
Old Dominion University
ODU Digital Commons

Physics Faculty Publications Physics

2001

Coherent-Path Model for Nuclear Resonant
Scattering of Gamma Radiation From Nuclei
Excited by Synchrotron Radiation
Gilbert R. Hoy
Old Dominion University

Jos Odeurs

Romain Coussement

Follow this and additional works at: https://digitalcommons.odu.edu/physics_fac_pubs

Part of the Nuclear Commons, and the Quantum Physics Commons

This Article is brought to you for free and open access by the Physics at ODU Digital Commons. It has been accepted for inclusion in Physics Faculty
Publications by an authorized administrator of ODU Digital Commons. For more information, please contact digitalcommons@odu.edu.

Repository Citation
Hoy, Gilbert R.; Odeurs, Jos; and Coussement, Romain, "Coherent-Path Model for Nuclear Resonant Scattering of Gamma Radiation
From Nuclei Excited by Synchrotron Radiation" (2001). Physics Faculty Publications. 210.
https://digitalcommons.odu.edu/physics_fac_pubs/210

Original Publication Citation
Hoy, G. R., Odeurs, J., & Coussement, R. (2001). Coherent-path model for nuclear resonant scattering of gamma radiation from
nuclei excited by synchrotron radiation. Physical Review B, 63(18), 184435. doi:10.1103/PhysRevB.63.184435

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics_fac_pubs?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics_fac_pubs?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/203?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/physics_fac_pubs/210?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


Coherent-path model for nuclear resonant scattering of gamma radiation
from nuclei excited by synchrotron radiation

Gilbert R. Hoy,1 Jos Odeurs,2 and Romain Coussement2

1Physics Department, Old Dominion University, Norfolk, Virginia 23529-0116
2Katholieke Universiteit Leuven, Instituut voor Kern-en Stralingsfysica, Celestijnenlaan 200 D,

B-3001 Leuven, Belgium
~Received 23 October 1996; published 24 April 2001!

Previous theoretical descriptions of nuclear resonant scattering of synchrotron radiation have been based on
the semiclassical optical model or on several quantum mechanical models. These models are fine but do not
give a clear physical picture of all the processes. The theory presented here gives a clear physical picture of all
the relevant aspects of nuclear resonant scattering. The model treats the nuclear resonant sample as a one-
dimensional chain of ‘‘effective’’ nuclei. However, the model is deceptive. It only appears to be one dimen-
sional. It actually treats the sample as a series of ‘‘effective’’ planes. The analysis uses the time-dependent
quantum mechanical techniques due to Heitler. A closed form solution, for the time-dependent forward-
scattered intensity, is found. The only parameter in the theory isN the number of ‘‘effective’’ nuclei~planes!
in the model. It is shown that the prominent experimental features, the ‘‘speed-up’’ and ‘‘dynamical beat’’
effects, are primarily due to ap phase change of reemitted radiation, compared to the incident radiation, that
occurs when radiation is absorbed and reemitted without recoil by a single ‘‘effective’’ nucleus~plane!. The
model also predicts results for the incoherent processes.

DOI: 10.1103/PhysRevB.63.184435 PACS number~s!: 76.80.1y, 78.90.1t, 42.25.Bs

I. INTRODUCTION

Since 1985, when the first unambiguous observation of
nuclear-resonant excitation of nuclei using synchrotron
radiation1 was achieved, there has been significant progress
made in this field. A review2 of this subject area contains a
summary of early experimental results, as well as many ref-
erences to the original important papers in the field.

Theoretical studies of such nuclear-resonant scattering
have resulted in a series of papers. A classical optical
model,2 as well as more fundamental models, has been de-
veloped. The fundamental approach presents the idea of a
delocalized excitation spread out over all resonant nuclei, the
so-called nuclear ‘‘exciton.’’ This idea was introduced by
Hannon and Trammell3–7 and by Kagan and Afanas’ev.8–11

Hannon and Trammell developed the dynamical theory of
gamma-ray optics utilizing multiple scattering equations and
Gerdau12 followed the approach by Hannon and Trammell in
their development of a computer program~CONUSS! which
permits the evaluation of time-differential spectra of nuclear-
resonant scattering of synchrotron radiation. The program
package can be used to interpret either Bragg or forward
scattering. In the work of Kagan and Afanas’ev the radiation
field in the crystal is described by the usual set of~classical!
Maxwell equations~an extension of the Laue theory of x-ray
scattering13!. Solutions for the radiated intensity as a func-
tion of time are obtained for scattering in the forward or in
Bragg directions.

In this paper nuclear-resonant scattering of synchrotron
radiation will be treated according to time-dependent quan-
tum mechanics in the frequency domain using Fourier trans-
formations. The first step in the analysis is to obtain the set
of coupled equations relating all possible amplitudes. This

will be done in three dimensions first. These equations are
equivalent to the familiar multiple scattering equations.3–7

Arguments will be given to show why the analysis is per-
formed assuming forward scattering. The problem of mul-
tiple scattering does not, in general, give an easily interpret-
able analytic solution for the radiated intensity. It turns out
that an analytical expression for the forward-radiated inten-
sity can be found with our approach. This analytic solution is
found because a recursion relation exists between the ampli-
tudes, in the frequency domain, for the absorption and emis-
sion of radiation. This leads to an exact calculation of all
amplitudes. The Fourier transform of the amplitude for emis-
sion of radiation gives the amplitude, in the time domain, for
each frequency component. This permits the construction of
the plane-wave packet, representing the forward-scattered ra-
diation, by weighting each plane-wave frequency component
according to its calculated amplitude. From this result the
intensity of radiation reaching a detector can be calculated
analytically. The solution of the problem is exact, in the
context of the model, and is expressed as a finite series. Each
term in the series corresponds to particular ‘‘path’’ the radia-
tion takes in reaching the detector. Each path corresponds to
a definite number of multiple forward-scattering events. The
number of terms in the series, i.e., the number of paths, de-
pends onN, the sample ‘‘thickness’’ in the model. The new
solution is quite different in character from all previous so-
lutions, although it agrees with them quantitatively. Our ap-
proach leads to a physical understanding of how the various
multiple scattering processes relate to the observed forward-
radiated intensity.

Our model can also treat incoherent processes. In any
multiple scattering path one must consider the cases where a
sequence of scattering events occurs without recoil, i.e., co-
herent events, but then terminates in a final scattering pro-
cess that is incoherent. This last event in the path produces
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the detected ‘‘particle’’ which can be a gamma
ray, emitted with recoil, or a conversion electron. Therefore
the coherence of the first steps in the path will
influence the observation of the incoherent intensity. Such
paths can be easily treated using the methods developed
here.

The details of the calculation are contained in Appendixes
A and B. The principal result for the recoil-free case is given
in Eq. ~27!. Quantum-beat effects are contained in Eqs.~30!
and ~31!. Incoherent processes are described by Eqs.~32!
and~33!. Two examples of incoherent processes are treated.
Processes with recoil are described by Eqs.~34! and ~35!
and those involving the conversion-electron channel are
also described by Eqs.~34! and ~35! after a slight
modification.

II. MATHEMATICAL BACKGROUND

The general method used in this paper is discussed in
Heitler,14 Harris,15 and Hoy.16 Reference 16 treats the
radioactive-source case. The method applies time-dependent
quantum mechanics in the frequency domain to obtain a set
of coupled equations. The Hamiltonian of the system is di-
vided into two parts.H0 is the part that describes the evolu-
tion of the nuclear states and the free radiation field in the
absence of coupling between the nuclear states and the ra-
diation field. The eigenstates ofH0 correspond in this case to
nuclear states of an ensemble of nuclei, and the states of the
free radiation field are taken here as plane waves. Any ex-
cited nuclear state can be located at any one of the nuclear
positions in the medium.V denotes the part of the Hamil-
tonian responsible for inducing transitions between the
nuclear levels.

The actual state of the system is then expressed as

uC~ t !&5(
l

al~ t !e2 i ~El t/\!uw l~0!&, ~1!

where uw l(0)& is an eigenstate ofH0 . Solving the Schro¨-
dinger equation leads to a set of coupled differential equa-
tions relating the expansion coefficientsal(t).

i\
dal

dt
5(

q
aq~ t !ei ~v l2vq!t^w l~0!uVuwq~0!&1 i\d lnd~ t !,

~2!

wherev l2vq5(El2Eq)/\.
The Kronecker delta and the delta function are used to

insure that at timet50 the system is the state wherel 5n.
Next introducing the Fourier transform

al~ t !52
1

2p i E2`

`

dvAl~v!ei ~v l2v!t, ~3!

Eq. ~2! can be rewritten in the frequency domain. The result
is

~v2v l1 i«!Al~v!5(
q

Aq~v!
Vlq

\
1d ln , ~4!

whereVlq is the matrix element inducing a transition from
the qth state ofH0 to the l th state ofH0 , and a pole is
introduced into the lower half of the complex plane («.0)
to insure that all amplitudesal(t) are zero fort,0. The
advantage of the set of equations, Eq.~4!, is that it is coupled
set of linear, not differential, equations. In the next section
this general formalism will be applied to the study of the
interaction of synchrotron radiation with nuclei embedded in
a lattice.

III. ANALYSIS

A. Fundamental equations

As the initial condition we will take all absorber nuclei
in the lattice in the ground state and only synchrotron
radiation present. This state will be a linear superposition
of states such asuG0& ^ u0,0,.....0,1k,0,......& ^ u$0k8%& ^ u@0#&,
where uG0& represents the state in which all nuclei in
the lattice are in the ground state.u$0k8%& represents the
absence of photons other then those of the synchrotron
radiation ~SR! and u@0#& represents the state with no
conversion electrons.u0,0,.....1k,0,.....& is the state of a
SR photon having wave vectork. The polarization of the
SR photons has been omitted. It will be shown later how
the polarization can be included. The state vector of the
complete system can be written as a linear combination
of all possible states. To keep the analysis as simple as
possible, absorption and emissions with recoil will be
omitted temporarily. It will become clear, later, how
processes with recoil can be incorporated into the model.
Besides the initial state given above, the complete system
can be found in a variety of other states, which will be
defined below.

The nucleus labeledm at position rm can be excited
~with some probability amplitude! to one of its excited
statesuem

j & with energy\v j , due to the SR pulse, while
all other nuclei remain in the ground state and no photons
or conversion electrons are present. This state will be
denoted uem

j & ^ uG(m)& ^ u$0k%& ^ u$0k8%& ^ u@0#& where
u$0k%& stands for the absence of the SR photonk. Another
possible state is the one where all nuclei are in the
ground state with no conversion electrons present and only a
non-SR-photon present. This state will be denoteduG0&
^ u$0k%& ^ u0,0,....,0,1k8,0,.....& ^ u@0#&. The ensemble of these
states forms a continuum because all possiblek’s must, in
general, be considered. Finally one has the state with all
nuclei in the ground state, no photons and only a conversion
electron is present. This state is denoteduG0& ^ u$0k%&
^ u$0k8%& ^ u1p,m&. u1p,m& denotes the state of the conversion
electron~from nucleusm! having momentump and energy
\vp . The polarization of the conversion electron has been
omitted.

The general state vector of the system is then
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uc~ t !&5(
k

8 ak~ t !e2 ivktuG0& ^ u0,0,.....,0,1k,0,.....& ^ u$0k%& ^ u@0#&1 (
m51

N

(
j

bm, j~ t !e2 iv j tuem
j & ^ uG~m!& ^ u$0k%& ^ u$0k8%&

^ u@0#&1(
k8

ck8~ t !e2 ivk8tuG0& ^ u$0k%& ^ u0,0,.....0,1k8,0,.....& ^ u@0#&1(
p

(
m51

N

dp,m~ t !e2 ivptuG0& ^ u$0k%&

^ u$0k8%& ^ u1p,m&. ~5!

The second series in Eq.~5! is the usual so-called exciton
state mentioned above. The prime on the first summation
symbol of Eq.~5! means that the sum onk is restricted by
the properties of the synchrotron-radiation source. The coef-
ficients$ak(t),bm, j (t),ck8(t),dp,m(t)% have to be determined
by solving the Schro¨dinger equation using time-dependent
quantum mechanics. This will give a system of coupled dif-
ferential equations, i.e., Eq.~2! specialized to this particular
problem. The Hamiltonian of the system is the sum ofH0 ,
describing the nuclei in the lattice and the radiation field
without any coupling, andV which causes the transitions
between nuclear levels. ThusV takes account of the absorp-
tion of the SR photons by the nuclei as well as the emission
and absorption by the nuclei of non-SR-photons, i.e., mul-
tiple scattering processes. According to standard expressions
for emission and absorption14 the matrix element describing
absorption of a photon with wave vectork by a nucleus atrm
contains the phase factoreik•rm, while the remaining factor
will be denotedVk, j . For emission atrm one has the factors
e2 ik•rm andVk, j* .

As already mentioned, the introduction of the Fourier
transform of these coefficients yields a system of linear
coupled equations. In the Fourier domain the amplitudes will
now be a function ofv @see Eq.~4!#. At time t50 the syn-
chrotron radiation is present and all absorber nuclei are in the
ground state. We assign this condition an amplitudeAk(v)
5A, i.e., a constant, having the dimensions of seconds. The
frequency dependence of the synchrotron radiation is taken
as constant because the synchrotron radiation pulse is essen-
tially a delta function in time for the cases we treat here.~A
digression on this point will be made at the end of Appendix
B.! The amplitude corresponding to excitation of themth
absorber nucleus located atrm to one of its excited states
\v j and no photons or conversion electrons present is
Bm, j (v). At this stage of the analysis just one excited state is
considered. This means that quantum beats are not yet con-
sidered. It will become clear, later, how quantum beats can
be included in the model. Also we letCk8(v) correspond to
the amplitude when all absorber nuclei are in the ground
state, there are no conversion electrons, and a non-SR-pulse
photon is present. Finally we define the amplitudeDm,p(v)
as corresponding to the presence of a conversion electron
from the mth nucleus, all absorber nuclei in their ground
state and no photons are present. The coupled equations re-
lating these amplitudes can then be shown to be

Ak~v!5A, ~6!

~v2v j1 i«!Bm, j~v!5A(
k

Vk, j

\
eik•rm

1(
k8

Ck8~v!
Vk8, j

\
eik8•rm

1(
p

Dm,p

Vp

\
ei ~p•rm /\!, ~7!

~v2vk81 i«!Ck8~v!5(
m

Bm, j~v!
Vk8, j

*

\
e2 ik8•rm, ~8!

~v2vp1 i«!Dm,p~v!5Bm, j~v!
Vp*

\
e2 i ~p•rm /\!, ~9!

where, as already mentioned,Vk, j corresponds to absorption
andVk, j* corresponds to emission of a photon in thej th tran-
sition, and a similar notation is used for the conversion elec-
tron. Equation~9! represents the emission of a conversion
electron by the nucleus located atrm . In Eq.~7! the prime on
the summation symbol representing the sum onk has been
omitted. This will be done for all subsequent summations on
k.

An understanding of the structure of these equations can
be obtained by considering Eqs.~7! and ~8!. In Eq. ~7! we
have the amplitude for finding themth nucleus in itsj th
excited state,Bm j . This can occur several ways. First there
can be excitation of that nucleus by the SR pulse which is
accounted for by the first term on the right-hand side of Eq.
~7!. Second, excitation of that nucleus can occur due to ra-
diation coming from deexcitation of one of the other reso-
nant nuclei, the second term on the right-hand side. Finally,
excitation of that nucleus can occur by absorption of its own
conversion electron, the last term on the right-hand side. No-
tice the phase factors that must be introduced to specify the
location at which each of these processes occurs. Equation
~8! expresses the amplitude for finding a non-SR photon
present,Ck8 . The term on the right-hand side of Eq.~8!
corresponds to having one of the resonant nuclei emit such a
photon. Since each nucleus can do this we must sum over all
resonant nuclei. Again one must keep track of where that
emission took place by introducing the appropriate phase
factor.

Solving for Dm,p(v) from Eq. ~9! and substituting into
Eq. ~7! gives
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~v2v j1 i«!Bm, j~v!5A(
k

Vk, j

\
eik•rm

1(
k8

Ck8~v!
Vk8, j

\
eik8•rm

1Bm, j(
p

uVpu2

\2~v2vp1 i«!
.

~10!

By converting the sum onp in the last term of the right-
hand side of Eq.~10! into an integral14 and expressing
uVpu2/\2(v2vp1 i«) in terms of a principal part and a delta
function, one finds it equals

Bm, j(
p

uVpu2

\2~v2vp1 i«!

5Bm, j

V

~2p\!3

1

\2 PE E E uVpu2

v2vp
p2dp dV

2Bm, j i
V

~2p\!3

p

\2 E E E uVpu2p2

3d~v2vp!dp dV, ~11!

whereP stands for the principal value of the integral. The
presence of the volumeV inherent in Eq.~11! and in the
others, resulting from the conversion of a sum into an inte-
gral in three dimensions, is only apparent because the matrix
elements such asuVpu2 contain14 1/V.

When the expression in Eq.~11! is taken to the left-hand
side of Eq.~10!, the principal value term corresponds to a
shift in the frequency that can be incorporated intov j . The
second term of Eq.~11! gives a width due to the interaction
of a nucleus with its conversion electron. This widthgc is
defined by

gc5
2pV

~2p\!3\ E E E uVpu2p2d~v2vp!dp dV. ~12!

Rewriting Eq.~10! gives

S v2v j1 i
gc

2\ DBm, j~v!5A(
k

Vk, j

\
eik•rm

1(
k8

Ck8~v!
Vk8, j

\
eik8•rm.

~13!

Solving Eq. ~8! for Ck8(v) and substituting into Eq.~13!
gives

S v2v j1 i
gc

2\ DBm, j~v!

5A(
k

Vk, j

\
eik•rm1(

k8
(
m8

Bm8, j~v!

3
uVk8, j u2

\2

1

~v2vk81 i«!
eik8•~rm2rm8!. ~14!

The second series of the right-hand side of Eq.~14! can be
divided in two parts: one withm8Þm and the other with
m85m. Then Eq.~14! can be rewritten as

S v2v j1 i
gc

2\ DBm, j~v!

5A(
k

Vk, j

\
eik•rm1Bm, j~v!

3(
k8

uVk8, j u2

\2

1

v2vk81 i«
1(

k8
(

m8Þm

Bm8, j~v!

3
uVk8, j u2

\2

1

v2vk81 i«
eik8•~r m2r m8!. ~15!

Considering the second term on the right-hand side of Eq.
~15!, the sum onk8 can be converted into an integral, as
done before. This results again in a principal value term and
a delta-function term. The principal value term corresponds
again to a frequency shift when brought to the left-hand side.
The delta function term corresponds to the usual radiative
width14 gR , where

gR5
2pV

~2p!3\ E E E uVk8u
2d~v2vk8!k82dk8dV.

~16!

Collecting terms on the left-hand side of Eq.~15! using Eq.
~16! gives

S v2v j1 i
G

2\ DBm, j~v!

5A(
k

Vk, j

\
eik•rm1(

k8
(

m8Þm

Bm8, j~v!

3
uVk8, j u2

\2

1

v2vk81 i«
eik8•~rm2rm8!, ~17!

where G is the total width, equal to the sum of the
conversion-electron and radiative widths.

The SR photons have a well-defined direction of propa-
gation. We call this direction thez axis. If one considers
scattering in directions other than forward, one must account
for the difference in the optical paths from all nuclei in the
sample. In perfect crystals one will have at least two ‘‘co-
herent’’ channels open6 if the incident direction of the syn-
chrotron radiation beam relative to the crystal satisfies the
Bragg condition. In polycrystalline material emission in cer-
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tain preferential directions, similar to Debye-Scherrer pat-
terns in x-ray diffraction, may exist.

Although nuclear-resonant Bragg scattering of SR from
perfect crystals has been observed, the powder pattern peaks
from polycrystalline samples have not been observed. Thus it
is clear that for polycrystalline material only the forward
scattering exhibits significant special features. It has already

been established2 that specific features, the ‘‘speed-up,’’
‘‘dynamical-beat,’’ and ‘‘quantum-beats’’ effects, occur in
forward scattering.~These effects will be described below.!
In the following we will give an argument that indicates why
Ck8(v) is particularly important for scattering in the forward
direction.

Putting Eq.~17! into Eq. ~8! gives

Ck8~v!5
1

~v2vk81 i«!

1

S v2v j1 i
G

2\ D
3FA(

m
(

k

Vk, j

\

Vk8, j
*

\
ei ~k2k8!•rm1(

m
(

m8Þm

Bm8, j~v!(
k9

uVk9, j u2

\2

eik9•~rm2rm8!

v2vk91 i«
e2 ik8•rm

Vk8, j
*

\ G . ~18!

This is the fundamental expression describing multiple scat-
tering in the frequency domain. The positions of all resonant
nuclei appear in this expression. The first double sum de-
scribes the interaction of the nuclei with the SR, the second
double sum describes the interaction of nuclei with each
other through emission and absorption of gamma radiation,
i.e., multiple scattering.

The first series on the right-hand side of Eq.~18! contains

S15(
m

ei ~k2k8!•rm. ~19!

For a perfect lattice this sum equals the total number of
~resonant! nuclei in the lattice whenk2k8 is equal to a re-
ciprocal lattice vector or whenk'k8. Whenk8 is arbitrary
S1 is zero.17 For a polycrystalline material reciprocal lattice
vectors cannot be defined. So one expectsS1 to be negligible
in this case unlessk'k8. This means that one has scattering
primarily in the forward direction when using polycrystalline
samples. Similarly the second series on the right-hand side of
Eq. ~18! contains

S25(
m

ei ~k92k8!•rm. ~20!

Again we suppose thatS2 is small unlessk8'k9. An itera-
tion technique can be applied to Eq.~18! with the aid of Eqs.
~13! and ~17!, showing thatCk8(v) is negligible except for
the forward direction. In the next section the solution will be
given for the scattering in the forward direction.

B. Scattering in the forward direction

It might be expected that, when considering a real sample,
the multiple scattering path mathematical approach might be
possible by restricting the scattering to the forward direction.
However, Dr. Stan Ruby has, for several years, been working
on such a calculation treating the whole three-dimensional
lattice. This approach has turned out to be extremely diffi-
cult. In our model the lattice is treated as a one-dimensional

chain of ‘‘effective’’ nuclei ~or planes, see below!. We say
‘‘effective’’ nuclei ~planes! because the assumption, that a
one-dimensional chain~or stack of planes! can represent a
three-dimensional solid, is an extreme one. In fact it is not at
all obvious that such a model would lead, as it has~see
below!, to calculated results that agree with experiment and
with previous calculated results. The model is deceptive. In
fact, instead of thinking of a chain ofN effective nuclei, one
may think of a stack ofN effective planes. The reasons for
this are given in the Conclusions section. The agreement
with previous theories only becomes apparent when the ac-
tual numerical calculations are compared. This is because the
form of our final equations is completely different from those
derived by others.~A detailed numerical comparison of the
coherent-path model with the other theories, for the radioac-
tive source case, is found in Ref. 16.!

As has been mentioned, the direction of the incoming
photons is taken as thez axis. Equation~13! specialized for
the forward direction gives

S v2v j1 i
gc

2\ DBm, j~v!5A(
k

Vk, j

\
eikzm

1(
k8

Ck8~v!
Vk8, j

\
eik8•zm.

~21!

Equation~8! becomes

Ck8~v!5
1

v2vk81 i« (
m

Bm, j~v!
Vk8, j

*

\
e2 ik8zm. ~22!

Substituting from Eq.~22! into Eq. ~21! gives
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S v2v j1 i
gc

2\ DBm, j~v!

5A(
k

Vk, j

\
eikzm1(

k8
(
m8

Bm8, j

3
uVk8, j u2

\2 eik8~zm2zm8!
1

v2vk81 i«
. ~23!

In Appendix A it is shown howBm, j (v) can be found using
an iteration procedure. OnceBm, j (v) is found,Ck8(v) can
be calculated from Eq.~22!. The Fourier transform of
Ck8(v) gives ck8(t) from which the photon’s wave packet
can be constructed. This is also done in Appendix A.

The wave packet describing the forward-scattered photon
is given by Eq.~B15! from Appendix B:

C j~z,t8!52
L

c2A2pc

Dvp

Vk0,j
V* ~v j !

\2 e2 i „v j 2 i ~G/2\!…t8

3FN1 (
n51

N21 S 2gR

2\ D nS N
n11D t !n

n! G . ~24!

In Eq. ~24!, z locates the position of the detector,t85t
2z/c, L is the normalizing length which appears when the
sums on the discrete variables are transformed into integrals,
andDvp is the effective bandwidth of the SR pulse.L will
disappear from the expressions describing physical pro-
cesses, as will be shown later. Furthermore,j labels the par-
ticular frequency emitted,N is the effective number of reso-
nant nuclei~planes! in the model,gR is the radiative width of
the transition,G is the total width and the factorN over n
11 is the binomial coefficient. We will show in Sec. IV A 1
below how to determineN for an actual sample. With the
approximations made in the calculation, the positions of the
effective resonant nuclei~planes! do not appear in the solu-
tion. In what follows one may think of ‘‘effective’’ nuclei or
‘‘effective’’ planes interchangeably. For each ‘‘path’’ to the
detector one simply needs to keep track of the number of
180° phase shifts encountered~see below!.

Equation~24! will now be investigated in detail. The fac-
tors in front of the exponential represent a product of two
transition matrix elements; namely, the matrix element for
excitation of a nucleus by the synchrotron radiation,Vk0 , j ,
and the matrix element for emission of radiation by an ex-
cited nucleus,V* (v j ). The first term inside the brackets
corresponds to the ‘‘path’’ where one nucleus absorbs radia-
tion and reemits radiation directly to the detector. Since there
are assumed to be an effective number of nuclei~planes!, N,
participating in the medium, this process occursN times as
shown in Eq.~24!. The second term in the square brackets,
involving the summation, corresponds to the situation in
which synchrotron radiation excites one nucleus~plane! and
then the subsequently emitted radiation is absorbed and re-
emitted several times by other nuclei~planes! until a particu-
lar nucleus~plane! radiates to the detector. These are mul-
tiple scattering processes. To be specific, consider the first
term in the summation. This is then51 term. It corresponds
to the path in which the radiation, emitted from the

synchrotron-excited nucleus~plane!, gets absorbed and re-
emitted by only one other nucleus~plane! before reaching
the detector. For simplicity we say the radiation hopped on
the other nucleus~plane!. @A hop corresponds to radiation
from one nucleus~plane! being absorbed and reemitted by
another nucleus~plane!.# The weighting of this term, the
binomial coefficient, corresponds to the number of ways of
selecting one object from (N21) objects. Notice that each
‘‘hop’’ gives a phase shift of 180°@the minus sign inside the
square brackets of Eq.~24!# with respect to the no-hop pro-
cesses. Thus one-hop processes have amplitudes that are
180° out of phase with respect to the amplitude for no-hop
processes. The two-hop processes have amplitudes that are in
phase with the no-hop-process amplitudes. Each term in the
sum corresponds to a particular hopping sequence, or path,
the gamma radiation takes in reaching the detector.

The counting rate at a detector corresponding to the wave
packet given by Eq.~24! is

I ~z,t8!5cuc j u2. ~25!

Expressing the squares of the absolute value of the matrix
elements of Eq.~24! in terms of the radiative widthgR @Eq.
~A5! of Appendix A#, one finds

I ~z,t8!5
pgR

2

2\2Dvp
eGt8/\UN1 (

n51

N21 S 2gR

2\ D nS N
n11D t8n

n! U
2

.

~26!

Application of Eq. ~26! to each physical situation requires
that specific modifications be made to the equation. This will
be done in the next sections.

IV. DISCUSSION

A. Coherent processes

1. Speedup and dynamical beats

Consider the case in which the nuclei have only one
excited-state level. This means that there is only one reso-
nant frequency and that, for the moment, quantum beats are
not considered. If one is considering a recoil-free process,
then gR in Eq. ~26! must be multiplied by the recoil-free
fraction f. Again each term in the sum, contained in the
square brackets of Eq.~26!, corresponds to a particular hop-
ping sequence or ‘‘path’’ the radiation takes to reach the
detector. If we consider only the recoil-free processes, i.e.,
the Mössbauer effect in which radiation is absorbed and re-
emitted by the nuclei without recoil, it is impossible to de-
termine which path was taken for each count recorded in the
detector. Therefore each path of this recoil-free type must be
considered as coherent with all other paths. So we must sum
over all paths before squaring to obtain the result. The result
is then

I ~z,t8!5
p f 2gR

2

2\2Dvp
eGt8/\UN1 (

n51

N21 S 2 f gR

2\ D nS N
n11D t8n

n! U
2

.

~27!
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There are several parameters in Eq.~27!; the recoil-free frac-
tion ~f !, the radiative width (gR), and the effective number
of resonant nuclei~planes!in the sample~N!. This numberN
is associated with the thickness of the resonant medium since
it is related to the length of the one-dimensional chain of
effective nuclei, or alternatively the number of stacked effec-
tive planes.N is the only unspecified parameter in the ex-
pression for the intensity. When Eq.~27! or similar expres-
sions, such as Eqs.~31!, ~33!, and~35! ~see below!, are used
for fitting data,N is the only free parameter. Two methods
can be used to determine the value ofN. The empirical
method, for determiningN, is to perform an experiment us-
ing a sample of a certain thickness. It is then a simple matter
to determine the valueN that fits the data. The theory scales
linearly with thickness, soN can then be determined for any
sample thickness of the same material. The theoretical
method for determiningN for a specific sample is based on
the comparison of the results of this coherent-path model
with those from the semi-classical optical model. It has been
found18 that for the coherent forward scattering, the
coherent-path model and the semi-classical optical model
give identical results even though the equations themselves
are quite different. Noting this observation, one can deter-
mine the relationship betweenN, in the coherent-path model,
andb in the semiclassical optical model. To do this we con-
sider the thin absorber limit. In the semiclassical optical
model, when the source and absorber are in resonance, this
amounts to expanding theJ1 Bessel function. In the
coherent-path model the thin ‘‘absorber’’ limit is necessarily
set by puttingN51. Comparing the results gives

N5
bG

2 f gR
, ~28!

where the actual thickness parameterb is equal toN0f s0d.
HereN0 is the number of resonant nuclei/cm3, f is the recoil-
free fraction,s0 is the maximum cross section evaluated on
resonance, andd is the thickness of the sample. Due to the
nature of the model,N necessarily takes on integer values
only. However, the value of the right-hand side of the Eq.
~28! is normally not an integer. Thus, one chooses the closest
integer value forN. It is important to observe that it is only
the new solution that allows a clear physical explanation of
the most prominent features of the nuclear-resonant forward-
scattering process.

Using Eq.~27! model calculations are presented in Fig. 1
for the case of57Fe. The calculations have been normalized
to one at timet850. @Actually the value of the forward scat-
tered intensity att850 is proportional to the thickness
squared (N2).# The results in Fig. 1 show the effect of in-
creasing the thickness of the resonant medium. Notice the
experimentally observed ‘‘speedup’’ effect where the inten-
sity radiated in the forward direction decays faster then one
would expect according to the lifetime of an isolated
nucleus. This effective lifetime~of the exciton in other theo-
ries! decreases as the sample thickness increases. In fact,
when the sample reaches a certain thickness the decay curve
exhibits a local maximum at a time greater than zero.~This
effect has also already been observed experimentally.! This

effect has been termed ‘‘dynamical beating.’’2 To see this
more clearly the lower portion of Fig. 1 shows the results on
an expanded scale. In principle, as the sample becomes even
thicker, more local maxima appear in the time-dependent
intensity curve. These results agree with those found earlier,
both theoretically11 and experimentally.19,20 The advantage
of our approach is that it gives insights into the origin of
speedup and dynamical beating effects.

In order to understand the cause of these effects consider
the contributions to the final result from the various coherent
‘‘paths.’’ Figure 2 shows fouramplitudes@i.e., termsinside
the absolute value portion of Eq.~26! multiplied, for conve-
nience, by the exponential function#. These four processes
are, the non-hop processes~the solid line!, the one-hop pro-
cesses~the shorter dashed line!, the two-hop processes~the
longer dashed line!, and the three-hop processes~the dashed-
dot line! for an effective number of nuclei~planes!N545.
Notice, as mentioned above, that the one-hop-process ampli-
tude is 180° out of phase with the amplitude for the no-hop
processes. This is the main cause of the speedup effect. No-

FIG. 1. The time-dependent forward scattering intensity for
three different values of the sample thickness, i.e., effective number
of resonant nucleiN55 ~solid line!, 20 ~shorter dashed line!, and
45 ~longer dashed line!, is shown. Time is measured in units of the
natural lifetime. Notice the ‘‘speedup’’ effect and, in the lower
portion of the figure, the ‘‘dynamical beat.’’ The intensity for each
case is normalized to 1 at timet850.

COHERENT-PATH MODEL FOR NUCLEAR RESONANT . . . PHYSICAL REVIEW B 63 184435

184435-7

0.9 

0.8 

0.7 

'i I o.a 

1 0.5 

~ 0.4 
g 

0.3 

0.2 

0.1 

0.004 

'i 0.003 
C: 
J!! 
.5 
"C 0.002 -~ 
ai 
E 0.001 0 
C: 

0.000 
0 

2 3 4 5 6 

\ 

I \ 
\ 

I \ 
\ 

\ \ 

/-\- ----
'- -

2 3 4 5 6 

time (in natural lifetime units) 



tice that when adding the one-hop to the no-hop amplitude
the resulting curve goes toward zero faster than the no-hop
exponential itself. Furthermore, for a sufficiently thick
sample the two-hop amplitude at later times is larger in mag-
nitude than the one-hop amplitude. This effect leads to the
local maximum seen in Fig. 1 at timet8 approximately equal
to 3t ~t is the natural lifetime!and hence roughly accounts
for the phenomenon of dynamical beats. Of course one must
use the total expression, summing over all amplitudes, to
obtain the precise result. Both speedup and dynamical beats
effects have their origin in destructive and constructive inter-
ference between the amplitudes of the different coherent
scattering paths. The even-numbered scattering paths give a
positive contribution to the forward scattering amplitude,
while the odd-numbered scattering paths give a negative
contribution.

In principle, it should be possible to apply the
coherent-path model to Bragg scattering. However, a
difficulty arises when one considers the paths than need to
be summed over. For the Bragg case, the number of paths
over which the summation must be made becomes very
large. An analytical method needs to be developed to over-
come this difficulty.

2. Quantum beats and polarization effects

To treat quantum beats we need to consider situations in
which the nuclei emit radiation from recoil-free transitions at
two or more frequencies that have the same polarization.
Under such conditions these frequencies will interfere
producing quantum beats in the time-dependent

forward-scattering intensity.2,12,20,21 Of course polarization
of the incident synchrotron radiation, as well as the
polarization of the emitted radiation must be considered.
C j corresponds to the amplitude for emitting radiation
at frequencyv j . Thus, if two or more transitions emit
radiation in recoil-free processes at different frequencies
having the same polarization, these amplitudes must
be added due to their coherence before the intensity is
calculated. This leads to the well-known phenomena of
quantum beats.

The counting rate at the detector assuming that all paths
are coherent is given by

I ~z,t8!5cU(
j

C j~z,t8!U2

, ~29!

where the sum overj is taken for those transitions that pro-
duce radiation having the same polarization. Introducing the
wave packet of Eq.~24! into Eq. ~29! gives

FIG. 3. Calculated results for the iron foil case when the mag-
netic field is in the direction of the synchrotron-radiation beam.
Lines 1 and 4 have the same polarization. Lines 3 and 6 also have
the same polarization but different from that of lines 1 and 4. In the
absence of an electric field gradient at the57Fe nuclei there is only
one beat pattern corresponding to a beat period of about 14 nsec.
These results are for the case when the effective number of resonant
nuclei isN545. The lower portion of the figure shows, on an ex-
panded scale, the rather complicated structure in detail.

FIG. 2. The amplitudes of the no-hop~solid line!, one-hop
~shorter dashed line!, two-hop~longer dashed line!, and the three-
hop ~dashed-dot line!processes are shown as a function of time in
natural lifetime units. The amplitude axis shows the relative impor-
tance of each contribution. The case shown is for an effective num-
ber of nucleiN545.
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I ~z,t8!5
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n51

N21 S 2 f jgR

2\ D nS N
n11D t8n

n! GU2

, ~30!

where anf j has been inserted to account for the specific
transition probability.

In order to be specific, consider the synchrotron radiation
interacting with an iron foil which is polarized so that
the internal magnetic field is in the same direction as
the synchrotron beam. The synchrotron radiation is
almost completely linearly polarized in the plane of the
synchrotron ring. This polarization can be expressed in
terms of a superposition of right and left circularly
polarized states. For the case under discussion the

emitted radiation is composed of only right and left
circularly polarized components also. If one labels the
transitions from 1 to 6 according to their increasing
frequenciesv i( i 51 – 6), then line 1 and line 4 will have
one polarization while line 3 and line 6 will have the
other. Assuming no electric-field gradient at the sites of
the 57Fe nuclei, the difference in each pair of frequencies
is the same. Thus there will be only one beat frequency
corresponding to about 14 nsec appearing in the
time-dependent intensity spectrum. As mentioned above,
one needs to incorporate the transition probability for
each transition considered. In this case it is well known
that lines 1 and 6 have relative intensities of 0.75 and lines
3 and 4 have relative intensities of 0.25. The resulting
time-dependent forward scattering intensity is then given by
Eq. ~31! specialized for this case

I ~ t8!5
pgR

2

2\2Dvp
U3 f

8
e2 i „v12 i ~G/2\!…t8 (

n50

N21 S N
n11D S 3 f gRt8

8\ D n ~21!n

n!
1

f

8
e2 i „v42 i ~G/2\!…t8 (

n50

N21 S N
n11D S f gRt8

8\ D n ~21!n

n! U2

.

~31!

Figure 3 gives an example of the quantum-beat effect. In Fig.
3 the result is calculated for the case whenN545. This result
agrees precisely with that obtained using18 the classical op-
tical model. The time dependence of the forward-scattered
intensity is complicated here because of the combination of
effects due to quantum beats@the factorse6 i (v12v4)t in Eq.
~31!# and to speedup and dynamical beats~the sum overn,
which reflects the multiple scattering, as has been discussed
in the previous section!.

B. Incoherent processes

1. General remarks

The coherent-path model can also be used to study inco-
herent processes. In general, when using polycrystalline mat-
ter, we could term an incoherent process as any process that
produces radiation that does not travel in the forward direc-
tion. However, a fraction of the incoherent radiation may go
forward and produce a background for the coherent forward-
scattered radiation. Thus, it is useful to know this back-
ground even when radiation in the forward direction has to
be analyzed.

Several experiments have been performed that deal with
the incoherent scattering of SR itself. The Brookhaven
group22 has studied the time evolution of coherent and inco-
herent scattering of SR from a57Fe foil. The phonon spec-
trum of a-iron23 and of a-iron and other iron compounds24

has been obtained by the observation of nuclear-resonant
fluorescence versus the energy of incident SR. The phonon
density of states can be deduced from these measurements.
Analogous studies have been performed on other iron
compounds.25 The same authors26 have observed single-

nucleus quantum beats in the incoherent scattering of SR
whena-iron was excited far from the resonance energy, thus
accompanied by phonon creation or annihilation. These
single-nucleus quantum beats are well known from time-
dependent perturbed angular correlation measurements. The
temperature dependence of nuclear recoil and of the density
of phonon states in iron has also been studied.27 Another
incoherent channel that can be studied is the delayed emis-
sion of conversion electrons that follows the excitation. This
has been done by the Argonne team28 in the case of an iron
foil. Several other references deal with incoherent scattering
~see Refs. 29–31!. A two-wave diffraction theory exists32

that deals with inelastic coherent scattering of SR in perfect
crystals

We will now discuss how the present approach can be
used to study such incoherent processes. Recall that in the
model there is a chain ofN effective nuclei or, equivalently a
stack ofN effective planes. In Ref. 12 Sturhahn and Gerdau
employ the ‘‘trick’’ of cutting up the crystal into thin plate-
lets in order to calculate their final results. The number of
thin platelets does not appear in their solution. It is only the
resonant thickness of the sample that appears in the result. In
our case the effectiveN platelets arise naturally as part of the
model itself and the factorN is the only parameter in our
final result. Thus, for these incoherent processes we consider
that the actual sample can be modeled to consist ofN planes
located at the positions of theN effective nuclei. Suppose we
focus our attention on the nucleus labeledn in the model.
This is the nucleus, located atzn , i.e., located at thenth
plane, which is assumed to emit the incoherent radiation.
This incoherent radiation could be due to, among other pos-
sibilities, internal conversion. The conversion electrons can
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be detected directly, or indirectly using the resulting x rays.
Another source of incoherent radiation is emission with re-
coil. The analysis of this recoil process merits some extra
attention.~The analysis of processes with recoil will be done
in the next section.!

It will be shown below that the intensity of the radiation
corresponding to incoherent processes has a complicated
time structure. First one has to consider the intensity corre-
sponding to incoherent radiation coming from thenth plane
in the ‘‘sample.’’ The total incoherent intensity will then be
the sum of the individual intensities from each plane. This is
so because, in this case, there is no interference between the
incoherent radiation coming from each effective plane. How-
ever, in order to calculate the intensity coming from thenth
plane, one has to consider all coherent paths that lead to the
excitation of the effective nucleus that represents thatnth
plane. The intensity that results from a final incoherent emis-
sion from thenth plane is then given by a modification of
Eq. ~26!. One has the intensity from thenth nucleus~plane!
as

I inc,n~ t8!5Cince
2~G/\!t8U (

m50

n21 S n21
m D S 2

f gRt8

2\ D m 1

m!U
2

.

~32!

Here the constantCinc depends on the nature of the incoher-
ent process. The total time-dependent intensity due to an
incoherent process is then given by

I inc,total~ t8!5 (
n51

N

I inc,n~ t8!. ~33!

In the following, processes with recoil and conversion-
electron processes will be discussed in more detail.

2. Processes with recoil

The recoil of a nucleus emitting radiation can be ex-
pressed in terms of the normal modes of the lattice, i.e., in
terms of phonon creation. The vibrational states are nonlo-
calized, so the decay with recoil is spatially coherent. How-
ever, because of the quasicontinuum of phonon states, there
is no coherent enhancement to these decay modes. In prin-
ciple there are quantum beats between processes with and
without recoil. In practical experience however, these beats
are not observed because the interference terms, giving rise
to beats, vanish. This is due to the fact that the beat frequen-
cies form a quasi-continuum which implies that, when aver-
aging, the interference terms will disappear. Even when an
isolated phonon frequency is excited due to recoil~e.g., due
to the recoil of an oversized impurity in a lattice!, the quan-
tum beats between processes with and without recoil cannot
be observed. This is due to the extremely high beat fre-
quency in this case. The present experimental techniques do
not allow for a sufficient time resolution.

If we denote the recoil fraction as (12 f ), it is possible to
express the recoil processes in the following way. First we
consider each effective nucleus~plane! in our sample sepa-
rately. Again we focus our attention on thenth plane
~nucleus! in our sample: this is the plane~nucleus! that will

emit radiation and, in the process, recoil. This radiation is
now off resonance and will not be resonantly absorbed even
if the radiation must pass through additional material in go-
ing to the detector. Now this nucleus, or plane, is located at
zn . The problem now is to consider all coherent paths that
lead to excitation of that nucleus~plane!. The intensity of
such a process that results in a final emission with recoil
from thenth nucleus~plane! ~recall that the ‘‘final’’ nucleus
in a ‘‘path’’ radiates radiation directly to the detector! is
given by the modification of Eq.~32!. In order to obtain the
desired expression one simply needs to include all indistin-
guishable paths that lead to the excitation of thenth nucleus
~plane! in the sample. This nucleus is then assumed to recoil
as it emits radiation to the detector. For such a process one
has the intensity

I ~12 f !,n~ t8!5
pgR

2

2\2Dvp
~12 f ! f e2~G/\!t8

3U (
m50

n21 S n21
m D S 2

f gRt8

2\ D m 1

m!U
2

. ~34!

It is of course possible for all nuclei~planes! in our sample to
do similarly. With the discussion at the beginning of this
section, it is obvious that the intensities of radiation due to
each nucleus~plane! can be added together to obtain the final
recoil-process result. The time-dependent intensity due to
processes with recoil is then given by

I ~12 f !,total~ t8!5 (
n51

N

I ~12 f !,n~ t8!. ~35!

Notice, however, that in our discussion electronic absorption
has been neglected. Depending on the specific sample and
placement of the detector relative to the sample it is possible
that the radiation from thenth nucleus~plane! is attenuated
more or less than the radiation from themth nucleus~plane!
due to electronic absorption.

For forward-scattering measurements the total result from
this recoil process must be added to the intensity from the
recoil-free processes, since radiation from the recoil pro-
cesses may also reach the detector. However, this contribu-
tion should be small because the incoherent radiation goes
into all 4p steradians. On the other hand, for radiation in the
nonforward direction, this contribution should be dominant
in the time-delayed portion of the spectrum. Figure 4 shows
calculated examples of the temporal shape due to the inco-
herent processes alone, neglecting electronic absorption. We
have considered three samples of differing thicknesses. They
correspond to thicknesses represented by an effective num-
ber of planes~nuclei!: N55, 20, and 45. It is of interest to
note that in the data analysis of the time evolution of inco-
herent nuclear scattering by Bergmannet al.22 using the
semiclassical optical model, they were forced to consider the
contributions resulting from dividing their sample into
planes. The final fit to the data was made by assuming that
the spectrum consisted of only two components. The two
components they choose were; an averaged speedup compo-
nent, and a component having the normal lifetime. In our
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model the spectrum would consist ofN components. Each
component has its own speedup contribution ranging from a
no speedup component, due to the sample plane farthest up-
stream, to a maximum speedup component resulting from the
plane farthest down-stream. The general trend of the experi-
mental data22 appears to agree with the new model. Figure 4
shows some expected results for the time-dependent intensity
due to the incoherent channel, i.e., detection of radiation
from recoil events. However, a detailed analysis of the data
is needed to see if the new model gives a better fit. Such a
detailed analysis requires knowledge of the exact experimen-
tal conditions.

3. Conversion-electron processes

The conversion electron or the resulting x rays can be
detected, as a function of time after the synchrotron radiation
pulse, in addition to the processes already discussed. From
the coherent-path model the resulting time-dependent inten-
sity can be calculated rather easily. In fact the shape of the
time-dependent intensity will be similar to that of the recoil-
process time-dependent intensity. One difference is due to
the difference between the radiative width and the
conversion-electron width. Moreover, the conversion elec-
trons, or perhaps the resulting rather low-energy x rays, can
not travel very far in the material. For these cases it is quite
important to consider the fact that the contributions from
each ‘‘nucleus’’ in the ‘‘sample’’ may be strongly attenuated
depending on the distance the conversion electron or x ray
must travel in the material before reaching the detector. In
the case of conversion-electron detection only the nuclei
close to the surface of the sample nearest to the detector will

contribute significantly, thus modifying the shape of the
time-dependent intensity from that shown in Fig. 4. This
surface-plane effect is familiar from ordinary conversion-
electron Mössbauer spectroscopy. The time-dependent elec-
tron emission from 57Fe nuclei has been observed by
Sturhahnet al.28 Such experimental results can be compared
with this model’s predictions, but close collaboration is again
required in order to be aware of the needed experimental
details.

V. CONCLUSIONS

One may very well ask how is it that this apparently
‘‘one-dimensional’’ model gives results that are in such good
agreement with experiment and previous theory. In fact the
model is not really a one-dimensional theory, as noted above.
This can be seen as follows. Recall that the resonant gamma
radiation is treated as a plane wave, and the phase shift of the
forward-scattered radiation due to a single effective nucleus
is p. In x-ray diffraction33 it is well known that a single
resonant scattering gives ap/2 phase shift and a furtherp/2
phase shift arises when a summation is made over the whole
plane of resonant scatterers. This result is also noted in Ref.
34. Notice that the model gives such ap phase shift, when
scattering off a single ‘‘effective’’ nucleus, as seen by the
minus sign in Eq.~26!. Thus the theory more appropriately
corresponds to a nuclear resonant sample represented byN
‘‘effective’’ parallel planes or slices. This realization helps
explain why the model works so well.

The model gives a microscopic picture of nuclear-
resonant forward scattering of synchrotron radiation from
polycrystalline matter containing resonant nuclei. A closed-
form solution is obtained consisting of afinite series. The
number of terms in the solution depends on the ‘‘thickness’’
~N! of the sample. Each term in the solution corresponds to a
scattering sequence or path the radiation takes in reaching
the detector. The resulting equations are easy to use and the
necessary calculations are quite simple to perform.

The model gives a clear physical explanation of both the
speedup and dynamical-beat effects that have already been
observed experimentally. These effects arise naturally as a
consequence of summing over the interfering amplitudes
corresponding to each possible path the radiation takes on
getting to the detector. In order to simplify the language we
say that when the radiation from one nucleus~plane! is ab-
sorbed and reradiated by another nucleus~plane!, the radia-
tion ‘‘hops’’ on that other nucleus~plane!. The origin of the
speedup effect is primarily due to the 180° phase shift of the
‘‘one-hop’’ amplitude as compared to the ‘‘no-hop’’ ampli-
tude. In the one-hop process SR radiation that has been reso-
nantly absorbed by one nucleus~plane!is then absorbed and
reemitted, in a recoil-free fashion, by another nucleus~plane!
before the radiation reaches the detector. The ‘‘no-hop’’ pro-
cess corresponds to the case when the SR radiation has sim-
ply been resonantly absorbed and re-emitted to the detector
by the same nucleus~plane!. The resulting negative sign in
the one-hop contribution leads to a subtraction from the or-
dinary exponential temporal decay, due to radiation from a
single decaying nucleus~plane!, and hence leads to the
speedup effect early in the decay. Similarly, radiation that

FIG. 4. The time-dependent intensity, due to the processes that
happen with recoil~incoherent processes!, are shown. The calcu-
lated curves are for ‘‘samples’’ of three different thicknesses~N!.
One sample hasN545 ~the solid line!, another hasN520 ~the
shorter dashed line!, and the last hasN55 ~the longer dashed line!.
Each of the curves has been normalized to one at timet850. See
the text for a discussion of these calculations.
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has been resonantly absorbed and reemitted in a ‘‘two-hop’’
process is back in phase with the radiation that has been
resonantly absorbed and re-emitted by a single nucleus
~plane!, i.e., the no-hop case. When the sample is sufficiently
thick this two-hop amplitude is larger in magnitude than the
one-hop amplitude, at later times, and hence leads to the
observed dynamical beats. Of course all multihop coherent
paths must be summed over to obtain the final result. The
amplitudes corresponding to the odd-numbered scattering
paths, i.e., odd numbered ‘‘hops,’’ are 180° out of phase with
the amplitudes corresponding to the even-numbered scatter-
ing paths. This phenomenon is responsible for the complex
beat pattern observed for very thick samples.

The model also shows why the speedup effect is more
pronounced using a radioactive source16 then when using
synchrotron radiation as the source. For the synchrotron-
radiation case there is a term in the calculation in whichN
nuclei ~planes! radiate directly to the detector at their normal
decay rate thus weighting the normal decay rate significantly.
There is no such term in the radioactive-source case.

Various incoherent processes can also be analyzed using
this model. Such processes include those in which the nuclei
recoil when emitting radiation or emit conversion electrons
instead of a gamma ray. Radiation produced, when a reso-
nant nucleus emits radiation and in the process recoils, may
be recorded in the detector. This contribution should be rela-
tively small, in the forward direction, since this radiation is
emitted into the whole 4p solid angle, and hence can be
observed most effectively by looking in nonforward direc-
tions.

The understanding of the behavior of the scattered inten-
sity in a nonforward direction is important because several
experiments have already been performed to study these in-
coherent processes, as noted above. Furthermore it is to be
expected that additional experiments will be done in the fu-
ture.

It appears that this new model, because of its simplicity,
can be utilized in the future to treat other more complicated
cases. A theoretical treatment29 of the diffusion problem has
already been given using the semiclassical optical model. In
addition, time domain experimental results35 in the presence
of diffusion have been obtained. Furthermore, single-nucleus
quantum beats26 excited by synchrotron radiation have also
been observed. For these experiments it is crucial that the
collective coherent state is not produced in the scatterer. This
condition was established by detecting radiation at 90° from
the forward direction and setting the incident energy 20 meV
above the nuclear-resonant energy. This experiment has
shown that it may be possible to simultaneously investigate
coherent and incoherent scattering, and in the process sort
out the absorption and emission processes occurring with
and without recoil. Thus there are many interesting and in-
formative experiments that can be done with the advent of
the third generation synchrotrons when the beam-line experi-
mental stations include low temperature facilities as well as
the ability to apply various external fields. The theoretical
model presented here should prove useful in understanding
such future experiments.
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APPENDIX A

In this appendix it will be shown howBm, j (v) can be
calculated starting from Eq.~23!

S v2v j1 i
gc

2\ DBm, j~v!

5A(
k

Vk, j

\
eikzm1(

k8
(
m8

Bm8, j

uVk8, j u2

\2

3eik8~zm2zm8!
1

v2vk81 i«
. ~A1!

The last term in Eq.~A1! can be divided into two parts; one
with m8Þm, and the otherm85m. Then

S v2v j1 i
gc

2\ DBm, j~v!

5Bm, j~v!(
k8

uVk8, j u2

\2~v2vk81 i«!
1A(

k

Vk, je
ikzm

\

1(
k8

(
m8Þm

Bm8, j~v!
uVk8, j u2eik8~zm2zm8!

\2~v2vk81 i«!
. ~A2!

Considering the first term on the right-hand side, the sum
over k8 can be converted to an integral using the
prescription14

2p

L (
k8

→E
2`

`

dk8, ~A3!

whereL is a normalizing length which appears when sums
on the discrete variablek8 are transformed into integrals in
one dimension.

Again using the symbolic identity14 we have

1

v2vk81 i«
5P

1

v2vk8
2 ipd~v2vk8!, ~A4!

whereP represents the principal part of the involved integral,
the first series of Eq.~A2! can be calculated. This results in a
principal value term and a delta function term. The principal
value term corresponds to a frequency shift when brought to
the left-hand side. This will be neglected. The delta function
term corresponds to a radiative widthgR where

gR5
2L

\c
uVk8, j~v!u2. ~A5!
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As in three dimensions, the presence ofL in this and in the
following expressions is only apparent, because the matrix
elements such asuVk8, j u2 contain 1/L. Collecting terms on
the left-hand side gives

S v2v j1 i
G

2\ DBm, j~v!

5A(
k

Vk, je
ikzm

\
1 (

m8Þm

Bm8, j(
k8

uVk8, j u2eik8~zm2zm8!

\2~v2vk81 i«!
,

~A6!

where G is the total width equal to the sum of the
conversion-electron and radiative widths. The sum overk, in
the first term on the right-hand side, can be converted into an
integral and evaluated. The result is

A(
k

Vk, j

eikzm

\
⇒ L

2p

Dvp

c

Vk0 , j

\
eik0zm, ~A7!

where Dvp is the effective band-width of the synchrotron
radiation pulse,k0 is the central wave number in the fre-
quency range of interest, and noting thatVk, j is not a strong
function of k. Substituting into Eq.~A6! and applying Jor-
dan’s lemma to the integral resulting from the sum overk8
gives

S v2v j1 i
G

2\ DBm, j~v!

5
LADvpVk0 , j

2pc\
eik0zm

2 i
L

\2c
uVk8, j~v!u2 (

m8,m

Bm8, j~v!ei ~v/c!~zm2zm8!,

~A8!

wherezm.0 andzm.zm8 .
Equation ~A8! is a recursion relation relating the

Bm, j (v)’s. It is not too difficult to show that

Bm, j~v!5
LADvp

2pc

Vk0 , j

\ F eik0zm

S v2v j1 i
G

2\ D
1 (

n51

m21 S 2 igR

2\ D n 1

S v2v j1 i
G

2\ D n11 (
n851

m2n S m212n8
n21 Deik0zm8ei ~v/c!~zm2zm8! G ,

~A9!

where the factor (m212n8) over (n21) is the binomial coefficient andgR has been inserted into the equation.

APPENDIX B

In Appendix B the outgoing wave packet is calculated. From Eq.~22!, Ck8(v) can be expressed in terms ofBm, j (v), and
when the value ofBm, j (v) from Eq. ~A9! is inserted, the following expression is obtained:

Ck8~v!5
LADvp

2pc

Vk0 , jVk8, j
*

\2 (
m51

N
eik8zm

~v2vk81 i«!

3F eik0zm

S v2v j1 i
G

2\ D
1 (

n51

m21 S 2 igR

2\ D n 1

S v2v j1 i
G

2\ D n11 (
n851

m2n S m212n8
n21 Deik0zm8ei ~v/c!~zm2zm8!G . ~B1!

Next one needs to take the Fourier transform ofCk8(v), conveniently defined here@see Eq.~3!# as

ck852
1

2p i E2`

`

dvCk8~v!ei ~vk82v!t. ~B2!

The only pole in these integrals that contributes to the final answer is the one atv5vk82 i«. The other poles of Eq.~B1! give
a zero contribution in the resulting plane-wave packet describing the outgoing radiation@Eq. ~B4! below#. This is a conse-
quence of the situation in which the detector is positioned atz which is beyond the positions of all the nuclei located at the
zm’s. Using this observation, one can obtainck8 ,
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ck8522p i
LADvp

2pc

Vk0 , jVk8, j
*

\2 (
m51

N F e2 ivk8~zm /c!eik0zm

S vk82v j1 i
G

2\ D
1 (

n51

m21 S 2 igR

2\ D n e2 ivk8~zm /c!

S vk82v j1 i
G

2\ D n11 (
n851

m2n S m212n8
n21 Deik0zm8ei ~vk8 /c!~zm2zm8!G .

~B3!

The next step in the calculation is to construct the result-
ing plane-wave packet that describes the radiation emitted by
the nuclei according to the form

C j~z,t !5
AL

2pc E2`

`

dvk8e
ivk8~z/c2t !ck8 . ~B4!

Equation~B3! for ck8 shows that there are two contributions
that need to be evaluated. They are

ck81522p i
LADvp

2pc

Vk0 , jVk8, j
*

\2 (
m51

N
e2 ivk8~zm /c!eik0zm

S vk82v j1 i
G

2\ D
~B5!

and

ck8,2522p i
LADvp

2pc

Vk0 , jVk8, j
*

\2

3 (
m51

N

(
n51

m21 S 2 igR

2\ D n e2vk8~zm /c!

S vk82v j1 i
G

2\ D n11

3 (
n851

m2n S m212n8
n21 Deikozn8ei ~vk8 /c!~zm2zn8!.

~B6!

The result forck81 is found by substituting its value from Eq.
~B5! into Eq. ~B4!

C1 j~z,t !5
2ALLADvp

c2

Vk0 , jV* ~v j !

\2

3Ne2 i „v j 2 i ~G/2\!…~ t2z/c!, ~B7!

where eik0zm3e2 iv j (zm /c) essentially gives 1, and
e2(Gzm/2\c)'1. The result forck82 is found from Eqs.~B6!
and ~B7!

C2 j~z,t !5
2ALLADvp

c2

Vk0 , jV* ~v j !

\2

3e2 i „v j 2 i ~G/2\!~ t2z/c!

3 (
n51

N21 S 2gR

2\ D nS N
n11D S t2

z

cD n

n!
, ~B8!

where t2(z2zn)/c>t2z/c and the approximations used
above also apply. The total result is

C j~z,t8!5
2ALLADv

c2

Vk0 , jV* ~v j !

\2 e2 i „v j 2 i ~G/2\!…t8

3FN1 (
n51

N21 S 2gR

2\ D nS N
n11D t8n

n! G , ~B9!

wheret85t2z/c.
This can be transformed further, using a simple model for

the synchrotron radiation pulse. For a constant valueAk(v)
5A one has

ak~ t !5 iAd~ t !eivkt. ~B10!

The synchrotron pulse has a certain finite frequency width,
approximately equal to the inverse of the duration of the
pulse, d(t) can be approximated byDvp in the interval
@21/2Dvp,1/2Dvp#. Elsewhere the function is assumed to
be zero. Then

ak~ t !5 iADvpeivkt ~B11!

for t close to zero. For other timesak(t)50.
The normalization of the SR state fort close to zero gives

(
k

uaku25
L

2p E
k02D/2

K01D/2

uaku2dk51. ~B12!

Substituting Eq.~B11! into Eq. ~B12! gives after integration

L

2p
uAu2Dvp

2D51. ~B13!

With D5Dvp /c one has, ifA is taken as real~which is not
essential!

GILBERT R. HOY, JOS ODEURS, AND ROMAIN COUSSEMENT PHYSICAL REVIEW B63 184435

184435-14



A5A 2pc

LDvp

1

Dvp
. ~B14!

Putting Eq.~B14! into Eq. ~B9! gives finally

C j~z,t8!52
L

c2A2pc

Dvp

Vk0 , jV* ~v j !

\2 e2 i „v j 2 i ~G/2\!…t8FN1 (
n51

N21 S 2gR

2\ D nS N
n11D t8n

n! G . ~B15!

As already has been mentioned before, the presence ofL is only apparent becauseVk0 , jV* (v j ) contains 1/L. Equation~B15!

corresponds to Eq.~24! of the main text.
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