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ABSTRACT

Fault Tolerant Pipelined
Adaptive Systems

Bhasker Reddy. Allam
Old Dominion University, 1994

Director: Dr. Martin D. Meyer

A fault tolerant pipelined architccturc for high sampling rate adaptive fil-

ters is presented in this thesis. The architecture is based on the computational

requirements of delayed LMS and lattice adaptive 61ters. It offers robust perfor-

mance in the presence of single hardware faults, and software fault,s resulting from

numerical instability. Two different architectures are proposed. One allows a grace-

ful degradation in system performance in the event of a fault, and the other uses a

module replacement strategy to recover from faults without decreasing performance.

Analysis of the steady state error increase due to filter reconfiguration is presented.

The reliability of the proposed system is analyzed and compared to existing imple-

mentation strategies. Methods for fault detection, fault location and recovery via

hardware reconfiguration are also discussed. Simulation results illustrating recovery

from processor faults are presented.
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CHAPTER 1

introduction

1.1 Research Fecus

In this thesis a, fault tolerant algorithm for adaptive filtering is proposed,

and an architecture iinplementing the proposed algorithm is presented. The pipelined

architecture model proposed by Meyer et.al [13] for high sampling rate adaptive fil-

ters forms the theoretical basis tor this research. The arc?iitecture ofFers robust

performance in the presence ol'ingle hardware faults, and software faults resulting

from numerical instability. The algorithm for fault detection, fault location and

recovery via hardware reconfiguration is presented. Simulation results illustrating

the recovery from a processor fault are presented.

1. 2 Overview

The term Pfter is often used to describe a device, in l,he form ol' piece of

physical hardware or computer software, that is applied to a set of noisy data to

extract information about the prescribed quantity of interest. A filter is said to be

linear if the fili,ered or the predicted quantity of interest at the output of the filter

is a linear function of the filter input,. The solution to the linear filtering problem is



based on the assumed availability of certain statisi,ical paramei,ers (such as mean and

correlation functions) of the input data. The requirement is to design a filter which

accepts noisy data as input and minimizes the efFects at the filter output according

to some statistical criterion. For stationary inputs, the resulting solution is known

as i,he Wiener filter which is optimum in thc minimum mean square sense [31],

[7]. The design of Wiener filters requires a priori information about the statisticsol'he

data to be processed. When this information is not known completely however,

it may not be possible to design an optimum Wiener filter. Ilence it is necessary to

develop a device that is self designing; that is, a device that adapts its parameters

to the changing si,atistical characi,eristics. A device i,hat performs satisfactorily in

an environment where complete knowledge of the signal stai,isi,ics is not known is

the adaptive filter [31], [28]. The adaptive filter relies on a recnrsive algorithm for

its operation. The algorithm starts from a, predetermined set of initial conditions in

an environment where signal statistics are not known completely, and converges to

the optimum Wiener solution after successive iterations in some statistical sense.

Adaptive signal processing techniques have been successfully used recent

years [7], [2], [9]. Advances in signal processing theory, coupled with the experiences

gained from applications, have caused these techniques to become more and more

refined and sophisticated. Consistent cfi'ort by many researchers in this field has

improved the understanding of adaptive filters to a great extent. These efforts have

resulted in the development of some very fast and computationally efficient adaptive

algorithms [31], [9], [7]. The ability of an adaptive filter to operate effectively in an

unknown environment and also track time variations of the input statistics has

rendered it a powerful device. This fact is illustrated by applications in such diversi.

fields as communications, control, sonar, and seismology [7], [9], [30].



One of the most well known adaptive algorithrris is the least mean squares( LM S)

algorithm [31]. In this algorithm, the estimated signal for each input sample is com-

puted and then subtracted from a desired signal. The error signal, which is the

difference signal between the estimated and the desired signal, is used to update the

tap coefficients of the transversal filter. However, the inherent delay associated with

the computation of the tap coefficients in the LMS algorithm imposes a critical limit

on its potential throughput.

Over the years, many techniques have been developed to accommodate high

sampling rates [19]. These techniques however, were based on the adaptive lattice

filter, which due to its recursive nature lends itself easily to pipelining [19], [14], [27].

The least mean squares algorithm however, does not possess this recursive st,ructure

making it difficult to pipeline. Recently however, it has been demonstrated that

it is possible to introduce some fixed delay in the coefficient adaptation [23]. This

introduction of delay into the LMS coefficient update equations results in an order

recursive structure, thus allowing the realization of high sampling rate pipelinerl

adaptive filters [13].

1.8 Research Objective

Adaptive filters are used in many important applications, such as removing

radar clutter, adaptive beamforming, sonar, channel equalization and biomedical

signal processing. Many of these applications are critical real-time applications.

These applications use high bit rates and require the systems to be highly reli-

able. For example, consider the isaveforrn coding application where the ADPCM

encoder/decoder is mounted on a satellit,e. In this case, the specifications will dic.-

tate thai, the coder/decoder be able to support high bit rates and at the same time



it should also be rugged. That is, it should be able to withstand the hostile envi-

ronment and still perform satisfactorily. Consequently, it is desirable that such a

system incorporate some form of fault tolerance in order to provide reliable perfor-

mance over a long life span.

The realization of transversal adaptive filters in real time is important in

many of the above mentioned applications. Because of the poor peri'ormance of the

LMS algorithm in real time, recent attention has been given to implementations

which introduce adaptation delay and use multiple processing elements and pipelin-

ing to achieve the required processing speed. However, the problem associated with

the pipelined implementations of adaptive filters(transversal or lattice) is that if an

intermediate processing module fails, then all of the subsequent processing modules

in the pipeline are rendered ineffective. This causes the filter to diverge. More-

over, as will be shown later, the reliability of a series system decreases exponentially

depending on the number of processing modules present, in the system. Also, the

delay introduced to facilitate pipelining can increase roundoff error leading to prob-

lems of numerical instability, particularly when finite word lengths are used. This is

particularly troublesome in the least squares lattice filter which suffers from known

numerical instabilii,y. The objective of this research was to develop an eScient anrl

effective fault tolerant system to reliably implement the pipelined adaptive filter

structure.

The fault tolerant algorithm developed in this thesis addresses the problem

of failure of an intermediate processing module through hardware reconfiguration,

The objective of the algorithm is to detect the occurrence of a, I'ault, locate the faulty

processing module which was responsible for the fault, and to eliminate the I'aulty

processing module from the pipeline. In this thesis, two different approaches were



pursued to achieve fault tolerance. In the first method this objective is achieved

by making use of redundant communication links among the neighboring processing

modules(PM). The redundant links are used to bypass the faulty PM in case of a

fault. The switcfiing merlianism which accomplishes this task is also presented. The

analysis of the increase in the minimum mean squared error due to the decrease in

the order of the filter is also presented. The second method makes use of redundant

processing modules and redundant links. The faulty processor is replaced with a,

redundant processor, thus avoiding any degradation in performance after the occur-

rence of a I'ault. The reconvergence of the adaptive filter after the occurrence of a

fault is illustrated by simulations.

1.4 Thesis organization

Chapter two presents the theoretical background on adaptive filters. It de-

scribes the Wiener-Hopf equations, the LMS and the DLMS algorithms [31], [23].

Chapter three discusses the basic theory of fault tolerance with respect to multipro-

cessor systems [20], [22], [11]. The necessity for fault tolerance in pipelined adaptive

filters is presented. The fault tolerant, algorithm, its description, and the assump-

tions made are also presented. Finally at the end of the chapter the complete fault

tolerant system is presented. In chapter four, the analytical proof illustrating the

increase in the minimum mean squared error ivith respect to decrease in the order

of the filter is presented. Simulations illustrating the reconvergence after reconligu-

ration are also presented. A summary of results and topics for future research are

presented chapter five.



CHAPTER 2

Theory of Adaptive Filters

This chapter gives a brief introduction to the concepts of adaptive filters. The

definitions of the terms used in the later chapters are presented and illustrated here.

Section 2.2 presents the fundamental theory of adaptive filters and the mathematics

involved in the derivation of the normal equations. Sections 2.3, 2.4 and 2.5 describe

various adaptive algorithms in use. Section 2.3 tallcs about the well known least

mean squares (LMS) adaptive algorithm, section 2.4 talks about delayed least mean

squares(DLMS) algorithm and linally in section 2.5 a, discussion of lattice filters is

presented. Section 2.6 describes an important application of adap1,ivc filters called

uiaveform coding.

2.1 Introduction

A filter, in general, is defined as a system which is used to extract information

about a quantity of interest from a set of noisy data.. 1VIost filters which one encoun-

ters in the field oi'ommunications and signal processing, are filters which have an

internal structure that does not change with time. An adaptive filter on thc other

hand, is a, filter whose internal parameters allow us to control the transfer function

over a useful range. It, uses an adaptation algorithm to enable the filter transfer func-



tion to track some important feat,ure of the external environment. Adaptive filters

have been pui, to use in many fields such as telecommunications, biomedical signal

processing, geophysical signal processing, sonar processing and in the eliminationol'adar

clutter. The factor thai, dictates the use of adaptive filters in the above men-

tioned fields is that some element of the problem is unknown and must therefore be

learned, or some parameter of the system is changing with time in an unknown man-

ner and hence must be tracked. In this thesis, the systems identificatio application

has been used as s, model to explain various concepts of adaptive signal processing.

However, the ideas presented here apply io a, wide variety of applications. Also, a,

brief discussion about an application which uses adaptive an filter for the purpose

of predicting the input signal has been included st the end of this chapter.

Systems identification has been a focus of atteni,ion in the fields of control

and signal processing for many years. The procedure of specifying an unknown

system in terms of experimental evidence using a set of measurcmcnts of the input or

output signals is called identification. Adaptive identification involves the procedure

of updating our knowledge of the system based on the most recent information

about the system. Adaptive signal processing algorithms attempt to optimize a

performance measure that is a, function of the unknown parameters to be identified.

There are two broad categories of adaptive signal processing: (1) stochastic,

and (2) exact. Category (2) refers to adaptive algorithms which are based upon i,he

actual or exact data signals acquired. Adaptive techniques which fall into category

(1) are based upon algorithms that use the statistical properties of the data signals.

The primary statistical measure used is the ensemble average or the mean of the

squared prediction error function. This performance measure is shortened simply to

the mean-square error (MSE).



Figure 2.1 Identification of unknown system.



2.2 Normal Equations

In many engineering problems it is necessary to predict the output sample of

an unkiiown system d(n) (also called as the desired signal), using the input, sam-

ple x(n) at time n. This type ol'ystems identification is shown in figure 2.1. Since

it is not possible to predict the desired signal d(n) exactly, a prediction error signal

is generated at time n. This error signal e(n) is given by,

e(n) = d(n) — d(n) (2.1)

where d(ri) is the predicted signal. In the Wiener theory, the minimum

mean-square error criterion is used to optimize the prediction filter rather than just

the estimation error e(n). Since the desired signal may be the result of s, random or

stochast,ic process, the error signal is also stochastic. The statistical property well

suited as a performance measure is the ensemble average or the expectation of the

squared error sequence. Hence the mean-squared error (MSE) is defined as,

s(n) = E(e'(n)) = L([d(n) — d(n)]') (2.2)

By minimizing s(n), we can obtain an optimum linear lilter in thc minimum

mean-squared sense.

For a. given set of N filter coefficients w(n), and a data sequence x(n), the

prediction of the desired signal may be computed as,

N— 1

d(n) = P toi(n)x(n — i) = w&(n)xiv(n) (2.3)

w~ [uip(n)& wi(n) totv i(n)]

xrr —— [z(n), x(n — I),,..., x(n — ftf + 1)]

(2.4)

(2.5)



10

where wTv and xa, are the weight coefficients and data samples respectively. Substi-

tuting for d(n) into the definition of. MSE (2.2), the MSE becomes,

e(wrr) = E{e (n)} = E{[d(ii) — w&xsi(n)[ (2.6)

where wri = wrv(n). The MSE in (2.6) is denoted as a function of w& because

for each value of the filter coefficient there results a corresponding value of MSE.

Expanding equation (2.6) we can write,

e(wiv) = E(d (n)} + 2w&E(d(n)xiv(n)} + w&E(xiv(n)xa(n)}wiv (27)

e(wiv) = as — 2w&piv + w&Rivivw& (2.8)

where

ad — E{d'(n)}

pa = E{d(n)xa(n))

R&iv = E(xrr(n)xa,(n) }

(2 O)

(2.10)

are the mean squared power of the desired signal, the cross-correlation vector, and

the auto-correlation vector respectively [2]. Prom equation (2.7) it is evident that

the input vector xiv and the desired signal d(n) are jointly stationary, and the mean-

squared error e(w&) is a second order function of the tap-weight vector w. Hence

the dependence of the MSE e(wiv) on the elements of the tap-weight vector w

may be visualized as a, bowl shaped surface with a, unique bottom. This surface

is called the error performance surface of the transversal filter. The objective of

thc adaptive filter is to track the bottom or the minimum yoint on the error

performance surface, where the MSE e(wiv) attains the minimum value (e i„) and

the tap-weight vector attains an optimum value wo. The resultant transversal
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filter is said to be optimum in the mean-square sense. The gradient of the error

performance surface wiht respect to the wieght vector is given by,

cia
Vw[s] =

OWN
(2.12)

Substituting for s in (2.12) we get,

7w[s] = — 2ptv + 2Rtvtvwlv (2.13)

At the optimum tap-weight vector, thc gradient vector equals the null vector.

Therefore, equating r7w[s] in (2.13) to zero we have

Rwp = p. (2.14)

Equation (2.14) is the discrete form of the tA'iener-Hopf equation or the norma1

equation.

2.8 LMS Algorithm

By definition, the gradient (2.12) points in the direction of the maximum rate of

change of the surface at s, point on the error-performance surface. That is, the

gradient points in the direction of steepest descent. The above property implies that

given a, position on the MSE surface at a time n, one can determine the next position

at time (n+1) by moving along the direction opposite to the gradient. Applying this

property to (2.14) and solving for w,

wa (n + 1) = wa (n) — pV'w [s(n)] (2.15)

where p is a const,ant. But,

7'w[e(n)] = E(e (n)) = 2E(e(n) )
0, oic(n)

Owtv cIwa
(2.16)



By expanding for e(n) according to (2.1) and taking the gradient of e(n) with repect

to w)tv is given by
0

e(n) = —xtv(n)
I9w N

(2.17)

Substituting equations (2.16) snd (2.17) in (2.15)

wtv(n + 1) = wtv(n) + nE(e(n)xtv(n)) (2.18)

where rr = 2p, and E(.) is an estimate of the expected value.

The equation given in (2.18) cannot be used in practice because it is not to

possible compute the ensemble average given in equation in real-time. In practice,

in order to overcome this problem the expectation in (2.18) is approximated with

the instantaneous value of the quantity inside the brackets. That is, let E be simply

given as

E(e(n)xtv(n)) = e(n)xtv(n). (2.19)

Substituting (2.19) into (2.18) we get,

wtv(n + I) = wtv(n) + ere(n)xtv(n). (2. 20)

Equation (2.20) is called the LMS algorithm [31]. Due to its simplicity, the above

algorithm has found wide usage in applications that deal with nonstationary data.

Figure 2.2 illustrates the structure of an adaptive transversal filter and figure 2.3

illustrates an LMS adaptive filter used in a linear prediction application.

2.4 Delayed LMS Algorithm

As mentioned in the previous, subsection LMS is the most commonly used

adaptive transversal filter. In this algorithm the error signal is needed to to update



Figure 2.2 Structure of adaptive transversal filter.



Figure 2.3 LMS adaptive filter used as a linear predictor.
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the Alter cocfAcients before the next sample arrives. IIowever, in some real-time ap-

plications this imposes a critical limit on the implementation of the LMS algorithm.

This problem was studied by Proakis et.al [23], where the introduction of some de-

lay into the coefficient adaptation was proposed. The resulting algorithm, called the

delayed least mean square (DLMS) algorithm, has been shown to guarantee stable

convergence characteristics provided an appropriat,e adaptation step size is chosen.

Based on a time-shifted version of'he DLMS algorithm, Mcyer et al. [lg]-

[14] developed order recursive coefficient update equations which were mapped to

a, pipeline of application specific processing modules (Plus). In this new algorithm,

the computations are structured to be order recursive, resulting in a, highly modular

pipelined implementation that can provide high sampling rates independent ol'he

order of the lilter. Also, the weights are updated locally within eacli st,age. The

DI,MS algorithm is defincd by the following equations:

w(n) = w(n — 1) + ere(n — Lt)x(n — D) (2.21)

e(n) = d(n) — d(n)

d(n) = x (n,)w(n — I)

(2.22)

(2.23)

where D is the delay in the weight adaptation, and w(n) snd x(n) are the weight and

input vectors respectively as defined in equations (2.4) and (2.5). The order used

here is (N+1) in order to simplify the notation in the derivation. Since the filter

has (N+1) st,ages, N extra units of delay are introduced into the system. Ilence,

thc delay is made equal to the number of stages (D = N). Tlie time-shifted weight

vector can then be defined as follows:
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w(n) =

ui,(n)

isi(n — 1)
(2.24)

wz(n — N)

Substituting this time shifted vector into the DLMS algorithm, we have

w(n) = w(n — 1) + PE(n — N)x(n — N) (2.25)

where x(n — N) is the modified input vector, which is dehned as

x(n — N) =

x(n, — N)

x(n — N — 2)

x(n — N — 4) (2.26)

x(G — 3N)

and E(n — N) is the (N+1)x(N+1) diagonal error matrix. The scalar update equa-

tions for the ith filter weight can therefore be written as

u&;(n — i) = is,(n — i — 1) + Pe(n — N — i)x(n — N — 2i). (2.27)

Since we are now delaying the input to each filter weight, the output, at each

filter weight is in effect a partial sum of the ouf,puts from the preceding weights.

This shifted vector of partial sums of the output may be defined as

y(n) =

y,(n)

y,(n — 1)

y,(n — 2) (2.28)

yrv(n — N)
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Each partial sum y;(n — i) corresponds to the output of a transversal filter of order i,

whose current input is x(n — i), and whose coefficients are w. (n —i — 1), ..., w,(n — i — 1);

that is,

y,(ri, — i) = P x(n — i — k)ws(n — i — 1).
4=0

(2.29)

Equation (2.29) can be split into two parts:(/) sum of product of the terms of 4he

previous it (i-1) samples plus, (2) the sum of product of thc it ith sample.

y,(n — i) = [P x(n — i — k)ws(n — i — 1)] + x(n — 2i)w;(n — i — 1) (2.30)
4=0

The summation term in (2.30) is equal to y, i(n — i), and the order recursion for

the filter output is fmally given by

yi(n — i) = y, i(n — i) + x(n — 2i)wi(n — i — 1). (2.31)

Equation (2.31) and (2.27) form the scalar updates to be performed for each weight

by processor module i at sample time n. A detailed derivation of tliese equations is

presented in [] 3]. The corresponding filter structure is given in figure 2.4.

2.5 Lattice Filter

There are numerous ways of solving equation (2.14), and it has been skiown in

the above discussion that LMS algorithm is one of the ways of finding a solut,ion to

(2.14) in terms of w. An alternative struc4ure tha4 is used to solve equation (2.14)

is the lattice filter. There are two types of lattice filters (1) gradient lattice filters

and (2) the least squares lattice filters. Thc gradient lattice is based on the adaptive

techniques considered so far. That is, it attempts to minimize the statis4ical error

measure derived from the data. The least squares lattice on the other hand is based

on the error measures derived from the exact data signals acquired.



~ ~ ~

Figure 2.4 Pipelined adaptive filter.



2.5.1 Gradient Lattice Filter

The gradient lattice formulation is a result of using Durbin's algorithm for

solving the normal equations. The procedure used for processing the actual data

by the lattice filter is to first estimate the autocorrelation coeflicients and then use

Durbin's recursion for computing the reflection coefficients (k„), where 1 ( p ( N.

However, since the estimai,ion of the autocorrelation is an error prone process, sn

alternative method used here is to directly estimate the autocorrelation coelTicients

from the data and carry out thc updating on a sample-per-sample basis, as was done

in the LiUIS algorithm.

An Nth order prediction filter consists of N cascaded stages as shown in

figure 2.5. The operation of thc pth stage of the lattice is shown in figure 2.6 and is

defined by the following relations,

e„(n) = e, (n) — kr e„, (n — 1), (2.32)

e (n) = e& i (n — 1) — krer, (n) (2.00)

where e„(n) and e„(n) are the pth order forward prediction error (I'"PE) and back-

ward prediction error (BPE), respectively. The key idea in the lattice filter is to

choose kr that would minimize the I'PE and/or BPE at each stage. However if i,he

input has a non-stationary character, it is necessary that k„be updated adaptively

for each sample. The equation for updating the rcflection coefficients is,

k (n+ 1)—
2[N„(n) + e„,(n+ 1)e,',,(n)]

D„(n) + [e„ i(n+ 1)] + [ers i(n)]
(2.34)

Np(n) Np(n 1) + sr i(k)er i(k 1)

D„(n) = D„(n — 1) + [e„ i(k)] + [e„,(k — 1)]

(2.35)

(2.00)

where N„(0) and Dr(0) are assumed to be zero.
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Figure 2.5 Cascade of Nth order gradient lattice adaptive filter.



Figure 2.6 Single stage of a gradient adaptive lattice filter.
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2.5,2 Least Squares Lattice Filter

As mentioned in the earlier subsection, recursive least squares (RLS) or simply

least, squares prediction filters are based upon the error measure derived from the

exact data signals acquired. In this subsection, the basic RLS filtering problem and

the least squares lattice (LSL) filter are briefly discussed. The important difl'erences

between the gradient adaptive techniques and LSL filters are also highlighted.

The least squares filtering problem is defined as follows: if d(n) is the desired

signal and x(n) is the acquired signal and if a. linear prediction filter wiv (n) is used

to predict the desired signal d(i) of the ith sample, then the error made in predicting

the desired sample is

e(i[n) = d(i) — x~(i)wry(n). (2.37)

Here xiv(i) is the Ai-length data vector used in the prediction of the desired signal

d(i) at time i and is defined by

xiv(n) = [x(i),x(i — 1), ..., x(i — X+ 1)I (2.38)

and wiv is the weight vector

wiv(n) = [w,(n), wi(n), ..., w+ — I(n)] (2.39)

The RLS problem is to find a set of prediction coefficients ww(n) such that

the cumulative squared error measure

E(n) = Q A" 'e'(i~n) (2.40)

is minimized. The constant A (0 ( A & 1) used in equation (2.40) is data;weighting

factor that may be used to weight, recent data, more heavily in the RLS computations.

The important difl'erence between the gradient adaptive techniques and the

least squares prediction filters is that the MSE measure used in the gradient adaptive



techniques is not actually a function of the dal,a acquired by the processor, but

instead depends upon the statistical characterization ol'he data. However it is

obvious from equations (2.37) and (2.40) that the cumulative squared error criterion

is in fact. a function of the actual data vectors x&(n), xiv(n — 1), ..., xiv(1). Therefore

we see t,hat, R.LS techniques provide prediction filters that are exactly optimal for

the acquired data rather than being statistically optimal for a class of data, [2j.

As mentioned in the previous subsection of gradient lattice filter, the lattice

structure results as a consequence of computing the (in + 1)th order LS l'orward

linear predictor based upon a knowledge of the rath order LS linear predictor. Ex-

tending the above concept to loiver orders, we finally end up with a single order

filter whose output is to be estimated based upon the present input sample. The

least squares lattice lilter is similar to the gradient lattice filter, as is its implemen-

tation shown in figure 23h The forward prediction error (FPE) and the backward

prediction error (BPE) 1'or an (in + 1)th order filter are given by

er+r(n) = er (n) — k'+,(n)e'n — I)

e +,(n) = e (n) — k +i(n)e,„(n)

(2.41)

(2.42)

where ks +,(n), called the backward refiection coeflicient, is defined as

(n)
~-+i(ri)

m+i

Similarly k +, (n), called the forward reflection coefficient, is defined as

(2.43)

( )
~ +,(n)

(2.44)
sf(n)

c~ (n — 1) and sr (n) in equations (2.43) and (2.44) are called the BPE and the FPE

residuals, and are a measure ol'he FPE and BPE energy at the ruth stage of the

lattice. They arc defined by the following equations

s +i(n) = s (n) — ,
"6',(n)

(2.45)



e'+,(n) = e'n — 1)—
er (n)

Also, 6 +i(n) in equations (2.43) and (2.44) is the partial correlation (PARCOR)

coellicient and is defined by the following equation

tt. +,(n) = a ~t(n — 1) +
e~ (n)e~ (n — J)

(n — 1)
(2.47)

where 7 (n — 1) is the angle parameter defined by

(2.48)

Equations (2.41) to (2.48) define all the recursions needed to implement the least

squa,res lattice a,lgorithm.

The main advantage of latt,ice Alters is the convergence speed compared to

the LMS algorithm. However, this speed-up is at the cost of added comput,ational

operations and extra storage requirements. Another important s,dvantage of t,he

lattice filter is that each stage of the filter is modular snd hence becomes an excel-

lent candidate for pipelining, in order to support high sampling rates. Figure 2.7

compares the performance of the LMS, gradient lattice and the least squares lattice

filters when they were used in the linear prediction mode. Figure 2.7 shows how

fast each type of filter converges to the predetermined set of weights of the unknown

system.

2.6 Application (%'aveform coding)

An application of adaptive Altering is the efAcient encoding of analog sig-

nals(such as speech) in digital form. There are two basic ways in which this can

be done. The first one is the linear predictive coding(LPC) approach in which the

speech generation process is characterized by a simple model, and the input is userl
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Figure 2.7 Performance of comparision of various adaptive filters (Order = 2).



to estimate the parameters of tha4 model. The second one is called rvavefnrm coding

[10]. In this approach the speech waveform is quantized directly. In the decoder the

waveform is recons4ructed from the quantized samples. Waveforrn coding is one of

the most widely used forms of encoding, and it is also the one that is discussed here.

One of the approaches used to sample and quantize the input waveform

directly is pulse code modulation(PCM) [10]. A slight modification of this tech-

nique gives us another very useful modulation technique called drJJerential pulse

code modulation(DPCM). This technique uses a linear predictor in a feedback loop

and quantizcs thc prediction error rather than the input signal. The quantized error

is the signal that is sent to the receiver, If y(n) is the input sample, and y(n) is the

predicted value, then et(n) is the prediction error. This error signal is obtained prior

to quantization and it is this signal that is quantized in the encoder. At the receiver,

the predicted value y(n) is added to the error signal to obtain the original signal.

Since perfect reconstruction is not possible, we call this signal Y(n). Therefore we

have&

et(n) = y(n) — y(n)

Y(n) = y(n) + Er(n)

(2,49)

(2.50)

where Ef(n) is 4he quantized version of the prediction error available at the decoder.

If the prediction of y(n) is good, then the prediction error et(n)is quite

small compared to y(n). Hence it is possible to encode the error signal using fewer

bit,s, or increase the resolution by reducing the si,ep size for a given sampling rate.

The overall quantization error can be reduced by using a smaller step size. This is

one of the major advantages offered by the adaptive digital pulse code modula4ion

(ADPCM) encoder.
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From equation (2.50) we see that the decoder needs the predicted value of

the signal y(n), i.e, tj(n) to reconstruct the samples of Y(n). But, fj(n) is generated

by forming a weighted sum of the past samples of y(n). In this case the input

samples are not available at the decoder. In order to overcome this problem jf(n) is

constructed from the past quantized samples of V(n) in both the encodet and the

decoder. The equation describing the above is

y(n) = QwtV(n — j) (2. 51)

The above principle is illustrated in figure 2.8. During the initial adaptation

period, some arbitrary values are assumed for V(n) and as the predictor begins to

adapt itself, the transmitter and receiver become synchronized.



Figure 2.8. Adaptive differential pulse code modulation



CHAPTER 3

Fault Tolerance Concepts, Algorithm

and Implementation

3.1 Fault Tolerance Concepts

Due to the tremendous advancements in technology in recent years, digit,al

systems have shrunk drastically in size. These advance have made complex imple-

mentations such as special purpose DSP architectures, systolic arrays and highly

pipelined systems increasingly attractive and realistically feasible. Unfortunately,

with any increase in complexity comes an inevitable clecrease in system system reli-

ability. As a result, the discipline of fault-tolerance attracted a, great deal of research

interest over the past few years. A system is said l,o have failed if it, no longer pro-

vides the services for which it, was designed. A system is said to be i'suit tolerant, if it

continues to perform the desired functions correctly even in the presence of software

or hardware faults.

The occurrence of faults in a system is assumed to be random, hence the

occurrence of a fault in a, system is a, chance event. The parameters that are usually

used to gauge to performance of a system and take into account the randomnessol'he

occurrence of faults arc reliability, availability, performability and maintainsbil-
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ity. Reliability R(t) oi', system is defined as the probability that the system will

perform correctly in a given interval of time[t„ ti]. Availability A(t)is defined as

the probability that a, system is operating correctly and will be available to perform

a specified function at a given time t. Performability of a system is defineil as an

attribute of the system, by virtue of which the performance of the system is always

at, or above some level K. Maintainability of a system is defined as the ease with

a fault can be located and diagnosed. Fault tolerance is a technique that is used

to ensure that a system can fulfill the above requirements. There are many other

parameters that may have to be considered in the evaluation of the performs.nce of

the system, but the above defined parameters are some of the most important ones

that have to be considered in terms of fault tolerance.

There are three techniques which are commonly used to improve t,he per-

formance of a system in the presence of faults. They are: fault avoidance, fault

masking and fault tolerance. Fault avoidance is a, technique wherein we attempt

to prevent the occurrence of faults in a system by using highly reliable components,

carrying out prescreening and testing of the components. Fault masking is a, tech-

nique which prevents the faults from introducing errors into the system which will

eventually cause system failure [11]. For example, it'e consider a TMR system,

the output from the faulty module is masked by the remaining two good modules.

Fault tolerance, as defined in the beginning paragraph of this chapter, is the abil-

ity of the system t,o perform satisfactorily even after the occurrence of I'aults. Fault

tolerance in general, encompasses both fault avoidance and fault masking techniques

and adds some more attributes of its own. One of the commonly used approachs to

achieve fault tolerance is the reconfiguration technique. In this thesis, thc recon-

figuration technique was used to achieve fault tolerance in pipelined filter structures.



This technique requires attention to issues such as fault detection, fault location and

reconfiguration of the system by isolating the I'sulty module.

The technique chosen to improve the performance of a system depends purely

on l,he application. For example, if we consider a spaceborne satellite, some of the

primary concerns in thc design of the satellite are its weight and power consumption.

We would like to design a satellite that is as light as possible, and consumes as little

power as possible. In this case, it may not be possible to use the fault masking

technique because it dictates the use of lots of redundant hardware, which implies

an increase in weight, and power consumption. However, if we consider a typical

earth-based military application any degradation in the performance of the system,

even for a short period of time, is not tolerable because it could be destructive to

human life and property. In this case redundant hardware might be justified in order

to mask the faults I'rom causing performance degradation.

Faults are of two types; permanent and transient. In this thesis we attempt

to address both these types with respect to the pipelined adaptive filters. A fault-

tolerant system is usually designed to tolerate a given class of faults. Thc given

class indicates the relative level at which I'ault tolerance is being incorporated; the

gate level, the transistor level or at a much higher level such as the module level.

At the module level, the two most commonly considered systems are series and

parallel systems. Because many systems can be modeled as some combinationol'hese

types, a little more insight into the reliability analysis of series and parallel

systems is useful.



3.1,1 Series System

A series system may be de6ned as a, system in which a failure in any one of

the subsystems would cause a system failure. If we assume that the failure of each

of the subsystems is independent and let R, be the reliability of a subsystem i, then

the overall system reliability is [11], [22], [5],

(3 I)

where N is the total number of subsystems. If we also assume that the failure rat.e

of each of the subsystems is constant, then we have R; = el ~*'I and

X e-" (3 2)

(3.3)

where At is the failure rate of a subsystem and t is the time at, which the failure rate

was computed. If we further assume that all the subsystems have identical I'ailure

rates, then we have At = A and R„= R. Therefore, the overall reliability of a series

system can be written as

(3.4)

R„=R'. (3.5)

Equation (3.5) implies that the overall reliability of a, series system decreases expo-

nentially with respect to N. Therefore, for a, series system to have high reliability, it

is necessary that N bc smaller or that the subsystems have very high reliability.

3.1.2 Parallel Systems

A parallel system, assuming all the subsystems are identical, in the context

of fault, tolerance and reliability, can be de6ned as a system which can fail only if



all of its subsystems have failed. Also, assuming thai, the subsystem failures are

independent and R, is the reliability of a subsystem i, the overall reliability ol'he

system can be given by

(3.6)

If it is further assumed that, all i,he subsystems are identical and have a constant

I'ailure rate A, then

R„= 1 — (1 — ff) (3.7)

In general, most practical systems are made up of both series and parallel systems,

whose reliabilities can be computed using equations (3.5) and (3.7).

In this thesis we deal primarily with the series system. This is because

the two systems considered here, the DLIVIS pipelined structure and the lattice

structure, are both series systems (figures 2.4 and 2.5) . In i,ho following section, a

flexible fault-tolerant adaptive filter structure is presented. The proposed structure

is suitable for implementation of a variety of adaptive algorithms, including the

delayed LMS, least squares lattice and gradient lai,tice filters. Fault tolerance is

achieved by introducing redundancy into the system or the communication links,

and employing a fault detection scheme which exploits the natural fault tolerance

inherent'n the adaptive filter.

3.2 Fault-Tolerant Algorithm and Implementa-

tlon

In most of the work on fault-tolerance, the objective is to mask failures and

if possible recover completely after the occurrence of a fault. In practice, fault-

tolerance in a system is achieved by either replacing the faulty module with a stand-



by module or by reducing its I'unctional capabilities. In some mission-critical sys-

tems, due to space and cost constraints, it is not always advisable to use redundancy

to deal with the failures. In such cases, it might be desirable that the system be able

to gracefully downgrade its performance. In this thesis both the methods are em-

ployed to achieve fault-tolerance for pipelined adaptive filter structures. Botli these

methods use the reconfiguration technique discussed in section I of this chapter.

Before addressing the issues of fault location, fault detection, and hardware

reconfiguration, certain assumptions must be made. These assumptions are consis-

tent with those made in the literal,ure [11], [20], [29].

Assumption 1. No two faults can occur concurrently, i.e, no two faults occur at

the same time.

Assumption 2. The switching logic is simple in comparison to the processing mod-

ules and hence reliable.

Assumption 3. Each processing module has the ability to perform a, predetermined

sell'-test sequence, but cannot be trusted to interpret the results.

Another issue that needs to bc addressed before proceeding further is the

concept of scaling. The function ol'he adaptive filter is to compute a finite set of

weights based on thc input samples. These computations can be perl'ormed by using

dedicated hardware or by a general purpose computer/processor. In this context it

is possible to develop dedicated hardware which computes one weight per module.

Alternately, it is possible to partition the filte and map the computations associated

with several weights onto a single module. For a programmable DSP module this

can be done even more easily by modifying the relevant software.
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A faulty processing module in a pipelined adaptive filter will cause a, block

of weights to take on unpredictable values. The number of weights affected depends

on the order of the filter and the number of processors in the system. The particular

block affected may vary, but the end result is always a, divergence of the filter's

error signal as shown in figure,'l.l. In this figurc the filter initially converges to an

optimal solution by sample 200. But a, fault occurs at sample 400 causing the filter

to diverge. This provides the mechanism for fault detection. That is, it is possible

to detect the occurrence of a fault [software or hardware) by monitoring the error

signal. But there is one problem associated with this form of error detection. The

convergence of an adaptive algorithm to an optimal solution is an iterative process.

Since the input applied to an sdapiive filter is random (though it is not completely

white), the fiilter tries to track the input signal in the minimum mean square sense.

When tracking the input in this manner the adaptive filter might sometimes over

predict, which causes the error signal to have a higher value I,han its value for

the previous sample. Using the error signal on a sample per sample basis for error

detection might i,hen cause the reconfiguration of the system even when there are no

failures in the system. In order to avoid this situation, thc error signal is isinrloiscd.

By windowing, the error signal can be measured over M samples, where M is an

integer. By adjusting the value of M, we can make sure that the error signal over

M samples is always less than a predetermined threshold, when the system is in

operating condition.

Fault location is a, harder problem, and one which has received some attention

outside the context of adaptive filtering [24], [12], [29]. The method proposed here

for fault location is specific to the pipclined filter structure, and utilizes a processor

self-test sequence. In this method, the error signal is continuously monitored by all
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Figure 3.l Divergence of a pipelined adaptive filter in the event of a fault.



the processing modules. If the error signal increases past a predetermined l,hreshold

for M consecutive samples, the processors go into diagnostic mode. Since a faulty

processor cannot be trust,ed to evaluate its own integrity, test results are passed

to the right and are evaluated by the subsequent processors. In figure 3.2, t, is the

evaluation of test results from PM, i which have been passed to PM;. PM, oui,puts

t, = I if it determines PM,, has failed its self test, and ti = 0 if PM, has completecl

its test successfully. The switching hardware dynamically reconfigures the pipeline,

eliminating l,he faulty module. The switching hardware is discussed in more detail

in l,he following subsection.

The algorithm for fault detection, fault location and reconfiguration is sum-

marized below. The algorithm discussed here results in gracel'ul perl'ormance degra-

dation. An all,ernative technique, which involves the replacing of the faulty processor

with a stand-by, is similar to the above mentioned one algorithmically. The major

differences between the two are in the way they are implemented, which will be

discussed in more detail in t,he next section. The algorithm is as follows:

(1) Proceed with filter computations of error and weight updates.

(2) Monitor the squared error es(n) over M samples. If es(n) exceeds a, predeter-

mined threshold for more than M consecutive samples periods, then a fault

has occurred (either hardware or software), proceed to step (3), else proceed

to step 1.

(3) Processors enter test mode, and pass test results to the right.

(4) Switch out thc faulty processor by setting the input to each switch S, to be

(5) Return to step 1.
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Figure 3.2 Fault tolerant pipelined adaptive filter.
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In this way, no faulty processor may erroneously switch out a, good one. Thai,

is, if processor 1 is faulty, i,hen processor 3 must determine that processor 2 is I'ault-

free before processor 2 is able to switch out processor 1. If no processor is determined

to be faulty, the end result is a, system restart. In this way, the divergence caused by

numerical instability or any hardware transients in the system are handled within

the proposed framework. The sampling rate is not reduced due to reconfiguration,

however in the case of a, processor fault, misadjustment will increase slightly due to

a reduction in the number of filter taps being implemented.

3.3 Implementation

3.3,1 Fault tolerance by gracefully degrading the system

performance

The implementation of this form of fault-tolerant pipelined adaptive filter is shown

in figure 3.2. The boxes labeled PM are the processing modules, and the boxes

labeled Sl, S2, ..., SN are the switches that switch out the faulty module and

route ihe data from the previous processor to the next, one. Vor example, in figure,'3. 2

if PMz fails switch S2 will switch out PMq and will pass the data from PMt to

PMs. The sivitches considered here are an array of two input multiplexers, which

are all controlled by a single control signal. The boxes labeled Ll, L2, ..., LN

are the latches that control the multiplexers based on the input they receive after

the self-test evaluation. This is initialized to 1. As shown in figure,'3.3, every latch

gets its input from a NAND gate which outputs a zero when the processor has to

be switched.



r+ 1 1+2

Figure 3.3 The switching hardware and the latch.
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3.3.2 Fault-Tolerance using redundant processing modules

It is sometimes necessary to design a system that would function perfectly at

all times. In such cases it is imperative that we use redundant processing modules

which can be switched in when a fault occurs. This type of design for a pipelined

adaptive biter is shown in figure 3.4. The switching circuit consists of an encoder, a

multiplexer and a demultiplexer. The encoder inputs are the same signals that are

passed to the switches S,, Sz, ... etc. The output of the encoder acts as the control

line for the multiplexers. The multiplexer selects the input from one of the processors

to be passed on as input to the redundant processor. The same control signal is used

to demultiplex the redundant processor output. This type of arrangement has the

advantage of flexibility. The number of processors l,hat a redundant processor can

serve can be varied to provide the desired amount of fault tolerance.

For the case shown in figure 3.4, it is assumed that there is one redundant

processor for every two processors in the system. Thc outputs of PLVli, PMq are

passed to the multiplexers as well as to the processor in linc via the switches S&

and Sz. Based on the signals Lz and Lq the output of PM& and PMz are selected

as input to the redundant processor. The output of the redundant processor 8, is

demultiplexed between the processors PMs and PMs.



Figure 3.4 Fault-tolerant pipelined adaptive filter structure with redundant processors.



CHAPTER 4

Performance and Simulation Results

4.1 Introduction

As described in chapter II, the delayed LMS algorithm can be realized by

introducing a fixed delay into the coefficient adaptai,ion. Because of the introduction

of delay, the number of samples required by the delayed LMS algorithm to converge

to an optimal solution is greater than the number of samples required by the LMS

algorithm. This behavior is illustrated in figures 4.1 and 4.2, which show the learning

curves of these systems for N = 16.

The inputs used in the simulations were random sequences generated nsing

Matlab's random generator function. All the simulations presented in this thesis

were written in Matlab. To obtain a colored input sequence, a, random signal was

passed through a, fifth order lowpass Butterworth filter. Additional noise was in-

cluded to obtain a SNR ratio of 20dB. The value of P used was .015. The predicted

signal was subtracted from the 61ter output to obtain the error signal. This error

signal wss then used to update the filter coefficients. The curves (figures 4.1 and

4.2) were obtained by connecting 61ters in systems identification mode and averag-

ing the results over 20 independent trials. The prediction error signal is plotted as



a function of the number of samples. The iUIatlab simulation code used to perform

all the simulations given in this thesis are compiled in the appendix.

From figures 4.1 and 4,2 it appears that the LMS algorithm is superior to

the DLMS algorithm in terms of convergence. This is because these graphs fail to

convey any information regarding the rate at which the samples are taken in both the

systems. When sampling rate is taken into consideration, it can be argued that the

DLiUIS algorithm converges much faster than the LMS algorithm. This is because

in DLMS, unlike LMS, it, is not necessary t,o compute all weights before accepting

a new input sample. Each processor in the pipeline updates a, single weight or a,

small block of weights. The DLMS filter can be put to good use in applications

which require high sampling rates. Another point worth noting about thc pipelined

DLMS filter is that, although the speed-up varies as a, function of the filter order, the

sampling rate is independent of the filter order. This is one of the most attractive

features ol' pipelined filter structure.

4.2 Increase in the minimum MSE with the de-

crease in filter order

To illustrate the proposed reconfiguration scheme, the delayed LMS algorithm,

implemented as a, pipelined filter, was selected for simulation. As mentioned earliei,

a. 16-tap filter is confiigured in system identification mode and mapped onto an array

of four processing modules. A colored input sequence is applied to the system, and

noise is included to give SNR, of 20dfh Each processor is responsible for computing

the weight updates and partial product updates for a block of four weights. The
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scalar updates to be performed for each weight by processor i at sample n, are

shown below.

w;(n — i) = w,(n — i — 1) + Pe(n — N — i)x(n — N — 2i) (4.1)

y,(n — i) = y, i(n — i) + a(n — 2i)wi(n — i — 1). (4.2)

Here x, y, e, w, and 4 have their usual meaning. Figure 4.3 shows the simulation

of this system in response to a hardware fault. The stable region of convergence

continues for 400 samples until a fault occurs in one of the processing modules at

sample 400, causing the weights of that particular processor to talce on random

values. The result is error divergence. By sample 550 the system has reconfigured

by switching out the faulty processor and the resulting 12-tap hlter reconverges.

Since the reconfigured filter contains fewer weights than the original filter,

lhe steady state misadjustment should be expected to increase. This behavior is

illustrated in figure (4.4), which displays the same simulation shown in figure (4.3),

where the axes have been scaled to focus on the region of convergence. In order

to model this behavior mathematically, an analysis of the steady state error with

respect to the order of the filter is required.

Before proceeding with the analysis of the steady state error with respect

to the order of the filter, it is important to examine some important properties of

eigenvectors which will be used in the derivation to follow [7].

Pi'opel'ty 1: If Ar As ..., Aiv denote the eigenvalues of the correlation matrix R,

then the eigenvalues of matrix R" are A,", A~, ..., Aiz,

For any arbitrary correlation matrix R, we have

Rq= Aq (4.;1)
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Repeated premultiplicat,ion of the above equation by R gives us

R" q = A"q (4 4)

where q is the eigenvector associated with A, thus proving the above stated

property.

Property 2: Let qr, qz, ..., qrv be the eigenvectors corresponding to the distinct

eigenvalues A&, As, ..., Az of thc N-by-N matrix of R, respectively. lf Q

defines an N-by-N matrix

'Q = [qt qs " qnr] (4 5)

where q; and q are orthogonal, that is,

1, i=j
0, otherwise

(4 0)

and if A defmes an N-by-N matrix such that

A = diag(Ar, Az, ..., Arv) (4 7)

then the original matrix R may be diagonalized as follows

RQ = A. (4 3)

this transformation is also called unitary similarity transformation.

Another important property of the correlation matrix R that will be useful in

the derivation to follow is given below.

Property 3: The correlation matrix R of a, discrete stochastic process is always

non-negative definite snd almost always positive definite, that is,

xRx&0 (4.0)
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where x is an arbitrary (non-zero) N-by-I complex valued vector. Having

defined the pproperties, it is easy to show that t,here is an increase in the

minimum mean squared error with the decrease in the filter order.

The minimum mean squared error achievable for an LMS adaptive filter is

given by

(4.10)

The above equation, by making use of the normal equation (2.14) defined in chapter

II, can also be written as

2 HJ,„= o.s — p R p.

The unitary similarity transl'ormation defined in equation(4.8) in property 2, can

also be written as

R = QAQ~.

Substituting for Q and R in the above equation gives

N
R = QA,qtq, .

Applying property 1, to equation (4.13) gives

rv
1 g P 1 q qI

Substituting equation (4.14) into equation (4.11) for R 'ives
NJ; =a„— p QA, qq p.

The above equation can be I'urther written as
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(4.16)

From property 1, the eigenvalues of R are Isnown to be real and non-negative.

Moreover for practical signals they are always positive. Idence the subtractor in equa-

tion (4.16) is always positive, which implies that J,„ in equation (4.16) increases

with the decrease in the order of the biter. This is illustrated in figure (4.5). In

this simulation, the theoretical curve is the one obtained using equation (4.16). The

other curve, the practical curve, was obtained by taking the minimum mean squared

error values for various filter orders and computing the ensemble average over 50

independent trials.

4.3 Performance

A common measure of the fault tolerance of a system is reliability, which

is defined as (1 — probability of system failure). The reliability of the N-element,

pipelined array shown in figure (2.4), as defined in equation (3.5) in chapt,er III, is

given by

(4.17)

R is the reliability of each individual processing module. The system shown in figure

(3.2) is tolerant of single faults, and will therefore operate reliability at a given

sampling rate in the presence of zero or one bad module. The overall reliability of

the new system is given by

ff«„„= ff~ + A (I — ff) ff ~-'. (4.18)

The above equation was derived based on the permutations and combinations

of elements arranged in a circular fashion. This I'orm of analysis was required because
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t"'igure 4.5 Misadjustment curve with respect to the order of the filter.



the modules in figure (3.2) are actually arranged in a circular fashion. The error

signal of the last processing module is fed back into the first processing module,

according to the pipelined adaptive filter structure defined in chapter II. However,

it should be noted that equation 4.18 is valid only when N is greater than 3.

The improvement gained by the fault tolerant pipelined system is illustrated

in figure (4.6), which shows reliability of a, pipeline as a function of the pipeline

length. A value of'R = 0.98 has been assumed. It shoulcl be noted that this is actually

a conservative estimate of the actual reliability, since certain type of multiple faults

can in fact be tolerated, as long as no two faults occur within the same sample

period and no two faults occur at consecutive processing modules. Ifowever, the

extra component of reliability added by these cases is negligible for all but very large

arrays, and is therefore ignored here. It is interesting to note that as the reliability

of the individual subsystems is decreased, the overall reliability of the fault tolerant

system approaches the overall reliability of the pipelined system. This is illustratecl

in figures 4.7 and 4.8. However, the proposed fault tolerant system always shows s.

better performance than the pipelined system. The difference between the curves is

furl,her increased when the extra component of reliability, discussed above, is taken

into consideration for lengthy pipelines. From figures 4.7 and 4.8 it can be observed

that the improvement in reliability of the system is very high for small arrays. This

gives rise to the issue of scaling, implying that large arrays can be shortened into

small arrarys by increasing the complexity of the processors to acheive the required

performance.
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CHAPTER 5

Conclusions

5.1 Summary

Pipelined systems are attractive because they support high data rates. They

are also modular in their structure, which makes them an attractive candidate for

VLSI implementations. The objective of this thesis has been to design and imple-

ment fault tolerant pipelined adaptive systems and also to evaluate the performance

of such systems.

The fault, tolerant algorithm was designed based on the assumption that there

will be a self-test feature inherent to each processing module. The design assumed no

specilic architecture for the processing modules. However, it was assumed that each

of the processing modules would possess the fault detection algorithm, implemented

either in hardware or software. This allows the detection scheme to be distributed

rather than being located at a single point in the pipeline. Such a distributed

scheme is possible because the two systems considered, the delayed LMS and the

lattice filter, have an error signal output that can be monitored for each weight.

The proposed algorithm takes advantage of the unique behavior of the pipelined

adaptive filters in the event of a I'ault. This unique behavior was used to detect the
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occurrence of faults in the system. In the diagnostic mode a predetermined self-test

is performed on each processor and the results are passed to the right for evalutaion.

The proposed system uses majority logic to switch out the faulty processor. In our

simulation the length of the pipeline was pruned down in the event, of a fault elim-

inating the faulty modules. The system was then allowed to reconfigure using the

remaining modules.

The steady state error of the system was observed to increase when the

length of the pipeline was reduced because of reconfiguration. A mathemat,ical

relationship that illustrates the increase in the steady state MSE error was derived.

The theoretical and the practical results, illustrating the increase in steady state

MSE with the decrease in the order of the filter, were in close agreement with each

other. For over modeled systems, appreciable increase in the steady state MSE was

not observed till the point at which they were close to being exactly modeled.

Reliability was another metric used to evaluate the performance of t,ho sys-

tem. An expression, to compute the reliability of the new system was derived. It

was observed that there was an improvement ol'bout 60% in the reliability of the

pipelined adaptive system of length 32, and the reliability of individual subsystems

wa,s R. = 0.98.

5.2 Future research

There are a number of enhancements that can be made to the work presented

in this thesis. Some of them are listed below:

I. In the lattice filter, each stage of the lattice is an adaptive filter by itself. Each

stage tries to minhnize the FPE and BPE supplied to it by the previous stage.

This implies that the forward prcdiction error of the pth stage is less than that



of (p-I)th stage. By taldng advantage of this fact,, a new detection technique

unique to lattice filters can be developed. This technique would eliminate the

need for self-testing by the processors. The testing can bc achieved locally

at each stage using a comparator. An attempt was made to prove the above

argument mathematically, but no positive results have been obtained.

2. It would be useful to develop a testing scheme to test the processing modules,

rather than using the self-testing feature of the modules. This is critical be-

cause, the speed of reconhguration is directly proportional to the time it takes

to perform the self-test on each of the processors.

3. One of the assumptions made in the design of the fault tolerant algorithm was

that the switching logic wss free of faults. However, the system could be made

even more robust by introducing some I'suit tolerance into the switching logic.

4. The proposed system has a modular structure and which is highly suitable for

VLSI implementation. The issues involved in such an implementation remain

to investigated.

5. The fault tolerant algorithm presented in this thesis recovers from single faults

and a class of multiple faults under some constraints. An important enhance-

ment that could be made to the work presented in this thesis is to eliminate

the above mention constraints. That is, malce the algorithm more robust and

able to correct multiple faults no matter where they occur in the pipeline.
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Appendix

SIMULATION CODE



I. Simulation of least squares lattice filter
(curve gl figure 2.7)

% Matlab simulation of least squares lattice.

alpha.=0.015; % Step size parameter.

N=S; % Order of the filter

a1tot=O;a2tot=O;
clear E,clear 7;

Initialize the weights.

for reps=i:20
reps
t=o:1:250+N;

% Begin the iterations
% Display the iteration number.
% length of the sequnce.

clear v,clear p;
err for = zeros(length(t),N);
err bac = zeros(length(t),N);
ERR for = ones(length(t),N)
ERR bac = ones(length(t),N);
delta = zeros(length(t),N);
gama = ones(length(t),N);
x = zeros(i,length(t));
v = randn(size(t));

Initializing the variables.

% Forward prediction error.
% Backward prediction error.
% FPE residual.
% BPE residual.
% Partial correlation coefficient.
% Anlge parameter.

for i = 1:N
x(i) = v(i);

end

% For i &= N, x(i) = v(i)

f'r n = N+1:length(t)
x(n) = (1.558sx(n-i)) — (0.8

end

Compute the input vector based
based on the given second order
equation. Have to start from N+1

because matlab doesn't allow
negative indexrng.

1 s x(n-2)) + v(n);

for n = 2:1:length(t) % LSL algorithm begins here.
% Computations carried out in



err for(n,i) =

err bac(n,i) =

ERR for(n,i) =

ERR bac(n,i) =

gama(n,1)

x(n);
x(n);
ERR for(n-1,1) +(x(n)) ."2;
ERR for(n-1,1) +(x(n))."2;

1'or

m = 1:N-1 % Computatations of the rest
% of the stages.

delta(n,m+1) = delta(n-i,m+1) +

(err bac(n-1,m)eerr for(n,m))/gama(n-1,m);

err for(n,m+1) = err for(n,m) — (delta(n,m+1)
err bac(n-1,m))/ERR bac(n-1,m);

err bac(n,m+1) = err bac(n-i,m)
(delta(n,m+1)eerr for(n,m))/ERR for(n,m);

ERR for(n,m+1) = ERR for(n,m)
((delta(n,m+1))."2)/ERR bac(n-i,m);

ERR bac(n,m+1) = ERR bac(n-1,m)
((delta(n,m+1)) ."2)/ERR for(n,m);

gama(n-1,m+1) = gama(n-1,m)
(err bac(n-1,m))."2/ERR bac(n-1,m);

end
end

% Computing the reflection
% coefficients.

kfi = delta(N+1:length(t),2) ./ERR f'r(N+1:length(t),1);
kb1 = delta(N+1:length(t),2) ./ERR bac(N:length(t)-1,1);
kb2 = delta(N+1:length(t),3) ./ERR bac(N:length(t)-1,2);

% Computing the weight using
% reflection coefficients.

end

aitot = aitot + kbi — kfi.ekb2;
a2tot = a2tot + kb2;



T = t(1:(length(t) -N));
aiavg = a1tot/reps;
a2avg = a2tot/reps;

% Average the value of veights
over the number of iterations.

plot(T,a.1avg,T,a2avg);grid % Plot the graph.



II. Simulation of the lattice filter
(curve g2 of figure 2.7)

% Matlab simulation for lattice filter for N = 2.

N=2; % Order of the filter.

aitot=O;a2tot=O;
clear E,clear T;
randn('seed', 1);

% Initializing the weights to zero.

for reps=i:20
reps
t=O:1:250+N;

clear v, clear p;
err for = zeros(length(t),N);
err bac = zeros(length(t),N);
K = zeros(length(t),N);
D = ones(length(t),N);
randn(size('normal');
x = zeros(i,length(t));
v = zeros(i,length(t));
ref coeff = zeros(length(t),N);

v = randn(size(t));

% Initializing the variables.

% Forward error vector.
% backward error vector.

% Initialize input vector.
Initialize random vector.
Initialze reflection
coefficients.

% Compute the input vector based
% on the second order equation.

for n = N+1:length(t)
x(n) = (1.558ex(n-1)) — (0.81 s x(n-2)) + v(n);

end

for n = N+1:1:length(t)-2 % Lattice algorithm.

% Computations carried out in
/. the first stage.

K(n+1,1) = K(n,i) + x(n+1)ex(n)
D(n+1,1) = D(n,1) + x(n+1)"2 + x(n)"2;
ref coeff(n+1,1) = (2eK(n+1,1))/(D(n+1,1));



err for(n+1,1) = x(n+1) — ref coeff(n,1)sx(n);
err bac(n+1, 1) = x(n) — ref coeff (n,1) sx(n+1);

for p = 2:N Computations of the rest of
% the stages.

K(n+i,p) = K(n,p) + err for(n+i,p-i)serr bac(n,p-i);
D(n+1,p) = D(n,p) + (err f'r(n+i,p-i))"2 +

(err bac(n,p-i))"2;

ref coeff(n+1,p) = (2sK(n+1,p))/D(n+1,p);

err for(n+i,p) =

err bac(n+i,p)

err for(n+i,p-i)
ref coeff(n,p) s err bac(n,p-1);

err bac(n,p-1)
ref coeff(n,p) s err for(n+i,p-i)

end
end

% Computing the weights from
reflection coefficients.

a1tot = a1tot + ref coeff(N+1:length(t),1).s
(1 — ref coeff(N+1:length(t),2));

a2tot = a2tot + ref coeff(N+1:length(t),2);

end

T = 0:1:(length(t) -N-1);

aiavg = aitot/reps;
a2avg = a2tot/reps;

% Average the value of weights
over a number of iterations.

plot(T, aiavg, T, a2avg); % Plot the graph.



III. Simulation of LMS filter (Order = 2)
(curve g3 figure 2.7)

% Matlab simulation program for LMS algorithm for N = 2.

alpha=0.015; % Step size parameter.

% Filter coefficients of the
system to be modeled.

b=[.0528 .2639 .5279 .5279 .2639 .0528];
a=[1 0 .6334 0 .0557 0];
bb = [.3842 .8704 .3842];
aa.= [100];

N=2;
etotal=0;
eaverage=O;
w1 = 0; w2 = 0;
clear E,clear I;

% Filter order.
Initializing the error and
average error vectors.
Initializing the weights.

for reps=i:10
reps
t=O:1:250+N;

% Begin the iterations.
% Display iteration number.
% Length of the sequence.

clear e;
clear d;
clear x;

% Initialize the variables.

clear y;
clear noise;
N = zeros(length(t),N);
X = zeros(1,N);
x = zeros(i,length(t));
v = randn(size(t));
noise = .0015erandn(size(t));

% Initialize weight vector.
Initialize input vector.
Initialize input sequnce vector.

% Initialize the random vector.
% Generate the noise signal.

for i = 1:N
x(i) = v(i);

end

% For i &= N, x(i) = v(i).
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for n = N+1:length(t)
x(n) = (1.558sx(n-i)) — (0.8

end

Compute the input vector based
based on the given second order
equation. Starts from N+1 because
matlab doesn't allow negative
indexing.

1 s x(n-2)) + v(n);

d = (filter(b,a,x) + noise); % Generate the desired signal.

for n = N+1:length(t) % LNS algorithm.

end

X = x(n:-1:(n-N+1));
y(n) = XsW(n,:)';
e(n) = d(n) — y(n);
W((n+1),:) = W(n,:) +(alpha+(e(n)sX));

end

wi = w1 + W(:,1) ';
w2 = w2 + W(:,2)';
etotal = etotal + e.+e;

% Updating an entry in
% the weight vector.
% Computing the mean squared error.

eaverage = etotal/reps;
wi = wi/reps;
w2 = w2/reps;

% Average the MSE.

% Average the weight vectors.

T = t(1:length(t)-N);
E = eaverage(N+1:length(t));

% Plot wi and w2 w. r. t to T.

plot(T,w1(1:length(T)), T,w2(1:length(T)));
xlabel('ample Number'
ylabel('ilter Value (wi = 1.51, w2 = -0.81)');
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IV. Simulation code for the LMS filter
(figure 4.1)

% Matlab simulation program for LMS algorithm.

alpha=0.015; % Step size parameter.

% Filter coefficients of the
% system to be modeled,

b=[.0528 .2639 .5279 .5279 .2639 .0528];
a=[1 0 .6334 0 .0557 0];
bb = [.3842 .8704 .3842];
aa = [1 0 0];

M=16;
etotal=0;
eaverage=O;
clear E,clear T;

% Order of the filter
Initializing the error and
average error vectors.

for reps=1:20
reps
t=O:1:500+M;

% Begin the iterations.
% Display the iteration number.
% length of the sequnce.

clear e;
clear d;
clear x;
clear z;
clear y;
clear noise;
W = zeros(length(t),N);
X = zeros(1,N);
randn(size('normal');
z=randn(size(t));
noise = .0015srandn(size(t));
x = filter(bb,aa,z);

% Initialize the variables.

Initializing weight vector.
Initializing input vector.

% Generating the noise vector.

d = (filter(b,a,x) + noise); % Generating the desired signal.

for n = N+1:length(t) % LMS algorithm.



X = x(n:-1:(n—N+1));
y(n) = X+M(n,:)';
e(n) = d(n) — y(n);
W((n+1),:) = N(n,:) +(alPhas(e(n)eX));

end

etotal = etotal + e.se;
end

% Compute the mean squared error.

eaverage = etotal/reps;
T = t (1: length(t) -N);
E = eaverage(N+1:length(t));
plot(T,E,'r-');grid

% Average the mean squared error.

% Plot the graph
'/ 'error Vs sample

number'label('ample

number ');
ylabel('ean squared error ');
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V. Simulation code for the delayed LMS algorithm
(figure 4.2)

% Matlab simulation program for delayed LMS algortihm.

alpha=o.oio; % Stepsize parameter.
% Filter coefficients for the
% filter to be modeled.

b=[.0528 .2639 .5279 .5279 .2639 .0528];
a=[1 0 .6334 0 .0557 0];
bb = [.3842 .8704 .3842];
aa = [1 O O];

order = 16;
N = order;
D = order;

% Order of the filter

etotal = 0;
eaverage = 0;
clear E,clear I;

Initializing the error and
average error vectors.

for reps=i:20
reps
t=o:1:500+D;

% Begin the iterations.
% Display the iteration number.
% Length of the sequence.

% Initialize the variables

e = zeros(i,length(t));
d = zeros(i,length(t));
x = zeros(i,length(t));
y = zeros(i,length(t));

N = zeros(1,N);
X = zeros(length(t),N);
randn(size('normal');
z=randn(size(t));
noise = .0015erandn(size(t));
x = filter(bb,aa,z);

% Initializing weight vector.
Initializing input vector.

% Generating the noise vector.

d = (filter(b,a,x) + noise); % Generating the desired signal.
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for n = (D+1) :length(t)
% Begin processing input.

X(n,:) = x(n:-1:(n-N+1));
y(n) = X(n,:)*N';
e(n) = d(n) — y(n);
N = N + ( alphaee(n-D)4X(n-D,:)); % DLMS updates.

end

etotal = etotal + e.se;
end

% Compute the mean squared error.

eaverage = etotal/reps;
T = 0:1;(length(t) -D-1);
E = eaverage(D+1:length(e));
plot(T,E);grid

%semilogy(T,E,'r-');grid
xlabel('ample number ');
ylabel('ean squared error ');

% Average the mean squared error.

% Plot the graph for
% MSE Vs ¹ of samples.



VI. Simulation of the occurrence of a fault in a
pipeline system

(figures 4.3 and 4.4)

% Matlab simulation illustrating the occurrance of a fault in a
% pipelined system.

alpha=0.015; Step size parameter.
% Coefficients of filter
% to be modeled.

b=[.0528 .2639 .5279 .5279 .2639 .0528];
a=[i 0 .6334 0 .0557 0];

N=16;
D=4;

% Order of the filter.
% Delay

etotal=0;
eaverage=O;
clear E,clear I;

% Error vector and
% average error vector.

for reps=i:50
reps
t=O:1:1000+D;

e = zeros(i,length(t));
d = zeros(i,length(t));
x = zeros(i,length(t));
y = zeros(i,length(t));
N = zeros(1,N);
X = zeros(length(t),N);
randn(size('normal');
x = randn(size(t));
d = filter(b,a,x);

% Begin the iterations.

% Initialize the variables
% Initialize Error sequence.
% Initialize Desired signal
% Initialize input vector.

% Initializing seight vector.
% Input vector.

% Generating input vector.
% Generating desired signal.

for n = (N+1) :400 % DLMS algorithm.

X(n,:) = x(n:-1:(n-M+1));
y(n) = X(n,:)+N';
e(n) = d(n) - y(n);
N = W + ( alphase(n-D)sX(n—D,:));
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end

while (e(n)+e(n))&1 % Allow the fault to occur
% at sample 400.

n = n+1;
X(n,:) = x(n:-1:(n-N+1));
y(n) = X(n,:)+M';
e(n) = d(n) — y(n);
M = M + (alpha+(e(n-D)4X(n-D,:)));
M(1:1:4) = rand(size(1:1:4));

end

D=D-1;
for n=(n+1):length(t) % Allow the filter to

/ reconverge using 12 weights.

X(n,:) = x(n:-1:(n-N+1));
y(n) = X(n,:)+M';
e(n) = d(n) — y(n);
M = M + (alpha+(e(n-D)+X(n-D,:)));

M((N-3):1:N) = [0 0 0 0j; % Last four weight allowed to
% take zero values. Since they
% are out of the system.

end

end

D=D+1;

etotal = etotal + e.4e; % Computing mean squared error.

eaverage = etotal/reps; % Ensemble of mean squared error.

T = 0:1:(length(t) -D-1);
E = eaverage(D+1:length(e));

plot(T,E,'r-');grid
%axis(IO 1000 0 1 1 Oj)i
ylabel('mean squared error')
xlabel('sample number')

% Plot MSE Vs sample number.



VII. Sirriulation of the theoretical curve
(figure 4.5)

'/ Matlab simulation for theoretical proof of increase in minimum MSE

'/ as the filter order decreases.

alpha=0.015 '/ Step size parameter.

'/ Filter coeff'icients of the
'/ system to be modeled.

b = [.0528 .2639 .5279 .5279 .2639 .0528];
a = [1 0 .6334 0 .0557 0];

len = 1000;
K = 16;
D = 16;
clear Z;
J = zeros(1,K);

'/ Sequence length.
/, Order of the filter.

'/ Minimum mean squared error vector.

for N = K:-1:1
N

Var = 0;
Ri = zeros(N,N);
randn('seed',1);

'/ Begin computaions for an order K.

for reps=1:10
reps
t=0: 1 clen+D;
var=0;
d = zeros(1,length(t));
x = zeros(1,length(t));
y = zeros(i,length(t));
R = zeros(N,N);
P = zeros(N,1);

= zeros(N,N);
E = zeros(N,N);

L = zeros(1,N);
X = zeros(length(t),N);
randn(size('normal');

'/ Auto-correlation vector.
'/ Cross-correlation vector.
'/ Matrix of eigenvectors.
'/ Diagonal matrix. Diagonal
'/ elements being the eigenvalues.
'/ Vector of eigenvalues.
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x = randn(size(t));
d = filter(b,a,x);

% Genrating input signal.
% Generating desired signal.

deum = 0;
dsqsum = 0;

% Sum of the desired signal
squared sum of desired signal.

for n = (N+1):length(t) % begin computations.

X(n,:) = x(n:-1:(n-N+1));
dsum = dsum + d(n);
dsqsum = dsqsum + d(n)ed(n);
R = R + X(n,:)'wX(n,:);
P = P + d(n)*X(n,:)';

% Sum of desired sig.
% Squared sum of d(n).
% Correlation matrix.
% Cross-corr. matrix.

end

R = R/len;
P = P/len;

% Averaging the correlation matrix.
% Averaging the cross-corr. matrix.

% Computing variance for a sequence.
var = dsqsum/len — (dsum/len)"2

end

Ri = Ri + R; % Ensembling correlation matrix.
Var = Var + var; % Esembling variance.

Ri = R1/reps;
Var = Var/reps;
[G,Ej = eig(R1);

L = diag(E);

% Computing the ensemble of
% correlation matrix and variance.
% Obta.in the eigenvalues and
% eigenvectors of correlation matrix.
% Extra.ct the eigenvalues.

sum = 0;
for i = 1:1:N

sum = sum + ((g(:,i)'wp)"2)/L(i);
end

end
J(N) = Var — sum;

J = J.WJ;
Z = 1:K;
plot(Z,J,'r-.');grid

Jmin squared error.

% plot the graph.



VIII. Simulation of the practical curve
(figure 4.5)

% Matlab simulation to practically show that the minimum MSE

increases as the filter order is decreased.

alpha=0.015; % Step size parameter.

% Coefficients of the
% filter to be modeled.

b=[.0528 .2639 .5279 .5279 .2639 .05281;
a=[1 0 .6334 0 .0557 01'en

= 1000;
ORDER = 16;
K = ORDER;

D = ORDER;

clear Z;

Input sequence length.
% Order of the filter.

ERR = zeros(1,K); / Error vector holding the
% value of each minimum MSE

% for a particular order.

for N = K:-1:1
N

etotal = 0;

% Find the Steady state MSE

% for order N, N-i, ... 1.

for reps=i:10
reps
t=0:1:len+D;

,length(t));
,length(t));
,length(t));
,length(t));
,N);

ength(t),N);
'normal' );

e = zeros(1
d = zeros(1
x = zeros(1
y = zeros(1
W = zeros(1
err = 0;
X = zeros(1
randn(size(

Initialize variables
% Error sequnce for each n.
% Desired signal.
% Input signal.
% Output signal.
% Weight vector.
% Input vector.
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x = randn(size(t));
d = filter(b,a.,x);

f'r n = (M+1):len

% Desired signal.

% delayed LMS algorithm.

X(n,:) = x(n:-1:(n-N+1));
y(n) = X(n,:)4W';
e(n) = d(n) — y(n);
W = W + ( alphaee(n-N)+X(n-N,:));

end

V= 0;
for I = n-10:1:n

V = V + e(n);
end

% Computing the minimum MSE.

end

err = V/10;
etotal = etotal + err.terr;

end
ERR(N) = etotal/reps;

% Ensembling minimum MSE.

% Computing the ensemble
% of minimum MSE.

Z = 1:K;
plot(Z,ERR,'r-'); grid
xlabel('Order of the filter'
ylabel('mean squared error')



82

IX. Simulation code for the reliability curves
(figure 4.6)

% Matlab simulation illustrating the reliabilities of
% pipelined and fault tolerant pipelined adaptive systems.

N = 1:1:32;
R = .95;

% Order of the system.
% Reliability of an individual subsystem.

r1 = R."N; % Computing the reliability
of a series system.

% Computing the reliability of a
% fault tolerant system defined

ln equation 4.18.

r2 = ri + ((N e (1 — R)).4(R. (N-1)));

% plot reliability of a series systemplot(N,ri,'-.');
hold
plot(N,r2); % plot reliability of fault tolerant system.
gl l.d;
hold off
xlabel('number of processors';
ylabel('reliability';
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