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Fig. 5  A heatmap was drawn to show the di�erential expressed metabolites. Up-regulated expressed metabolites were shown in red; 
Down-regulated expressed metabolites were shown in blue. *P < 0.05
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screened by considering impact value of the topological 
analysis and P value of the enrichment analysis. From the 
bubble diagram, we could find out that alanine, aspartate 
and glutamate metabolism pathway was the most sig-
nificant changes after gas plasma treatment in MOLM13 
cells. Furthermore, it was worth noting that d-glutamine 
and d-glutamate metabolism were also significantly 
changed in leukemia cells.

Inhibition of GLS after plasma treatment leading 
to disruption of glutamine metabolism
We found that glutamine in alanine, aspartate and glu-
tamate metabolism pathway and in d-glutamine and 
d-glutamate metabolism pathway was up-regulated in 
plasma treatment group (Fig. 5). Studies have shown that 
glutamine metabolism plays an important role in bio-
synthesis, energy metabolism and cell homeostasis of 
tumor cells and promotes tumor growth [25, 26]. Moreo-
ver glutaminase (GLS) is overexpressed in many tumor 
cells and converts glutamine to glutamic acid, which is 
then converted to ∝-KG and introduced into TCA cycle 

[25]. We therefore hypothesized that glutaminase activ-
ity of plasma-treated leukemia cells was reduced and glu-
tamine could not be normally metabolized and converted 
to glutamic acid, which suppressed the proliferation of 
leukemia cells and even leaded to leukemia cells apopto-
sis. This also explained why alanine, aspartate and gluta-
mate metabolism are abnormal after plasma treatment.

To determine whether the differentially metabolic 
pathway and the differential metabolite were responsible 
for leukemia cells death, we analyzed glutaminase activ-
ity of leukemia cells before and after plasma treatment. 
The result showed that glutaminase activity after plasma 
treatment was reduced (Fig. 8a). Subsequently, we inhib-
ited glutaminase activity with 20  µM/L and 40  µM/L 
BPTES (bis-2-(5-Phenylacetmido-1,2,4-Thiadiazol-2-yl)
Ethyl Sulfide, GLS inhibitor) for 24 h, 48 h and 72 h. We 
found that when glutaminase was inhibited (Fig. 8b), leu-
kemia cells activity was decreased (Fig. 8c). Interestingly, 
when we added glutamate to the experimental group 
containing 20 µM/L BPTES for 48 h, relative cell activity 
had a certain increase (Fig. 8d).

Fig. 6  KEGG pathway map with bright red/blue dots representing the differentially expressed metabolites. Bright red dots represented 
up-regulated metabolites; Bright blue dots represented down-regulated metabolites
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Discussion
As a new developed technology, atmospheric-pressure-
cold plasma has aroused widespread concern in biomedi-
cal applications. It has reported that atmospheric cold 
plasma can selectively induce various tumor cells death 
[27, 28]. And a large number of metabolites have been 
shown to contribute to distinguish tumors from healthy 
tissue [29]. Therefore, it’s a new perspective to explore 
changes in metabolites and metabolic pathways of tumor 
cells before and after plasma treatment. This metabolic 
study might be useful to identify metabolic pathways that 
could be targeted for plasma treatment. In this way, the 
bioenergetic state of the tumor can be destroyed more 
specifically. In our study, we investigated the changes in 
cell metabolism after CAP treatment of leukemia cells 
by GC–TOF–MS analysis. From results, we found that 
significant differences in metabolites between plasma 
treatment group and control group. By multivariate 
analysis, we screened for differential metabolites that 

were significantly up-regulated or down-regulated. The 
changes in the level of these differential metabolites were 
not independent. On the contrary, they had mutual pro-
motion or antagonism among them, which might affect 
the level of certain metabolic pathways and further affect 
the viability and metabolic level of cells. Therefore, it’s 
important to analyze the metabolic pathways that have 
the highest correlation with differential metabolites. 
It has reported that several drugs such as A1CAR and 
A-76969662 were able to upregulate AMPK signaling 
directly or indirectly by activating the AMPK protein 
complex so as to inhibit leukemia cells growth and even 
induce apoptosis [30–32]. However, by KEGG analysis 
of the metabolic pathways, we found that alanine, aspar-
tate and glutamate metabolism had significant change 
while AMPK signaling pathway had no change after 
plasma treatment in leukemia MOLM13 cells. We next 
focused on glutamine, the differential metabolite in ala-
nine, aspartate and glutamate metabolism pathway and 
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in d-glutamine and d-glutamate metabolism pathway, 
because many studies have showed that glutamine plays 
an important role in signal transduction and proliferation 
of tumor cells [26, 33]. The first step of glutamine catabo-
lism occurs through the activation of glutaminase (GLS), 
which catalyzes the conversion of glutamine to glutamic 
acid. Inhibition of glutaminase can inhibit leukemia 
cell growth and even induce apoptosis [34]. In cluster 
analysis, we found that glutamine was upregulated after 
plasma treatment. In order to determine its reason, we 
investigated that GLS activity in leukemia cells after 
plasma treatment, and the result showed that GLS activ-
ity was decreased. We also inhibited GLS activity of leu-
kemia cells by BPTES and found that inhibiton of GLS 
activity reduced cell viability. However, when added glu-
tamate to leukemia cells inhibited GLS activity, we found 
increased relative cell activity. The above results showed 
that CAP treatment could inhibit the GLS activity of 

leukemia cells so that glutamine was not able to be nor-
mally metabolized to produce glutamic acid and thus 
accumulated, which might lead to leukemia cells death 
due to the lack of required nutrients. Our current work 
initially screened metabolites and metabolic pathways 
with significant differences of leukemia cell after CAP 
treatment with reduction of viability. At the same time, 
we used pathway inhibitors to manipulate the perturbed 
key pathway and analyzed the causes and effects of this 
pathway change. With more details about the changes of 
metabolic pathways induced by CAP treatment, it will be 
a breakthrough to improve the treatment effect by CAP 
in tumor therapy of leukemia or even other tumors.
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Conclusions
In conclusion, we analyzed the differential metabolites 
in leukemia cell between plasma treatment group and 
control group by bioinformatics analysis. More impor-
tantly, we found a crucial differential metabolic pathway, 
alanine, aspartate and glutamate metabolism pathway, 
which was vulnerable to plasma treatment. Its changes 
may lead to leukemia cells apoptosis. Metabolomic analy-
sis is therefore a promising approach to investigate the 
key targets of plasma-treated tumor. The present study 
may be a meaningful finding for further screening the 
optimum target of plasma treatment for tumors.
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