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ABSTRACT

Mobility-Pattern Based Localization Update Algorithm for Mobile
Wireless Sensor Networks

Mohammad Yacoub Al-laho
Old Dominion University, August 2005

Director: Dr. Min Song

In mobile wireless sensor networks, sensors move in the monitored area at any

direction and speed. Unlike many other networking hosts, sensor nodes do not have

global addresses. They are often identified by using a location-based addressing

scheme. Therefore, it is important to have the knowledge of the sensor location

indicating where the data came from. In this thesis, three localization update algorithms

were designed, Specifically, a sensor movement is divided into three states: Pause,

Linear, and Random. Each state adopts different localization update algorithm. Since

complex movement involves different mobility patterns, a state transition model is

developed to accommodate the transition among the three algorithms. This design is

called Mobility-pattern Based Localization Update Algorithm.

Simulation results and analysis are provided to study the localization update cost

and location accuracy of the proposed mobility-pattern based design. The simulation is

developed to accommodate the three different mobility patterns. The analysis to these

results indicates that the localization update cost is minimized and the location accuracy

is improved.
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CHAPTER I

INTRODUCTION

1.1 Introduction

Wireless sensors have been a hot topic due to its flexibility of gathering

information of any kind anywhere. Wireless Sensor Networks (WSNs) consist of

densely distributed sensor nodes. Sensor nodes have communication capability, storage

and processing resources including sensing capability [5, 16). Since the quantity of

these sensor nodes is generally large and it is hard to change batteries for each node, it

is considered that the nodes should have very efficient power consumption. Therefore,

the limit of power consumption forces sensor nodes to have short-range transmission

and low average bit-rate communication. It is also considered that sensors do not have

large computational capabilities due to the power consumption limit and the small size

of a node, which is approximately 1-4 cm . Example of sensor node's size is shown in

figure l.

Figure 1: Sensor node size example.



Wireless sensor networks are considered either stationary or mobile. In

stationary wireless sensor networks, nodes do not move and hence their locations do not

change. On the other hand, in Mobile wireless Sensor Networks (MSNs), sensors can

move freely in the monitored area at any direction and at any speed. Locating a mobile

sensor node in a network is more challenging and needs more aggressive algorithm.

MSNs can be used in many useful applications such as military, environmental, health,

commercial or home applications [5]. The following only point out a few application

examples of MSNs.

Military Applications:

~ Monitoring friendly forces, equipment and ammunition.

~ Battlefield surveillance.

~ Reconnaissance of opposing forces and terrain.

~ Battle damage assessment.

Environmental Application:

~ Forest fire detection.

~ Flood detection.

Health Applications:

~ Tracking and monitoring patients and doctors inside a hospital.

~ Drug administration in hospitals.

Commercial Applications:

~ Managing inventory control.

MSN is called to specify mobile sensor nodes, while WSN is a more general naming for both mobile
and stationary sensor nodes network.



~ Vehicle tracking and detection.

The subject matter of this thesis is how and when to locate a mobile sensor node

in a network. The localization schemes available in literature are useful for stationary

type of wireless sensor networks. The location detection techniques available for the

MSNs use techniques with either pure prediction or prediction combined with

localization update from other sources in the network. Prediction schemes tend to

anticipate the next possible step of a node based on a movement pattern model or

movement pattern history of a node.

1.2 Location Importance for Sensor Nodes

Since almost all the MSNs applications require location awareness, tracking

sensor nodes'ocation becomes a large interest. Sensor nodes do not have global

addresses. Though, sensor nodes are identified by using a location-based addressing

scheme [5]. For example, "temperatures read by the nodes in region A" is an example

for location-based naming. The routing process requires location-based naming where

the users are more interested in querying a location of a phenomenon, rather than

querying an individual node [5]. Therefore, it is important to have the knowledge of the

sensor location indicating where the data came from.

1.3 Localization Problem

The method of detecting the current location of an object is called localization

scheme. Many researches have been conducted to solve the localization problem of



stationary wireless sensor nodes but few concern localization of mobile nodes. For

stationary localization schemes, there are generally two steps involved in the

localization process and a third is optional. The first step is to measure the distance

between a beacon transmitter and a beacon receiver. This step usually involves using

one of the following methods to calculate ranges: Time of Arrival (ToA), Time

Difference of Arrival (TDoA), Angle of Arrival (AoA), and Received Signal Strength

Indicator (RSSI) [12, 13, 14, 15]. The second step uses the range measurements to

estimate the location of an unknown sensor in a network. Three major methods are

used in step two, Triangulation, Trilateration, and Multilateration [12, 13, 14]. The

third step could be a refining process to assure more accuracy. For the mobile sensor

nodes, a localization method is performed frequently when a mobile node moves.

Apparently, the more the localization scheme is performed, the more accurate the

node's location gets. However, increasing the number of localization updates consumes

more power and consequently shortening the effective life of the network. Note that in

this thesis, the localization scheme is not the focus of the research. Instead, the research

focuses on when to use the localization scheme and how to estimate a node's cunent

location for the period of time between one localization-update and another.

A known localization system is the Global Positioning System (GPS).

However, the GPS is not a good choice for MSNs for the following reasons:

~ GPS cannot work indoors or in the presence of dense foliage or other obstacles

that block the line-of-sight from the GPS satellites.



~ The power consumption of GPS receivers reduces the battery life of the sensor

nodes and hence reduces the effective lifetime of the entire network.

~ It is impossible to equip each sensor node with GPS receiver from economic

perspective when the number of sensor nodes in the network is large.

~ The size of GPS receivers restricts the sensor nodes from having a small shape

form [7].

In another method, the localization of mobile wireless sensors can be performed

by using prediction techniques that anticipate the possible next step of a sensor node

based on the movement pattern model and the history of the movement pattern [4].

However, the prediction method is rather too complex and needs many calculations and

filtering techniques to refine the possible sampling data collected from previous

movements. The energy consumption and the memory size restrictions of a sensor node

limit the use of the prediction methods. In addition, it has been found that prediction

techniques are not always accurate [I]. The following are some reasons that cause

inaccurate predictions:

~ The developed model can be inaccurate — the sampled points may not be

sufficient to discover the mobility pattern.

~ We may assume an inappropriate mobility model (e.g., assuming that the node is

moving at constant velocity when it has an acceleration component).

~ The localization methods may introduce some error in the computed localization

points.



~ Sensors will typically not follow a predictable model (e.g., there may be

unpredictable changes of directions or pauses that will cause the predicted

model to go wrong) [1].

Another problem is that mobile localization schemes in literature over-simplify

the mobility pattern and they do not work well when nodes move randomly. The more

the mobility pattern deviates from the linear model, the more inaccurate the location

accuracy gets.

1.4 Objectives and Proposal

The objective of this thesis is to overcome the localization problems mentioned

above, and to propose a localization scheme that is confined with the sensor node

design aspects like limited power sources. To avoid pure prediction methods, a more

reliable method is to use localization update algorithm combined with prediction

techniques. In this case, the localization update will correct any wrong anticipation.

To solve the problem of complex mobility pattern, we feel the need to

differentiate among the different mobility patterns in the system. The notion here is to

use different localization update schemes for different mobility patterns. In [2] it is

found that mobility patterns can be divided into three kinds Pause, Linear and Randorrt

as shown in Figure 2.

Localization update in this context means updating the current location of a sensor node using a
localization method.



Mobility pattern

Move Pause

Linear movement Random movement

Figure 2: The classification of mobility patterns.

The division of mobility patterns helps dealing with each kind of mobility pattern type

alone. So for each type, a different localization-update scheme is used to get the inost

accurate results.

Moreover, a key design issue in WSNs is simplicity. Keeping the algorithm as

simple as possible should be in mind since wireless sensor nodes have limited power

consumption and computational capability. The small size of a wireless sensor node

limits the size of memory and processor unit.

In this thesis, the topic of location detection of MSNs is investigated.

Localization-update algorithms are used in a mobility pattern model where movements

are divided into three states. Each state adopts different localization update algorithm.

The purpose of the localization update algorithms is to control the period of localization

where a sensor node calculates its current location. Also for each state, location

prediction methods are used except for the Pause state since a node is assumed to be in



the same location. Finally, the goal is to study the tradeoff between localization update

cost (the frequency of localization updates performed in a period of time) and the

location accuracy errors caused by the prediction techniques. Another primary goal is

to reduce the localization updates frequency while keeping the accuracy error low.



CHAPTER II

RELATED WORK

2.1 Introduction

In MSNs, sensors'obility is considered. As a sensor node moves, it needs to

frequently locate itself in the network. The more the sensor node moves, the more

frequent it needs to localize itself. Many researches have been conducted to address

location detection of stationary sensor nodes, but few works were conducted to enhance

location detection of mobile sensor nodes. Some techniques use probabilistic methods

to anticipate the mobility pattern of a moving node. In [4j, location prediction is

performed using two steps, prediction and filtering. In the prediction step, a node draws

a set of possible locations that are computed using the previous locations'istory and

the node's mobility model. The possible location points'et is confined in a circle

where the node's previous location is the origin of the circle and the maximum speed is

the radius. In the filtering step, a node begins to eliminate certain location points based

on beacons received from neighboring nodes. Lost beacons from certain neighboring

nodes indicate that the mobile node is moving away from a certain area, and receiving

beacons from other nodes indicate that the mobile node is moving toward another area.

Connectivity is very important for this method. Moreover, this method needs a lot of

calculations to draw possible locations for each step. Some other prediction methods

use linear anticipation calculation, which is known as Dead Reckoning (refer to section

A beacon in this context is a radio signal transmitted to other nodes with specific data. Usually holds
location data.



2vk 1 for more information). Dead reckoning is suitable for linear movement because it

does not take into account direction change or acceleration.

For almost all MSNs localization methods, it is important to update the current

location to correct any erroneous prediction. The question is when to update the

location of a node. The following sections describe three methods for controlling

localization periods in MSNs.

2.2 Static Fixed Rate (SFR)

In SFR [I] method, the localization is carried out periodically with a fixed time

period r. The energy consumption of the SFR method is independent of mobility.

However, SFR accuracy error or performance varies with the mobility of the sensor

node. If the sensor node is moving quickly, the error will increase, and if the sensor

node is moving slowly, the error will be low.

2.3 Dynamic Velocity Monotonic (DVM)

At this method, a sensor node adapts its localization period as a function of its

mobility speed. The simple concept of DVM [1] is that the schedule of when to localize

a sensor node depends on the sensor node's velocity. A sensor node measures its speed

as it moves by calculating the distance between the current location point and the

previous location point and divides it by the elapsed time. Based on the speed value, a

node schedules the next time to localize. A parameter named a is set to represent the

target maximum error. For each localization measurement, the speed value is compared

10



with a to estimate how much time needed to reach the target maximum error if the node

continues on the same speed. The next localization is scheduled after that time period.

Note that a constant velocity is assumed between the two points. This could affect the

scheduling time for localization such that a node could reach values of error higher than

the target maximum error (threshold error tx). In addition, for low speeds, the

localization period could be too long. On the other hand, with high speeds, the

localization period may be computed to be very short that may drain the power supply

fast. To accommodate for these effects, DVM assigns an upper and lower limits for

localization periods. This way the performance does not deviate from the desired

results.

2.4 Mobility Aware Dead Reckoning Driven (MADRD)

In this method, MADRD [I] tends to predict mobility of nodes in the network

using the Dead Reckoning Model (DRM). Based on mobility prediction, the

localization periods can be reduced significantly. The idea in MADRD is that as more

accurate the mobility prediction gets as less frequent localization updates are performed.

To understand MADRD, Dead Reckoning technique has to be introduced.

Z.4.1. Dead Reckoning Model (DRM)

DRM [3, g] predicts mobility based on previous location information. It first

calculates the velocity component v„and v„along the X and Y axis from two successive

11



location samples (x,,y, ) and (x,,y, ) taken at times tp and t t, where tp denotes

current time and t t denotes previous time, thus

x — x
v = i oI

t, — tp

yc,
vJ'

— f-1 0

(2)

Having the velocity components, we can obtain (x,,y, ), which is the next location

coordinates at tu

x, =x, +(v„x(t] tp))

(4)

In MADRD, after (tt — tp) time period(x,,y, ) is compared to the location coordinate

obtained from a localization method. The comparison is done by calculating the

Euclidean distance between the predicted location and the real location obtained from

localization method. The Euclidean distance d is obtained using equation (5).

Where (x~„,», y„d) is the predicted location coordinate and (x„.s y„„t) is the real

location coordinate. In MADRD, based on a previously determined threshold error, d is

compared to a threshold error value. If the difference is too large that it exceeds a

threshold error then the process is moved to a low confidence state where localization is

12



carried out so often. If the difference is small and below a threshold error then the

process moves into a high confidence state where localization is less frequently

performed.

2.5 Summary

An overview of selected research works in the field of localization for MSNs

was given. All the research works reviewed use localization update to correct any

location erroneous predictions. Three localization update control schemes were

introduced: Static Fixed Rate (SFR), Dynamic Velocity Monotonic (DVM) and

Mobility Aware Dead Reckoning Driven (MADRD). The three protocols are good for

linear mobility pattern but they are not suitable for complex mobility patters. A

prediction scheme is mentioned that uses sample sets and probabilistic calculations to

predict sensor nodes locations. However, this method has too many calculations

involved and is rather too complex for MSNs.

13



CHAPTER III

THE SYSTEM DESIGN

3.1 Introduction

The main objective in designing the algorithm is to manage the localization-

update period in optimal rates while keeping the location accuracy error low. There are

two parameters to take care of, the cost of update frequency and the node's location

accuracy. It is expected that when the location of a node is less updated, the update cost

will be low while location accuracy error will be high. However, when the localization

update frequency is increased, the update cost will be high and the location accuracy

error will be low. The algorithm should keep localization update cost low and location

accuracy enor low as well. Using one update policy is not enough for complex

mobility pattern. [I] uses dead reckoning for prediction, and localization updates are

carried out based on how well the prediction is. In [I], it is found that when the

movement pattern is not predictive (not linear) the performance decreases significantly.

In this thesis, the idea in [2] is adopted where mobility pattern is divided into three

types: Pause, Linear, and Random as shown in Figure 2. Different localizanon update

policies are used for different mobility patterns. There are four localization update

schemes in literature:

~ Time-based: updates are made at fixed time intervals.

~ Movement-based: updates are made whenever the number of cell-boundary

crossings since the last update exceeds a specified threshold.

14



~ Distance-based: a mobile updates its location whenever its distance from an

expected location exceeds a specified value.

~ Dead reckoning: a method of predicting a location based on velocity

components calculated from previous locations.

Some of the techniques above are not suitable for WSNs since they usually use the

knowledge of cells count like in the Movement and Distance based update methods. [9,

I 0] talk in more details about update schemes.

3.2 Mobility-Pattern Based Localization Update Algorithm (MBLUA)

In the MBLUA, the Time-based scheme is used for the Pause state since there is

no distance or movement involved in a pause. However, the scheme is changed. In the

original Time-based method, the period of localization update is fixed. In our algorithm

the localization period is increased as the node's pause time increases. To prevent a

long wait time to localize, there is a maximum period of wait time that cannot be

exceeded. The motive behind increasing the localization period as a node pause longer

is to save more energy. Dead reckoning scheme is most suitable for linear mobility

pattern (the Linear state) since it works for predictive movement pattern where there is

no change of velocity or unpredicted change of direction. The localization period is

incremented as long as the distance between the predicted location and the real location

(the error) is within a predefined threshold. The localization period is set to the initial

localization period if the error exceeds the threshold value. The most suitable policy for

the random movement pattern (the Random state) is the distance-based scheme. The

distance-based scheme used in MBLUA is slightly different than the one in [2, 17]. In

15



[2, 17] the distance is between the last update in the last cell and the current location in

the current cell. Therefore, the distance is actually the number of cells. In wireless

sensor networks the concept of cells does not exist. The idea in this design is not to

actually measure the distance between last update and current position, but rather to

predict when the node will cross the limit of this distance based on the acceleration

value measurement of the node. The acceleration is to be measured periodically as the

node localizes using equation (6)

V — V
Q= cur prev y 2re s

t, — r„
(6)

where v,„, is the current velocity and vs„„ is the previous velocity, and t,„, — t „„ is the

elapsed time. The localization period is then measured using equation (7)

h
d

(7)

where d thresh denotes the distance limit to localize; it works like the parameter ct in

the DVM method in [1]. r is an estimate time because we assume a constant

acceleration during that time, meanwhile acceleration could change in real movement.

After the node localizes immediately, d thresh will be the radius of a circle where the

node is on the origin of this circle as shown in Figure 3. A larger d thresh value

indicates a larger f value and a smaller d thresh value indicates a smaller i value

regardless of the acceleration value. The value of d thresh will depend on the

application. Applications that need more accuracy will have smaller d thresh.

Meanwhile, applications that do not require location accuracy will have larger d thresh

value.

16



For a simulation of discrete time intervals, t should be converted to discrete

time intervals by using equation (8)

timesio t
(8)

where n is the number of time intervals, and timeslot is a constant equal the discrete

time interval period. During the n time intervals the locations are estimated using

equations (9) and (10) that uses dead reckoning plus the a (acceleration) factor. Since a

equals to the increment or decrement of velocity per second, a is multiplied by the

timeslot period to get the increment or decrement in velocity vector for each time

interval, v = ax timeslot.

x~ x
~
+ [(v„+ v)(ti mes lot)) (9)

y, = y,, +[(v +v)(timeslot)] (10)

Where x, and y, are the new estimated position coordinates, xsl and ym are the previous

position coordinates, and v„, vr are the velocity components.

Figure 3: d tlsrests in the distance-based method.

17



A limitanon of this method is that it does not take into account direction changes

as it is in random movement during the localization period. The only consideration here

is the acceleration factor. Between each localization update and another, the direction is

assumed to be the same. If location information is required during the localization

period, before crossing the d thresh limit, current location estimate is obtained from

equations (9) and (10). The d thresh value is meant to keep the error tolerable. As a

matter of fact, assuming the mobile node to travel in a straight line is the worst-case

scenario since the traveled distance will be exactly equal to the d thresh value and may

cross it if acceleration is increased during the localization period. Meanwhile, if the

mobile node changes its direction, then it will stay within the circle of radius d thresh

where error is tolerable. This approach is considered to be conservative and should fit

any application by adjusting the d thresh value.

3,3 The System Model

Each mobility pattern presents a state. Conditions to move from one state to

another will be tested in each state so the update policy is changed with the state

change. Figure 4 shows the initial and the three mobility pattern states.

18



Figure gn The Mobility Pattern State Transition Diagram.

In the MBLUA, the main test to transit from state to another is based on velocity

information. A transition to the Pause state occurs when the velocity equals to zero,

which is equivalent to detecting a sensor node in the same location for two times in a

row. To transit to Linear state, velocity should be the same for certain time, which is

constant velocity or equivalently acceleration value equals to zero. Finally, transition to

the Random state occurs when changing in the velocity value is detected, which

indicates random mobility pattern. The following section presents the pseudo code for

each update policy that will be run in each state including the initial state that detects

the current mobility pattern.

19



3.3.1. The Three States and Initial State Algorithms

The following sections introduce the algorithms in pseudo code to be run in each

mobility pattern state including the initial state.

3.3.1.1 Initial State Algorithm:

The Initial state algorithm will be iun one time in the beginning of each start.

The purpose of this state is to detect the mobility pattern of the sensor node and to

initialize the initial update time (Init updatetime), linear threshold (Lin thrish), distance

threshold (d thresh), and the maximum waiting time (max time). The init updatetime

specifies the initial update time to wait when moving to a new state. Usually the

init updatetime equals zero, which means updating each time slot. The Lin thrish is

the error threshold for the Linea~ state. Lin thrish equals the tolerable accuracy error

(distance error) between the predicted location and the real location. The d thresh is

the distance threshold for the Random state. d thresh is shown in figure 3. max time is

the maximum discrete time periods to wait for the next localization. max time insures

that a sensor node does not wait for a long time to localize and hence keeping the

accuracy error level low.

1nitial state seudo code:
1. Define 1nit updatetime II one time slot
2. Define max time I/maximum time a node can wait to update again
3. Define Lin thrish
4. Defined thresh
5. Main
6. ioc/ f- loc update II (xi, yi)
7. Wait for /nit updatetime
8. ioc2 E loc update // (xn yz)

20



9. calculate vl I/ l((xi — xz)'+ (yi — yz)') I (tz — ti)
10. Ifv1= 0 I/ means loci = loc2
11. Then state &- Pause state (t, v, loc)

12.
13.
14.
15.
16.

17.
18.
19.

Else
Wait for Jnit updatetime
loc3 C- loc update // (xs, yi)
calculate v2 // 4((xt — xi)' (yt — ys)') / (ti — tz)
If vl = v2

Then state E- Linear state (t, locvi)
Else

state &- Random state (t, vvi, loca)

3.3,1.2 Pause State Algorithm:

In the Pause state algorithm, a sensor node is assumed to be stationary. The

algorithm increases the update time period as long as the sensor node's velocity is zero.

The update time period is increased until the max time to avoid infinite waiting time in

case of long stationary periods.

Pause state seudo codet
1. Pause state (t, vvi, locvi) II t, vi i and loc, i from the previous state
2. update time C- Init updatetime
3. Loop
4. Wait for update time
5. loc„E loc update // Localize
6, Calculate v„ // I'rom loc, i and loc„
7. If v&,!= 0 for two consecutive times
8. Then If vvi ! = v„
9. state C- Random state
10. Else
11. state &- Linear state
12. If update time ( max time
13. Then update time++
14. Repeat
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3.3.1.3 Linear State Algorithm:

In the Linear state algorithm, a sensor node movement is assumed to be linear

which having a constant velocity. At first a node will localize to know its current

location. Second, the node will predict its next location using the dead reckoning

equations (I), (2), (3), and (4). After the update time period, the node will localize to

obtain its real location, and the real location is then compared with the predicted

location. If the distance error is within the Lin thresh, the update time is increased.

However, if the distance error exceeds the Lin thresh, the update time is set to the

Init updatetime.

Linear state seudo code:
1. Linear state(t, Iocvi) II t and ioc from the previous state
2. update time E- Init updatetime
3. /oc„C- loc update //(x,, y, ) Localize

4. calculate v& t // form Iop t and loct,
Loop

6. compute velocity components vx, vy // v =(xarxvt)/(At), vx=(y„-yvt)/(At)
7. perform prediction (dead reckoning) // (xn„qu yp„,4)
8. Wait for update time
9. Loc„f- loc update I/(x,, y, )

10. calculate v„ // vvi is saved from last calculation
If v,.!= vvt

12. Then If v„= 0
13. state E- Pause state
14. Else
15. state C- Random state
16. compute d between predicted loc and real loc
17. Ifd &Lin thresh
18. Then update time++
19. Else
20. update time E Init updatetime
21. Repeat loop
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3.3.1.4 Random State Algorithm:

In the Random state algorithm, a sensor node movement is considered to have

velocity acceleration and the node is expected to change direction. In the algorithm, a

sensor node will first localize to obtain its current location then the estimated time t is

calculated. A node will wait for P/(times/or)f time periods until it localizes again.

During that time a node predicts its current location using equations (9) and (10).

state C- Linear state

lt » h d»h h»» h d /Ii=~d„,,/~
~

calculate v II v = axtimeslot
For(update time = )t/(times!at)), update time & 0, update time —)

compute velocity components v, + v, v + v

perform prediction /I (xpred» ypred)

12.

13.

14.

15.

16.

17. Repeat Loop

Random state seudo code:
1. Random state(t, v, i, loc, i) II t, v and loc from the previous state
2. update time C-Init updatetime
3. Loop
4. /oc„E- loc update II (x,, y, ) localize

5. calculate v„ // form loci, and loch-i
6. calculate a // acceleration form v„and v, i

7 If vh« = vi-i

8. Then Ifv«, = 0
9. state E Pause state
10. Else
11.

3.4 State Transition Model

The previous update algorithms are mobility pattern dependent. The State-based

Mobility Model (SMM) in [2] is adopted in order to analyze the presented algorithms
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over three mobility pattern states. SMM is based on the three mobility patterns Pause,

Lfnear, and Random so its states set is S = (P =— Pause, L —= Linear, R —= Random}.

Figure 5 shows an instance of SMM model.

Figure 5: An instance of SMM where P, L, and R e S.

From the above model we can derive the steady-state transition probability vector, tt, for

each state. First, from the balance equations we get (11) and (12):

n i(P.P+ P-) = rr.P-+ re'u

rr.(P~+ Pu) = rrrPn+ rrt'~ (12)

From (11) and (12) we get

rr.Pn+ re'n
KE-

PI.p + Pu

(14)
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Since P,rr,. = 1 then

rrr+rrr. +Be I (15)

Using equations (13), (14), and (15) we get rt for each state:

P~P~+ P~Pn+ PW~
rrp—

(PrR P~)(P~+ P«+ P~)+ (Pi. + P~+ P i)(P~+ P~+ P~)
(16)

PI'd w + PrIPaR +PM'Pss

— Pcs)(Pu + Pcs + P~) + (Pu + P~ + Pre)(P~ + P~ + P~)
(17)

PrIPm. + PePrI. + PePrc
rrL—

(P.R P~)(P~+P~+ P~)+ (P~+ P~+ P.i)(P~+ P~+ PiR)
(18)

Equations (16), (17), and (18) are used to calculate the total perfonnance of the SMM

model in some scenario as will be shown in section 3.5.

To see how the equations work we will consider the following example. This

example should be suited for our mobility model that uses Random Waypoint as an

upper level and Gaussian Markovian as a lower level as will be explained in section 3.6.

For some system, transitions from state to state are monitored for 105 time slots as

following:

PPPPPPRRRRRRRRLLLLLLLLLLLRRRRRRPPPPPPPPPLLLLLLLLLLLLL

LPPPPLLLLLLRRRRRRRRLLLLLRRRRRRRRRJPPPPPRRRRRRRPPPPPP

Counting the number of transitions Ã„.. from state i to statej gives
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[N„..], i,s —— L

R

e z R

26 2 2

1 32 3

3 2 33

(19)

The transition probability Pij can be estimated as:

Na

QNa
t«S

(20)

Calculating each transition probability we get the following matrix:

26 2 2

P=

(26+ 2+ 2) (26+ 2+ 2) (26+ 2+ 2)

1 32 3

(1+ 32+ 3) (1+ 32+ 3) (1+ 32+ 3)

3 2 33

(3+ 2+ 33) (3+ 2+ 33) (3+ 2+ 33)

0.8667 0.0667 0.0667

0.0278 0.8889 0.0833

0.0789 0.0526 0.8684
(21)

From these results of transition probabilities we can calculates rtr, trL, and trit by using

equations (16), (17), and (18). ttr = 0.288, nL = 0.346, and tta = 0.366 were obtained as

a steady-state transition probability for each mobility pattern state.

3.5 Performance Measurements

The main objective of the MBLUA approach is to reduce the number of

localization updates without significantly affect the location accuracy. Since power

consumption is very important in WSNs, it is an essential design aspect to reduce the

number of localization updates while moving. The lower the number of location updates

is, the lower the power consumption. For this reason, a key performance parameter for

the algorithm is the cost of localization updates which we will call the update cost C„.



Another key performance issue is to keep the error of the location accuracy as low as

possible. This parameter measurement is called imprecision cost C,.

The update cost and the imprecision cost are first calculated for each mobility-

pattern state as the time progress and then the total update and imprecision costs for the

system is calculated as shown later in this section. The update cost for each state,c„'here

icS, is measured by calculating how many localization updates occurred in

specific discrete time periods as in (26)

j t=fpc„=—
n

(26)

where n is the number of time slots. c, is 1 if update occurs at time slot t and 0 if update

does not occur. In the algorithm only one update is allowed in a time slot. Therefore, ci

is the rate of localization update occurring in n time slots, and I & c„'0.

The imprecision cost,c,', for Linear and Random states are the sum of the Euclidean

distances between the actual location and the estimated location over the number of

predictions occurred, which is the average accuracy error per prediction as in (27)

c,' ",i c S = (L,R) (27)

where L is the number of predictions occurred in n time slots, and d, is the Euclidean

distance between the estimated location and the real location at time slot t. For the

Pause state policy the imprecision cost equation is calculated differently since the Pause
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state policy does not have predictions. So, in (28) l is the number of updates occurred

during the Pause state time and d, is the same as (27).

gd,
c,' ', i e S = (P)

I
(28)

For the total performance measurements we use the following equations:

C. =err,.c„'vs (29)

C, =gn;c,'ES (30)

Equation (29) calculates the total localization update cost in the system, where equation

(30) calculates the total imprecision cost of the system.

3.6 Mobility Models for Simulation

A mobility model to resemble each state is to be introduced in this section. First

the Random Waypoint [6] mobility model is introduced, and second the Gaussian

Markovian [6] mobility model is presented. Then a mobility model is introduced in [3]

where the mobility model is a hybrid of the Random Waypoint and Gaussian

Markovian models as will be explained in section 3.6.3.

3.6.1 Random Waypoint

In Random Waypoint model [6], the Mobile node chooses a random destination

in the simulation area and a speed that is uniformly distributed between [ininspeed,

maxspeedJ. When it reaches this destination it pauses for a specific period of time
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(pause time). The node then chooses a random destination again. All destinations are

randomly chosen from within a predefined area. The model is memory-less, which

means the speed and direction after the pause are completely independent of the speed

and direction before the pause. This model is predictable between the two points but it

is completely unpredictable once the node pauses or just before it moves.

3.6.2 Gaussian Markovian

In Gaussian Markovian model [6], initially each node is assigned a current speed

and direction. At fixed intervals, the speed and direction are updated. The speed and

direction at the nth instance is calculated based upon the value of speed and direction at

the (n-1)th instance and a random variable. The new speed and direction are calculated

according to equations (22) and (23).

s„= as„, +(I — a)s+~l — a'„ (22)

d„= ad„, +(I — a)d+~1 — a'd„ (23)

Where sn and dn are new speed and direction of a mobile node at time interval n. a is a

value from 0 to 1 and it is the tuning parameter used to vary the randomness. a = 0

leads to very random motion, while a = I leads to completely linear motion. s and d

are constants representing the mean value of speed and direction as n + m. Finally s„

and d„are random variables from a Gaussian distribution.
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At each time interval the next location is calculated based on the current

location, speed, and direction of movement. Specifically, at time interval n, a mobile

node's position is given by the equations:

x =x )+s )
cosd (24)

y„= y„, +s„, sin d„, (25)

where (x„, y„) and (xr.n y,u) are the x and y coordinates of the mobile node's position at

the n'" and (n-I)'ime intervals, respectively, and s,u and d„u are the speed and

direction of the mobile node, respectively, at the (n-I)'ime interval.

3.6.3 Gaussian Markovian Random Waypoint

The mobility pattern in [3] is used with some alterations to suit the SMM model.

The Gaussian Markovian Random Waypoint (GMRW) as from the name is a hybrid of

the above two models mentioned. The idea is to use Random Waypoint at the macro

level and to use the Gaussian-Markovian technique at the micro level. In the GMRW

model, the mobile node still chooses a random destination location and speed, and then

computes the direction of travel. However, it follows the model presented in equations

(22) and (23) to travel in this direction in small time steps. The GMRW model is

initialized with sp and dp being equal to the chosen speed and direction. s and d are

the mean speed and direction computed on line by averaging over all timesteps. The

node travels for an amount of time (say, T) equal to what it would take the node to reach

the chosen destination using the chosen speed. The mobile node may not reach the

destination, but possibly a location close to it depending on the amount of noise. After
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the time T, the node pauses for a randomly chosen pause time, chooses a random

destination location, and repeats the above process.

To suit the State-based Mobility Model, the GMRW model is modified. The

GMRW has the advantage of varying the randomness ct parameter to suit the mobility

state and still keep choosing a random destination. For the Linear state we set ct value

equal to I in equations (22) and (23) so it behaves as pure linear movement. However,

the d„ i in (23) should be recalculated to the new location at first. In the random state

the ce value is set for values between 0.1 and 0.9. The zero value is avoided because a

value of zero will make the movement completely random and memoryless that does

not depend on the previous speed and direction. Whenever the mobile node goes in

pause time it automatically switches to the Pause state for that amount of time. The

movement of the modified GMRW will be similar to the one in figure 6.

Linear v ''~ Random 0.1 '=. (x.= 0.9

ot=1 .,W
v

Linear tr = 1

Pause

Figure 6: ModiTied GMRW movement pattern example.
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3.7 Summary

This chapter introduces in details the MBLUA algorithm. The MBLUA works

on the SMM model where the complex mobility model is divided into three types or

states. Two design parameters were introduced, update cost and imprecation cost. The

MBLUA is designed to reduce the update cost and keeping the imprecation cost as low

as possible. The last section in this chapter presents a mobility model that can vary

between the three mobility-pattern states. The modified GMRW is used to simulate the

mobile sensor node movement.
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CHAPTER IV

EXPERIMENTS, RESULTS AND ANALYSIS

4.1 Introduction

In this section, the experiments'esults are presented with the proposed

protocol. The mobility model has significant implication on the performance of the

localization protocols. With the Mobility-Pattern Based Localization Update Algorithm

(MBLUA), a trade-off between update cost and imprecision cost is expected. It is

expected that when update cost is low (not updating too much) the imprecision cost will

be high, indicating too much error as a node moves. On the other hand, if the update

cost is high (updating so often) the imprecision cost will be low, indicating a low error.

In the following sections, simulations are conducted to test the MBLUA design.

The test work is divided into two parts. The first part concerns the simulation of the

node's actual movement model. The algorithm of this model is the modified GMRW

mobility model. A modified BonnMotion tool [11] is used to generate the various

scenarios. The second part is the localization update algorithm coding, and it is divided

into two parts also. The first part concerns the algorithm of the three states combined

using the State-based Mobility Model (SMM), which is the MBLUA design. The

second part concerns implementing each State algorithm separately. The purpose of

having each State algorithm alone is to compare it with the MBLUA design.
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For testing, first the simulation is run to model the real movement of a mobile

node. For the MBLUA design, the probability of choosing the next mobility pattern

(the next state) is random. However, the probability of having the Linear or Random

mobility patterns is higher than the probability of having the Pause state through the

entire simulation. The probability of having the Linear or Random mobility pattern

state is 0.4 for each, and the probability of having the Pause state is 0.2. Second, the

localizafion update algorithms are run over the output file generated from the mobility

model simulation run. Then the localization update algorithms generate results output

files and a trace of the estimated and updated locations of a mobile node.

4.2 Network Model

A simulation area of 200 by 200 meters is used, and a two-dimensional area is

assumed. The simulation is run over 10 nodes for 900 seconds. The localization

scheme (for updating current location) does not affect the proposed algorithm because

the algorithm takes care of the localization period only and it is mobility pattern

dependent. For this reason, the localization scheme is not included in the simulation,

and current location updates are obtained from the mobility model simulation output

file.

4.3 Results and Analysis

In figure 7, the trace results for one slow node and one fast node is shown. The

figure shows the actual movement trace and the estimated trace using the MBLUA

design for two different speed ranges. For the slow node, the speed range is from

34



0.5m/s to lm/s, and for the fast node, the speed range is from 2m/s to 4m/s. The

maximum pause time is 60 seconds. In both (a) and (b) we can see that the MBLUA

design shows a good result when the movement is linear, and it tends to have some

error when having abrupt turns in the movements. In Figure 7 (b) the error increases

with higher speed range.

200

Mobility Trace

150

E 100

50

0
0 50 100

X(m)

150 200

(a) Slow speed (0.5-1 m/s) (Max pause time 60 sec.)
(max time = 5 time lots, rin thresir = 4m, aud d thresh = 5m)
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Mobility Trace
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0
0 50 100

X(m)

150 200

(b) Fast speed (2-4 m/s) (Max pause time 60 sec.)
(max ttme = 5 time lots, Litt tltresh = 4m, and d tttres/r = Sm)

Figure 7: Mobility trace for slow and fast speeds.

The reason of having mismatch between the actual and the MBLUA is because

the mobile node's real movement went off the location estimation during the wait

period. Localization is performed after this wait period and the estimation is corrected.

When the actual location trace is off by itself (in figure 7), it means that the mobile node

was in a Pause state and the MBLUA assumes that the mobile node is still in the same

position during the wait time. On the other hand, if the MBLUA location trace is off by

itself (in figure 7) it means that the mobile node was in motion and suddenly stopped
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(Pause state) and the MBLUA assumes that the mobile node is still in motion during the

wait time.

Figure 8 shows the instantaneous error as a function of time using MBLUA,

Pause, Linear, and Random policies for slow and fast movement patterns. The results

are obtained from one mobile node (say mobile node I). For MBLUA the parameters

are: max time = 5 time slots as the maximum wait time, Lin thresh = 4m as the Linear

state error threshold and d thresh = Sm as the Random state error threshold. The Linear

and the Random states policies use the same value for Lin thresh and d thresh

respectively.
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(a) Slow speed (0.5-1 m/s)
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(b) Fast speed (Z-4 m/s)

Figure 8: Instantaneous error for slow and fast movement.

It was found that the Pause state policy has the worst error value since

localization update occurs at fixed time periods regardless of the error value. The lowest

two error values are the MBLUA and the Linear state policy. At random motion

periods, the MBLUA performs better than the Linear state policy.

To demonstrate the comparison better, Table I shows the update and the

imprecision costs for the three update policies and the MBLUA design for the fast and

the slow movements. Again the algorithm parameters are: max time = 5 time lots,

Lin thresh = 4m, and d thresh = 5m. The difficulty faced on gathering the results of
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Table 1 is that each node in the network has different mobility scenario. So it is hard to

have an average of ten distinct motions or mobility patterns. The results presented in

Table I are obtained from only one mobile node (say mobile node 1). A prompt

question is: what is the purpose of having many mobile nodes in the network model?

Well the answer to this question is simply to have mobility movement mode! exactly the

same when having many sensor nodes in the network. Moving alone in an area is

definitely different than moving with other objects around.

Table l: Policies update and imprecision costs comparison.

From table 1, the Pause state policy has the least update cost, but it has the most

imprecision cost (the larger accuracy error). The Linear state policy has the lowest

imprecision cost, but it has the highest update cost. The Random state policy stands in

the middle between the Pause and the Linear state policies, but it has considerably high

imprecision cost. Comparing the MBLUA results to the other policies results, it is

found that MBLUA has the second lowest imprecision cost after the Linear state policy.

Also, the MBLUA update cost is less than the Linear policy update cost. Therefore, the

MBLUA has considerably low update cost with an acceptable imprecision cost.
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Figure 9 shows the update and the imprecision costs for MBLUA design when

varying the d thresh parameter. Figure 9 (a) shows lhe relationship between d thresh

and the update cost, while figure 9 (b) shows the relationship between d thresh and the

imprecision cost. It is observed that when d thresh is low, the update cost is high

indicating more frequent updates, and the imprecision cost is low since location

knowledge is updated more frequently. As d thresh increases, the update cost

decreases and the imprecision cost increases, since a larger d thresh value results in

larger wait time to localize.
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(a) Update cost vs. d rliresh (max time = 5 time lots and Lin thresh = 4m)
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(b) Imprecision cost vs. d thresh (mox tiote = 5 time lots and Ein thresh = 4m)

Figure th Update and imprecision costs as a function of d thresh.

From the results of figure 9, it is observed that any d thresh value greater than 5

does not have effect on the update cost meanwhile imprecision cost does increase. The

reason for this is that the maximum time (mttx time) to localize is fixed in the

simulations. As a result, after d thresh value 5, the sensor node will localize after

mttx time period no matter how large the d thresh value is which stabilizes the update

cost. Consequently, the main factor of changing the imprecision cost when the update

cost stabilizes would be the acceleration value.

It is found that changing Lin thresh has a little effect on the results because the

Linear state policy tends to increase the wait time to the maximum time period

(max time) as long as the prediction error is less than Lin thresh. This is usually the

case when having linear movement. Therefore, the localization period is equal to the
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max time most of the time period of the linear movement, which causes the update and

imprecision costs to stabilize.

Figure 10 shows the update and the imprecision costs for MBLUA design when

varying the maximum wait time (max time). Figure 10 (a) shows the relationship

between max time and the update cost, and figure 10 (b) shows the relationship

between max time and the imprecision cost.
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(a) Update cost vs. Max. waiting time slots (mox time) (Lin thresh = 4m, and d thresh = Sm)
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(b) imprecision cost vs. Max. waiting time slots (max tiase) (Lin thresh = 4m, and d thresh = 5m)

Figure lfn Update and imprecision costs as a function of maximum waiting time slots (mux time).

When having low max rime values, the update cost gets high (more updates)

and the imprecision cost gets low (less error) because the mobile node is forced to

localize more frequently. In contrast, as the max time increases the update cost

decreases (less updates) and the imprecision cost increases (more error) because the

mobile node has larger waiting time limit so it localizes less frequently. In figure 10

(a), the max time value 5 seems to be the optimal value for best update cost result and

any larger value does not have large effect on the update cost because the d thresh and

Lin thresh would limit the localization period then.

The previous results presented show that fast movement has more update and

imprecision costs. This is because when a mobile node moves faster, the estimation

43



deviates from the real location in higher rates, which causes larger estimation errors.

Thus, as long as the error value exceeds the predefined error thresholds (d thresh or

Lin thresh), a node will localize more frequently.

4.4 Summary

In this chapter, the simulation and the MBLUA design results were introduced

and analyzed. First, a comparison movement trace between the actual location and the

estimated location is presented. Second, a performance comparison between the

MBLUA design and each state update policy is introduced by showing the

instantaneous error as a function of time. To emphasize the comparison, the update and

imprecision costs for MBLUA and each update policy are compared in Table 1. It is

found that the MBLUA model has considerably low update cost and moderate

imprecision cost compared to the other mobility state policies apart. Being able to

change the update policy based on the mobility pattern gives a great compromise

between the update cost and the imprecision cost. We can see that there are no extreme

results for either the update cost or the imprecision cost in the MBLUA. Finally, a

trade-off between the update cost and the imprecision cost were studied when changing

the d thresh and the mttx time values.
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CHAPTER V

CONCLUSION AND FUTURE WORK

5.1 Conclusion

A Mobility-Pattern Based Localization Update Algorithms was designed for

mobile wireless sensor networks. The main idea is to divide sensor movements into

three states Pause, Linear, and Random. Based on the nature of each state, a different

localization update algorithm is designed. The State-based Mobility Model is used to

transit from one mobility-state to another. Simulations were performed and analyzed to

verify the design.

The results demonstrated how the localization cost is minimized and location

accuracy is improved in the proposed algorithm. Also the MBLUA design compromises

between the update cost and the imprecision cost values as shown in table l. This

research is significant to conserve the power consumption in sensor nodes and to n.ack

the locations of mobile sensors in a real-time manner.

5.2 Future Work

For further improvements, a suggestion is to equip a motion sensor in each

mobile sensor node. The motion sensor notifies the mobile node if it is in motion or in

pause state. This method could improve the accuracy a lot since no erroneous
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estimations will be made when a mobile node goes from pause state to motion or vise

versa.

A future work field is to study group mobility models. In group mobility

models, a number of mobile sensor nodes move together. For military application, we

can imagine a group of soldiers moving together to achieve certain goal. In group

mobility models, a different localization update algorithm may be considered to

anticipate a group mobility pattern.
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APPENDIX

SOURCE CODE

/80ww80808www0000000w8w4ww44r4444k'444w000000w000000000w000488w0000000ww

//
// Author: Mohammad Y. Al-laho
//
// Date: June 2005
//
// Description:
//
// Implementing the Mobility-pattern Based Update Algorithm (MBUA)
//
/pses4ssses4W4W0000@Wt000000000W@W000@0WWW0000@WWWWW0@W00000ttWs0esWWs/

¹include &string&
¹include &math.h&
¹include &time.h&
¹include &stdio.h&
¹include &stdlib.h&

//initial update time, in time slots (time periods)
const int Init updatetime = 0;

//the time interval period, in seconds
const double time slot = 2.5;

//Define global variables to hold position and time values everywhere
//& update and imprecision values
double xg, vg, yg, tg;
double P update = 0;
double L update = 0;
double R update= 0;
double P imp = 0;
double L imp = 0;
double R imp = 0;
double P time intervals = 0;
double L time intervals = 0;
double R time intervals = 0;
double P~red num = 0;
double Lured num = 0;
double R~red num = 0;

//Mobility model parameters variable
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int nodes num, sim time slots;

//simulation number of time slots counter
intnum of slots= 0;

//functions declerations
int Pause state(double t, double v, double x, double y, FILE *read, FILE *derror, int
max time);
int Linear state(double t, double x, double y, FILE *read, FILE *derror, int max time,
int Lin thresh);
int Random state(double t, double v, double x, double y, FILE *read, FILE *derror, int
max time, intd thresh);

// The three states implementation
// Pause state
int Pause state(double t, double v, double x, double y, FILE *read, FILE "derror, int
max time)

double xl, x2, yl, y2, tl, t2, vl, v2, dl;
double t testend = 0;
intk= 0;
int update time, n;
update time= Init updatetime;

printf("PAUSE STATE M");
printf("t =%If, x =%If, y= %1M', t, x, y);
printf("v = %lfln", v);

x2 = x;
y2 =y;
t2 = t;

while((lfeof(read)) &&(num of slots & sim time slots))

//wait for update time period
for(n= update time; n& 0; n—)

fscanf(read, "%If%If%lf", &tl, &xl, &yl);
P time intervals++;
num of slots++;
//if end of file or end of node date break
if((tl = t testend)

II
(num of slots =— sim time slots))

break;
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t testend = tl;

//save last time
t2 = tl;

//if end of node data break
if(num of slots = sim time slots)

break;

//Localize
fscanf(read, "%16/olf%lf', &tl, &xl, &yl);
P time intervals++;
P update++;
num of slots++;
P~red num++;

//if end ofnode data break
if(num of slots== sim time slots)

break;

//calculate distance and velocity
dl = sqrt((pow ((xl - x2), 2)) + (pow ((yl - y2), 2)));
vl = dl/(tl - t2);

printf("P tl = %1f, xl = %1f, yl = %1fln", tl, xl, yl);
printf("vl after calc = %1fln", vl);

printf("error value d = %1fln", dl);
//calculate imprecision cost
P imp = P imp+ dl;
printf("imprecision cost = %1fln", P imp);
fprintf(derror,"%1f %1f %1f %lfln", tl, dl, xl, yl);

//if second time with velocity not equal zero
if(vl != 0)

k++;

//reset update time
update time = Init updatetime;
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//test mobility state
if(k == 2)

if(vl =— v2)

// Linear state(tl, xl, yl, read);
xg=xl;
yg =yl;
tg=tl;
printf("P time intervals =%1fl", P time intervals);
printf("P update =%1fl", P update);
return 2;

else

(
// Random state(tl, vl, xl, yl, read);
xg=xl;
yg = yli
tg=tl;
vg=vl;
printf("P time intervals =%1fl", P time intervals);
printf("P update =%1fln", P update);
return 3;

if(v 1
=— 0)

if(update time&max time)

update time++;

k = 0; //reset k if vl = 0 again

//save previous value into x2, y2, t2, and v2
x2=xl;
y2 = yl;
t2 = tl;
v2 =vl;

}// end while loop

// Linear state
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int Linear state(double t, double x, double y, FILE *read, FILE *derror, int max time,
int Lin thresh)

double xl, x2, yl, y2, tl, t2, vl, v2, dl, d, vx, vy, xp, yp, tdr;
doublet testend= 0;
int update time, n;
intpred num=0;
update time = Init updatetime;

printf("LINEAR STATE 4");
printf("t = %1f, x = %1f, y = %1fln", t, x, y);

x2 = x;
Y2 = yi
t2 = t;

//Localize
fscanf(read, "%1f%lf%lf', &tl, &xl, &yl);
L update++;
L time intervals+1;
num of slots++;

tdr = tl;

//calculate distance and velocity
dl = sqrt((pow ((xl - x2), 2)) + (pow ((yl - y2), 2)));
v2 = d1/(tl - t2);

while((! feof(read)) && (num of slots & sim time slots))

//compute velocity components
vx = (xl - x2)/(tl - t2);
vy = (yl - y2)/(tl - t2);
//Dead Reckoning
xp = xl + (vx * (tdr - t2));
yp = yl +(vy*(tdr- t2));
printf("xp = %1fln", xp);
printf("yp = %1fln" yp)
Lured num++;
x2=xl;
y2 = yl;
t2 = tl;

//wait for update time period
for(n = update time; n & 0; n—)
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fscanf(read, "/01P/olP/01P, &tl, &xl, &yl);
L time intervals++;
num of slots++;
//if end of file or end of node date break
if((tl ==t testend) Il(num of slots == sim time slots))

printf("inside break 4");
break;

t testend = tl;

//if end of node date break
if(num of slots =— sim time slots)

break;

//Localize
fscanf(read, "/01P/olP/olP, &tl, &x1, &yl);
num of slots++;

if(tl != t testend)

L time intervals++;
L update++;

//calculate distance and velocity
dl = sqrt((pow ((xl - x2), 2)) + (pow ((yl — y2), 2)));
vl = dl/(tl - t2);

printf("L tl = '/Olf, xl = '/olf, yl = '/olfln", tl, xl, yl);

//compute d between predicted loc and real loc
d = sqrt((pow ((xl - xp), 2)) + (pow ((yl - yp), 2)));
printf("error value d = 'lolfln", d);
//calculate imprecision cost
L imp = L imp + d;
printf("imprecision cost = '/olfln", L imp);
fprintf(derror,"'adolf '/Olf 'rolf '/olfln", tl, d, xp, yp);

printf("v 1 after calc = 'rolfln", v 1);
printf("v2 after calc = 'iolfln", v2);
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//if end of node data break
if(num of slots =— sim time slots)

break;

//update update time
if((d & Lin thresh) /k& (vl !

= 0))

if(d == 0)

if(update time & max time)

update time-I-I-;

//advance tl to wait time for dead reckoning
tdr= tl + time slot;
printf("update tdr C= %1fln", tdr);

else

tdr=tl;
printf("update tdr C+= %1fln", tdr);

)
else //if small error within L thresh

I/compute tdr when reset update time
tdr = tl - (update time * time slot);
//reset update time
update time = Init updatetime;
printf("tdr = %1fln", tdr);

else

(
//test mobility state
printf("mobility test'm");
if(vl == 0)

(
// Pause state(tl, v 1, x 1, yl, read);
xg=xl;
yg = yli
tg=tl;
vg=vl;
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return I;
)

else

// Random state(tl, vl, xl, yl, read);
xg= xl;
yg = yli
tg = tl;
vg=vl;
printf("L update =%1f, L time intervals =%1fln", L update,
L time intervals);
return 3;

//save previous velocity in v2
v2 =vl;

)// end of while

// Random state
int Random state(double t, double v, double x, double y, FILE *read, FILE *derror, int
max time, int d thresh)

double xl, x2, yl, y2, tl, t2, vl, v2, dl, d, vx, vy, a, t cap;
double t testend = 0;
double xp = 0;
double yp = 0;
double update time, n;

update time = Init updatetime;

printf("RANDOM STATE In");
printf("t = %1f, x = %if, y = %1M', t, x, y);
printf("v = %1&a", v);

x2 =xj
y2 =y'2

= t;
v2 = v&

while((!feof(read)) &k,(num of slots & sim time slots))

//Localize

54



fscanf(read, "/olP/olPYolf', &tl, &xl, &yl);
R time intervals++;
R update++;
num of slots++;
//if end of node date break
if(num of slots == sim time slots)

break;

//calculate distance, velocity & acceleration
dl = sqrt((pow ((xl - x2), 2)) + (pow ((yl - y2), 2)));
v I = d 1/(tl - t2);
a = (vl - v2) / (t 1 - t2);
printf("R tl = '/olf, xl = )olf, yl = '/olfln", tl, xl, yl);
printf("vl after calc = '/alfln", vl);
printf("v2 after calc = /olfln", v2);
printf("a after calc = '/olfln", a);
//state mobility test
if((vl =— v2) ~~ (vl == 0))

if(vl =— 0) //Pause state

xg=xl;
yg=yl;
tg=tl;
vg=vl;
return 1;

)
else //Linear state

xg = xli

Yg=yl'g=tl;

return 2;

//calculate t cap where the d thresh is to be crossed
//abs a= fabs(a);
t cap = sqrt(d thresh / fabs(a));
printf("t cap = '/olfln", t cap);
//compute discrete time intervals
update time= ceil(t cap/ time slot);
if(update time & max time)
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update time = max time;

//compute velocity components
vx = (x 1 - x2)/(tl - t2);
vy = (yl - y2)/(tl - t2);

xp=xl;
yp=yl;

//save previous update values into x2, y2, t2, and v2
x2 = xl)
y2 = yl;
t2 = tl;
v2 = v 1 1

//wait for update time period
for(n = update time; n ) 0; n—)

printf("update time = %1fln", n);

//Prediction during update time wait period
xp = xp+ ((vx+ (a*time slot)) a (time slot));
yp = yp+ ((vy+ (a*time slot)) * (time slot));

printf("xp = %1fln", xp);
printf("yp = %1fln", yp);

fscanf(read, "%1f%lf%lf', &tl, &xl, &yl);
num of slots++;
//if end of file or end of node date break
if((tl == t testend)

II (num of slots == sim time slots))

break;

t testend = tl;
R time intervals++;
printf("inside for: tl = %lf, x 1 = %1f, yl = %1fln", tl, xl, yl);

//compute d between predicted loc and real loc
d = sqrt((pow ((xl - xp), 2)) + (pow ((yl - yp), 2)));
fprintf(derror,"%1f %1f %1f %1fln", tl, d, xp, yp);

R~red num~;
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R imp = R imp + d;

xp = 0;
yp= 0;

//000000000WWWW00WW0tW00'i04t0088W44'4W84W8W08WWW0WWW0000000000004080'iC04

// Initial state
int main(int argc, char~ argv[])

double xl, x2, yl, y2, tl, t2, vl, v2, dl, d2;
double P updatecost, L updatecost, R updatecost, P impcost, L impcost,
R impcost;
double PYp, PY1, PYr, total updatecost, total impcost;
int i = 0;
intn= 0;
int nodes count = 0;

int max time = atoi(argv[1]); //for all states, max wait time, in time periods
int Lin thresh = atoi(argv[2]); //for the linear state, in meters
int d thresh = atoi(argv[3]); //for the random state, in meters

//create file (read) for reading
FILE *read;
read = fopen("scenario13.movements", "r");
if (read =— (FILE *)0)

fprintf(stderr, "Error opening file (printed to standard error)S");
exit (I);

//create file (pyfile) for reading
FILE *pyfile;
pyfile = fopen{"scenario13.tt", 'Y');
if (pyfile = (FILE *)0)

fprintf(stderr, "Error opening file (printed to standard error)'m");
exit (I);

//create file (results) for writing
FILE *results;
results = fopen{"final results.txt","a");
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//create file (derror) for writing, for instantanious error
FILE *derror;
derror = fopen("d error.txt","w");

// read model parameters
fscanf(pyfile, "%d%d", &nodes num, &sim time slots);
printf("Nodes num =%d, sim time slots=%din", nodes num, sim time slots);

for(n = nodes num; n & 0; n—)

// Localize loci
fscanf(read, "%If%If%1P, &tl, &xl, &yl);

// Localize loc2
fscanf(read, "%If%If%IP, &t2, &x2, &y2);

//calculate distance and velocity
d I = sqrt((pow ((x2 - xl), 2)) + (pow ((y2 - yl), 2)));
v I = dl/(t2 - t1);

printf("tl = %If, xl = %1f, yl = %1fln", tl, x I, yl);
printf("t2 = %1f, x2 = %1f, y2 = %1fln", t2, x2, y2);
printf("vl = %1fln", v I);

//Localize loc3
fscanf(read, "%If%If%1f", &tl, &x1, &yl);

//calculate distance and velocity
d2 = sqrt((pow ((xl - x2), 2)) + (pow ((yl - y2), 2)));
v2 = d2/(t I - t2);

printf("t3 = %lf, x3 = %1f, y3 = %1fln", tl, xl, yl);
printf("v2 = %1fln", v2);

/*Comparing velocity values and assign i to I, 2, or 3

representing Pause, Linear, or Random respectively*/
if(v2 == 0)

//Pause state
i= I;
xg = xl I

yg= Yll
tg=tl;
vg = V2;
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else

(
if(vl == v2)

//Linear state
1=2;
xg=xl;
yg=yl;
tg=tl;

else

//Random state
1=3;
xg=xl;
vg=yl;
tg=tl;
vg = v2;

num of slots = 3;

//node counter
nodes count= nodes num-n;

// loop until end of file (until end of simulation)
while((lfeof(read)) &2 (num of slots & sim time slots))

if(i =— 1) //Pause state

{ i =Pause state(tg, vg, xg, yg, read, derror, max time); }

if(i =— 2) //Linear state
( i = Linear state(tg, xg, yg, read, derror, max time,
Lin thresh); }

if(i =— 3) //Random state
( i = Random state(tg, vg, xg, yg, read, derror, max time,
d thresh); }

printf("tg=%1f, xg=%1f, yg =%1fln", tg, xg, yg);
printf("vg = %1M', vg);
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fscanf(pyfile, "%1PiolP/olf", &PYp, &PY1, &PYr);

//calculate update & imprecision costs for all states
P updatecost =P update/P time intervals;
P impcost = P imp/P~red num;

L updatecost = L update/L time intervals;
L impcost = L imp/Lured num;

R updatecost = R update / R time intervals;
R impcost = R imp/R~red num;

if((P update == 0) [I (P imp = 0))
(

P updatecost= 0;
P impcost= 0;

)
if((L update == 0) (( (L imp == 0))

L updatecost = 0;
L impcost= 0;

)
if((R update = 0) ~~ (R imp == 0))

R updatecost = 0;
R impcost = 0;

total updatecost = (PYp * P updatecost)+(PY1 * L updatecost)+(PYr *

R updatecost);
total impcost = (PYp * P impcost)+(PYI * L impcost)+(PYr * R impcost);

printf("Results of Node ¹ %dS", nodes count);
printf("P updatecost=%1f, P impcost=%1fln", P updatecost, P impcost);
printf("L updatecost=%lf, L impcost =%1fln", L updatecost, L impcost);
printf("R updatecost=%1f, R impcost=%1fln", R updatecost, R impcost);

printf("Total updatecost = %1f, Total impcost = %1fln'ai", total updatecost,
total impcost);

//output results to a file
fprintf(results,"%d%d%d%d ", nodes count, max time, Lin thresh,
d thresh);
fprintf(results,"%1f %1fln", P updatecost, P impcost);
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fprintf(results,"%1f %1fln", L updatecost, L impcost);
fprintf(results,"%1f %1fut", R updatecost, R impcost);

fprintf(results,"%1f %1&n", total updatecost, total impcost);
fprintf(derror,'"n");
//reset all update and imp variables for new node count
P update= 0;
L update=0;
R update = 0;
P imp=0;
L imp=0;
R imp=0;
P time intervals = 0;
L time intervals = 0;
R time intervals = 0;
num of slots = 0;

}//end of for loop for // of nodes

printf("End of simulation ut");
fclose(derror);
fclose(results);
fclose(pyfile);
fclose(read);
return 0;

)// end of main
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