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Blending HF radar and model velocities in Monterey Bay 
through normal mode analysis 

B. L. Lipphardt Jr., 1 A.D. Kirwan Jr., 1 and C. E. Grosch 2 
Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, Virginia 

J. K. Lewis 

Ocean Physics Research & Development, Kalaheo, Hawaii 

J. D. Paduan 

Department of Oceanography, Naval Postgraduate School, Monterey, California 

Abstract. Nowcasts of the surface velocity field in Monterey Bay are made for the period 
August 1-9, 1994, using HF radar observations blended with results from a primitive 
equation model. A spectral method called normal mode analysis was used. Objective 
spatial and temporal filtering were performed, and stream function, velocity potential, 
relative vorticity, and horizontal divergence were calculated over the domain. This type of 
nowcasting permits global spectral analysis of mode amplitudes, calculation of enstrophy, 
and additional analyses using tools like empirical orthogonal functions. The nowcasts 
reported here include open boundary flow information from the numerical model. 
Nowcasts using no open boundary flow information, however, still provide excellent results 
for locations within the observation footprint. This method, then, is useful for filtering 
high-resolution data like HF radar observations, even when open boundary flow 
informatio n is unavailable. Also, since the nowcast velocity gradient fields were much less 
noisy than the observations, this may be an effective method for preconditioning high- 
resolution observation sets for assimilation into a numerical model. 

1. Introduction 

We analyze the surface currents and related kinematic and 
dynamic quantities for Monterey Bay for the period August 
1-9, 1994. The data for our analysis come from a high- 
frequency (HF) radar array. This effort extends in several ways 
the descriptive analysis of Paduan and Rosenfeld [1996]. That 
study focused on low-frequency motions (2-30 day periods) 
and a comparison of results between April to September 1992 
and August through December 1994. Significant longshore 
current reversals strongly correlated with wind were reported. 
Subsequently, Paduan and Cook [1997] discussed characteris- 
tics of the semidiurnal tidal and diurnal currents from this data 

set. The semidiurnal currents were driven predominantly by 
the M2 (12.4 hour) tidal constituent while the diurnal currents 
were correlated with winds produced by sea breeze processes. 

In contrast, the emphasis here is on smaller-scale kinematic 
and dynamic processes. Our motivation is the effort by Lewis et 
al. [1998] to assimilate this radar data into an adaption of the 
Blumberg and Mellor [1987] hydrodynamic model configured 
for Monterey Bay. The model domain extended shoreward 
from 122.60øW and from 36.40øN to 37.15øN, well beyond the 
radar footprint. A substantial portion of the model domain 
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boundary was open. Tidal heights on the open boundaries were 
specified from the global tidal model of Schwiderski [1981, 
1983], and open boundary velocities were specified from the 
linearized equations of motion. 

Although model simulations that assimilated the radar ob- 
servations produced currents that were in general agreement 
with the pattern seen in the radar data, Lewis et al. [1998] 
expressed concern that errors in the radar data could cause 
problems in the simulations. Horizontal divergences calculated 
from the radar data showed unrealistically large magnitudes, 
changes in sign from time step to time step, and little coher- 
ence between adjacent grid cells. These horizontal divergence 
patterns, when assimilated into the model, would tend to pro- 
duce unrealistic sea level differences of the order of meters at 

adjacent grid cells separated by 2.8 km. Lewis et al. [1998] 
concluded that additional processing of the radar data would 
be useful in order to minimize such effects. This issue is one of 

the subjects of this paper. 
The experiences of Lewis et al. [1998] are likely to be re- 

peated by other coastal zone modelers. This is because in 
recent years there has been a dramatic increase in the capa- 
bility to provide high-resolution space and time data of estua- 
rine and coastal regions. HF radar data are but one example. 
Others are synthetic aperture radars, Lagrangian drifters, new 
generation passive remote-sensing platforms, and a variety of 
towed instrumentation suites that provide fine-scale informa- 
tion on the density and velocity fields along ship tracks. These 
developments have been matched by equally dramatic in- 
creases in computational capabilities. Consequently, oceanog- 
raphers now routinely access both observational and compu- 
tational capabilities unimagined even a few years ago. 

3425 
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As demonstrated by the Lewis et al. [1998] study, analysis of 
high-resolution disparate (HRD) data raises many issues not 
encountered with more traditional oceanographic analyses. 
Some important issues are the following: (1) The horizontal 
resolution of HRD data sets may be as fine as, or finer than 
that of numerical models. Thus these data may contain infor- 
mation about intermittent subgrid-scale processes which would 
likely be smoothed out by traditional analyses. (2) HRD data 
sets may not cover the domain of interest uniformly. What 
roles can other data sources, including historical observations 
and numerical models, play in filling these spatial voids? (3) In 
nearshore and estuarine regions the domain boundaries may 
have large open flow segments. How can one blend coarse- 
scale information from models and historical databases on 

open boundaries with HRD data from the domain interior to 
produce reliable nowcasts? (4) HRD data sets have different 
accuracies, temporal and spatial resolutions, and spatial foot- 
prints. How can such highly variable data be blended with 
numerical model results to produce useful nowcasts? 

Here we illustrate these problems using the HF radar data 
and show one way that they can be addressed. We begin with 
the premise that nowcasts should incorporate as many dynam- 
ics as possible. This study uses a primitive equation model to 
specify time-dependent open boundary velocities and a few 
randomly selected interior values. However, other data sources 
would have been used if they were available. It is not reason- 
able to expect any single approach to address all of the above 
concerns optimally. 

We stress that the methodology used here is not critically 
dependent on the availability of open boundary flow informa- 
tion. In fact, if such information is not used, the approach still 
provides useful nowcast velocities at locations where the ob- 
servations are made. This closed-boundary nowcast smooths 
errors inherent in the observations, is three-dimensionally in- 
compressible, and ensures no normal flow at the coastline. The 
closed-boundary nowcast would be useful, then, for filtering 
HF radar observations prior to additional analyses. However, 
this type of closed-boundary nowcast would not be useful for 
estimating velocities at locations within the nowcast domain 
where no observations are available. Statistically based inverse 
methods could be used to fill these spatial gaps. This approach 
is not explored here. However, our limited experience suggests 
that the closed-boundary nowcast would be an effective 
method for preconditioning the observations prior to applica- 
tion of an inverse technique. 

For the more general problem considered here, we see two 
critical problems. One is how to fill spatial voids when the 
HRD data set does not cover the nowcast domain uniformly. 
Some combination of historical data, other observations, and 
model results must be used, and some weighting is appropriate 
as none of these data sources will necessarily be in dynamic 
balance with the HRD data. The second problem is how to 
properly constrain the nowcast at the domain open boundaries. 
Whatever scheme is employed should result in no normal flow 
at impermeable boundaries and the specified normal flow 
through open boundaries. 

These two problems are best addressed with a spectral ap- 
proach rather than through local interpolation and extrapola- 
tion. Most spectral approaches do not impose a significant 
computational penalty compared to local methods. Moreover, 
all spectral approaches should converge to the same (but not 
necessarily correct) result if enough terms are retained. Addi- 
tionally, the mathematical structure of spectral methods makes 

them ideally suited for filtering independently in space and 
time. 

Here we use a generalization of a spectral method first 
described by Rao and Schwab [1981] in an analysis of currents 
in Lake Ontario. More recently, this method has been applied 
to drifter and model data from the Black Sea [Eremeev et al., 
1992a, b], cesium contamination in the Black Sea from the 
Chernobyl incident [Eremeev et al., 1995a, b], HF radar data 
[Lipphardt et al., 1997], and moored current meter data on the 
Texas-Louisiana shelf [Cho et al., 1998]. 

Rao and Schwab [1981] described their method as one form 
of objective analysis. Cho et al. [1998] describe their approach 
as a two-dimensional Fourier analysis, since they use an or- 
thonormal, boundary-fitted coordinate system. Since our basis 
functions are calculated on a Cartesian grid and depend only 
on the geometry and resolution of the nowcast domain (with 
no dependence on observations or boundary conditions), we 
will refer to our spectral method as normal mode analysis 
(NMA). This method has several desirable attributes: (1) Any 
number of disparate observation data sets can be incorporated 
into the nowcast. (2) Specified normal flow at open boundaries 
and no normal flow through closed boundaries are exactly 
matched in the resulting nowcast. (3) Since the spatial resolu- 
tion of the NMA basis functions is unconstrained, disparate 
data sources with different spatial resolutions can be easily 
combined. (4) The nowcast velocity field is automatically 
three-dimensionally incompressible. (5) Objective, indepen- 
dent spatial and temporal filtering of the disparate data is 
readily accomplished. (6) Stream function, velocity potential, 
and velocity gradient fields such as horizontal divergence and 
relative vorticity are easily recovered to the same order of 
accuracy as the nowcast velocity field. (7) The basis functions 
permit natural partitioning of the nowcast field into separate 
vorticity and divergence components. (8) Objective analysis 
(eA) methods, such as those discussed by Davis [1985], can be 
readily incorporated into the NMA methodology. In the 
present study, the nowcast fields agree with the data to within 
reasonable estimates of the observational error. As a result, we 
have not employed eA methods here. 

Section 2 describes the data used for the nowcasts. Section 3 

discusses the analysis of the velocity field for Monterey Bay. 
Section 4 addresses the important issues of temporal and spa- 
tial filtering using this approach. Section 5 discusses the now- 
cast results. Section 6 presents a brief summary and discusses 
the limitations of the approach. 

2. Sources of Velocity Data for the Nowcast 
The velocity nowcasts made here rely primarily on measure- 

ments of near-surface current velocities in Monterey Bay from 
a Coastal Ocean Dynamics Applications Radar (CEDAR) HF 
radar system. Regular velocity measurements, at 2 hour time 
intervals, were available for the entire month of August 1994. 
During this period, data were collected and averaged from 
three radar sites around the Bay perimeter. The processed 
CEDAR data we use come from a uniform grid with a hori- 
zontal resolution of 2 km. A detailed description of the CO- 
DAR observations and an analysis of the low-frequency mo- 
tions they describe are given by Paduan and Rosenfeld [1996]. 
Although their data could not be used to report an expected 
accuracy of CEDAR measurements, they did make quantita- 
tive comparisons between filtered CEDAR observations and 
ADCP current measurements, reporting rms speed differences 
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Figure 1. Domain used for surface velocity nowcasting in Monterey Bay. Contours of bottom depth (in 
meters) are shown. The dashed lines show the open boundaries that define the nowcast region. The crosses 
show the locations of CEDAR velocity measurements for 0100 UT, August 9, 1994. The solid circle near the 
center shows the location of wind observations used to provide wind forcing for the numerical model. 

of 6-11 cm s -• and rms direction differences of ---51 ø. A more 

detailed intercomparison of in situ velocity measurements with 
an HF Ocean Surface Current Radar (eSCR) off Cape Hat- 
teras, North Carolina, reported by Chapman et al. [1997] sug- 
gests an upper bound on the accuracy of eSCR radial veloc- 
ities of 7-8 cm s -•. 

The CEDAR observations by themselves are insufficient to 
constrain a nowcast on a domain with open boundaries unless 
the open boundaries lie entirely within the CEDAR footprint. 
In that unlikely case, the CEDAR observations can be used to 
estimate surface currents at the open boundary. Here, how- 
ever, the nowcast domain extends beyond even the largest 
CEDAR footprint, so that some additional data source is 
required to specify open boundary flow. We use surface veloc- 
ity data from the Lewis et al. [1998] numerical model to con- 
strain the open boundary flow problem. A map of the model 
domain, with bottom topography, is shown in Figure 1. Some 
important features of the Lewis et al. [1998] model simulation 
include the following: (1) At model grid points where CEDAR 
observations were available, these observations were assimi- 
lated by the model using an optimized nudging scheme. (2) 
Wind observations from the Monterey Bay Aquarium Re- 
search Institute mooring M1 (marked by a solid circle in Figure 
1) were applied to every model grid point as a uniform wind- 

forcing field. (3) Tidal forcing was used at the model's open 
boundaries, but no explicit information about larger-scale 
flows like the California Current was included. 

For our analysis the open boundaries that define the nowcast 
domain (shown as dashed lines in Figure 1) were moved in- 
ward by four grid points from the true model boundary to 
ensure that nowcast boundary velocities will be determined by 
the model's dynamics and will not be strongly influenced by the 
model's radiation boundary condition. The crosses shown in 
Figure 1 show the CEDAR observation footprint for 0100 UT, 
August 9, 1994, as an example of a typical CEDAR footprint. 
The spatial extent and data density of this footprint varied over 
time; however, these variations are readily accommodated by 
the NMA analysis. Spatial coverage variability is typical of 
HRD observations. 

CEDAR measurements of surface velocity vary in their spa- 
tial coverage over time for a variety of reasons discussed by 
Paduan and Rosenfeld [1996]. Although both the size of the 
radar footprint and the uniformity of data coverage within the 
footprint show time variations, variations in footprint size are 
most troublesome. To complicate the spatial coverage prob- 
lem, the northwest and southwest corners of the nowcast do- 
main extend beyond even the largest available CEDAR foot- 
print. Figure. 1 shows typical spatial gaps that exist at the 
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northwest and southwest domain corners, as well as gaps 
within the footprint. Sources of additional velocity information 
from within these spatial gap regions will be required to prop- 
erly constrain the nowcast. 

NMA readily accepts any number of disparate sources of 
velocity observations, fitting spectral amplitudes to the entire 
observation set in a least squares sense. Consequently, we 
could look to other data sources such as ADCPs, Lagrangian 
drifters, current meters, climatology, and numerical models to 
provide additional velocity observations where spatial gaps ex- 
ist. If data sets of differing accuracies are available, the least 
squares approach is readily adapted to include eA techniques 
[Davis, 1985]. For the nowcasts reported here, the Lewis et al. 
[1998] model was randomly sampled in regions where spatial 
gaps exist in the CEDAR data coverage, providing the neces- 
sary additional nowcast constraints. Details of how spatial gap 
regions were identified and how the model was randomly sam- 
pled in these regions are discussed in section 3.4. 

3. Nowcasting Surface Velocity Using NMA 
Nowcasts of surface velocity were made for Monterey Bay at 

each point on a gridded domain based on the 39 x 39 numer- 
ical model grid used by Lewis et al. [1998]. The grid has 2 km 
spacing in both the west-east and south-north directions. Now- 
casting was done at 2 hour intervals for the period 0700 UT, 
August 1, 1994, to 1700 UT, August 9, 1994. 

As given by Eremeev et al. [1992a], the three-dimensional 
incompressible velocity field is expressed in terms of two scalar 
potentials as 

• = V x [•(-'I') + V x ½•)]. (•) 

Here, } is the unit vector in the vertical direction. It is impor- 
tant to note that this form ensures that the velocity field is 
exactly incompressible in three dimensions. 

Following traditional methods for the solution of boundary 
value problems, we begin by partitioning the surface velocity 
field at each grid point into two components: (1) The homo- 
geneous solution: the velocity field constrained solely by both 
CEDAR and model surface velocities with no flow through the 
domain boundaries. (2) The inhomogeneous solution: a two- 
dimensional velocity field due solely to the specified normal 
flow through the domain's open boundaries. 

3.1. Homogeneous Solution 

The interior velocity field is represented as an eigenfunction 
expansion. Since we require both horizontal divergence and 
relative vorticity for process studies, we choose a basis set 
consisting of two groups of basis functions, Dirichlet modes 
and Neumann modes. These basis functions are two- 

dimensional, representing the surface layer, with an irregular 
boundary, as shown in Figure 1. 

Calculation of these basis functions on a domain with an 

irregular boundary must be done numerically. Here, we use a 
FORTRAN library implementation (the ARPACK library) of 
the Arnoldi method, a direct method for determining eigen- 
values of large, sparse matrix systems. All residuals for numer- 
ical calculation of the basis functions were <1.0 x 10 -12. 

As shown by Eremeev et al. [1992a], calculation of the ver- 
tical component of relative vorticity from (1) in a Cartesian 
coordinate system gives a Helmholtz equation for •. Here, ß 
is expanded using eigenfunctions which we call Dirichlet 
modes (½n). They are solutions to 

V2½n -[" }[nCn: 0, ½n boundary: 0. (2) 

The •n may be thought of as a stream function or vorticity 
mode, with zero horizontal divergence. From (1) the gradients 
of ½n are expressed as 

(--0½n 0½n) (Un ' OX ' (3) 

As given by Eremeev et al. [1992a], calculation of the vertical 
velocity component from (1) in a Cartesian coordinate system 
gives a Helmholtz equation for (I). Here, (I) is expanded using 
eigenfunctions which we call Neumann modes ( 0m)' They are 
solutions to 

V20m øc' I&mOm : 0, ()•ø V 0m) boundary-- 0. (4) 

The 0m may be thought of as a velocity potential or divergence 
mode, with zero relative vorticity. From (1) the gradients of 
0m are expressed as 

(l•N •m) -- ( OOm OOm) (5) m, OX ' Oy ' 

3.2. Inhomogeneous Solution 

The homogeneous solutions satisfy zero normal flow at all 
boundaries. This is appropriate for impermeable boundaries 
like the coastline but is not appropriate for open boundaries 
where there will generally be both normal and tangential flow. 
Information about the flow at open boundaries can be included 
in the nowcast through the use of an inhomogeneous solution, 
which can be constructed to account for either the normal or 

tangential open boundary flow but not both. 
To account for the normal component of the flow at the 

domain's open boundaries, a boundary velocity potential solu- 
tion © can be calculated numerically at each nowcast time as 
the solution to 

V20(X, y, 0, t) = So(t), (/• ' vO)lboundary 

-'- (/•' • model) I boundary, 

where h is the unit outward normal vector on the boundary, 
•model is surface velocity from the Lewis et al. [1998] model, 
and So is a source term that accounts for the net flow into the 
domain through its open boundaries (tidal effects). So is de- 
fined as 

• /• ' •model dl 
S{.•(t) = . 

To account for the tangential component of the flow at the 
open boundaries, a boundary stream function Y can be calcu- 
lated numerically at each nowcast time as the solution to 

V2y(x, y, 0, t) = S¾(t), i-IV X (-)•Y)] boundary 

: (•' •model) lboundary, 

where • is the unit tangent vector on the bounda•, taken in the 
positive sense, and S y is a source term that accounts for the 
net circulation on the domain bounda•. Sy is defined as 
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• i' •model d l 
S¾(t) = . 

It is important to stress that the inhomogeneous solution 
cannot account for both the normal and tangential boundary 
flow components simultaneously, as this would be equivalent 
to an overspecification of (1). Thus an a priori decision must be 
made as to whether specification of the normal or tangential 
boundary flow component is most appropriate. 

Here, we have elected to use the inhomogeneous solution to 
specify the normal component of open boundary flow. This 
seems appropriate, since the boundary information comes 
from a tidally forced model. We stress that we do not suggest 
this approach as a universal paradigm. Other nowcast prob- 
lems will undoubtedly require different strategies for dealing 
with open boundary flow. 

Numerical solutions for O were determined using a double- 
precision version of the generalized minimum residual method 
for sparse matrices included in the SPARSKIT FORTRAN 
library, with residuals always <1.0 x 10 -11. From O, finite 
difference inhomogeneous solution velocities were calculated 
as 

(/,/i, Z/t)__ VO(X, y, 0, t). (6) 

Contour plots of O and vector plots of the associated veloc- 
ity field are shown for 0100 UT and 1300 UT on August 9, 
1994, in Figure 2. Spectral analysis of the open boundary ve- 
locities shows a dominant peak at the diurnal frequency. This 
was expected, since Lewis et al. [1998] used a combination of 
diurnal and semidiurnal tidal forcing along the model's open 
boundary and the wind forcing contains strong diurnal fluctu- 
ations. The times shown in Figure 2 were chosen to represent 
two tidal extremes in the boundary velocity flow field. 

Note that the O and velocity fields shown in Figure 2 are 
constrained only by the model normal surface velocities on the 
nowcast open boundary and the requirement for no normal 
flow across the closed domain boundaries. These fields repre- 
sent that portion of the total velocity field that is due to normal 
flow at the open boundaries. 

3.3. Complete NMA Nowcast 

For the domain shown in Figure 1, 50 ½,, and 50 (Dm modes 
were determined numerically. When the spectral representa- 
tion for the interior velocity solution is combined with the 
boundary velocity field derived from (9, the horizontal surface 
velocity components are expressed as 

N An(O ' t) M Bm(0 ' t) 
__ ,• __ Um•(X, y) •(x, y, O, t) = • v• •(x, y) + • 

n=l m=l 

+ui(x, y, O, t), (7a) 

N 

•(x, y, 0, t) = • ,•(0, t) ___ 

M Bm(0 ' t) 
•(x,y)+ • v-• •m•(X' y) 

m=l 

'q" ?yi(x, y, 0, t), (7b) 

where (u i, v i) are the inhomogeneous velocity components 
shown in (6), (u•, v•'•) are the Dirichlet mode velocities shown 

and (u',v') 
00 UT, 9 August 1994 

I • 25 crn s" I 
ß 

o 

oo 

O and (u',v') 
1300 UT, 9 August 1994 

I • 25 crn s" I 

Figure 2. Contour plots of (9 (nondimensional) with velocity 
vectors (in cm s -1) overlaid for 0100 UT and 1300 UT on 
August 9, 1994. Positive values are shown as solid contours. 
Negative values are shown as dotted contours. The zero con- 
tour is dash-dotted. 

in (3), (Urn •, •V Vm) are the Neumann mode velocities shown in 
(5), and 

,y•o=ff [(u•ø)2+(v•ø)2]dxdy 
ff dxdy 

•m•= 
f f [(U•m) • + (•m) •] aX ay 

ff dxdy 
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so that (An/TnD) 2 and (Bm/TmN) 2 are proportional to kinetic 
energy. This normalization allows for comparison of mode 
kinetic energies, which is useful as a criterion for spatial filter- 
ing. 

From (t), if u and v are known in two horizontal layers, the 
mean vertical velocity between the layers is expressed as 

M 

Ox 2 + Oy2 , 
m=l 

Bm(g , t): Bm(g', t) dz'. 

We include the above w equation for completeness, but 
since we analyze only the surface velocity field, we are unable 
to estimate w here. 

The A,, and B m amplitudes above are determined by mini- 
mizing the following error measure: 

1 + 
k=l /=1 

(Ha, •h)= (., •)_ (.t, •t). 

Here (u øus, v øus) are measured velocities, either from CEDAR 
obse•ations or model data sampled from the interior. K and L 
are the total number of u øbs and v øbs, respectively. From (4), 
(u, v) are nowcast velocities. Weighting factors (•, W •) 
might be used to account for statistical correlations in the 
obsemations, using methods similar to those described by 
Davis [1985]. Here, since the CEDAR velocities are reported 
on a uniformly spaced grid and we make no assumptions about 
their statistical properties, (•, W •) are set to t.0, so that our 
results represent the simplest implementation: a uniformly 
weighted, linear least squares minimization. 

Typically, 500-600 measured velocities (1000-1200 veloci• 
component equations) were used to determine up to 50 A• 
and 50 B• amplitudes, so that the linear system was always 
overdetermined. The linear least squares minimization prob- 
lem was solved numerically using a FORTRAN implementa- 
tion of the QR (orthogonal-upper triangular) matrix factor- 
ization technique provided in the LAPACK libra•. 

From (7), to the same order of accuracy as u and v, stream 
function •, velocity potential •, relative vortici• •, and hori- 
zontal divergence (V•. fi) are expressed as 

where V/_/ - (O/Ox, O/Oy). Note that the above expressions 
for s and horizontal divergence do not require differentiation 
of the ½,• or 4)m fields. 

3.4. Spatial Gaps 

Early in our work, we attempted to use tOO modes to com- 
bine CEDAR observations with open boundary flow informa- 
tion from the model, with no information about flow in the 
large spatial gap regions in the northwest and southern por- 
tions of the domain (see Figure 1). That nowcast produced 
large unrealistic flows in the spatial gap regions. We identified 
two possible approaches to eliminating these regions of large, 
unrealistic flow. One approach would be to simply reduce the 
total number of nowcast modes used. As the mode set is 

reduced, the smallest spatial scale resolved by the mode set 
increases. When the smallest resolved spatial scale becomes 
larger than the spatial scale of the gaps, the spurious unrealistic 
flow problem vanishes. However, using this approach for do- 
mains with large spatial gaps will sharply reduce the spatial 
resolution of the nowcast. 

A second approach would be to supplement the CEDAR 
observations with velocity information for the spatial gap re- 
gions from another source. Since we wish to demonstrate how 
the NMA method can be used to blend disparate data sources, 
we have chosen the second approach to solving the spatial gap 
problem: We supplement the CEDAR observations with 
model surface velocities randomly sampled from the spatial 
gap regions. All CEDAR measurements inside the domain 
were included in the nowcast. Spatial gap points on the now- 
cast grid were identified as any interior grid point with no 
available CEDAR measurement inside a 2 km radius circle 

centered on the point. To fill these spatial gaps, the group of 
spatial gap points was randomly sampled, and both the u and 
v model velocity components at each sampled gap point were 
then added to the set of measured velocities. 

To determine the minimum amount of supplemental model 
data needed to fill the spatial gaps, a series of nowcasts were 
made using various sizes of randomly sampled model velocity 
populations. Comparison of these nowcasts showed that no 
more than -20% sampling was needed in the spatial gap 
regions and that the nowcast was insensitive to increases in this 
model sample population size. As a result, we report results 
only for nowcasts using an approximate 20% sampling rate. 

Figure 3 shows the number of CEDAR (solid line) and 
model (dashed line) velocity components used to constrain the 
nowcast at each time. Figure 4 shows distributions of measured 
velocities used for two nowcasts. The upper plot (0700 UT, 

N 

q,(x. y. 0. t): .4..(0. y). 

M 

(I)(x, y, 0, t) = • Bin(O, t)4)m(X, y) -3- O(X, y, O, t), 
m:l 

N 

s: k. v x a(x, y, 0, t): t) y), 
n=l 

M 

V H ' •(X, y, 0, t) = -- • Bm(0 , t)/&m4)m(X , y), 
m=l 

(8) 

(9) 

(lO) 

(11) 
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August 1994 (UT) 

Figure 3. Number of CODAR (solid line) and model 
(dashed line) velocity components used to constrain the tOO- 
mode nowcast at each time. 
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Figure 4. Distribution of measured velocities used for two 
nowcasts. CODAR observations are shown as crosses. Loca- 

tions which meet our criterion for a spatial gap are shown as 
circles, with solid circles indicating those spatial gap points 
where randomly sampled model velocities were used as addi- 
tional measured velocities. Blank spaces in the grid show lo- 
cations where no CODAR observations were available and 

where our spatial gap criterion was not met. 

August 4, 1994) shows a case with a very small CODAR foot- 
print, so that the population of sampled interior model points 
is large. The lower plot (0900 UT, August 9, 1994) shows a case 
where the CODAR footprint was quite large, covering most of 
the nowcast domain. 

3.5. Summary of the Nowcast Method 

To summarize, the important steps of the NMA nowcast are 
as follows: (1) Compute Dirichlet (½, and Neumann (I•) m) 
basis functions and their gradients numerically for the nowcast 
domain. This only needs to be done once, since the basis 
functions are not time dependent. (2) At each nowcast time, 
compute the inhomogeneous velocity field (u i, v i) using the 

best available information about normal flow through the now- 
cast domain open boundaries. (3) At each nowcast time, com- 
pute the mode amplitudes (A,, B m) for the homogeneous 
velocity field as the least squares fit to all available disparate 
velocity observations. (4) Temporally filter the (A,, n m) time 
series, if desired. (5) At each nowcast time, use (7)-(11) to 
calculate velocity components and other kinematic or dynamic 
quantities at each point on the nowcast grid. 

4. Using NMA for Objective Filtering 
The spectral nature of the NMA approach allows for sepa- 

rate temporal and spatial filtering in an objective way. For 
spatial filtering, the complete 100-mode nowcast serves as a 
basis for selecting a reduced mode set. Since the basis func- 
tions are normalized, mode selection is based on comparison 
of properties of the mode amplitudes. It is important to note 
that the form of the mode amplitude used for comparison 
depends on which kinematic or dynamic quantity is to be an- 
alyzed. Table 1 shows the particular amplitude forms most 
useful for spatial filtering as part of the NMA analysis of the 
nowcast quantities defined in (7)-(11). 

A variety of different schemes might be considered for spa- 
tial filtering, based on various properties of the mode ampli- 
tudes. A few examples of possible spatial filtering schemes are 
the following: (1) Calculate a representative value for each 
mode amplitude time series (rms, mean-square, etc.) and re- 
tain only those modes with values greater than a specified 
threshold. (2) Examine the power spectra for each mode am- 
plitude time series and retain only those modes that have at 
least one statistically significant spectral peak. (3) Examine the 
spatial scales resolved by each mode basis function and retain 
only those modes that resolve spatial scales in a specified 
range. 

Here we focus on analysis of the velocity field, and we use a 
spatial filtering scheme based on the kinetic energy contained 
in each mode. Our spatial filtering scheme is described in 
section 4.1. 

Many other spatial filtering mode selection schemes could 
also be devised. It is not possible to devise a scheme that 
optimizes the analysis of all quantities defined in (7)-(11) 
simultaneously. Spatially filtered nowcasts of the velocity and 
relative vorticity fields, for example, will almost certainly use 
different subsets of the full 100-mode basis set, depending on 
how the mode selection criteria are developed. 

When the reduced mode set has been selected through spa- 
tial filtering, the time series of each mode amplitude can be 
temporally filtered, if desired. Many temporal filtering schemes 
are possible. Our temporal filtering scheme will be described in 
section 4.2. 

Table 1. Mode Amplitude Forms Most Useful for Mode 
Selection During Spatial Filtering 

Field To Be Analyzed Amplitude Form 
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Figure 5. (a) Normalized mean An kinetic energy KE versus Dirichlet mode number; (b) normalized mean 
B m kinetic energy versus Neumann mode number; (c) number of modes retained versus cutoff percentage. 
The dashed horizontal line in Figures 5a and 5b shows the cutoff value of 15% used to obtain the reduced set 
of 12 modes. 

4.1. Spatial Filtering 

Our nowcast analysis focuses primarily on the velocity field, 
so that, as shown in Table 1, we analyzed (An/7•, Bm/7m •) to 
develop a criterion for selecting the reduced mode set. Our 
criterion was based on the mean kinetic energy KE for each 
amplitude time series, defined as 

KEn• = 2• [An(J)/%•]' 
J=l 

J 

KEm N = • Z [Bm(j)/TmN] 2, 
j=l 

where J is the number of time intervals in the time series. Here, 
J is 102. 

Note that since the mode velocity fields are normalized and 
nondimensional, (An/T•, Bm/Tm N) have units of cm s -• so 
that the square of these amplitudes is proportional to kinetic 
energy. Our spatial filtering criterion was to retain only those 
modes with 15% or more of the maximum KE from the 100- 

mode nowcast. Spatial filtering resulted in a reduced set of 12 
total (6 Dirichlet and 6 Neumann) modes. 

Figure 5 shows a summary of the spatial filtering procedure. 
Figure 5a shows a plot of KE• (normalized by the maximum 
KE value, KE2 •) versus mode number for the 50 Dirichlet 
modes. Figure 5b shows a plot of KErn • (again normalized by 
KE2 ø) for the 50 B m (Neumann) modes. In Figures 5a and 5b, 
open circles show values above the 15% cutoff, and solid cir- 
cles represent values below this cutoff. Figure 5c shows the 
number of modes that are retained versus cutoff percentage. 
Cutoff percentage is defined as the ratio of KE• or KEm • to the 
maximum KE value. Any mode that meets or exceeds the 
cutoff is retained. 

Figure 6 shows maps of the six Dirichlet modes ½nretained 
for the spatially filtered nowcast. Figure 7 shows nondimen- 
sional vectors representing the gradients of these Dirichlet 
modes (Un •, V•) used in the homogeneous part of the nowcast 
field as shown in (7). Figures 8 and 9 show similar results for 
the six Neumann modes used for the spatially filtered nowcast. 

As seen in Figure 5a, ½• through ½4 are the most energetic 
Dirichlet modes, and ½2 is the dominant mode. Figures 6 and 
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Figure 6. The six Dirichlet modes ½n retained for the spatially filtered surface velocity nowcast. Each field 
has been normalized and is nondimensional. Positive values are shown as solid contours, and negative values 
are shown as dashed contours. 

7 show that a linear combination of ½• and ½2 will produce an 
asymmetrical vortex pair consisting of a large offshore gyre 
and a smaller oppositely rotating gyre near the coast, con- 
sistent with the daily and monthly mean CODAR velocity 
fields reported by Paduan and Rosenfeld [1996]. Figure 5b 

shows that 4)• and 4)2 are the most energetic Neumann 
modes. From Figures 8 and 9 it can be seen that a linear 
combination of these modes describes the broad cross-shelf 

surface layer response to the combined effects of wind and 
tides. 
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Figure 7. Nondimensional vectors showing the gradients of the six Dirichlet modes (u•, v•)•) retained for 
the spatially filtered surface velocity nowcast. 

4.2. Temporal Filtering 
In general, we expect HRD observations to be irregularly 

spaced in time; this requires a robust technique like Lomb's 
method for calculation of power spectra. We use this method 
here, even though the CODAR observations are uniformly 
distributed in time. As is well known, Lomb's method spectra 

are consistent with those obtained using other spectral analysis 
methods when the time series is uniformly spaced. 

The spectra (normalized by the variance of the time series) 
for the 12 most energetic mode amplitudes (determined during 
spatial filtering) are shown in Figure 10. The largest peak in 
each spectrum is marked with a vertical dashed line, and its 
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, 

Figure 8. The six Neumann modes (Dm retained for the spatially filtered surface velocity nowcast. Each field 
has been normalized and is nondimensional, with contours presented as in Figure 6. 

period is shown at the upper right in each plot, in days. The 
horizontal dashed lines on each plot indicate probability of 
significance levels of 95% (upper lines) and 5% (lower 
lines). These spectra show that except for A 3 and ZI 6 all of 
the modes are dominated by oscillations at diurnal and 
near-diurnal frequencies, consistent with the results re- 
ported by Paduan and Rosenfeld [1996], who note that the 

largest signals present at every CODAR observation loca- 
tion derive from tidal period motions that include sea 
breeze current effects. 

For the spatially filtered 12-mode set, temporal filtering was 
performed by sequentially fitting a quadratic plus three har- 
monic functions to each amplitude time series. Since the now- 
cast period spanned only 202 hours, the quadratic fit was used 
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Figure 9. Nondimensional vectors showing the gradients of the six Neumann modes (u N N m, Vm) retained for 
the spatially filtered surface velocity nowcast. 

to account for low-frequency motions (with periods > 10 days) 
which could not be resolved through spectral analysis. The 
frequencies for the three harmonic fits were chosen as the 
frequencies of the three most energetic spectral peaks from 
spectral analysis of each individual amplitude time series from 
the 100-mode nowcast. The temporally filtered amplitudes 
(An, Bin) , constructed of only the quadratic and three har- 
monic components, were expressed as 

An(t) = an + bn(t - to) + Cn(t -- t0) 2 
3 

i sin [w;(t- to)]}, + • {d; cos [(Oin(t- to)] + en 

Bm(t) = am + bm(t - to) + Cm(t -- t0) 2 
3 

i + • {d/m cos [W•m(t - to)] + em sin [Wim(t -- to)]}, 
i=i 
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Figure 10. Power spectra for the 12 most energetic mode amplitudes, as determined during spatial filtering. 
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Table 2. Periods of the Harmonics Used to Construct the 

Temporally Filtered A n and B,• for the 12-Mode Nowcast 

Mode T 1 T 2 T 3 

A 1 0.96 0.52 1.29 
A 2 0.99 0.86 0.50 
A 3 4.21 1.53 1.12 
A 4 5.61 0.99 0.53 
As 0.99 3.37 0.46 
A 6 5.61 0.94 0.52 
B• 0.99 0.86 0.75 
B 2 0.99 0.84 4.21 
B3 0.86 0.51 0.75 
B 4 0.96 0.75 0.86 
Bs 1.02 0.51 0.55 
B10 0.99 0.52 0.47 

Periods are given in days. 

with n = (1, 2, 3, 4, 5, 6) and m = (1, 2, 3, 4, 5, 10). 
Here, a, b, and c are coefficients of the quadratic fit and d i 
and e i are coefficients of the ith-mode harmonic fit. Table 2 

shows the periods for the three harmonics used to temporally 
filter each mode for the 12-mode nowcast. Figure 11 shows a 
histogram for the 36 harmonic periods shown in Table 2. Time 
series of the A n and B m used for the 12-mode nowcast are 
shown as solid lines in Figure 12. The short-dashed lines in 
Figure 12 show the time series for these amplitudes from the 
100-mode nowcast. The long-dashed lines in Figure 12 show 
the quadratic fit for the 100-mode nowcast time series. 

5. Nowcast Results 

A comparison of the surface velocity nowcasts using all 100 
modes and the reduced set of 12 modes is shown in Figure 13 
for 0100 UT, August 9, 1994. Figure 13 shows that both now- 
casts generally agree well with the observed CODAR veloci- 
ties. The 12-mode nowcast (Figure 13c) is smoother, but still 
describes the larger-scale structure seen in the CODAR data. 
The spatial smoothing that results from the reduction to a 
12-mode set also results in somewhat larger differences with 
the CODAR observations, as seen in the Figure 13e. 

5.1. Vorticity and Divergence 

It is difficult to describe the spatial structure of velocity 
gradient fields like relative vorticity or horizontal divergence 
using either the CODAR observations or the model surface 
velocity fields. Spatial and temporal gaps in the CODAR ob- 
servations prevent finite difference estimation of velocity gra- 
dients over the entire domain. Most primitive equation mod- 

9 

o 

o 1 

Period (Days) 

Figure 11. Histogram of the 36 harmonic periods used to 
construct the temporally filtered A n and B m for the 12-mode 
nowcast. 

els, including the one used by Lewis et al. [1998], calculate the 
velocity field with a truncation error proportional to/32, where 
/3 is the grid spacing. For these models, finite difference esti- 
mates of velocity gradients have truncation errors proportional 
to 

Figure 14 shows the model velocity, relative vorticity, and 
horizontal divergence fields for 0100 UT, August 9, 1994. The 
model relative vorticity and horizontal divergence were calcu- 
lated using centered finite differences of model velocities. The 
lack of spatial coherence in the gradient fields reflects the 
increased truncation error in the finite difference estimates. 

Nowcast relative vorticity and horizontal divergence were 
calculated as in (10) and (11). A comparison of the relative 
vorticity and horizontal divergence fields for the 100-mode and 
12-mode nowcasts is shown in Figure 15 for 0100 UT, August 
9, 1994. Figures 15a, 15c, and 15e show the results from the 
100-mode case, with the 12-mode results shown in Figures 15b, 
15d, and 15f. Comparison of these velocity gradient fields more 
clearly reveals the underlying spatial filtering: Vorticity and 
divergence patches in the 100-mode nowcast fields have spatial 
scales as small as 10 km, while the 12-mode nowcast fields have 
spatial scales of 20 km or larger. Spatial filtering of the velocity 
fields results in smoothing of these gradient fields. The nowcast 
fields shown in Figure 15 can be compared directly to the 
model results shown in Figure 14, except that the contour 
interval for the model contour plots in Figure 14 is twice as 
large as that used in Figure 15. 

Figure 15 shows that nowcasting can supplement both the 
CODAR observations and the model with improved estimates 
of the spatial structure of the velocity gradient fields. Although 
the spatial filtering criterion was not based on an analysis of the 
velocity gradient fields, the kinetic energy-based spatial filter- 
ing still clarifies this spatial structure. It is interesting that the 
100-mode nowcast vorticity field (Figure 15c) consists of small- 
scale structures imposed on larger-scale features of the same 
sign, while the 12-mode nowcast vorticity field (Figure 15d) 
shows a cyclone inside Monterey Bay, with a companion anti- 
cyclone offshore. This pairing of a nearshore cyclone with an 
offshore anticyclone agrees well with the monthly mean veloc- 
ity field for August 1994 shown in the lower plot of Figure 12 
of Paduan and Rosenreid [1996]. 

The interpretation of the horizontal divergence structure is 
not as clear. The 100-mode nowcast divergence shows a ridge 
of upwelling (divergence) running roughly eastward across the 
middle of the domain and cutting across the middle of the 
offshore anticyclone. There is also upwelling along the north- 
ern coastline. Some evidence of both of these features is 

present in the spatially filtered 12-mode horizontal divergence 
field. 

Spatial filtering removes small-scale features in both the 
relative vorticity and horizontal divergence fields. The under- 
lying large-scale structure in the relative vorticity field is con- 
sistent with the large-scale circulation in Monterey Bay. The 
large-scale structure of the horizontal divergence field is not as 
easily interpreted. 

The NMA nowcast method reduces noise in the nowcast 

velocity gradient fields in two ways. First, as seen in Figures 5a 
and 5b, the wave number spectra for Dirichlet and Neumann 
mode numbers >10 are essentially flat, suggesting that the 
velocity contributions from these modes contain only white 
noise. Our technique for spatial filtering eliminates this noise 
from the 12-mode nowcast. Second, traditional finite differ- 
ence techniques used to calculate velocity gradients amplify 
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Figure 12. Time series of amplitudes A,• and B m (in cm s-•) for the spatially filtered 12-mode set. The 
short-dashed lines show values for the 100-mode nowcast. The solid lines show the temporally filtered values. 
The long-dashed lines show the quadratic fit of the 100-mode nowcast time series. 
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a 

1_ L CODAR Velocity 

Figure 13. Comparison of 100-mode and 12-mode nowcast velocity fields for 0100 UT, August 9, 1994. The 
CODAR-observed velocities are shown in Figure 13a. Figure 13b shows the 100-mode nowcast velocity field. 
Figure 13c shows the 12-mode nowcast velocity field. Figures 13d and 13e show the difference between the 
CODAR and nowcast velocity fields. 

noise present in the velocity measurements. As shown in (10) 
and (11), relative vorticity and horizontal divergence are cal- 
culated to the same order of accuracy as the velocity field using 
the NMA technique. 

As an example, Figure 10 of Lewis et al. [1998] shows time 
series of horizontal divergence calculated from CODAR ve- 
locity observations at two adjacent grid cells, using finite dif- 
ferences. These time series are also shown in Figure 16a. The 
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Figure 14. (a) Velocity, (b) relative vorticity, and (c) horizontal 
divergence from the Lewis et al. [1998] model at 0100 UT, 
August 9, 1994. For the plots of relative vorticity and divergence, 
solid contours show positive values, and dashed contours show 
negative values, with a contour interval of 1 x 10 -s s -•. 

two time series show large divergence fluctuations, with peak 
values as large as 1.6 x 10 -3 s -1. In addition, the divergence 
at these two adjacent grid cells, separated by 2.8 km, was often 
opposite in sign. Lewis et al. [1998] show that for a 2 m thick 

surface layer, large, oppositely signed divergence values like 
these over a 2 hour period will tend to produce a sea level 
difference between the two grid points of the order of meters. 
These sea level differences will generate model velocities that 
would act to reduce such large sea surface gradients. 

Figure 16b shows the nowcast horizontal divergence at the 
same locations, using 100 modes. The 12-mode nowcast values 
are shown in Figure 16c. These results show that regardless of 
the number of modes used, the NMA nowcast results in a 
divergence field that is much more spatially coherent than the 
CEDAR observations. The 100-mode nowcast reduces the 

peak divergence values by nearly a factor of 2. Spatial filtering 
by use of a 12-mode set reduces peak divergence values to less 
than one tenth of the CEDAR value. 

5.2. Mean Kinetic Energy 

At each nowcast time, kinetic energy was calculated at all 
locations where CEDAR velocity observations were available. 
The mean kinetic energy ([KE]) for all observation locations is 
expressed as 

P 

p=l 

[KE] = 2P 

where P is the total number of CEDAR observations at a given 
time. 

For the nowcast velocity fields, [KE] was calculated using 
nowcast velocities from the same geographic positions as the 
CEDAR observations. Figure 17a shows a comparison of [KE] 
for CEDAR observations, the 100-mode nowcast, and the 12- 
mode nowcast. From the data shown in this panel, the mean 
values of [KE] are 336.2 cm 2 s -2 for the CEDAR observations, 
304.5 cm 2 s -2 (91% of CEDAR value) for the 100-mode now- 
cast, and 197.1 cm 2 s -2 (59% of CEDAR value) for the 12- 
mode nowcast. 

Figure 17b shows differences in [KE] between the CEDAR 
observations and both the 100-mode nowcast (dashed line) and 
the 12-mode nowcast (dotted line). Figure 17c shows the num- 
ber of CEDAR velocity observations available for each time 
intervalp. 

5.3. Enstrophy At each nowcast time, enstrophy (mean-square relative vor- 
ticity) was calculated for both the 100-mode and 12-mode 
nowcasts as 

where • is relative vorticity, defined as in (10). 
Figure 18a shows time series of enstrophy for the 100-mode 

nowcast (solid line) and the 12-mode nowcast (long-dashed 
line). Figures 18b and 18c show power spectra for these two 
time series plots, after removing a quadratic trend from each of 
them. The spectrum for the 100-mode enstrophy time series is 
broad, with no clear spectral peaks, while the spectrum for the 
12 mode case has a single dominant peak at the diurnal fre- 
quency. It is not clear why the 100-mode nowcast enstrophy 
contains no significant spectral peaks. 
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Figure 15. Comparison of 100-mode and 12-mode (a and b) nowcast velocity, (c and d) relative vorticity, and 
(e and f) horizontal divergence fields for 0100 UT, August 9, 1994. Figures 15a, 15c, and 15e show the 
100-mode nowcast, with 12-mode nowcast results in Figures 15b, 15d, and 15f. For the plots of relative vorticity 
and divergence, solid contours show positive values, and dashed contours show negative values, with a contour 
interval of 5 x 10 --6 S-1. 

In the absence of viscosity and sources, enstrophy is con- 
served in closed basins. Figure 18a shows substantial •2 
fluctuations on timescales of ----4-6 hours. This is most likely 
caused by the presence of open boundaries. Even if the 

model boundary conditions did not transport vorticity into 
and out of the domain, the CODAR data implicitly contain 
fluctuations due to vorticity transport across the domain 
boundaries. 
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Figure 16. Time series of horizontal divergence (in 10 -4 S -1) at grid cells (20, 21) (solid lines) and (21, 20) 
(dashed lines) in the Monterey Bay model domain described by Lewis et al. [1998]. Figure 16a shows 
divergence calculated from CEDAR observations. Figure 16b shows the 100-mode nowcast divergence. Figure 
16c shows the 12-mode nowcast divergence. 

5.4. Comparing the Model and Nowcasts 
With the CODAR Observations 

Since data assimilation by the Lewis et al. [1998] numerical 
model may be viewed, by itself, as one form of nowcast, it is 
important to determine how the NMA nowcasts reported here 
offer improvement for the analysis problem. The model veloc- 
ity field shown in Figure 14a agrees well with observed CO- 
DAR velocities (shown in Figure 13a). However, near the 
center of the northern open boundary, a line of unusually high 
velocities, two grid points wide and directed southward, ex- 
tends to the south for 12-15 km. This line of high velocities is 
evident during much of the model simulation and is not readily 
explained, although it may be related to the optimization 
scheme used to calculate the open boundary conditions. As 
seen from Figure 1, this high-velocity line occurs over the shelf 
break region, so that changing bottom topography may also be 
causing model computational problems. On the open bound- 
ary the two high-velocity points were replaced by linearly in- 
terpolated values, using the neighboring open boundary points, 
prior to calculating the boundary solution used for the now- 
casts described here. 

Qualitatively, the CeDAR-observed velocity field (Figure 
13a) agrees well with the model (Figure 14a), the 100-mode 
nowcast (Figure 13b), and the 12-mode nowcast (Figure 13c). 
In order to quantify the differences between these realizations 

of the velocity field, root-mean-square (rms) speed differences 
were calculated for both the u and v velocity components as 

• (Uc- 5, Vc- •)2 
:• P (/•U, /• V)rms -- , 

where (u c, Vc) are CeDAR-measured velocities, (5, ½) are 
model or nowcast velocities, and P is the total number of 
CEDAR observations at a given time. 

Figure 19 shows time series of rms speed differences for 
CEDAR minus model (solid lines), CEDAR minus 100-mode 
nowcast (long-dashed lines), and CEDAR minus 12-mode 
nowcast (short-dashed lines). As a reference, the mean rms 
values of the measured CEDAR (u, v) are (16.1, 19.7) cm s -1. 
The 100-mode NMA nowcast velocities are in closest agree- 
ment with the CEDAR observations, with the model and 12- 
mode nowcast velocities showing comparable rms differences. 
NMA nowcasting, then, does at least as good a job as the data 
assimilation model in recovering the observed velocities. Note 
also that the peak rms speed differences between the CEDAR 
observations and the 100-mode nowcast are comparable to the 
differences between CEDAR and acoustic Doppler current 
profiler (ADCP) observations reported by Paduan and Rosen- 
feld [1996]. 
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Figure 17. Time series of [KE] (cm 2 S -2) for (a) CODAR observations (solid line), 100-mode nowcast 
(dashed line), and 12-mode nowcast (dotted line). (b) Differences in [KE] between CODAR observations and 
the 100-mode nowcast (dashed line) and CODAR observations and the 12-mode nowcast (dotted line). (c) 
Number of CODAR velocity observations available for each hour. The dash-dotted lines in Figure 17b show 
mean values of [KE] differences. 

In contrast, the model velocity gradient fields shown in Fig- 
ure 14, with little spatial coherence and peak values exceeding 
5 x 10 s s-•, differ markedly from the nowcast velocity gra- 
dient fields shown in Figure 15. NMA nowcasting, then, may be 
better suited to recovering the spatial structure of these gra- 
dient fields and may bc an effective method for filtering these 
high-resolution observations prior to assimilating them into a 
model. Some type of filtering was suggested by Lewis et al. 
[ 1998] prior to data assimilation by a model, in order to reduce 
noise, particularly in the velocity gradient fields, and improve 
the model's performance. 

5.5. Sensitivity to Subsampling 

It is important to determine how sensitive the NMA method 
is to changes in the number of available CODAR velocity 
observations to constrain the least squares determination of 
the mode amplitudes. To evaluate this sensitivity, a series of 
nowcasts were performed, each using 50 4,,, (Dirichlet) and 50 
&,• (Neumann) modes. At every time interval each CODAR 
observation was assigned a random number between 1 and 5. 
Subsampling was performed by retaining only those observa- 
tions with a random number index within a specified range. For 

each subsampling case the number of model velocities used 
was held constant. Using this subsampling scheme, five now- 
casts were performed, using decreasing numbers of CODAR 
observations. 

For the first case, all available observations were used at 
each time interval. This case was then used as a standard for 

comparing the four subsequent cases, where subsampling was 
performed. For the four subsampled cases each A,and B m 
time series was compared with the first case to see how well the 
two realizations of a given amplitude agreed with each other. 
Agreement was measured by calculating both the correlation 
coefficient C and the root-mean-square difference A for the 
two amplitude time series. Using amplitude A, as an example, 
C and A were calculated for case 2 (A •2) compared with case 

I) 

C __ 

J 
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Figure 18. (a) Time series of enstrophy (10 -•ø S -2) for 100-mode nowcast (solid line) and 12-mode nowcast 
(long-dashed line) with quadratic fits for each time series shown as short-dashed lines. (b) Power spectra for 
100-mode nowcast enstrophy time series. (c) Power spectra for 12-mode nowcast enstrophy time series. The 
dashed lines in Figures 18b and 18c show the 5% and 95% confidence levels for the Lomb's method power 
spectra. 

Here, the Z symbol implies a summation over all time inter- 
vals, and J is the total number of time intervals in the time 
series. 

A summary of the subsampling sensitivity study results is 
shown in Table 3. The minimum, maximum, and mean values 
for all 100 individual amplitude C and A values are shown. 
These results show that the NMA method is insensitive to 

subsampling until the number of observations is reduced to 
approximately the number of unknown amplitudes; that is, the 
system moves from overdetermined to nearly uniquely deter- 
mined. 

5.6. EOF Analysis of Stream Function 
and Velocity Potential 

While the NMA basis functions provide a natural partition- 
ing of the velocity field into vorticity and divergence compo- 
nents, they do not necessarily represent a compact set for 
describing the variance of a given field in a minimum number 
of modes. Empirical orthogonal functions (EOFs) are a useful 
tool for describing the principal variance patterns in geophysi- 
cal fields in a compact way. 

Complex EOFs have been used to describe the variance 
patterns in velocity fields. However, with the CODAR obser- 
vations, some method of dealing with spatial and temporal 
gaps in the observations would be required. This type of anal- 

ysis would yield no information about surface velocities where 
spatial gaps occur in the observations. Also, the EOF- 
reconstructed velocity field cannot be easily constrained to 
meet boundary flow conditions and the three-dimensional in- 
compressibility condition. 

An alternative approach is to apply EOF analysis to the 
NMA nowcast fields, so that the data coverage is uniform in 
space and time and the initial data field satisfies both the 
normal flow condition and three-dimensional incompressibil- 
ity. The EOF-reconstructed field, then, will satisfy the open 
boundary flow and three-dimensional incompressibility condi- 
tions. Note that the NMA and EOF basis sets are both orthog- 
onal, complete sets, so that they are linearly related. 

Here, we take advantage of the natural partitioning of the 
velocity field in (1) and use scalar EOFs to examine the vari- 
ance of the velocity field's two scalar components: the stream 
function ß and velocity potential •. Note that the ß field 
represents the vortical part of the total velocity (with zero 
horizontal divergence) and the ß field represents the potential 
part of the total velocity (with zero relative vorticity). After 
subtracting the temporal mean ß and cI) values at each nowcast 
location, the 202 hour time series (at 2 hour intervals) of each 
of these fields were analyzed using a standard EOF technique 
for both the 100-mode and 12-mode nowcasts. The (100, 12)- 
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Figure 19. Time series of (&u, &V)•m• in cm s -] at locations where CODAR obse•ations were made. 
Values are shown for CODAR minus model (solid lines), CODAR minus 100-mode nowcast (long-dashed 
lines), and CODAR minus 12-mode nowcast (short-dashed lines). 

mode ß field was nowcast using (50, 6) vorticity (Dirichlet) 
modes, so that (50, 6) nonzero EOF eigenvalues are expected. 
Similarly, the (100, 12)-mode cI) field was nowcast using (50, 6) 
divergence (Neumann) modes, so that (50, 6) nonzero EOF 
eigenvalues are again expected. 

Figure 20a shows the 12-mode nowcast ß field for 0100 UT, 
August 9, 1994, and Figures 20b-20e show the first four EOF 
modes for the 202 hour time series of this field. These four 

EOF modes account for 98.4% of the ß variance, with the first 
two EOF modes alone accounting for 87.3% of the variance. 
Figure 21 shows similar results for the 12-mode nowcast 
field. For cI) the first four EOF modes account for 99.0% of the 

variance, with the first two EOF modes alone accounting for 
94.6% of the variance. The percent variance explained by each 
EOF mode is shown at the upper right in each plot. 

The percent variance explained by the first 10 EOF modes 
for the time series of each of these fields is shown in Table 4. 

Percent variance values are also shown for the EOF analysis of 
the 100-mode nowcast ß and cI) fields, for comparison. The 
results in Table 4 for the 12-mode nowcast ß field show exactly 
6 nonzero EOF eigenvalues corresponding to the 6 degrees of 
freedom of the NMA nowcast. This is not true for the 12-mode 

nowcast cI) field, which includes an additional contribution 
from the open boundary (9 solution, as shown in (9). 

The two gyres seen in the 12-mode nowcast ß field (Figure 
20a) and apparent in the first EOF mode (Figure 20b) are 

quite consistent with the daily and monthly mean CODAR 
velocity fields reported by Paduan and Rosenfeld [1996]. The 
structure seen in the 12-mode nowcast cI) field (Figure 21a) and 
in the first two EOF modes for this field (Figures 2lb and 21c) 
describes a broad irrotational flow that is generally directed 
toward the southeast (onshore) with some flow leaving the 
domain to the southwest, near the southern boundary. The 
time series of this cI) field shows that this flow direction changes 
diurnally, so that it may be viewed as describing the combined 
effects of wind and tidal forcing. 

6. Discussion 

We have demonstrated the use of a NMA technique to filter 
HF radar observations to produce surface velocity nowcasts. 
The NMA technique is capable of filtering in both space and 
time and provides a gap-free nowcast with relative vorticity and 
horizontal divergence consistent with the coastal boundary 
shape and any specified open boundary conditions. This type of 
filtering is especially well suited to the assimilation of HF 
radar-derived surface currents by a numerical model because 
the model can be used to provide open boundary flow infor- 
mation and interior velocity estimates in regions where large 
spatial gaps exist in the observations. 

In one nowcast described here, a relatively large number of 
basis functions (100) were used to nowcast the velocity field. 

Table 3. Summary of Subsampling Sensitivity Study 

Case Mean Number of Observations Cmi, Cmax C .... Amin Ama x A .... 

1 442 .................. 

2 388 0.91 1.00 0.96 0.23 0.67 0.39 
3 278 0.81 1.00 0.91 0.36 1.02 0.54 
4 166 0.57 1.00 0.83 0.49 1.32 0.76 
5 55 0.18 0.97 0.54 0.86 3.33 1.34 

C, correlation coefficient; A, root-mean-square difference. 
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Figure 20. (a) Twelve-mode nowcast xI r field for Monterey Bay at 0100 UT, August 9, 1994, with a contour 
interval of 4 x 106 cm 2 s -1. (b-e) The first four empirical orthogonal function (EOF) modes for the 202 hour 
time series of the 12-mode nowcast xI r field. The percent variance explained by each EOF mode is shown at 
the upper right in Figures 20b-20e. EOF mode contours are nondimensional. In Figures 20a-20e, positive 
contours are shown as solid lines, and negative contours are shown as dashed lines. 

These basis functions, however, depend only on the shape of 
the analysis domain and do not need to be computed at each 
time step. For the domain shown in Figure 1, calculation of the 
100 basis functions took approximately 10 min on an IBM 

RS6000. Once the basis functions are computed, a single now- 
cast computation, which might be incorporated into an ongo- 
ing data assimilation model run, requires a few seconds of 
clock time on the same machine. 
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Figure 21. (a) Twelve-mode nowcast (I) field for Monterey Bay at 0100 UT, August 9, 1994, with a contour 
interval of 5 x 10 6 cm 2 s -•. (b-e) The first four EOF modes for the 202 hour time series of the 12-mode 
nowcast (I) field. Plots and contours are shown as in Figure 20. 

The analysis presented here includes an inhomogeneous so- 
lution which uses flow information at the domain's open 
boundaries to supplement the zero normal flow condition at 
the impermeable boundaries. This zero normal flow condition 
is satisfied automatically when the basis functions are calcu- 

lated from (2) and (4). This type of constraint may not be 
desirable in all applications, particularly in cases where open 
boundary flow information is not readily available. As is obvi- 
ous from section 3, the determination of the time-dependent 
amplitudes for the homogeneous solution does not depend on 
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Table 4. Percent Variance Explained by EeF Modes 

EOF Mode 100-Mode • 100-Mode ß 12-Mode • 12-Mode 

1 53.3 59.8 67.5 62.0 
2 19.8 30.2 19.9 32.6 
3 7.0 4.0 6.6 3.4 
4 6.2 1.3 4.5 1.0 
5 2.7 0.8 1.1 0.5 

6 1.6 0.6 0.5 0.2 
7 1.5 0.5 0.0 0.1 

8 1.2 0.4 0.0 0.0 
9 1.0 0.3 0.0 0.0 
10 0.7 0.3 0.0 0.0 

Total 95.0 98.3 100.0 100.0 

EOF, empirical orthogonal function. 

the presence of an inhomogeneous solution, so that the NMA 
nowcast technique can be applied to cases where open bound- 
ary flow is unknown. 

Our first attempts at nowcasting in Monterey Bay did not 
use an inhomogeneous solution, so that we were modeling the 
Bay as a closed basin. Those early nowcasts of velocity and the 
velocity gradient fields were indistinguishable from those pre- 
sented here at locations where CEDAR observations were 

made. Ignoring the open boundary flow contribution, however, 
produced large, unrealistic flows in many of the large spatial 
gaps between the CEDAR data footprint and the open bound- 
aries. The inclusion of the inhomogeneous solution alleviates 
this problem. 

Since the closed boundary nowcast is effective at locations 
where the observations were made, the NMA nowcast method 
might be very useful as a way to filter observation errors con- 
sistent with the three-dimensional incompressibility constraint. 
One might employ the NMA method to filter HF radar obser- 
vations, for example, by extending the nowcast domain for 
several grid points beyond the HF radar footprint near the 
open boundaries. This creates a "buffer zone" where the un- 
realistic effects of artificially closing off these open boundaries 
can accumulate. The following specific points should be noted: 

1. Figures 5a and 5b show that the four most energetic 
mode amplitudes (A•, A2, B•, and B2) have mean kinetic 
energy values that are >50% of the maximum value. As seen 
in the gradient maps for Dirichlet modes 1 and 2 in Figure 7, 
the two most energetic Dirichlet modes describe the vorticity 
structure apparent in the CEDAR observations: a persistent 
dipole consisting of an anticyclone near the domain center and 
a smaller cyclone to the east, near the coast. A linear combi- 
nation of these two modes resembles the dominant EeF mode 

structure for the ß field shown in Figure 20b. The gradient 
maps of modes 1 and 2 in Figure 9 show that the two most 
energetic Neumann modes describe the large-scale irrotational 
features apparent in the CEDAR observations: diurnal cycles 
of broad, onshore-offshore flow attributable to the combined 
effects of wind and tides. 

2. The scheme presented here for spatial filtering uses 
kinetic energy as the criterion for mode selection. Other anal- 
yses might require alternate spatial filtering schemes based on 
preserving variance in the •, (I), relative vorticity, or horizontal 
divergence fields. In addition, the cutoff value of 15% used as 
a criterion for spatial filtering (see Figure 5) was chosen arbi- 
trarily. Sensitivity of the nowcast to this cutoff criterion needs 
to be investigated further. 

3. Spectral analysis of theA n and B m time series (shown in 

Figure 10) is in itself a powerful analysis tool, since it describes 
oscillations in the frequency domain over the entire spatial 
domain, rather than at individual geographic positions. 

4. The smallest spatial scales described by the modes used 
for the 12-mode nowcast are on the order of 20 km, a scale that 
greatly exceeds the CEDAR resolution of 2-6 km. Since the 
12-mode nowcast accounts for 59% of the CeDAR-observed 

[KE], preserves the phase of [KE] fluctuations, and accurately 
describes the large-scale flow structure apparent in the 
CEDAR observations, the surface velocity field observed by 
the CEDAR is highly coherent over these larger scales. 

5. Calculation of velocity gradient fields, including diag- 
nostic quantities like enstrophy, is readily accomplished for any 
location in the domain, including the domain boundary, when 
the NMA basis functions are used. This is true even when the 

spatial footprint or spatial resolution of the observations varies 
with time. 

6. NMA nowcasting greatly reduces observed noise while 
preserving spatial coherence in the relative vorticity and hori- 
zontal divergence fields. This effectively "preconditions" the 
CEDAR observations, consistent with model boundary condi- 
tions and the constraint of three-dimensional incompressibil- 
ity, so that it may be more readily assimilated into a numerical 
model. 

7. As described in section 5.6, nowcasting with the NMA 
basis functions does not preclude further analysis of any kine- 
matic field using traditional EeF methods. These methods 
remain a valuable tool for discovering the principal statistical 
patterns in these fields. 

8. The numerical model boundary conditions do not in- 
clude large-scale flow features such as the California Current. 
However, these large-scale features may be represented in the 
CEDAR measurements. Since the CEDAR data constrain the 

determination of An and Bm, large-scale flow effects, if 
present, are incorporated in the nowcast velocity field through 
these amplitudes. 

9. The presence of open boundaries will continue to 
present a challenge for coastal ocean nowcasting. The NMA 
nowcasts described here rely on a primitive equation model to 
estimate open boundary flows. However, any source of velocity 
information on the open boundaries, including observations or 
climatology, would be sufficient to constrain the nowcast 
boundary problem. ' 

10. The existence of quadratic trends in the temporally 
filtered A n and B m time series (shown in Figure 12) suggests 
the presence of long-period (perhaps very long period) flow 
variations. The periods of these motions must greatly exceed 
200 hours (-10 days). Such motions are expected. The qua- 
dratic fit, then, seems to be an effective way of representing 
them over this short observation period. 
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