], no firm conclusions about possible deviations of
RL from unity were possible.
In the limit of small −t, where the photon is expected

to couple to the charge of the pion, the transverse ratio
RT ≡ σπ

−

T =σπ
þ

T is expected to be near unity. With increasing
−t, the photon starts to probe quarks rather than pions, and
the charge of the produced pion acts as a tag on the flavor
of the participating constituent. Applying isospin decom-
position and charge symmetry invariance to s-channel
knockout of valence quarks in the hard-scattering regime,
Nachtmann [6] predicted the exclusive electroproduction

π−=πþ ratio at sufficiently large −t to be ððγ�Tn → π−pÞ=
ðγ�Tp → πþnÞÞ ¼ ðed=euÞ2 ¼ ð1=4Þ. Previous unseparated
π−=πþ data [5] trend to a ratio of 1=4 for jtj > 0.6 GeV2,
but with relatively large uncertainties.
In the transition region between low −t (where a descrip-

tion of hadronic degrees of freedom in terms of effective
hadronic Lagrangians is valid) and large −t (where the
degrees of freedom are quarks and gluons), t-channel
exchange of a few Regge trajectories permits an efficient
description of the energy dependence and the forward
angular distribution of many real- and virtual-photon-
induced reactions. The VGL Regge model [7,8] has pro-
vided a good and consistent description of a wide variety of
π� photo- and electroproduction data above the resonance
region. However, the model has consistently failed to
provide a good description of pðe; e0πþÞn σT data [9].
TheVGLReggemodelwas recently extended [10,11] by the
addition of a hard deep inelastic scattering process of virtual
photons off nucleons. The deep inelastic scattering process
dominates the transverse response at moderate and highQ2,
providing a better description of σT .
Exclusive π� electroproduction has also been calculated

in the handbag framework, where only one parton partici-
pates in the hard subprocess, and the soft physics is encoded
in generalized parton distributions (GPDs). Pseudoscalar
meson production, such as σT in exclusive π� electro-
production which is not dominated by the pion pole term,
has been identified as being especially sensitive to the chiral-
odd transverse GPDs [12,13]. The model of Refs. [13,14]
uses a modified perturbative approach based on GPDs,
incorporating the full pion electromagnetic form factor
and substantial contributions from the twist-3 transversity
GPD, HT .
We have performed a complete L=T=LT=TT separation

in exclusive forward π� electroproduction from deuterium.
Here, we present the L and T cross sections, with emphasis
on RL and RT in order to better understand the dynamics of
this fundamental inelastic process; the LT and TT inter-
ference cross sections will be presented in a future work.
Because there are no practical free neutron targets, the
2Hðe; e0π�ÞNNs reactions (where Ns denotes the spectator
nucleon) were used. In π−=πþ ratios, the corrections for
nuclear binding and rescattering largely cancel.
The data were obtained in Hall C at the Thomas Jefferson

National Accelerator Facility (JLab) as part of the two pion
form factor experiments presented in detail in Ref. [9].
Except where noted, the experimental details and data
analysis techniques are as presented in Ref. [9] for the
1Hðe; e0πþÞn data. Charged π� were detected in the high
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momentum spectrometer (HMS) while the scattered elec-
trons were detected in the short orbit spectrometer.
Given the kinematic constraints imposed by the available
electron beam energies and the properties of the HMS and
short orbit spectrometer magnetic spectrometers, deuterium
data were acquired in the first experiment for nominal
(Q2, W, Δϵ) settings of (0.60,1.95,0.37), (1.00,1.95,0.32),
(1.60,1.95,0.36), and in the second experiment of (2.45,
2.22,0.27). The value W ¼ 1.95 GeV used in the first exp-
eriment is high enough to suppress most s-channel baryon
resonance backgrounds, but this suppression should be
even more effective in the second experiment. For each Q2

setting, the electron spectrometer angle and momentum, as
well as the pion spectrometer momentum, were kept fixed.
To attain full coverage in ϕ, in most cases additional
data were taken with the pion spectrometer at a slightly
smaller and at a larger angle than the ~q vector direction for
the high ϵ settings. At low ϵ, only the larger angle setting
was possible. The HMS magnetic polarity was reversed
between πþ and π− running, with the quadrupoles and
dipole magnets cycled according to a standard procedure.
Kinematic offsets in spectrometer angle and momentum, as
well as in beam energy, were previously determined using
elastic e−p coincidence data taken during the same run, and
the reproducibility of the optics checked [9].
The potential contamination by electrons when the pion

spectrometer is set to negative polarity, and by protons when
it is set to positive polarity, introduces some differences in the
π� data analyses which were carefully examined. For most
negative HMS polarity runs, electrons were rejected at the
trigger level by a gas C̆erenkov detector containing C4F10.
The beam current was significantly reduced during π−

running tominimize the inefficiency due to electrons passing
through the gas C̆erenkov within ≈100 ns after a pion has
traversed the detector, causing the pion to bemisidentified as
an electron. A C̆erenkov blocking correction (1%–15%) was
applied to the π− data using the measured electron rates
combined with the effective time window of the gas
C̆erenkov analog to digital converter, the latter determined
fromdatawhere the C̆erenkovwas not in the trigger. A cut on
particle speed (v=c > 0.95), calculated from the time-of-
flight difference between two scintillator planes in the HMS
detector stack, was used to separate πþ from protons.
Additionally, in the second experiment, an aerogel C̆erenkov
detector was used to separate protons and πþ for central
momenta above 3 GeV=c. A correction for the number of
pions lost due to pion nuclear interactions and true absorption
in the HMS exit window and detector stack of 4.5%–6%was
applied. For further details, see Ref. [9].
Because the π− data are typically taken at higher HMS

detector rates than the πþ data, a good understanding of
rate-dependent efficiency corrections was required. An
improved high rate tracking algorithm was implemented,
resulting in high rate tracking inefficiencies of 2%–9% for
HMS rates up to 1.4 MHz. Liquid deuterium target boiling

corrections of 4.7%=100 μA were determined for the
horizontal-flow target used in the first experiment. The
vertical-flow target and improved beam raster used in
the second experiment resulted in a negligible boiling
correction for those data. The experimental yields were
also corrected for dead time (1%–11%).
Kinematic quantities such as t and missing mass MX

were reconstructed as quasi-free pion electroproduction,
γ�N → π�N0, where the virtual-photon interacts with a
nucleon at rest. The former is calculated using
t ¼ ðptarget − precoilÞ2, which can differ from ðpγ − pπÞ2
due to Fermi motion and radiation. Missing mass cuts were
then applied to select the exclusive final state (Fig. 1).
Because of Fermi motion in the deuteron, this cut is taken
wider than for a hydrogen target. Real and random coinci-
dences were isolated with a coincidence time cut of �1 ns.
Background from aluminum target cell walls (2%–4% of
the yield) and random coincidences (∼1%) were subtracted
from the charge-normalized yields on a bin by bin basis.
The virtual-photon cross section can be expressed in

terms of contributions from transversely and longitudinally
polarized photons, and interference terms

2π
d2σ
dtdϕ

¼ dσT
dt

þ ϵ
dσL
dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ϵð1þ ϵÞ
p dσLT

dt
cosϕ

þ ϵ
dσTT
dt

cos 2ϕ: (1)

Here, ϵ ¼ ð1þ 2ðj~qj2=Q2Þtan2ðθ=2ÞÞ−1 is the virtual-
photon polarization, where ~q is the three-momentum
transferred to the quasifree nucleon, θ is the electron
scattering angle, and ϕ is the azimuthal angle between
the scattering and the reaction plane.
For each charge state, the data for d2σ=dtdϕwere binned

in t and ϕ and the individual components in Eq. (1)
determined from a simultaneous fit to the ϕ dependence
of the measured cross sections at two values of ϵ. The
separated cross sections are determined at fixed values of
W,Q2, common for both high and low values of ϵ. Because
the acceptance covers a range in W and Q2, the measured

FIG. 1 (color online). Missing mass of the undetected nucleon
calculated as quasifree pion electroproduction for a representative
πþ setting. The diamonds are experimental data, and the red line
is the quasifree Monte Carlo simulation. The vertical line
indicates the MX cut upper limit.

PRL 112, 182501 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
9 MAY 2014

182501-3



cross sections, and hence the separated response functions,
represent an average over this range. They are determined
at the average values (for both ϵ points together), Q̄2, W̄,
which are different for each t bin. The experimental cross
sections were calculated by comparing the experimental
yields to a Monte Carlo simulation of the experiment.
The simulation uses a quasifreeNðe; e0π�ÞN0 model, where
the struck nucleon carries Fermi momentum, but the events
are reconstructed in the same manner as the experimental
data, i.e., assuming the target is a nucleon at rest. The
Monte Carlo simulation includes a detailed description of
the spectrometers, multiple scattering, ionization energy
loss, pion decay, and radiative processes.
The separated cross sections, σL and σT , are shown in

Fig. 2. Even if πþ production on 2H occurs only on the
proton, the deuterium cross section cannot be directly
connected to the free 1H cross section because the Monte
Carlo cross-section model ignores off-shell effects and
averages over the nucleon momentum distribution in 2H.
The uncertainties in the separated cross sections have both
statistical and systematic sources. The statistical uncertainty
in σT þ ϵσL is 5%–10% for π− settings, and more uniformly
near 5% for πþ settings. Systematic uncertainties that are
uncorrelated between high and low ϵ points are amplified
by a factor of 1=Δϵ in the L=T separation. This uncertainty

(∼1.3%=Δϵ) is dominated by uncertainties in the spec-
trometer acceptance, uncertainties in the efficiency correc-
tions due to C̆erenkov trigger blocking and analysis cuts,
and the Monte Carlo model dependence. Scale systematic
uncertainties of ∼3% (not shown in the figure) propagate
directly into the separated cross sections. They are domi-
nated by uncertainties in the radiative corrections, pion
decay and pion absorption corrections, and the tracking
efficiencies. The systematic uncertainty due to the simu-
lation model and the applied MX cut (model-dependence)
was estimated by extracting new sets of L=T=LT=TT cross
sections with alternate models and tighter MX cuts.
In the σL response of Fig. 2, the pion pole is evident by

the sharp rise at small −t. π− and πþ are similar, and the
data at differentQ2 follow a nearly universal curve versus t,
with only a weak Q2 dependence. The T responses are
flatter versus t.
Finally, π−=πþ ratios of the separated cross sections were

formed to cancel nuclear binding and rescattering effects.
Many experimental normalization factors cancel to a high
degree in the ratio (acceptance, target thickness, pion decay,
and absorption in the detectors, radiative corrections, etc.).
The principal remaining uncorrelated systematic errors are
in the tracking inefficiencies, target boiling corrections, and
C̆erenkov blocking corrections.
Figure 3 shows the first experimental determination

of RL. The ratio is approximately 0.8 near −tmin at each
Q2 setting, as predicted in the large Nc limit calculation of
Ref. [15]. The data are generally lower than the predictions
of the pion-pole dominated models [8,10,11]. Under the
naive assumption that the isoscalar and isovector ampli-
tudes are real, RL ¼ 0.8 gives AS=AV ¼ 0.06. This is
relevant for the extraction of the pion form factor from
electroproduction data, which uses a model including some
isoscalar background. This result is qualitatively in agree-
ment with the findings of our pion form factor analyses
[1,16], which found evidence of a small additional con-
tribution to σL not taken into account by the VGL Regge
model in our Q2 ¼ 0.6–1.6 GeV2 data at W ¼ 1.95 GeV,
but little evidence for any additional contributions in our
Q2 ¼ 1.6–2.45 GeV2 data at W ¼ 2.2 GeV. The main
conclusion to be drawn is that pion exchange dominates
the forward longitudinal response even ∼10m2

π away from
the pion pole.
Also in Fig. 3 are the first RT results in electroproduc-

tion. At Q2 ¼ 0.6, 1.0 GeV2, RT drops rapidly and given
the small t-range covered, it is not apparent if this drop is
due to t orQ2 dependence. However, the values atQ2¼ 1.6
and 2.45 GeV2 overlap, suggesting that RT is primarily a
function of −t, dropping from about 0.6 at −t ¼ 0.15 to
about 0.3 at −t ¼ 0.3 GeV2. Interestingly, photoproduction
data in this t range [17] give similar values. It is noteworthy
that the unseparated data of Ref. [5] reach a value of 0.3 at a
much higher value of −t. A value of −t ¼ 0.3 GeV2 seems
quite low for quark-charge scaling arguments to apply

FIG. 2 (color online). Separated exclusive π� electroproduction
cross sections from deuterium. Because the data were taken at
different values of W̄, all cross sections were scaled to a value of
W ¼ 2.0 GeV according to 1=ðW2 −M2Þ. The error bars indicate
statistical and uncorrelated systematic uncertainties in both ϵ and
−t, combined in quadrature. The shaded error bands indicate the
model dependence of σL. The σT model dependence (not shown)
is smaller.
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directly. This might indicate the partial cancellation of soft
QCD corrections in the transverse π−=πþ ratios. Previous
photoproduction measurements of RT have hinted at quark-
partonic behavior, but such nonforward, Q2 ¼ 0 measure-
ments are inherently more difficult to interpret due to sea
quark and u-channel contributions. Indeed, the photo-
production measurements at sufficiently high −t first dip
down toward 1=4 then increase at backward angles [18].
The models of Refs. [7,10,11] do not accurately predict RT
at −t min, although [11] does much better at higher −t.
The Goloskokov-Kroll GPD-based model is in reasonable
agreement, but the parameters in this model are optimized
for small skewness (ξ < 0.1) and large W > 4 GeV. The
application of this model to the kinematics of our data
requires a substantial extrapolation and one should be
cautious in this comparison. Indeed, although the model
does a reasonable job at predicting the π−=πþ ratios, the
agreement of the model with σT is not good [14]. Further
theoretical work is clearly needed to investigate alternative
explanations of the observed ratios.
To summarize, our data for RL trend toward unity at low

−t, indicating the dominance of isovector processes in
forward kinematics, which is relevant for the extraction of
the pion form factor from electroproduction data [1,16,19].
The evolution of RT with −t shows a rapid falloff consistent
with s-channel quark knockout. Since RT is not dominated
by the pion pole term, this observable is likely to play an
important role in future transverse GPD programs. Further
work is planned after the completion of the JLab 12 GeV
upgrade, including complete separations atQ2¼5–10GeV2

over a larger range of −t [20].
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