




[20] Except in the deep Canada Basin the model simu-
lates significant under-ice phytoplankton and zooplankton
biomass in some areas of the central PSA, particularly in
the areas near the shelves (Figure 5). The storm-induced
divergence moves the phytoplankton and zooplankton
away from the central PSA, yielding a lower phytoplankton
and zooplankton biomass than had the cyclone not occurred
(Figures 9e–9g and 9i–9k), into adjacent areas including
most of the shelf regions, yielding an increase in plankton
biomass there (Figures 6e–6i). The storm-induced diver-
gence also transports nitrate from the central PSA to the
adjacent areas, but this transport is unnoticeable (not
shown) because nitrate is largely depleted in most of the
upper ocean of the central PSA in early August (Figure 5a).

3.3. Evolution of Cyclone Effects

[21] The enhancement of biological production on the
shelves at the expense of the central PSA is further illus-
trated by the vertical profiles and evolution of the ecosys-
tem variables at four locations. Location 1 is roughly at the
center of the August 2012 cyclone’s low-pressure system in
the deep Canada Basin with weak winds, location 2 is in
the deep Canada Basin with strong winds during the storm,
location 3 is on the Chukchi shelf, and location 4 is near
the shelf break of the East Siberian Sea (Figures 1 and 2d).
Locations 2, 3, and 4 are in the areas of strong winds during
the storm.

[22] At the eye of the storm with weak winds (location
1), the model simulates near-zero vertical diffusivity (back-
ground value) [Zhang and Steele, 2007] throughout the
water column on 7 August 2012 (Figure 10a), indicating lit-
tle ocean mixing. On 7 August during the cyclone or on 27
August after the cyclone’s passage, the nitrate concentra-
tion in most of the upper water column simulated by CNTL
with the cyclone wind forcing is not much different from
that simulated by SENS without the cyclone forcing (Fig-
ure 10c). However, the CNTL-simulated PP and plankton
biomass are lower than the SENS results; the differences,
though, are small, generally within 10% (Figures 10e, 10g,
10i, 11a, 11c, and 11e).

[23] The differences between the CNTL and SENS runs
are generally small also at location 2, which is in the deep
Canada Basin as well, but in the zone of strong winds. The
strong winds and rapid movement of ice [Zhang et al.,
2013] and surface waters (Figures 8a–8c) result in strong
ocean mixing, mainly in the upper 10 m with large vertical
diffusivities (Figure 10b). Strong mixing in the surface
ocean mixed layer, however, increases nitrate concentration
and PP in the upper 10 m very little (Figures 10d and 10f)
because the surface waters are depleted by summer draw-
down (Figure 5a). Location 2 is also in the divergence zone
(areas of blue color in Figure 9b), so the simulated PP and
zooplankton during the storm (CNTL) are lower than if the
cyclone had not occurred (SENS; Figures 11b and 11f).
The CNTL-simulated phytoplankton is, however, not lower
than the SENS run during the storm (Figure 11d), which is
likely due to a decrease in zooplankton biomass (Figure
11f) and reduced grazing pressure on phytoplankton.

[24] Locations 3 and 4 are located on or near the shelves
in the zone of strong winds. Strong ocean mixing (Figures
8f, 12a, and 12b) increases nitrate concentration in the sur-
face waters (Figures 7b–7d and 12c–12d). The divergence

induced by the cyclone in the central PSA transports more
biomass onto the shelves (Figure 9) and locations 3 and 4;
the CNTL-simulated PP and phytoplankton biomass in the
surface waters as well as in the upper 100 m are much
higher than the SENS simulations (Figures 12e–12h). The
simulated PP and phytoplankton biomass peak prior to the
cyclone’s passage into the PSA, but the differences in PP
and phytoplankton biomass in the upper 100 m between the
CNTL and SENS runs at locations 3 and 4 are as high as
90% during the storm (Figures 13a–13d). However, the dif-
ferences become smaller over time as PP and phytoplank-
ton biomass decrease into early autumn.

[25] The increase in the zooplankton biomass follows the
increase in phytoplankton food availability at locations 3
and 4 (Figures 13e–13f). The simulated zooplankton
increase occurs immediately after the storm when the simu-
lated phytoplankton biomass increases strongly. The zoo-
plankton increase in turn reduces phytoplankton through
grazing. This may explain, in part, the fluctuations of the
differences in PP and phytoplankton between the CNTL
and SENS runs after the storm (Figures 13a–13d). The gen-
eral increase in food availability and enhanced divergence
results in positive differences (CNTL – SENS) in zooplank-
ton at locations 3 and 4 (Figures 13e–13f and 12i–12j). The
zooplankton difference at location 4 reaches a maximum of
18% on 31 August and remains at 10% on 15 September
(Figure 13f). Increased zooplankton grazing on phytoplank-
ton in the CNTL run decreases phytoplankton during much
of September at location 4, up to 17% compared to the
SENS run (Figure 13d).

[26] To assess how unusual the storm-induced changes
on the shelves are, we compare the CNTL-simulated
changes in chl a during the storm (in 5–10 August 2012)
with the ENSE simulation results for locations 3 and 4
(Figure 14). Because ENSE consists of 12-member ensem-
ble simulations of 5 August 2012 onward using the reanaly-
sis atmospheric forcing from the past 12 years (2000–
2011), the changes in chl a during 5–10 August 2012 may
be considered to represent the ‘‘normal’’ variability in the
recent years without the cyclone effects. Figure 14 shows
that chl a biomass would normally decrease at locations 3
and 4 during 5–10 August (also see Figures 13c and 13d).
The average decrease over all the 12 ensemble members
(2000–2011) is 17% at location 3 and 5% at location 4.
However, with the cyclone effects, the CNTL-simulated
decrease at location 3 is only 1%. Moreover, CNTL simu-
lates an increase of 28% at location 4 (Figure 14). This sug-
gests that the cyclone-induced changes in chl a biomass are
quite different from normal variability in recent years.

[27] Averaged over the entire PSA (Figure 15) CNTL
simulations show, during passage of the storm, enhanced
ocean mixing in mainly the upper 10 m of the PSA (Figure
15a). Nitrate concentration is higher in the upper 10 m but
generally lower at depth (Figure 15b). The increased nitrate
concentration in the surface waters generally leads to
higher PP, phytoplankton, and zooplankton (Figures 15c–
15e). On average over the entire PSA, however, the
increase in PP and plankton in the upper 100 m is only
prominent during and immediately after the storm (Figures
16a–16c), even though the model simulates a generally
strong and lasting (1 month or slightly longer) biological
gain in some areas on the shelves. The gain on the shelves
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may be partially cancelled by the biomass loss in the cen-
tral PSA. As a result, the storm increases biological produc-
tion only for a short period of time on average over the
entire PSA (Figures 16a–16c) while drawing down
nutrients simultaneously (Figure 16d).

[28] Averages over the entire PSA also demonstrate the
seasonal cycles in abundance and production: nutrients
(here nitrate) peak in early June, both primary production
and phytoplankton peak in July and decline through August
into September and later (and draw down nitrate), while

Figure 10. CNTL-simulated and SENS-simulated vertical profiles of (a and b) vertical diffusivity, (c
and d) nitrate, (e and f) PP, (g and h) phytoplankton, and (i and j) zooplankton before (4 August 2012),
during (7 August), and after (27 August) the cyclone in the upper 50 m of the water column at (left) loca-
tion 1 and (right) location 2.
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zooplankton continue to increase in biomass through
August, appropriately lagging the phytoplankton biomass
(Figure 16). The immediate response to the storm mimics
this cycles, with a zooplankton increase lagging the phyto-
plankton increase in timing and magnitude. The biological
response to the storm in the absence of advection is illus-
trated by the percent difference of the system components
(Figure 16). Primary productivity increases almost immedi-
ately, while the response in phytoplankton biomass peaks
several days later, and it takes 8–10 days before the zoo-
plankton response reaches its peak. In addition, the peak
magnitude of the response is greatest for PP (16%), less for
phytoplankton biomass (6%), and least for zooplankton
(3%). This increase in the delay and a decrease in the mag-
nitude of the response with increasing trophic level mimic
the seasonal production cycle.

4. Concluding Remarks

[29] The great Arctic cyclone of early August 2012
swept over the PSA at a time when primary productivity
(PP) and phytoplankton biomass are in decline after a peak
in July, particularly on the shelves. Nonetheless, the BIO-
MAS model results show that the cyclone impacts the eco-
system by enhancing productivity strongly on the shelves
during the storm. Although the passage of the cyclone in
the PSA lasted only a few days, the simulated biological
effects on the shelves last 1 month or longer into the late
summer and early autumn when biological processes
become severely limited by sunlight scarcity. In the central

PSA, however, PP and plankton biomass decrease during
and in the wake of the cyclone.

[30] The simultaneous biological gain on the shelves and
loss in the central PSA is linked to two key factors. One is
mixing: the cyclone’s strong winds lead to large diffusiv-
ities in the ocean surface layer over the shelf regions and
the deep basins that experience the forcing. The enhanced
ocean mixing increases nutrient availability and productiv-
ity in the surface waters on the shelves. The enhanced mix-
ing fails to increase nutrient availability in the surface
waters in the central PSA because nutrients to the depth of
mixing are mostly depleted by the time of the cyclone pas-
sage; the simulated nitrate concentration in the upper 100
m in the central PSA, including the Canada Basin, is also
much lower than on most of the shelves, owing to prevail-
ing Ekman convergence and downwelling linked to the pre-
dominant anticyclonic ocean circulation (Beaufort gyre).
As a result, productivity in most of the central PSA is not
enhanced by the strong ocean mixing driven by the intense
cyclone.

[31] The second factor is divergence: the cyclone trans-
ports more biomass (plankton) into the shelf regions from
the central PSA. The low-pressure system and strong
cyclonic circulation of sea ice and ocean surface waters in
the PSA, which is often dominated by anticyclonic circula-
tion, leads to divergence and upwelling in the central PSA.
Model simulations show significant under-ice phytoplank-
ton and zooplankton biomass in part of the central PSA,
particularly in the areas near the shelves. The divergence
tends to drive phytoplankton and zooplankton out of these
areas into the adjacent areas including the shelf regions.

Figure 11. CNTL-simulated and SENS-simulated daily PP, phytoplankton, and zooplankton in the
upper 100 m of the water column at locations 1 and 2. The difference is calculated by (CNTL – SENS)/
SENS�100%. The vertical dotted and dashed lines represent 6 August 2012 and 15 September 2012,
respectively.
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This loss of plankton biomass in the central PSA is the
main reason for the decrease in productivity there. The
divergence increases plankton biomass on the shelves, con-
tributing to the increase in productivity there, in addition to
the contribution due to strong ocean mixing.

[32] The changes in PP and phytoplankton biomass on
the shelves fluctuate during and after the storm, which
reflects the complex nature of marine food-web dynamics.
Strong mixing in the ocean surface waters and divergence
in the central PSA increase PP and phytoplankton biomass

Figure 12. CNTL-simulated and SENS-simulated vertical profiles of (a and b) vertical diffusivity, (c
and d) nitrate, (e and f) PP, (g and h) phytoplankton, and (i and j) zooplankton before (4 August 2012),
during (7 August), and after (27 August) the cyclone in the upper 50 m of the water column at (left) loca-
tion 3 and (right) location 4.
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on the shelves, but the increased phytoplankton food avail-
ability and the same ocean divergence in the central PSA
increase zooplankton biomass on the shelves, which in turn
reduces phytoplankton growth through increased grazing.
This food-web dynamic causes the fluctuation in the
changes in PP and phytoplankton biomass during and after
the cyclone. Ultimately, it is zooplankton and organisms in
the upper trophic levels on the shelves that benefit the most
from the cyclone passage.

[33] The simulated biological gain on the shelves is
greater than the loss in the central PSA; net productivity
over the entire PSA is increased by the cyclone. However,
because the gain on the shelves is offset by the loss in the
central PSA, the average increase over the entire PSA is
moderate and lasts only about 10 days. Nevertheless, the
net productivity increase in the PSA confirms the statement
from the Nansen Center report that ‘‘The Arctic fertility is
spurred up by the cyclones,’’ [NIERSC, 2012], which is
based on satellite observations (of ocean color) showing
increased surface chl a in the Barents Sea after a cyclone
passage around 15 May 2003. Polar cyclones generally
increase marine biological productivity, just like cyclones
in other parts of the world ocean [e.g., Lin et al., 2003].
The generally positive impact of polar cyclones on the Arc-
tic marine planktonic ecosystem, particularly on the
shelves, is likely to grow with increasing summer cyclone
activity if the Arctic continues to warm and the ice cover
continues to shrink.

[34] Note that the model’s 22 km average resolution
would not adequately resolve mesoscale eddies, which are
important for shelf-basin exchange in the PSA [e.g., Spall

et al., 2008; Watanabe, 2011]. The intense cyclone may
cause baroclinic instability of the ocean flows in the Chuk-
chi and Beaufort shelf break regions, promoting the

Figure 13. CNTL-simulated and SENS-simulated daily PP, phytoplankton, and zooplankton in the
upper 100 m of the water column at locations 3 and 4. The difference is calculated by (CNTL – SENS)/
SENS�100%. The vertical dotted and dashed lines represent 6 August 2012 and 15 September 2012,
respectively.

Figure 14. Change in chl a in the upper 100 m of the water
column at locations 3 and 4 in 5–10 August2012 simulated
by the 12 ENSE members forced by the reanalysis atmos-
pheric forcing from the past 12 years (2000–2011) and by
the CNTL run (2012). The dash line represents the average
change of the 12 (2000–2011) ensemble simulations.
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Figure 15. CNTL-simulated and SENS-simulated vertical profiles of (a) vertical diffusivity, (b) nitrate,
(c) PP, (d) phytoplankton, and (e) zooplankton before (4 August 2012), during (7 August), and after (27
August) the cyclone in the upper 50 m averaged over the PSA.

Figure 16. CNTL-simulated and SENS-simulated daily nitrate, PP, phytoplankton, diatoms, zooplank-
ton, and total nitrogen in the upper 100 m of the Pacific sector of the Arctic (PSA, see Figure 1). The dif-
ference is calculated by (CNTL – SENS)/SENS�100%. The vertical dotted and dashed lines represent 6
August 2012 and 15 September 2012, respectively.
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formation of eddies there. It is likely that the absence of
realistic eddies in the simulations may lead to an underesti-
mation of the cyclone impact on the ecosystem.
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