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Abstract: High impedance faults (HIFs) that cause a relatively smaller current magnitude compared
to the traditional low impedance faults are not easily detectable but can cause an extreme threat
to electric apparatus and system operation. This paper introduces a new method of detecting and
interrupting HIFs in DC power networks by specifying Z-source circuit breakers (ZCBs). The ZCB is a
protective device for high power DC branches, with the capabilities of protecting bidirectional power
flow and automatic/controllable turnoff function. In this new method, the operational mode of ZCB
(i.e., either the detection mode or interruption mode) can be specified. Beyond previous research,
the theoretical analysis has been performed on this method and the mathematical relationship between
the maximum HIF resistance and required Z-source capacitance has been derived and verified. It has
been found that the ZCB can respond to a HIF accordingly when its capacitances are properly adjusted
in the ZCB circuit. With the adjustment of these Z-source capacitances, the ZCB can be specified to
detect and report a HIF status to power system operators, or cut off the HIF branch and protect the
rest of the DC system directly. The new method can detect/interrupt a HIF that is as small as 2 times
of its nominal rated current and the effectiveness and general usage of the derived equation have
been verified by both low power experiments in lab and high power simulation tests.

Keywords: DC power network; high impedance fault; Z-source circuit breaker (ZCB)

1. Introduction

1.1. HIF Problem and Its Existing Solutions

Modern power systems have developed rapidly in the past few decades by integrating digital
communication and sensing technologies that improve the efficiency, reliability, and control flexibility in
electric power networks. Advanced technology and transmission/distribution automation have made
the detection of previously unnoticeable disturbances possible. Over-current protection techniques
can easily detect the traditional low-impedance faults that are caused by high conductivity elements.
However, the real-time monitoring of high impedance faults (HIFs) and determining its location is still
a challenge currently. For example, a HIF occurs in a medium voltage power system, when there is an
electrical contact between an energized conductor and a highly resistive surface (such as sand, asphalt,
tree branches, etc.) This results in the HIF remaining uncleared and exposes a person to a high risk of
electric shock. It also possesses a threat to the livestock and can cause significant damages to properties
through the possibility of fire hazards [1]. Besides traditional AC power systems, DC transmission and
distribution systems develop fast in the past decades, with more integrated renewable energy resources
in the DC format. Additionally, HIFs are still a challenging issue in the DC system. For example,
in low-voltage DC system, the fault impedance is comparable to the nominal ratings sometimes.
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Additionally, the resulted low magnitude short circuit currents are responsible for the formation of
electric arcs with the presence of high frequency contents [2]. Thus, the HIF condition in DC power
systems should be detected and subsequently isolated to minimize any significant danger.

To overcome the problem of HIFs, manipulation and processing of voltage and current
measurements during HIF conditions are used in most of the existing HIF detection techniques
for power grids. A wavelet transform-based method decomposes a signal into different frequency
bands and locations in time to extract and detect the HIF characteristics as introduced in [3,4]. A method
of placing multiple smart meters across the power network for HIF detection was developed in [5].
Additionally, a short-time Fourier transform approach was proposed in [6], where the main harmonic
components of the phase current are extracted to identify HIF occurrence. In Reference [7], the HIF
can be detected by analyzing the waveform distortion with the solid electrical breakdown theory.
Likewise, HIF condition in [8] was detected by using the quasi differential zero sequence protection
to analyze the current zero-sequence root mean square (RMS) value on feeders. The high frequency
current signal in [9] was injected into the grid to impose a voltage on its node and evaluate the change in
impedance characteristics for HIF detection. Any possible low frequency oscillation can be monitored
by optimally placing phasor measurement units (PMUs) in AC power networks [10]. Despite the
wide variety of existing methods, due to the limitations such as a lack of versatility and improper
defining of effective variables and associated limits, detection of HIF in a power system may remain
unnoticed [11].

1.2. DC System and Protection

The DC power system is an important research trend in the modern power systems, with its
advantages in large power supply radius, flexible and efficient power conversion, and high and reliable
power quality. Attraction of DC microgrids has significantly increased in recent years due to its
higher system efficiency, lower capital and operating cost, and easier integration of renewable and
distributed energy resources [12]. Microgrids, automotive, renewable energy systems, and several other
applications require a continuous demand of DC power flow from, to, or between its various energy
storage elements. These applications need a bidirectional DC circuit breaker to ensure the protection
and reliability of high-power DC branches. Fault protection due to the lack of zero-crossing point in
the DC fault current is a challenging issue that constrains the widespread use of DC power networks.

Several solutions of DC protection have been proposed to resolve the arc problem in DC networks.
For low voltage and medium voltage DC applications, oversized AC circuit breakers (ACCBs) are used
as a simple solution. However, this solution reduces the efficiency of the ACCB and increases the cost
if implemented on a large scale [13]. The fault characteristics of a DC power network are quite different
from the one in a traditional AC network. Thus, conventional AC protection schemes are inapplicable
to the DC power network [14]. Another option is applying the DC circuit breakers (DCCBs) based on
fully-controlled semiconductor devices, such as metal-oxide-silicon field-effect transistors (MOSFETs),
insulated-gate bipolar transistors (IGBTs), etc. [15]. However, the semiconductor-based DCCBs require
additional tripping circuits for forced commutation, which increases the cost and complexity of the
DCCBs. Additionally, the DCCBs have excessive power losses. In addition, for high voltage DC
applications, various mechanical circuit breakers were introduced in [16–18] for DC fault clearance.
“These mechanical DC breakers can only interrupt the fault current once and cannot achieve a second
round of interruption if a DC fault needs permanent reclosing”. Additionally, different kinds of
solid-state DCCBs [19], hybrid DCCBs [20], and power-electronic-based DCCBs [21–24] have been
developed for high voltage DC systems.

1.3. ZCB and HIF Detection/Interruption Modes

To overcome the limitations of the traditional DCCBs, a new solid-state circuit breaker named the
“Z-source Circuit Breaker (ZCB)” was introduced in [25], which can respond to and isolate DC faults
according to its specification. The z-source circuit, firstly introduced in [26], could interface a voltage
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or current source to achieve a voltage boost utilizing the short-circuit state [27]. Later, this “z-source”
concept found its application in DC circuit breakers, i.e., the ZCBs. A ZCB is based on the feature
of zero-current closing in a thyristor, which provides a way of interrupting load-carrying currents.
For operating the ZCB, a gate signal is initially applied to the thyristor until the z-source capacitors
are fully charged up to the source voltage and a steady-state current is flowing through the z-source
inductors. After that, the gate signal should be removed from the thyristor as the initial starting is
completed and steady-state operation is achieved. From now on, the ZCB is armed to operate in
response to fault conditions.

As of now, several topologies of ZCB have been introduced as the expansion and development
of the first proposed ZCB from [25]. A modified Z-source breaker topology was introduced in [28]
that uses a common return ground path to minimize the reflected fault current drawn from a source.
The study of [29] represented a bidirectional ZCB (BZCB) with reduced peak source current and its
low-pass filter frequency response characteristic. Likewise, another BZCB was designed in [30] by using
coupled inductors for low voltage DC microgrid applications. A low loss ZCB with a single silicon
controlled rectifier (SCR) was developed in [31], which improves the efficiency of power delivery in
low voltage DC systems. Later, the on-state losses in ZCB was further reduced by adopting an ultrafast
mechanical switch [32]. The reference [33] performed the analytical evaluation of system impedance
during fault in a DC system including a group of power electronic devices. The operational power
losses were compared among the several existing ZCB topologies in [34]. Based on our prior studies
on ZCB topologies, the research of this paper is performed on the topology of the intercross connected
bidirectional Z-source circuit breaker (ICC-BZCB) introduced in [35], because of its high efficiency.

In the protection study of DC power networks, many research works have been done. For example,
the development and assessment of the DC fault protection strategy were introduced for the medium
voltage integrated power systems [36]. Additionally, the application and protection scheme design of
ZCB was designed for DC microgrids [37]. However, all of these studies dealt with the low impedance
fault (LIF) cases, not the HIF case in this paper.

In this paper, a new method is proposed to specify the ICC-BZCB parameters to detect and
interrupt HIFs. This enables a new function of ICC-BZCB. The proposed method can be easily integrated
into a power network to handle HIF problems, and thus improves system reliability. The proposed
method can identify HIF conditions by monitoring the status of Z-source capacitance when the ZCB
is specified into the HIF detection mode (HD-Mode). Additionally, the ZCB can be specified into
the HIF interruption mode (HI-Mode) by adjusting the Z-source capacitance properly, in order to
interrupt the HIF freely. The HD-Mode is defined as the voltage oscillation on Z-source capacitances
that demonstrates the HIF occurrence but no HIF interruption, whereas the HI-Mode is defined as the
response of the ZCB to a HIF in order to cut it off. This is an easy and efficient way in the practical
application to realize the HDM/HIM specification in ZCB. The feasibility of this new method was
originally revealed in our prior study of [38]. Beyond that point, this paper introduces the theoretical
analysis to the revealed, derives a mathematical relationship between the maximum HIF resistance and
the required Z-source capacitances in ZCB, and verify its effectiveness with the original experiment
tests in [38] and the new high power simulation tests first presented in this paper.

The following sections of this paper are organized as follows: Section 2 briefly introduces the
topology and characteristics of ICC-BZCB; Section 3 describes the proposed method of specifying
HIF detection and interruption for ZCB; Section 4 verifies the proposed method with simulation and
experimental results and related analysis, which leads to a discussion and a conclusion drawn in
Sections 5 and 6.

2. Brief Introduction of “Intercross Connected Bidirectional Z-Source Breaker”

A ZCB typically consists of several power electronic components, including SCRs, diodes, and other
passive devices, e.g., inductors and capacitors. Up to date, there are several ZCB topologies and their
parameter specifications developed based on the principle of resonant circuit [28].
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The HIF detection/interruption method studied in this research was based on the topology of
ICC-BZCB as shown in Figure 1. This topology is highly efficient in power transferring and operates
in a similar resonant behavior like other ZCB topologies. It simply consists of two SCRs (T1 and T2),
two inductors (L1 and L2), three capacitors (C0, C1, and C2), and two diodes (D1 and D2), forming a
bidirectional power route between the voltage source (Vs) and the DC load (RL + CL). The principle
and feature of its bidirectional protection have been introduced in [35] in detail. The ICC-BZCB can
interrupt fault currents in both directions, if there is a distributed energy recourse replacing the passive
load branch in Figure 1.
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Figure 1. Components and circuit connection of intercross connected bidirectional Z-source circuit
breaker (ICC-BZCB).

3. Methodology of HIF Detection/Interruption with Z-Source Breaker

In this section, a new design methodology was described for component sizing and enabling
HIF detection/interruption in ICC-BZCB. This methodology is presented on an example DC system of
240 V and 3 A. Initially, the ZCB parameters are preliminary designed for the DC system based on
the method in [39] as listed in Table 1. The equations of the minimum detectable fault conductance,
minimum required fault conductance ramp rate, and SCR tripping time from [35,39] were used here for
parameter specification. With the parameters in Table 1, the ZCB can trigger any fault current higher
than or equal to the minimum detectable fault current selected by us, which is two times of the rated
load current, i.e., 2 × IL = 6 A.

Table 1. Z-source circuit breaker (ZCB) parameter specification from preliminary design.

Parameter Remark Value

C1 = C2 = C0 = CZCB Z-source capacitors 2.2 µF
L1 = L2 = LZCB Z-source inductors 1.23 mH

CLoad Load capacitor 1.26 µF
VSource Source voltage 240 V

IL Load current 3 A
PL Load power 720 W
RL Load resistance 80 Ω

RFault_Base Fault resistance base 80 Ω
tq SCR tripping time 10 µs

The preliminary design was verified here. Figure 2 shows the operation of a ZCB with the
specification of Table 1 for two different cases of fault current: Case I with a fault current IF = 5 A,
which was less than twice the rated load current; and Case II with IF = 7 A, which was higher than
twice the rated load current. It is observed that the breaker was irresponsive in Case I, whereas the
fault current was cut off successfully in Case II [38]. This test proved the feasibility of control of ZCB’s
responsive behavior to HIFs by specifying its parameters.

C1 
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to prove the feasibility of the ZCB control.

To freely control ZCB operating into the HD-Mode and HI-Mode, a new method was proposed
by specifying the Z-source capacitances (CZCB) in this paper. In this method, all of the Z-source
capacitances (i.e., C0, C1, and C2) increased proportionally and the relative responses of breaker to a HIF
were measured. It has been found that, as the value of CZCB increased, the reverse current contribution
of CZCB in responding to the HIF increased accordingly within the breaker. Figure 3 is obtained
to represent the relationship between the fault resistance and the required Z-source capacitance to
turn the SCR off under HIF conditions. As the value of CZCB increased, the minimum detectable
fault conductance of the breaker became even smaller. Table 1 was used as the base values for the
multiplication factor of CZCB in Figure 3 to specify and control HIF detection/interruption modes
for ICC-BZCB.
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From Figure 3, the maximum fault resistance that a breaker can trip under HIFs is derived as (1)
by using the curve-fitting method. The equivalent circuit of ICC-BZCB right after the occurrence of
fault is represented in Figure 4, which indicates the currents contributed for the SCR’s turnoff that are
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supplied by the Z-source capacitors. With the proper adjustments of Z-source capacitors, the ZCB is
now enabled to handle a fault current from a HIF with even smaller conductance value.

RF−Max =
RFault−Base

50
× (7× ln(CZCB−Mul) + 30) (1)

where: RF-Max is the maximum fault resistance that a ZCB can trip independently (in Ω); RFault-Base is
the base fault resistance (in Ω) as listed in Table 1; CZCB-Mul is the multiplication factor, by which the
Z-source capacitors should be amplified on the preliminary design values listed in Table 1.
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From the theoretical analysis, the current through the Z-source capacitor (C2) in terms of the fault
current (iF) given in [35] can also be restructured for our proposed HIF detection/interruption control,
as:

iC2 = CZCB−Mul ×

(
CZCB

CZCB ×CZCB−Mul + 1.5×CL

)
× iF (2)

Combining (2) with the Equations of (3) and (4) (i.e., the Equations (1) and (5) in [35]), a modified
equation for the minimum detectable fault conductance is derived here as (5):

ILoad =
Vs − vf,SCR − vf,Diode

RLoad + Ron,SCR + Ron,Diode + Rinductors
(3)

where, Vs is the source voltage; Vf,SCR and Vf,Diode are the forward voltage of the SCR and the diode
respectively; RLoad = load resistance, Ron,SCR = on-state SCR resistance, Ron,Diode = on-state diode
resistance, and Rinductors = inductor resistance.

ifault = G×VS (4)

Gmin =
CZCB−Mul ×CZCB + 1.5×CL

CZCB−Mul ×CZCB
×

1
RL

(5)

By comparing (1) and (5), both equations can introduce the same curve in Figure 3.
However, the equation of (1) is much more convenient to be used than (5) for practical applications.
Further, the post-fault behavior of ICC-BZCB is studied. During the initial moments of a fault, the total
transient current of C0 and C1 are in the reverse direction of SCR’s prefault current [35], as shown in
Figure 4. Thus, if magnitude of the sum of these reversely flowing currents (iC0 and iC1) is less than the
holding current (iH) of the SCR, i.e., (iC0 + iC1) < iH, the SCR would not turn off and operates in the
HIF detection mode. The holding current of SCR is the minimum anode current required to turn it off.
The HIF can be detected by monitoring the discharging status of ZCB capacitance. In other words,
if a HIF cannot motivate sufficient discharging from Z-source capacitors, the SCR would remain closed
and thus the HIF might remain unnoticed and cause significant damages to electric devices in the
system. In addition, the discharging amount is also proportional to the capacitance values of the
Z-source capacitors. Therefore, the ICC-BZCB can be controlled and specified in either the HD-Mode
or HI-Mode by adjusting Z-source capacitances, for HIF detection/interruptions.

.---+------ ------+-, 

Rf// RL 

it 
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To demonstrate the effect of Equation (1) for HIF detection/interruption, a simulation study is
performed on the low power DC system of Table 1 in MATLAB/Simulink. In the simulation tests,
the Z-source capacitances are adjusted along with a rise in fault resistance. All the breaker parameters
applied are initially acquired from Table 1. The CZCB value is magnified by 1.0, 2.0, and 3.0 times,
respectively. The updated values of CZCB for different multiplication factors are listed in Table 2.
The fault resistance was set to: RF = 40 Ω, 50 Ω, and 60 Ω, respectively.

Table 2. Adjusted CZCB values according to different CZCB-Mul.

Base CZCB
(µF)

CZCB-New = CZCB-Mul * CZCB (µF)

CZCB-MUL 1.0 2.0 3.0

2.2 CZCB-New 2.2 4.4 6.6

Figure 5 shows SCR currents for different RF values along with adjusted CZCB. RF-Max is the
maximum fault resistance that a ZCB can trip independently. RF-Max can be calculated using (1):
for CZCB-MUL = 2.0, RF-Max is calculated as 56 Ω, and for CZCB-MUL = 3.0 RF-Max is calculated as 61 Ω.
Thus, as observed in Figure 5b, for CZCB-MUL = 2.0, the breaker successfully turned off for RF = 40 Ω
and 50 Ω but was irresponsive to 60 Ω as this resistance value exceeded the maximum RF of 56 Ω
for this case. However, for CZCB-MUL = 3.0, the maximum RF of 61 Ω could lead to three successful
interruptions without failing since it is higher than all the three RF values. Thus, these tests verified the
effectiveness of the proposed method by specifying ZCB’s HD-Mode/HI-Mode via (1). The proposed
method is further verified via experiment tests on a low power testbed in lab and simulation tests on a
high power testbed in Section 4, to prove its general usage in DC power networks.

Electronics 2020, 9, 1654 7 of 16 

Electronics 2020, 9, x; doi: FOR PEER REVIEW www.mdpi.com/journal/electronics 

To demonstrate the effect of Equation (1) for HIF detection/interruption, a simulation study is 
performed on the low power DC system of Table 1 in MATLAB/Simulink. In the simulation tests, the 
Z-source capacitances are adjusted along with a rise in fault resistance. All the breaker parameters 
applied are initially acquired from Table 1. The CZCB value is magnified by 1.0, 2.0, and 3.0 times, 
respectively. The updated values of CZCB for different multiplication factors are listed in Table 2. The 
fault resistance was set to: RF = 40 Ω, 50 Ω, and 60 Ω, respectively. 

Table 2. Adjusted CZCB values according to different CZCB-Mul. 

Base CZCB 
(µF) 

 CZCB-New = CZCB-Mul * CZCB (µF) 
CZCB-MUL 1.0 2.0 3.0 

2.2 CZCB-New 2.2 4.4 6.6 

Figure 5 shows SCR currents for different RF values along with adjusted CZCB. RF-Max is the 
maximum fault resistance that a ZCB can trip independently. RF-Max can be calculated using (1): for 
CZCB-MUL = 2.0, RF-Max is calculated as 56 Ω, and for CZCB-MUL = 3.0 RF-Max is calculated as 61 Ω. Thus, as 
observed in Figure 5b, for CZCB-MUL = 2.0, the breaker successfully turned off for RF = 40 Ω and 50 Ω 
but was irresponsive to 60 Ω as this resistance value exceeded the maximum RF of 56 Ω for this case. 
However, for CZCB-MUL = 3.0, the maximum RF of 61 Ω could lead to three successful interruptions 
without failing since it is higher than all the three RF values. Thus, these tests verified the 
effectiveness of the proposed method by specifying ZCB’s HD-Mode/HI-Mode via (1). The proposed 
method is further verified via experiment tests on a low power testbed in lab and simulation tests on 
a high power testbed in Section 4, to prove its general usage in DC power networks. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Three simulation tests to verify (1) with CZCB-Mul = 1.0, 2.0, and 3.0 times. (a) SCR currents 
under the condition of CZCB-Mul = 1.0. (b) SCR currents under the condition of CZCB-Mul = 2.0. (c) SCR 
currents under the condition of CZCB-Mul = 3.0. 

  

Figure 5. Three simulation tests to verify (1) with CZCB-Mul = 1.0, 2.0, and 3.0 times. (a) SCR currents
under the condition of CZCB-Mul = 1.0. (b) SCR currents under the condition of CZCB-Mul = 2.0. (c) SCR
currents under the condition of CZCB-Mul = 3.0.

.,...._ 10 -RF-40O 

~ - - RF=50Q 

5 5 -·-Rc=60Q 
(/) 

,,~"' ~ - - - ~ - - - - - - - -
I !\,'-"""•-·-·-·-·-· 

___ _!_ ________ _} Czcs-Mu1= 1.0 
I I I 

0 t:..._ __ ___JL_~===::1====:i:====:!:====:::::I 
0 0.2 

.,...._ 10 -RF=40r1 

~ - - RF= son 
5 5 - · - R. = 60 n 

0.4 0.6 0.8 

Time (ms) 

I I I 

r. 
j \.'•f'r---·-·-·-· 

(/) -------------.i Czcs-Mul = 2.0 
0 1::.._ ___ ___J_ __ ...:l==:t===I ===I==='==±====:::=! 

0 0.2 0.4 0.6 0.8 

Time (ms) 

-----------•--, 
--RF= 40Q I 

I I - - RF= 50 fl I I Czcs-Mul = 3.0 
- ·-RF= 60 fl I i 

I I 

0 0.2 0.4 0.6 0.8 

Time (ms) 



Electronics 2020, 9, 1654 8 of 16

4. Simulation and Experimental Results

This section demonstrated the simulation and experimental results to validate the effectiveness of
the derived curve for HIF detection in Figure 3. At first, a low power experimental test was performed
on a hardware testbed, to verify the related simulation study in Section 3. After that, a high power
simulation test of 5 kV, 5 MW, which represents a high power resistive load, was performed in the
Matlab/Simulink environment. Beyond the low power experiment, this high power simulation test is
designed to prove the general usage of (1) in different system ratings, especially in an actual engineering
system with high power.

4.1. Experimental Tests on a 180 W, 120 V Testbed

An ICC-BZCB experimental prototype was designed to verify the proposed HIF control of ZCB,
as shown in Figure 6. The testbed was established according to the parameters listed in Table 1.
When the power supply was 240 V and the ZCB was specified to the “HI-Mode” with our proposed
method, the fault current could be successfully cut off, as shown in Figure 7. However, due to the limit
of current rating of 5 A in the “Main DC Power Supply” and some cases performed in the “HD-Mode”
intentionally, we had to perform these tests with a lower input voltage of 120 V, which resulted in the
prefault SCR current of 1.5 A and maintained the uncontrolled fault currents under 4.5 A to protect the
laboratory equipment. Be aware that the expected fault current was 9 A under 240 V power supply.
Since the construction ZCB model and circuit connection in Figure 1 was similar to those occurring
in a real system, the experiment could be scaled by applying the per-unit calculation, to reflect the
phenomena in the real world accurately [40,41]. The values in Figure 3 and Equation (1) are all per-unit
values, and the required CZCB and related RF can be scaled as (6).{

CZCB_real = CZCB_per_unit ×CZCB_base

RF_real = RF_per_unit ×RF_base
(6)

where CZCB_real and RF_real are the required Z-source capacitance and related fault resistance in a real
system, respectively; CZCB_per_unit and RF_per_unit are the required Z-source capacitance and related
fault resistance determined from Figure 3 and Equation (1), respectively; and CZCB_base and RF_base are
the required Z-source capacitance and related fault resistance that can be calculated from the ratings of
a real system, respectively.
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Three sets of an experimental test were performed on the testbed to verify effectiveness of the
proposed method by adjusting the values of Z-source capacitances according to Figure 3 and (1).
The CZCB was adjusted to 1.0, 2.0, and 4.0 times to their initial specified value in Table 1. During the
experiments, a fault was emulated by an additional resistive branch, which is connected in series to a
controlled IGBT as the “Fault Emulation Board”, as shown in Figure 6.

4.1.1. Test #1—“The Cases of Unity Multiplication Factor in CZCB, i.e., CAdj = 1.0 × CZCB”

In this test, we paid attention to the ZCB’s behavior in response to the fault current, while the fault
resistance (RF) gradually increasing. This test was performed to verify the cases with the multiplication
factor of 1.0. No other parameter changed, except CZCB.

As shown in Figure 8, the ZCB operated in the HI-Mode and the breaker cut the circuit
off in the HIF cases of lower fault resistances, in the cases of 0.438 × RFault_Base = 35 Ω and
0.5 × RFault_Base = 40 Ω. However, for higher fault resistances (in the cases of 0.625 × RFault_Base = 50 Ω
and 0.78 × RFault_Base = 62.5 Ω), the ZCB did not cut off the fault and stays in the HD-Mode. A HIF
could be detected by monitoring the status of CZCB and reported to the power system operator.
It matched the result of Figure 5a.
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4.1.2. Test #2—“The Cases of Two-Times Multiplication Factor in CZCB, i.e., CAdj = 2.0 × CZCB”:

In this test, the multiplication factor increased to 2.0, and thus increased the boundary of the
HI-Mode and HD-Mode to 56 Ω. This boundary increase led to the breaker’s turnoff when the fault
resistance was RF = 0.625 × RFault_Base = 50 Ω, as shown in Figure 9. It matched the result of Figure 5b.
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4.1.3. Test #3—“The Cases of Four-Times Multiplication Factor in CZCB, i.e., CAdj = 4.0 × CZCB”

In this test, the multiplication factor further increased to 4.0, and thus increased the boundary of the
HI-Mode and HD-Mode to 63.5 Ω. Beyond Test #2, the boundary increased further and thus led to the
breaker’s turnoff when the fault resistance was at the highest values: RF = 0.78 × RFault_Base = 62.5 Ω,
as shown in Figure 10.
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Table 3 summarizes the status of ZCB for different cases of HIFs with adjust CZCB values.
These results proved the effectiveness of (1), and demonstrated the controllability of ZCB towards
HIFs, which was enabled by adjusting CZCB values properly.

Table 3. Summary of ZCB’s status in three experiments.
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4.2. Simulation Tests of a 5 MW, 5 kV Case

To prove the general usage of (1), a 5 MW, 5 kV case representing a high power resistive load was
studied in the MATLAB/Simulink environment. The parameters of the simulation system are listed in
Table 4. The fault resistance was gradually increased and a response of the ZCB to this varying fault
current was observed.

Table 4. Specified parameters of the simulation system.

Parameter Remark Value

C1 = C2 = C0 = CZCB Z-source capacitors 36.92 µF
L1 = L2 = LZCB Z-source inductors 76.9 µH

CLoad Load capacitor 20.25 µF
VSource Source voltage 5000 V
RLoad Load resistance 5 Ω

RFault_base Fault resistance base 5 Ω
PLoad Max. Load Power 5 MW

tq SCR tripping time 10 µs

Here, by analyzing peak currents through the capacitors, the effectiveness of the proposed
method was numerically validated here. As stated earlier in Section 2, “During initial moments of a
fault, the total transient current of C0 and C1 are in the reverse direction of SCR’s pre-fault current”.
Thus, in order to ensure the SCR to commutate off naturally, the magnitude of the sum of iC0 and iC1

should be higher than the magnitude of the rated current of SCR at the prefault, which was 1 kA in this
test. Figure 11 shows the transient currents of the Z-source capacitors (C0, C1, and C2) and the load
capacitor (CL) were measured under different HIF resistances, which will be used in the performance
analysis of the ZCB control towards HIFs later.
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Further, the peaks of transient currents in CZCB were measured in the tests with a gradual
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for RF = 3 Ω and 3.5 Ω, for CZCB-Mul = 3.0. Likewise, it turned off for RF = 3 Ω, 3.5 Ω, and 4.0 Ω
for CZCB-Mul = 7.0, and finally turned off for all the case of RF with CZCB-Mul = 9.0, as highlighted in
green. Figure 12 shows the waveform of voltages and currents for different ZCB components when the
CZCB-MUL was equal to 1.0 and 9.0, respectively.

Table 5. Transient current and fault resistance analysis.

RF (Ω) CZCB-MUL iC0 (A) iC1 (A) iC0 + iC1 (A)
3

1.0

418 417 835
3.5 362 361 723
4 318 318 636

4.5 283 284 567
3

3.0

755 755 1510
3.5 704 704 1408
4 474 472 946

4.5 419 417 836
3

7.0

851 851 1702
3.5 790 790 1580
4 743 743 1486

4.5 492 482 974
3

9.0

875 876 1751
3.5 813 812 1625
4 762 763 1525

4.5 723 722 1445
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The result of Table 5 proved the effectiveness of using (1) to specify the HI-Mode/HI-Mode for
ZCB in another high power case. It also verified the general usage of (1) for the proposed method of
specifying ZCBs for HIF detection and interruption.

5. Discussion

It is observed in Figure 3 that the curve closed to its knee and thus the effect of this justification
gradually went into saturation. So, the effective region was [0, 10] in the multiplication factor of CZCB,
for this method. Fortunately, for many power engineering standards and applications, the system
operated in the overload condition and did not need a circuit cutoff, when the RF was higher than
1.0 per unit. Therefore, the proposed method could be applied to general HIF conditions.

From the laboratory experiments of test A, we generated a zoomed-in figure as Figure 13 to show
the effectiveness of identifying HIF conditions clearly. The mark “X” refers to the ZCB operating in the
HD-Mode, and the mark “O” refers to the operation of ZCB in the HI-Mode. It can be observed that the
“X” marks were separated from the “O” marks by the derived curve in the figure. Hence, Figure 13
proves the effectiveness and accuracy of the proposed method experimentally. Together, the tests in
Sections 4.1 and 4.2 proved the general usage of (1) in the engineering practice for the proposed method.
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6. Conclusions

To overcome the HIF problems in DC power networks, a new method was developed to specify
ZCBs to operate in either the HI-Mode for HIF interruption or the HD-Mode for HIF detection and
reporting. The specification of ZCB is enabled by adjusting the Z-source capacitors properly. Beyond the
feasibility of HIF detection revealed in [38], this paper conducted comprehensive analysis on the
Z-source capacitance specification and derived a mathematical relationship between the maximum HIF
resistance and required Z-source capacitance with enhanced verification tests. The derived equation
has been verified by the circuit analysis and parameter specification methods. Further, the effectiveness
and general usage of the derived equation have been validated in two different DC systems: a low
power experimental testbed and a high power simulation system. The numerical analysis in Table 5
further proved the theoretical analysis of Z-source specification for HIF detection. The new method
could detect/interrupt a HIF that was as small as 2 times of its nominal rated current. The method
enables the HIF detection in DC power networks and is easy to be implemented in modern DC power
systems to enhance their controllability and reliability in protection.
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