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Abstract: The impact of moisture ingress on the surface of copper indium gallium diselenide (CIGS)
solar cells was studied. While industry-scale modules are encapsulated in specialized polymers
and glass, over time, the glass can break and the encapsulant can degrade. During such conditions,
water can potentially degrade the interior layers and decrease performance. The first layer the
water will come in contact with is the transparent conductive oxide (TCO) layer. To simulate the
impact of this moisture ingress, complete devices were immersed in deionized water. To identify the
potential sources of degradation, a common window layer for CIGS devices—a bilayer of intrinsic
zinc oxide (i-ZnO) and conductive indium tin oxide (ITO)—was deposited. The thin films were
then analyzed both pre and post water soaking. To determine the extent of ingress, dynamic
secondary ion mass spectroscopy (SIMS) was performed on completed devices to analyze impurity
diffusion (predominantly sodium and potassium) in the devices. The results were compared to
device measurements, and indicated a degradation of device efficiency (mostly fill factor, contrary to
previous studies), potentially due to a modification of the alkali profile.

Keywords: CIGS; corrosion; ITO; alkali

1. Introduction

Many studies have been performed to evaluate the effect of damp heat treatment on copper indium
gallium diselenide (CIGS) solar cells as a whole [1–3], but the discrete layers are rarely analyzed [4,5].
Furthermore, the study of water-induced degradation, comparable to corrosion, is rarely studied.
In previous publications, we have analyzed the impact of water on both CIGS and molybdenum
components of CIGS devices [6,7]. However, the front transparent conductive oxide (TCO) layers
are also of paramount importance. Among the choices for the TCO are aluminum doped zinc oxide
(AZO) or indium tin oxide (ITO). Both the conductance of the TCO and the optical properties of
the bilayer significantly impact the series resistance, RS, and the open circuit voltage, VOC [8–10].
Furthermore, this oxide layer will most likely be the first layer to come in contact with moisture that
gets past the encapsulation. Degradation mechanisms are typically analyzed experimentally via damp
heat tests [11]. If module-level encapsulant failures are found, additional moisture ingress may be
occurring [12]. When analyzed under damp heat, the resultant degradation typically manifests as a
decrease in fill factor caused by an increase in series resistance [13,14]. Increased recombination due
to increased defect densities, theorized to be at grain boundaries within the absorber layer, may also
play a role. The increase in defect density then decreases the open circuit voltage, VOC [15]. This is
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one of the primary degradation mechanisms observed in accelerated lifetime testing via damp heat.
Nonetheless, direct moisture exposure studies have not been performed.

In this study, we modified the deposition parameters of the ITO and characterized full CIGS solar
cells, before and after water soaking at 50 ◦C for up to 24 h, to elucidate the potential degradation
mechanisms of direct moisture ingress on the completed device.

2. Materials and Methods

CIGS devices were fabricated on soda–lime glass (SLG) substrates with a SLG/Mo/CIGS/CdS/i-
ZnO/ITO structure, using a three-stage co-evaporation process for the CIGS. First, a Mo (target
2.00” diameter × 0.250” thick, purity—99.95%) bilayer was deposited by DC magnetron sputtering.
The bottom layer was formed at high argon pressure and the top layer at low pressure, resulting
in a tensile/compressive stress dipole. After that, CIGS films were deposited using a three-stage
co-evaporation process [16], followed as rapidly as possible by formation of a CdS layer using chemical
bath deposition. The window layer (i-ZnO (target 2.00” diameter × 0.250” thick, purity—99.99%)
and ITO (target 2.00” diameter × 0.250” thick, purity—99.99%) were deposited by RF sputtering at
four different pressures (from 1 mTorr (0.13 Pa) to 7 mTorr (0.93 Pa)). After the i-ZnO/ITO deposition,
half of the samples were soaked in deionized water (18.2 MΩ) at 50 ◦C for up to 24 h (referred to
as water-soaked (WS) CIGS), whereas the other half were stored in a dry box until grid deposition
(referred to as reference). Figure 1 shows the schematic diagram of a typical CIGS solar cell and a
corresponding TEM image for a reference sample. The use of deionized water was intentional to avoid
having unknown impurities mask potential ion migrations in the active layers of the devices. Finally,
Ni/Al/Ni front contacts were deposited by electron–beam evaporation, and solar cells with an active
area of 0.5 cm2 were defined by mechanical scribing using a razor blade. Additional test structures
were also fabricated on silicon substrates for the i-ZnO/ITO bilayers in parallel to the device structures.

X-ray diffraction (XRD), spectroscopic ellipsometry, atomic force microscopy (AFM), and Hall
effect measurements were used to characterize the properties of the i-ZnO/ITO layers by
themselves. Time of flight secondary ion mass spectrometry (ToF SIMS) (ION TOF, Inc.
Chestnut Ridge, NY, USA) was used to measure the compositional variation as a function of depth
in the device. The photovoltaic characteristics were evaluated by external quantum efficiency (QE)
measurements (QEX7, PV Measurements Inc., Point Roberts, WA, USA) and current density-voltage
(J-V) measurements (IV5, PV Measurements Inc., Point Roberts, WA, USA), done under simulated AM
1.5 G with a light intensity of 100 mW/cm2 at 25 ◦C.
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3. Results and Discussion

3.1. Effect of Water Ingress on the Window Layer

XRD measurements were performed before and after water soaking on silicon substrate, as shown
in the case of the 5 mTorr samples in Figure 2. As expected for room temperature depositions, the films
were mostly amorphous, but In2O3 and ZnO (ICDD) peaks were identified in both as-deposited and
water-soaked samples. Further, XRD spectra did not show any noticeable change in peak position,
peak intensity, preferential orientation, or broadening, before and after water soaking in the symmetric
geometry XRD (θ\2θ) patterns. The peaks did not shift, implying that the strain did not vary with water
soaking. A small change was observed in AFM and rms (Root Mean Square) roughness, with roughness
decreasing from 3 nm (before water soaking) to 2 nm (after water soaking).
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Figure 2. (a) X-ray diffraction pattern and (b) atomic force microscopy of the 5 mTorr reference and
water-soaked samples, after water soaking for various durations.

The as-deposited dielectric functions of i-ZnO/ITO films were obtained by spectroscopic
ellipsometry at various pressures (1 mTorr, 3 mTorr, 5 mTorr, and 7 mTorr) on Si substrates (Figure 2).
The dielectric functions of the ITO were parametrized by using a combination of Tauc-Lorentz, Gaussian,
and Drude oscillator functions [17]. The overall same distinct features were observed regardless
of the deposition pressure and water soaking duration. However, one can see that the refractive
index decreased with increasing sputtering pressure (Figure 3a), suggesting a decreasing film density
with increasing pressure [18]. Furthermore, the extinction coefficient at low energy, modeled via a
Drude oscillator, increased at lower pressure, indicating higher film conductivity. On the other hand,
the conductivity obtained from the Drude oscillator remained the same at a given pressure, even after
water soaking for 24 h (Figure 3b). Both these facts were confirmed by Hall effect measurements.
The electrical properties of the films, such as carrier concentration, mobility, and resistivity, did not show
any significant change after water soaking. The average mobility, carrier concentration, and resistivity
were found to be around 27 cm2/Vs, 8 × 1020 cm–3 and 2 × 10−-4 Ωcm, respectively, whether before
or after water soaking. A small change in the dielectric functions was observed at high energy after
water soaking, consistent with a slight change in surface roughness observed by AFM. The change in
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surface roughness might have been due to the water soaking, but also might have been due to the
measurement being taken on a slightly different location of the sample.

Overall, this indicates that the i-ZnO/ITO films have different properties as a function of deposition
pressure (higher conductivity and density at low pressure), but do not degrade even after 24 h of
water soaking.
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3.2. Effect of Water Soaking on Devices

Devices with window layers deposited at 3 mTorr and 5 mTorr were immersed in deionized water
for 12 or 24 h. Devices were also made with lower pressure (1 mTorr) and higher pressure (7 mTorr)
TCO, but initial device performance was poor due to the lower quality of the layers (low transmission
for 1 mTorr and low conductivity for 7 mTorr). Afterwards, grids were deposited, and the devices
were scribed to isolate them. The devices were then tested and compared to reference samples.
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Representative box plots, comparing the device characteristics of the baseline and water-soaked
structures with the ITO deposited at 3 mTorr and 5 mTorr, are shown in Figures 4 and 5, respectively.
The samples showed either no degradation or significant degradation, depending on the ITO sputtering
pressure. The overall performance remained similar in 3 mTorr samples. By contrast, the performance
degraded for ITO deposited at 5 mTorr, after 24 h of water soak, mostly due to the degradation of JSC

and FF. Interestingly, and contrary to previous damp heat studies, no change in VOC was observed.
We also observed that the 1 mTorr devices did not degrade, while the 7 mTorr devices degraded,
indicating that there is a critical pressure at which devices start to degrade (in our case, above 3 mTorr).
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Figure 6 shows representative current-voltage and external quantum efficiency (QE) curves for
devices, while Figure 7 represents the dark J-V curves in semi-log plots. The currents calculated from
QE measurement by integration were compared to the JSC measurement, and were found to be similar
(Table 1). There was almost no change for the ITO deposited at 3 mTorr, while there was an overall
decrease in current at all wavelengths for the ITO deposited at 5 mTorr, after 24 h. Additionally,
a lack of change was noted in the ITO deposited at 5 mTorr, after 12 h. While water soaking for
12 h had little effect, after 24 h, the ITO deposited at 5 mTorr showed (Table 2) a higher reverse
saturation current density (J0) and an increase in diode quality factor (A). Furthermore, there was a
clear loss of collection at the maximum power point after 24 h of water soaking (QE curves, Figure 6d).
Voltage-dependent current collection was observed in the 5 mTorr sample, whereas no dark-to-light
cross-over was observed in either case. An increase in series resistance and shunt conductance also
appeared, directly impacting the fill factor [19].
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Table 2. Diode parameters (Dark J-V) of representative cells shown in Figures 4 and 5.

Sample J0 (mA/cm2) Diode Factor (A) RSH (kΩ·cm2) RS (Ω·cm2)

3 mTorr
Ref 2.5 × 10−9 1.8 1.2 × 104 0.4
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24 h WS 5.0 × 10−9 1.9 2.4 × 104 0.5

5 mTorr
Ref 2.5 × 10−9 1.7 7.5 × 103 0.4

12 h WS 8.0 × 10−9 1.8 8.0 × 103 0.5
24 h WS 8.0 × 10−9 2.0 1.4 × 103 0.6

These devices were also investigated by secondary ion mass spectroscopy (SIMS) depth profiles.
The matrix elements of each layer were characterized (Figure 8), and no significant change was observed
for Cu, In, Ga, or Se, as expected. Interestingly, the oxygen profile also did not show any change before
and after water soaking, whatever the ITO fabrication process was. The oxidation of the layers or
interfaces was, therefore, not the reason for device degradation.
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Figure 8. Secondary ion mass spectroscopy (SIMS) depth profiles for the main element for both the
(a) 3 mTorr and (b) 5 mTorr experimental sets (reference: solid lines; 24 h water-soaked: dashed lines).

The potential degradation mechanism could also be due to impurities localized at grain boundaries
that can become transient with elevated heat and water. Since alkalis—and sodium and potassium
in particular—are predominant and critical impurities in CIGS solar cells, depth profiles for Na and
K were, therefore, measured for the same samples and are plotted in Figure 9. While some small
variances were observed in the 3 mTorr sample, the similarity before and after water soaking explains
why minimal degradation was observed.
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Figure 9. SIMS depth profiles of Na+ (a) and K+ (b) in the reference (solid) and 24 h water-soaked
(dash) samples for the 3 mTorr and the 5 mTorr experimental set.

For the 5 mTorr sample, the profiles seemed similar overall, too, except close to the gallium
notch in the CIGS (Figure 10), where a lower concentration of alkali was present after water soaking.
This loss of alkaline species in this specific region of CIGS, where recombination can be predominant,
could explain the degradation in the 5 mTorr devices after water soaking. Indeed, a previous experiment
showed that the migration of alkali-elements, like Na and K, causes a decrease in shunt resistance [20].
Another interesting aspect of the Na profile was the appearance of a slightly higher concentration
of Na in the ITO after water soaking. Since Na tends to degrade ITO properties [1], this might have
also affected the space charge region and led to voltage-dependent current collection for the 5 mTorr
water-soaked samples.
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Figure 10. Detailed SIMS depth profile in the bulk of copper indium gallium diselenide (CIGS) of
Na+ in the reference (solid) and 24 h water-soaked (dash) samples, for the 3 mTorr and the 5 mTorr
experimental set.

To assess whether this diffusion process was solely due to temperature, additional samples were
fabricated with 5 mTorr ITO layers, soaked for 24 h in water at 50 ◦C, and compared to samples heated
at 50 ◦C under ambient air, as well as reference samples. As seen previously, significant performance
loss was observed in the water soaking samples (Figure 6c,d), but not for samples held at 50 ◦C in dry
conditions for 24 h (Figure 11). This implies that the degradation was due to moisture rather than heat,
suggesting that this was not a purely diffusion-based change. These new results are similar to the ones
observed in classical damp heat studies, where humidity plays a significant role in device degradation
and devices remain generally stable when heated in a moisture free environment, as seen in several
references [21,22].
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4. Conclusions

The deposition pressure of the ITO layer produced a significant change in the resistance of the final
device to water damage. It was observed that the ITO layers themselves did not change because of the
water soaking process, but that the alkali profile was modified after water soaking for the high-pressure
deposition processes. The primary difference expected between any two thin films deposited by sputter
deposition at different pressures is a change in reflected neutral bombardment of the growing film.
Sputtering ITO in Ar would be expected to result in a significant number of Ar atoms reflected from
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the target with substantial energies. In addition, there is the possibility of the formation of negative
oxygen ions at the target surface, which would be accelerated to the target potential. Increased gas
pressure leads to increased gas scattering and a lower impact energy on the growing film. This, in turn,
reduces the compressive stress in the deposited layer or converts the stress to tensile. We hypothesize
that, in this case, the higher sputtering pressure led to a tensile stress in the ITO with relatively open
grain boundaries. This could have permitted increased water ingress to the underlying junction and,
consequently, increased degradation, in agreement with our previous study of exposure of the CIGS
itself to water. It is therefore assumed that the alkali diffusion process, coming in the direction of the
substrate to the top layer, is modified and causes a decrease in shunt resistance and an increase in
series resistance, which ultimately decreases the FF. It is, of course, possible that additional processes,
including notable changes in terms of chemical bounding and surface modification, might be affected
by this treatment and affect device properties.
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