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Numerical study of the relativistic three-body quantization condition in the
isotropic approximation

Raúl A. Briceño,1,2,* Maxwell T. Hansen,3,† and Stephen R. Sharpe4,‡
1Thomas Jefferson National Accelerator Facility,

12000 Jefferson Avenue, Newport News, Virginia 23606, USA
2Department of Physics, Old Dominion University, Norfolk, Virginia 23529, USA

3Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland
4Physics Department, University of Washington, Seattle, Washington 98195-1560, USA

(Received 4 April 2018; published 11 July 2018)

We present numerical results showing how our recently proposed relativistic three-particle quantization
condition can be used in practice. Using the isotropic (generalized s-wave) approximation, and keeping
only the leading terms in the effective range expansion, we show how the quantization condition can be
solved numerically in a straightforward manner. In addition, we show how the integral equations that relate
the intermediate three-particle infinite-volume scattering quantity, Kdf;3, to the physical scattering
amplitude can be solved at and below threshold. We test our methods by reproducing known analytic
results for the 1=L expansion of the threshold state, the volume dependence of three-particle bound-state
energies, and the Bethe-Salpeter wave functions for these bound states. We also find that certain values of
Kdf;3 lead to unphysical finite-volume energies, and give a preliminary analysis of these artifacts.

DOI: 10.1103/PhysRevD.98.014506

I. INTRODUCTION

Studies of few-hadron systems based on lattice quantum
chromodynamics (LQCD) are advancing rapidly. Recent
results highlighting this progress include the first study of
multiple, strongly coupled scattering channels [1,2], the
first determination of resonant electroweak amplitudes
[3,4], and the first study of a meson-baryon scattering
amplitude in a resonant channel [5]. Each of these
calculations has been made possible by a series of theo-
retical developments, stemming from seminal work by
Lüscher [6,7]. This formalism and its subsequent general-
izations explain how the desired infinite-volume observ-
ables, namely scattering and transition amplitudes, can be
obtained from the finite-volume correlation functions
evaluated using numerical LQCD. We point the reader
to Ref. [8] for a recent review on the topic.
Current theoretical work is focused on extending the

finite-volume relations to extract observables with initial
or final states composed of three or more hadrons. To this
end, in a series of papers published in the past few years, we

have derived a quantization condition that relates the finite-
volume energies of states containing a three-particle com-
ponent to infinite-volume, two- and three-particle scattering
amplitudes [9–11].1 This quantization condition accounts for
all power-law volume dependence while dropping depend-
ence that falls exponentially with the box length, L. The
formalism is relativistic and encompasses arbitrary inter-
actions aside from two restrictions: (i) the particles must be
spinless and identical, and (ii) the two-particle K matrix
cannot have poles in the kinematical regime of interest. From
our past experience in the two-body sector [22,23],we expect
the former restriction to be straightforward to remove, and
now understand how to remove the latter [24]. The relation to
physical scattering amplitudes involves two steps. In the first,
the quantization condition is used to determine an infinite-
volumeKmatrix like quantity,Kdf;3 [10]. In the second,Kdf;3

is related to the physical scattering amplitudes via integral
equations.2,3 The formalism has been tested in several ways,
most notably by reproducing the known finite-volume
dependence of a weakly interacting threshold state and of
an Efimov-like bound state [26–29].
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1For parallel studies of three-body systems see Refs. [12–21].
2We stress that these integral equations are defined via

manifestly finite integrals with fixed total three-particle energy.
In addition, the equations depend only on on-shell quantities and
make no reference to an underlying effective theory.

3In general, taking these steps will require using parametriza-
tions for the physical scattering amplitudes, such as those
currently being developed in Ref. [25].
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A crucial issue yet to be considered, however, is whether
the formalism is usable in practice. Indeed, in recent papers
introducing an alternative approach based on nonrelativistic
effective field theory (NREFT), Refs. [17,18] have sug-
gested that our formalism may be too complicated to use in
the analysis of real lattice data. It is the purpose of this work
to investigate this issue. We find, in fact, that the status with
regard to applicability is more or less identical to that for
the NREFTapproach: the steps are the same, the number of
parameters are the same (when using analogous approx-
imations), and the numerical implementation seems to be of
comparable difficulty. There are, however, technical
differences that we discuss briefly here and return to in
the conclusions.4

In particular, we note here four advantages of using a
relativistic formalism for three-particle physics. First, one
aims to constrain the physical observables over the widest
energy range possible, and our formalism applies for three-
particle center-of-momentum (c.m.) energies reaching up to
4m (5m if there is a Z2 symmetry forbidding odd-legged
vertices), clearly in the regime of relativistic momenta.
Second, in Ref. [11] we describe how to determine 2 → 3
scattering amplitudes from finite-volume energies. Such
processes are intrinsically relativistic since the incoming
particles must have enough kinetic energy to produce a new
particle. Third, it is known in the 1=L threshold expansion
that, for weakly interacting systems, three-body effects and
relativistic effects enter at the same order in 1=L. Thus it is
natural to pursue a formalism that includes both. Fourth, as
we describe below, for three noninteracting particles the
second and third excited states (as well many higher groups
of states) become degenerate in the nonrelativistic limit.
Thus the basic counting and locations of noninteracting
states, as well as their deformations due to interactions, is
very different between the relativistic and nonrelativistic
theories. This final point is discussed further in Sec. III A.
In this work, to address the issue of applicability, we

primarily use a dynamical approximation similar to that
used in the numerical example worked out in Ref. [18],
referred to here as the low-energy isotropic approximation.
However, in all calculations presented here, we make no
kinematical approximations, i.e., we keep the relativistic
form throughout. In addition, we restrict attention to
theories in which there is a Z2 symmetry forbidding
transitions between even- and odd-particle-number sectors.
This is a simplifying approximation that we know, at least
formally, how to remove [11]. In short, we conclude that the
three-body formalism we have previously derived [9–11] is

indeed in a form that is suitable for the analysis of some
realistic lattice systems.
The remainder of this paper is organized as follows. In

Sec. II we present a brief summary of the three-body
formalism, and explain the justification for the isotropic
approximation, in which the matrix quantity, Kdf;3, is
replaced by a single function of the total three-particle
energy, Kiso

df;3. In Sec. III we present several results concern-
ing the three-particle spectrum obtained using the quantiza-
tion condition, starting with the simplest case of vanishing
Kiso

df;3 and then turning on nonzero values. In cases where this
leads to a three-particle bound state, we compare the volume
dependence of the bound-state energy to an analytic pre-
diction.WecloseSec. III by studying thevolumedependence
of the threshold state and comparing it to analytic predictions.
In Sec. IV we implement the relation between Kiso

df;3 and the
physical scattering amplitude, beginning below threshold
and then working directly at threshold. This illustrates how
our complete, two-stage formalism can be implemented. In
Sec. V we describe how, in certain regimes of parameters,
unphysical solutions to the quantization condition can
appear, and we discuss their possible origin. We conclude
and describe directions for future work in Sec. VI. Two
appendices describe some technical details of our numerical
implementation of the quantization condition and our meth-
ods for solving the integral equations.

II. SUMMARY OF FORMALISM IN THE
ISOTROPIC LOW-ENERGY APPROXIMATION

In this section we recall the essential results for the Z2-
symmetric case; further details can be found in Refs. [9,10].
The spatial volume is a cube of length L with periodic
boundary conditions, so that finite-volume momenta have
the form k⃗ ¼ 2πn⃗=L, with n⃗ a three-vector of integers. The
total momentum, P⃗, can take any value in this finite-
volume set.
Within this setup, the result of Ref. [9] is that, for any fixed

values of L and P⃗, the finite-volume energy spectrum,
fEnðLÞg, is given by solutions to the quantization condition5

det½F3ðE; P⃗; LÞ þK−1
df;3ðE�Þ� ¼ 0: ð1Þ

Here the finite-volume-frame energy,E, is related to the c.m.-
frame energy, E�, by the standard dispersion relation,
E�2 ¼ E2 − P⃗2.

4The steps in our approach are also similar to those in the
recent relativistic proposal of Ref. [19]. This parametrizes three-
particle interactions using an isobar (dimer) formalism that
maintains unitarity. This parametrization is then used both in
finite volume to predict the spectrum, and, in a separate
calculation, in infinite volume to give the scattering amplitude.
We suspect that this formalism will yield similar results to ours.

5The ultimate aim is for this result to be used to interpret results
from lattice QCD simulations. These results inevitably involve
errors due to working at nonvanishing lattice spacing. Such
effects are not incorporated into the quantization condition, which
is a continuum quantum field theory result. Thus, strictly
speaking, lattice results should be extrapolated to the continuum
limit before they can be used in the quantization condition.
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In Eq. (1) the quantities F3 and Kdf;3 are matrices in a
space labeled by the finite-volume momentum, k⃗, of one of
the particles (denoted the “spectator”) and the angular
momentum of the other two in their two-particle c.m.
frame. The determinant above acts on this space.Kdf;3 is an
infinite-volume quantity characterizing the underlying
local three-particle interaction. It is analogous to the
three-body contact terms in the NREFT approach of
Ref. [18]. F3 incorporates both the effects of two-particle
scattering and of the finite volume. More specifically, it
depends on the two-particle K matrix, K2, and on known
kinematic finite-volume functions. Its explicit form is given
in Eq. (8) below in the approximation we use.
Just as in the two-body sector [6,7,30–32], to use the

quantization condition in practice one must truncate the
partial waves that contribute, thus reducing the matrices to
finite size [9]. This applies here not only toK2, as in the two-
particle case, but also toKdf;3. One then proceeds as follows

6:
(1) Perform a two-particle finite-volume analysis to

determine K2 as a function of the two-particle
c.m. energy, E�

2, using Lüscher’s quantization con-
dition [6,7] and its generalizations.

(2) Use the quantization condition, Eq. (1), and the
three-particle spectrum to constrain Kdf;3.

(3) Determine the relativistic three-to-three scattering
amplitude, M3, from Kdf;3 and K2 by solving the
integral equations given in Ref. [10].

Our aim here is to show how this procedure works when we
truncate to a single partial wave and make a few further
simplifying approximations.
An important technical point is that our formalism

includes a smooth cutoff function, Hðk⃗Þ, that depends on
the spectator momentum k⃗. For fixed E, as k⃗ is increased the
c.m. energy in the remaining two-particle subsystem, E�

2;k,
decreases, dropping first below the two-particle threshold
and eventually becoming complex. Our formalism requires
thatE�

2;k is real and positive,E
�
2;k > 0, and the cutoff function

ensures that this condition is satisfied. This means that the
sum over k⃗ is truncated to a finite number of terms.
There are two reasons for requiring E�

2;k > 0. First, K2

has a singularity (the left-hand cut) at this point, and this
can lead to additional power-law finite-volume effects that
are not accounted for in the formalism. Second, the boost to
the two-particle c.m. frame becomes unphysical if the
condition is not satisfied. There remains, however, consid-
erable latitude in the choice of cutoff function. In particular,
the lower limit on E�

2;k can lie anywhere in the range from 0
to ð2 − δÞm, with δ a positive constant of order 1. The final
results for physical quantities should be independent of this
cutoff (up to terms suppressed by e−δmL). We stress that, if δ

is order 1, then the cutoff occurs for spectator momenta
satisfying jk⃗j ∼m and thus lying in the relativistic regime.7

In this work we set δ ¼ 2 throughout.

A. Definition and motivation of the
isotropic approximation

The approximation we consider here consists of three
parts. First, we restrict K2 and Kdf;3 to contain only s-wave
interactions between the nonspectator pair. This implies
that all matrices appearing in the quantization condition
have only the spectator-momentum indices, e.g., Kdf;3 ¼
Kdf;3ðE�; k⃗; p⃗Þ. As noted above, these indices are truncated
by the cutoff function. Second, we assume that Kdf;3

depends only on E� and not on the spectator momenta,
so thatKdf;3ðE�; k⃗; p⃗Þ≡Kiso

df;3ðE�Þ, independent of k⃗ and p⃗.
Together these give the “isotropic approximation” intro-
duced in Ref. [9]. Finally, we neglect the energy depend-
ence of q�2 cot δðq�2Þ appearing within K2. This corresponds
to taking only the leading order (scattering-length-depen-
dent) term in the effective range expansion.
In the remainder of this section we explain why the

isotropic approximation is the natural generalization of the
s-wave approximation in the two-body case. We begin by
recalling the argument for the latter case. We make use of
the two independent Mandelstam variables, which we
denote by s2 ¼ 4q�2

2 þ 4m2 and t2 ¼ −2q�22ð1 − cos θÞ,
where q�2 is the magnitude of the c.m. frame momentum.
The key input is that, at fixed s2 and away from isolated
poles, K2 is a finite and thus square-integrable function of
cos θ. This means that it admits a convergent decomposi-
tion in the Legendre polynomials, Plðcos θÞ. Alternatively,
at fixed s2,K2 is an analytic function of t2 near threshold so
that one can perform a Taylor expansion about t2 ¼ 0.
Combining these two expansions, we deduce that the
coefficient of the lth polynomial, call it K2;lðq�2Þ, must
scale as q�2

2l as q�2 → 0. This holds because the lth
polynomial contains a term proportional to cosl θ and this
must correspond to the ðt2Þl term in the Taylor expansion.
Thus the s-wave contribution dominates close to threshold.
To justify the isotropic approximation in the three-body

case, it is convenient to work with the full divergence-free
K matrix, without the decomposition into interacting-pair
partial waves. This quantity is a function of generalized
Mandelstam variables, which we label

s ¼ ðp1 þ p2 þ p3Þ2; ð2Þ

6This description applies to theories with a Z2 symmetry. For
the general case there are more quantities to determine but the
overall approach is the same [11].

7In the NREFT approach of Refs. [17,18] there is no
corresponding constraint on the sum over spectator momentum,
nor is there a need for the cutoff to be smooth. While this
simplifies practical calculations, it comes at the price that
physical singularities such as the left-hand cut have to be dealt
with in some fashion.
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sij ¼ ðpi þ pjÞ2 and s0ij ¼ ðp0
i þ p0

jÞ2 ½i < j�; ð3Þ

tij ¼ ðpi − p0
jÞ2; ð4Þ

where i, j ¼ 1–3, whilepi are the initial andp0
j the final four-

momenta. Note that, at threshold, s ¼ 9m2, sij ¼ 4m2 ¼ s0ij,
and tij ¼ 0. There are many relations between these varia-
bles, so that, in addition to s, there are only seven independent
kinematic variables.8 For fixed s, the remaining variables are
all “angular,” in the sense that they span a compact seven-
dimensional space [33]. In particular, for fixed s ¼ 9m2 þ Δ,
the quantities that measure the distance from threshold,
namely δij ≡ sij − 4m2, δ0ij ≡ s0ij − 4m2 and tij, are all
bounded inmagnitude by cΔ, where c ¼ Oð1Þ. This follows
because of the relations

X
i<j

δij ¼
X
i<j

δ0ij ¼ −
1

2

X
i;j

tij ¼ Δ; ð5Þ

together with the fact that δij, δ0ij and −tij are all positive.
The key input now is that, at fixed s, Kdf;3 should be an

analytic function of the kinematic variables in the vicinity
of the threshold. Performing a Taylor expansion about
threshold, the leading term is independent of δij, δ0ij and tij,
with the leading dependence on these variables propor-
tional to Δ. Thus, close to threshold, the dominant con-
tribution is independent of the angular variables. One
choice of these variables is given by those introduced in
Ref. [9], namely the initial and final spectator momenta
introduced above, k⃗ and p⃗, together with the initial and final
directions of the nonspectator pairs in their respective c.m.
frames, â� and â0�. These ten variables are reduced to seven
by overall rotation invariance. Thus we conclude that the
dominant near-threshold contribution is not only indepen-
dent of â� and â0� (which is the s-wave approximation for
Kdf;3 already introduced above), but also of k⃗ and p⃗,
yielding the isotropic approximation.9

We close by commenting that, in the two-particle sector,
the s-wave approximation holds both for the K matrix, K2,
and the scattering amplitude, M2. Indeed the harmonic
components of these two objects have the same low-
momentum scaling, the usual ðq�2Þ2l. This differs from
the situation in the three-particle sector, where the argument
holds for Kdf;3 but fails for the scattering amplitude, M3.
The reason is that the latter exhibits kinematic singularities,
discussed at length in Refs. [9,10]. In particular, M3 is not
smooth (indeed it diverges) at threshold and one cannot
expect its harmonic coefficients to show low-energy
suppression. This is a key advantage of Kdf;3 over M3.

B. Quantization condition in the
isotropic approximation

We now return to the main argument. As shown in
Ref. [9], the isotropic approximation reduces the quantiza-
tion condition to an algebraic equation,

Fiso
3 ðE; P⃗; LÞ ¼ −1=Kiso

df;3ðE�Þ: ð6Þ
To reach this form we first note that the determinant over
angular momentum appearing in Eq. (1) is trivial given that
only the l ¼ 0 contribution to the K matrix is nonzero.
Second, in the isotropic approximation, the K matrix is
independent of the spectator momentum. Therefore, the
only eigenvector ofKdf;3 in the space of spectator momenta
with nonzero eigenvalue is that in which every entry is
unity, i.e., j1i ¼ ð1; 1;…; 1Þ.10 In this way only a one-
dimensional block of the matrices contributes, leading to
Eq. (6). As noted above, this form is analogous to the
s-wave approximation of the two-particle formalism. In
Fig. 1 we give an example of how this condition is used and
compare to the s-wave two-particle case.
For any fixed L, P⃗ and any given finite-volume energy,

EnðL; P⃗Þ, Eq. (6) directly gives the value of Kiso
df;3ðE�Þ at

E� ¼ ½EnðL; P⃗Þ2 − P⃗2�1=2. This assumes that Ks
2ðE�

2Þ is
known for all E�

2 < E� −m, as this is needed to determine
Fiso
3 , defined below. GivenKiso

df;3ðE�Þ, one can determine the
corresponding M3ðE�;Ω3

0;Ω3Þ at the same energy. Note
that, although we are considering Kdf;3 only in the isotropic
approximation, the three-to-three scattering amplitude still
depends on the incoming and outgoing three-particle phase
space, indicated here with the shorthand Ω3 ≡ ðk⃗; â�Þ. The
primary motivation of this work is to demonstrate the
practical utility of our result. Thus, for the sake simplicity,
we consider only the ðP⃗ ¼ 0Þ frame. This allow us to use E
rather than E� to denote the simultaneous finite-volume and
c.m.-frame energy. In the same spirit, and following
Ref. [18], we take Ks

2 to be given by the leading-order term
in the threshold expansion, i.e., the term involving the
scattering length a.
The expression for Fiso

3 with P⃗ ¼ 0 is

Fiso
3 ðE; LÞ ¼ h1jFs

3j1i ¼
X
k;p

½Fs
3�kp; ð7Þ

where j1i has been defined above, and the sum over the
momenta k, p is of finite range because Fs

3 is truncated by

the cutoff function, Hðk⃗Þ. Here and below we keep
dependence on E and L implicit. The matrix Fs

3 is given by

½Fs
3�kp ¼ 1

L3

�
F̃s

3
− F̃s 1

1=ð2ωKs
2Þ þ F̃s þ G̃s F̃

s

�
kp

; ð8Þ
8One choice is s12, s13, s012, s

0
13, t11, t22, and t33.

9It would be interesting to extend this argument to determine
the form of the OðΔÞ corrections in terms of k⃗, p⃗, â� and â0�, but
this is beyond the scope of the present work.

10The other eigenvectors, which have vanishing eigenvalues of
Kdf;3, lead to free three-particle states, as discussed in Ref. [9].
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where�
1

2ωKs
2

�
kp

¼ δkp

�
−
1

a
þ jq�2;kj½1 −Hðk⃗Þ�

�
1

32πωkE�
2;k

;

ð9Þ

F̃s
kp ¼ δkpF̃sðk⃗Þ; ð10Þ

F̃sðk⃗Þ ¼ Hðk⃗Þ
4ωk

�
1

L3

XUV
a⃗

−PV
Z

UV

a⃗

�

×
1

4ωaωkaðE − ωk − ωa − ωkaÞ
; ð11Þ

G̃s
kp ¼ Hðk⃗ÞHðp⃗Þ

8L3ωkωpωkpðE − ωk − ωp − ωkpÞ
: ð12Þ

Here ωk and ωka are the on-shell energies for particles with
momenta k⃗ and k⃗þ a⃗, respectively, i.e.,

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k⃗2 þm2

q
; ωka ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk⃗þ a⃗Þ2 þm2

q
: ð13Þ

Other ωs are defined analogously. The two-particle c.m.
energy and relative momentum are given by

E�2
2;k ¼ ðE − ωkÞ2 − k⃗2 ¼ E2 þm2 − 2Eωk; ð14Þ

q�22;k ¼ E�2
2;k=4 −m2: ð15Þ

The sum over a⃗ in Eq. (11) runs over all finite-volume
momenta, while the integral is defined as

R
a⃗ ≡

R
d3a=

ð2πÞ3. The principal value (PV) prescription is defined such
that the integral is an analytic function of k⃗2 (and is referred

to in Ref. [9] as the fPV prescription). Finally, the cutoff
function is11

Hðk⃗Þ ¼ JðzÞ; ð16Þ

z ¼ E�2
2;k − ð1þ αÞm2

ð3 − αÞm2
; ð17Þ

JðzÞ ¼

8>><
>>:

0; z ≤ 0;

exp
�
− 1

z exp
h
− 1

1−z

i�
; 0 < z < 1;

1; 1 ≤ z:

ð18Þ

This is the form introduced in Ref. [11], chosen to smoothly
interpolate between 0 and 1 as E�

2;k=m ranges from
ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p
to the threshold value of 2. In the following we consider
α ¼ −1, which gives the maximum allowed range.12

In Eq. (11) we have labeled both the sum and the integral
with a superscript “UV” indicating that an ultraviolet cutoff is
required to separately evaluate the sum and integral.
In Refs. [9,10] a specific choice of cutoff is used, namely
the product of two of the smooth cutoff functions,
Hða⃗ÞHð−a⃗ − k⃗Þ. We primarily use this definition in this
work as well, but we also make use of the definition given in
Ref. [30] for some quantities. These two definitions are
described in more detail in Appendix B, where we also
explain our method of numerical evaluation. In places where
weuse both definitions,we refer to that usingH-functions for

FIG. 1. Examples of solving the quantization conditions in the two-particle (left) and three-particle (right) sectors for P⃗ ¼ 0 andmL ¼ 6.
The two-particle condition in the left panel can bewritten as F̃s

2 ¼ −1=ð2ωKs
2Þ, whereω is the energy of the spectating third particle. This is

satisfied when the two curves intersect, as indicated by the gray circles. (Here we take the spectator to have k⃗ ¼ 0 and thusω ¼ m.) This is
closely analogous to the isotropic three-particle quantization condition given byEq. (6), again satisfied at the indicated intersection points in
the right panel. For this example, we take Ks

2 from the leading order effective-range expansion with ma ¼ −10, corresponding to an
attractive two-particle interaction that pulls the lowest level below E�

2=m ¼ 2. We take 1=Kiso
df;3 to be a simple polynomial in E=m.

11Note that, for P⃗ ¼ 0, Hðk⃗Þ ¼ HðkÞ. Nevertheless we keep
the more general notation for consistency with Refs. [9–11] and
because H does depend on k⃗ when P⃗ ≠ 0.

12The relationship between α and the parameter δ used earlier in
this section is

ffiffiffiffiffiffiffiffiffiffiffi
1þ α

p ¼ 2 − δ. Thus α ¼ −1 corresponds to
δ ¼ 2.
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theUVcutoff as F̃s
HS, and that using the approach ofRef. [30]

as F̃s
KSS. The subscripts abbreviate the authors of the article

where each cutoff was first introduced.
It is important to note that the freedom to adjust the

ultraviolet cutoff here is logically separate from the freedom
in the choice of Hðk⃗Þ in Eqs. (9) and (12). Varying the UV
regulator in Eq. (11) changes the value of F̃s only by
the exponentially suppressed corrections thatwe are ignoring
throughout.13 Thus we can choose the regulator that is most
convenient for numerical evaluation. By contrast, varying
factors ofHðk⃗Þ outside a sum-integral difference, such as in
Eqs. (9) and (12), leads to changesFs

3 that are, in general, not
exponentially suppressed. These are such, however, that
Kdf;3 can in principal be adjusted to keep the low-energy
physics unchanged. In other words, an adjustment in the
externalH functions corresponds to a change in the renorm-
alization scheme.14

The form of the result for 1=Ks
2 in Eq. (9) deserves

further explication. Above threshold, where Hðk⃗Þ ¼ 1, this
form arises from the standard s-wave K matrix,
16πE�

2;k tan δ0ðq�2;kÞ=q�2;k, keeping only the leading order
in the threshold expansion. Below threshold, the result
interpolates smoothly to the subthreshold s-wave scattering
amplitude, Ms

2, reaching this amplitude when Hðk⃗Þ → 0.
As explained in Ref. [9], this behavior follows from the
choice of pole prescription in F̃s.
From these definitions we see that Fiso

3 depends on E, L
and a. For fixedL anda, the spectrum is determined by those
values ofE for whichFiso

3 ðEÞKiso
df;3ðEÞ¼−1. In Appendix A,

we describe how we implement this numerically. Here we
note two caveats. First, the formalism breaks down as E
approaches 5m, where the five-particle channel becomes
important. Second, the formalism does not hold if Ks

2 has a
pole in the region of E�

2;k that enters into the calculation,
namely

ffiffiffiffiffiffiffiffiffiffi
1þα

p
<E�

2;k=m<ðE�−mÞ=m. Note that this
restriction includes poles below as well as above threshold.
With the form of Ks

2 that we use, Eq. (9), we see that
there are no poles above threshold, but there is a pole below
threshold if

1=a ¼ jq�2;kj½1 −Hðk⃗Þ�: ð19Þ
One can show that the right-hand side lies between 0 andm
for all allowed values of E, k⃗ and α. Thus to avoid the poles
in general the scattering length must satisfy15

a < 1=m: ð20Þ

We stress that negative values of a having arbitrarily large
magnitude are allowed, so we can investigate the unitary
limit. Indeed, as can be seen from Eqs. (9) and (A1), we can
work directly at 1=a ¼ 0, although we do not make use of
this possibility in our numerical studies.

C. Relation between Kiso
df;3 and M3

We close this section by recalling from Ref. [10] the
relation between the infinite-volume quantities Kdf;3 and
M3. In the isotropic approximation, this requires solving
only one integral equation. This is for the quantity
Dðu;uÞðk⃗; p⃗Þ that sums up repeated two-particle scattering
in which the two particles involved can switch any number
of times. It satisfies

Dðu;uÞðk⃗; p⃗Þ ¼ −Ms
2ðk⃗ÞG∞ðk⃗; p⃗ÞMs

2ðp⃗Þ

−
Z
s⃗

1

2ωs
Ms

2ðk⃗ÞG∞ðk⃗; s⃗ÞDðu;uÞðs⃗; p⃗Þ; ð21Þ

where, as usual, k⃗ and p⃗ are spectator momenta, which are
now continuous variables. Ms

2ðk⃗Þ is the physical s-wave
two-particle scattering amplitude with two-particle c.m.
energy E�

2;k, which in the low-energy approximation is
given by

1

Ms
2ðk⃗Þ

¼ −
1

a
1

16πE�
2;k

þ ρðk⃗Þ; ð22Þ

ρðk⃗Þ ¼ 1

16πE�
2;k

�−iq�2;k E�2
2;k ≥ 4m2;

jq�2;kj E�2
2;k < 4m2;

ð23Þ

and G∞ is an infinite-volume quantity related to G̃s,

G∞ðk⃗; p⃗Þ¼ Hðk⃗ÞHðp⃗Þ
2ωkpðE−ωk−ωp−ωkpþ iϵÞ : ð24Þ

The cutoff functions imply that the integral is of finite
range. Note that we are using the iϵ pole prescription here.
This is correlated with the appearance of the scattering
amplitude Ms

2, rather than Ks
2, in the integral equation.

Above threshold, M3 has singularities at particular,
physical kinematic points, and so in Ref. [9] we introduced
a divergence-free version of the amplitude

Mdf;3ðk⃗; â�; p⃗; â0�Þ ¼ M3ðk⃗; â�; p⃗; â0�Þ − SfDðu;uÞðk⃗; p⃗Þg:
ð25Þ

The notation here is that S is a symmetrization operator that
sums over the three choices of spectator momentum for
both initial and final states. The need for such symmetri-
zation implies that Mdf;3 and M3 depend not only on the
spectator momenta, but also on the directions of the other
two particles in their relative c.m. frame, which are given by
â� and â0� respectively for the initial and final states.Mdf;3

13Strictly speaking, this holds only if the regulator only
modifies the terms satisfying jE − ωk − ωa − ωkaj ≫ m, and
equals unity when E − ωk − ωa − ωka ¼ 0.

14Despite this expectation, we discuss below examples where
exponentially suppressed finite-volume artifacts can lead to sig-
nificant effects, e.g., the unphysical solutions discussed in Sec. V.

15In fact, for α > −1, a somewhat higher, α-dependent upper
limit applies.

BRICEÑO, HANSEN, and SHARPE PHYS. REV. D 98, 014506 (2018)

014506-6



has the advantage compared to M3 of being a smooth
function of momenta and E, so that, in particular, it is well
defined at threshold. It has the disadvantage of depending
on the cutoff function H.
In the isotropic approximation,Mdf;3 is related toKiso

df;3 by

Mdf;3ðk⃗; â�; p⃗; â0�Þ ¼ S
�
Lðk⃗Þ 1

1=Kiso
df;3 þ F∞

3

Rðp⃗Þ
�
;

ð26Þ

where

Rðk⃗Þ ¼ Lðk⃗Þ ¼ 1

3
− 2ωkMs

2ðk⃗Þρ̃ðk⃗Þ −
Z
s⃗
Dðu;uÞðk⃗; s⃗Þρ̃ðs⃗Þ;

ð27Þ

F∞
3 ¼

Z
k⃗
ρ̃ðk⃗ÞLðk⃗Þ; ð28Þ

ρ̃ðk⃗Þ ¼ Hðk⃗Þρðk⃗Þ
2ωk

: ð29Þ

These relations involve only integrals over a finite range of
momenta. In Appendix A, we discuss how these quantities
can be readily determined at or below threshold.

III. NUMERICAL RESULTS

In this section we present a sampling of numerical
results, aiming both to provide checks by comparing with
several known analytic results, and to give examples of the
finite-volume spectrum that emerges for various choices of
the scattering parameters. Throughout this section we use
units in which m ¼ 1, with the exception of the figures,
where for clarity we add back in appropriate factors of m.
Most of the details regarding the numerical evaluation of
the finite-volume functions are described in the appendices.

A. Energy spectrum with Kiso
df;3 =Mdf;3 = 0

We begin by studying the finite-volume spectrum for the
special case of Kiso

df;3 ¼ 0. This in turn implies thatMdf;3 ¼
0 and thus that M3 ¼ SfDðu;uÞðk⃗; p⃗Þg [see Eqs. (25) and
(26)]. In words this says that the three-to-three scattering
amplitude is given by the sum over all pairwise scattering
diagrams in which the two-particle subprocesses are
mediated by on-shell two-to-two scattering amplitudes.16

In this case the quantization condition simply becomes

1=Fiso
3 ðE; L; aÞ ¼ 0: ð30Þ

This is a useful starting point because it provides a
benchmark for three-particle lattice calculations. If three-
particle energies were found to be consistent with the
Kiso

df;3 ¼ 0 predictions, then it would only be possible to
place upper limits on Kiso

df;3. By contrast, resolving a shift
from these values would give a direct indication of the
strength of this local three-body interaction. The solutions
to Eq. (30) occur at the poles in Fiso

3 . The numerical
determination of the positions of these poles is straightfor-
ward, as described in Appendix A 1. Examples of the form
of Fiso

3 are shown in Figs. 1 and 21.
In Fig. 2 we plot the low-lying finite-volume spectrum

for Kiso
df;3 ¼ 0 and a ¼ −10, together with the noninteract-

ing three-particle levels. The latter are given by

EnðLÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2π=LÞ2m⃗2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2π=LÞ2m⃗2

2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2π=LÞ2m⃗2

12

q
; ð31Þ

where m⃗1 and m⃗2 are integer vectors determining the
momentum of two of the particles, while m⃗12 ¼ −m⃗1 −
m⃗2 determines the momentum of the third. In Table I we
collect some information about the low lying noninteract-
ing levels. The values of L that are shown correspond to
those used in present lattice QCD simulations
(4≲mπL≲ 6) as well as somewhat larger values that
may be accessible in the future.
Our interpretation of the a ¼ −10 levels is that they

correspond to the first four noninteracting levels, but
pushed to significantly lower energies by the strongly
attractive two-particle interaction. In particular, the lowest
state is not a bound state. We can see this by extending the
calculation to larger values of L and observing that it

FIG. 2. The four lowest-energy solutions to the quantization
condition for Kiso

df;3 ¼ 0 and ma ¼ −10 (thick, orange) together
with the lowest eleven noninteracting levels, i.e., solutions for
Kiso

df;3 ¼ a ¼ 0, (thin, black). We only show results in the energy
range for which our formalism is valid, namely En < 5m. Non-
interacting levels are clustered according to momenta that are
degenerate in the nonrelativistic theory, as discussed in the text.

16We stress that both Kdf;3 andMdf;3 are scheme dependent in
the sense that physical predictions for a given Kdf;3 can only be
made once a particular form of H has been specified. Thus, when
we say that Kiso

df;3 ¼ Mdf;3 ¼ 0, this is for H defined in Eq. (16)
with α ¼ −1.

NUMERICAL STUDY OF THE RELATIVISTIC THREE- … PHYS. REV. D 98, 014506 (2018)

014506-7



approaches the threshold energy E ¼ 3. We refer to this
state below as the threshold state.
We have shown several additional noninteracting levels

in Fig. 2 in order to illustrate the clustering of excited states.
This clustering can be understood by doing a nonrelativistic
expansion of the energies. In particular, keeping only the
leading term—that present in nonrelativistic quantum
mechanics (NRQM)—the noninteracting energies are

En:r:
n ðLÞ ¼ 3þ 2π2

L2
ðm⃗2

1 þ m⃗2
2 þ m⃗2

12Þ: ð32Þ

As a result, all states for which the sum of squared momenta
are equal become degenerate. This increased degeneracy is
indicated by the groupings in Table I. The gaps within the
clusters scale as

EnðLÞ − En:r:
n ðLÞ ¼ −

2π4

L4
ðm⃗4

1 þ m⃗4
2 þ m⃗4

12Þ þOð1=L6Þ;
ð33Þ

whereas the gaps between different clusters scale as 1=L2.17

We note that the splittings within clusters become signifi-
cant for the values of mL used in present simulations, i.e.,
those at the lower end of the range displayed. This indicates
the importance of including relativistic kinematics in order
to gain sufficient precision in the spectrum.
One issue that is potentially confusing concerns the

degeneracies of the levels shown in Fig. 2. Solutions to the
quantization condition in the isotropic approximation are
nondegenerate, whereas the noninteracting levels are
highly degenerate, as can be seen from Table I. As
explained in Ref. [9], the resolution is that, even in the
presence of interactions, all but one of the degenerate levels
remain at the noninteracting energy when working in the
isotropic approximation. These remaining levels will be
shifted and split upon inclusion of nonisotropic inter-
actions. We also note that one can project onto the states
shown in the figure in practice by using three-particle
operators living in Aþ

1 irreducible representation (irrep) of
the cubic group. This irrep has overlap with the state j1i,
and also picks out a single state from each of the non-
interacting levels.
In Fig. 3 we show the result of varying the scattering

length. The upper left panel shows a ¼ −8, which is very
similar to a ¼ −10, while subsequent panels halve the
value of a, with the exception of the final panel, which
shows the result for a small, positive a. (We recall that the
maximum value for which our formalism holds is a ¼ 1.)
In these figures we extend the range of mL up to 20, which
allows one to see clearly the approach of the levels to the
noninteracting curves as a → 0. The larger range also
allows us to show additional noninteracting levels, and
thus further emphasize the clustering discussed above.
Finally, we add to the plot the prediction for the energy
of the threshold state in an expansion in powers of a=L,
Eq. (36). We observe that this expansion works well for the
smallest values of jaj. We investigate this expansion in
more detail in Sec. III D below.

B. Energy spectrum for nonzero Kiso
df;3

We now consider solutions to the quantization condition
with nonzero Kiso

df;3. We first take energy-independent,
negative values of Kiso

df;3. As with the two-particle K matrix,
small negative values of Kiso

df;3 correspond to repulsive
interactions, and thus push the levels up. We illustrate this
in Fig. 4 for the case of a ¼ −10 shown previously for
Kiso

df;3 ¼ 0 in Fig. 2. The levels increase monotonically as
Kiso

df;3 becomes more negative. Large magnitudes of Kiso
df;3

are required to see a noticeable shift because, as we discuss
in more detail below, for small values of Kiso

df;3 and a, the

TABLE I. Summary of noninteracting three-particle energies, in
units where the particle mass ism ¼ 1. The first column gives the
index of the level, ordered by increasing energy for largeL (which
meansL ≳ 9.5 for these levels). The second column gives the three
squared integers describing the individual momenta. The third
column gives the degeneracy for identical particles. The final two
columns give the energies for L ¼ 4, 6, and 10. Horizontal lines
group levels having the same value of the sum m⃗2

1 þ m⃗2
2 þ m⃗2

12,
which are thus degenerate in the nonrelativistic limit. We show all
the levels having values of this sum up to 12.

n ðm⃗2
1; m⃗

2
2; m⃗

2
12Þ Degeneracy

En
ðL ¼ 4Þ

En
ðL ¼ 6Þ

En
ðL ¼ 10Þ

1 (0, 0, 0) 1 3.0 3.0 3.0
2 (1, 1, 0) 3 4.72 3.90 3.36
3 (2, 2, 0) 6 5.87 4.57 3.68
4 (2, 1, 1) 12 6.16 4.68 3.70
5 (3, 3, 0) 4 6.80 5.14 3.96
6 (4, 1, 1) 3 7.02 5.22 3.97
7 (3, 2, 1) 24 7.20 5.31 4.00
8 (2, 2, 2) 8 7.31 5.36 4.01
9 (4, 4, 0) 3 7.59 5.64 4.21
10 (5, 2, 1) 24 7.95 5.78 4.24
11 (4, 2, 2) 12 8.17 5.89 4.28
12 (5, 5, 0) 12 8.30 6.09 4.45
13 (6, 3, 1) 24 8.74 6.27 4.49
14 (6, 2, 2) 24 8.85 6.33 4.51
15 (5, 4, 1) 24 8.81 6.32 4.51
16 (5, 3, 2) 48 8.99 6.40 4.54
17 (4, 3, 3) 12 9.09 6.46 4.56
18 (6, 6, 0) 12 8.95 6.51 4.67
19 (8, 2, 2) 6 9.43 6.70 4.71
20 (6, 5, 1) 48 9.49 6.75 4.74
21 (6, 4, 2) 24 9.71 6.86 4.78
22 (5, 5, 2) 36 9.74 6.88 4.79

17Interestingly, for the threshold state, the effect of interactions
scales with the power between these two, i.e., as 1=L3 (as
discussed in detail below).
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effect of the three-body contact interaction on the energy is
suppressed by 1=L6. In this regard, we stress that such large
values of jKiso

df;3j are not unphysical. Indeed, as can be seen
from Eq. (26), the three-particle scattering amplitude is
finite in the jKiso

df;3j → ∞ limit. This is analogous to the two-
particle sector where K2 → ∞ corresponds to the unitary
limit, M2 ¼ i16πE�

2=q
�
2.

One noticeable feature of Fig. 4 is the appearance of a
“bump” in the curves around L ¼ 5.5. IfKiso

df;3 is made even
more negative the spectral lines double back, which is an
unphysical result. We discuss this issue further in Sec. V.

What we want to stress here is that, for most values ofKiso
df;3,

a and L, the quantization condition in the isotropic
approximation gives reasonable results, with energy levels
that are sensitive to the three-particle interaction.
A more striking example of this sensitivity is shown in

Fig. 5, where we use the freedom to allow Kiso
df;3 to depend

on energy to model a three-particle resonance. The ansatz
we use is

Kiso
df;3ðEÞ ¼ −

c × 103

E2 −M2
R
; ð34Þ

FIG. 3. EnðLÞ=m vs mL for Kiso
df;3 ¼ 0 and various values of the scattering length, a. Notation as in Fig. 2, although a larger range of

mL is displayed here, as well as additional noninteracting levels. The dashed black curve shows the threshold expansion, Eq. (36)
through Oð1=L5Þ.

FIG. 4. Finite-volume energy levels for ma ¼ −10 and various negative values of m2Kiso
df;3. The left plot shows results from two

nonzero values of Kiso
df;3, as well as reproducing the Kiso

df;3 ¼ 0 results and the noninteracting levels from Fig. 2. Note that the extent to
which Kiso

df;3 shifts the energy depends significantly on the level being considered. The right panel magnifies the region shown by the
dashed rectangle in the left panel, displaying results for the lowest energy state from a larger number of nonzero values of Kiso

df;3.
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with a “resonance mass” of MR ¼ 3.5. This form is
inspired by the standard Breit-Wigner parametrization
of the two-particle K matrix, although further investiga-
tion is needed to understand if this gives a physical
description of three-particle resonances. At the very least,
however, it gives a unitary description of three-to-three
scattering that, as c → 0, smoothly deforms to a
decoupled system of a stable state with mass MR together
with three-particle scattering states. For nonzero values of
c the two sectors couple and the avoided-level crossings
characteristic of a resonance are observed, with the gap
increasing with c.
For a physical system described by this ansatz, fitting

lattice-determined finite-volume levels would give con-
straints on c,MR and the scattering length a. Consideration
of how this ansatz for Kiso

df;3 converts to M3, and whether
this gives a useful three-particle resonance description, is a
topic for future study.

C. Volume dependence of the energy
of a bound state

In this section we provide a quantitative test of our
numerical results by studying the volume dependence of
the energy of a bound state EBðLÞ in the unitary regime,
jaj ≫ 1. This can be compared with the analytic result of
Ref. [34],

EBðLÞ ¼ 3 − κ2 − 96.35jAj2κ2 e
−2κL=

ffiffi
3

p

ðκLÞ3=2

×

�
1þO

	
1

κL
; e−ακL; κ2


�
; ð35Þ

where κ is defined in terms of the infinite-volume value
of the bound state energy, EBð∞Þ ¼ 3 − κ2, jAj2 is a

normalization factor that is expected to be close to
unity,18 while α is of Oð1Þ. This result is valid if κ ≪ 1
(nonrelativistic regime), jaj ≫ 1 (two-particle unitary
regime), and κL ≫ 1. In addition, two-particle interactions
are assumed to be s-wave dominated, and the bound state is
assumed to have J ¼ 0.
We note that this result can also be derived analytically

from our quantization condition, under the same assump-
tions [29]. This derivation applies also within the low-
energy isotropic approximation. However, this derivation
requires crucial external input beyond the quantization
condition itself, namely the long-distance part of the
Schrödinger wave function in the three-body system.
Thus agreement with Eq. (35) tests not only our numerical
methods, but also that the quantization condition itself
correctly reproduces the physics of the bound state. We can
also learn where the formula breaks down, i.e., where
subleading volume dependence enters.
With this in mind, we have numerically determined the

bound-state energy for the parameters a ¼ −104 (assuring
that we are in the unitary regime) and Kiso

df;3 ¼ 2500. Note
that, in contrast to the previous section, here we choose
Kiso

df;3 positive, as we find that this generically produces a
bound state.19 The results are shown in Fig. 6. We find that
for κL > 4 (L > 37) EBðLÞ is well described by the
asymptotic form given in Eq. (35). To be conservative
we do our final fit only to data for L > 59 (corresponding
to κL > 6.3), as shown in Fig. 6(a). The fit gives
κ ¼ 0.106844, corresponding to a binding energy of
EB ¼ 2.98858. In addition we find jAj2 ¼ 0.948, and the

FIG. 5. Finite-volume energies for ma ¼ −10 and a “Breit-Wigner” ansatz for Kiso
df;3, Eq. (34). The constant c characterizes the

strength of coupling between the resonance of mass MR ¼ 3.5m and the scattering states. For nonzero c, the crossing of EðLÞ ¼ MR
with the scattering states is replaced with an avoided level crossing. The left panel gives an overview of the position of the crossing in the
overall spectrum, while the right panel zooms in on the crossing itself.

18For a detailed discussion of the significance of A see
Ref. [17].

19Why this is the case will become clear in the following
section. This result is analogous to the fact that, in the two-
particle case, a bound state occurs when a is large and positive.
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fact that this result lies close to unity is a strong check on
the applicability of the asymptotic form.
Figure. 6(b) compares the spectrum to the fit for smaller

volumes, 20 < L < 40. None of the data shown in this
figure are used in the fit, so the good qualitative agreement
for L > 35 provides a strong check that the result of
Eq. (35) is consistent with our quantization condition over a
wide range of volumes. The deviation as one drops below
L ≈ 30 is also expected since κL then becomes too small
and the asymptotic form no longer holds. We stress,
however, that the solution to the quantization condition
continues to be valid for all volumes shown, including the
lowest range, 4 < L < 10, shown in Fig. 6(c). For smaller
volumes the exponentially suppressed corrections that we
are ignoring would start to become sizable.
These results illustrate the potential utility of the quan-

tization condition for analyzing three-particle bound states.
Given the value of a from two-particle scattering, one can
constrain Kiso

df;3 near threshold using multiple three-particle
scattering states. Extrapolating the results for Kiso

df;3 to
subthreshold energies, one can use the quantization con-
dition to predict the volume dependence of the bound state.
We see from Fig. 6(c) that, in the regime of mL accessible
to simulations, the finite-volume energy shifts are large,
and the asymptotic formula does not hold. Thus the full

quantization condition is needed to remove the finite-
volume shift and determine the infinite-volume binding
energy. We also stress that, in this regime, the bound-state
energy is pushed so far below threshold that relativistic
momenta are sampled. Thus a relativistic formalism is
required to reliably describe even the near threshold state.

D. Volume dependence of the threshold-state energy

In this section we investigate in detail the energy of the
threshold state. We have already shown examples of this
energy for various values of a in Fig. 3, and our aim here is
to provide a detailed comparison with the predicted large-
volume behavior. The analytic prediction is

EðLÞ−3¼ c3
L3

þ c4
L4

þ c5
L5

þ c̃6
L6

−
M3;thr

48L6
þO

	
1

L7



; ð36Þ

where the coefficients are (using the fact that, in our
approximation, the effective range, r, vanishes)

c3 ¼ 12πa; ð37Þ

c4
c3

¼ −
a
π
I ; ð38Þ

(a)

(c)

(b)

FIG. 6. Finite-volume energy dependence for the bound state that arises for m2Kiso
df;3 ¼ 2500 and ma ¼ −104. In all three figures the

solutions to the quantization condition are marked in orange, as points in (a) and (b) and as the curved solid line in (c). The curving
(turquoise) line in panel (a) is a fit of Eq. (35) (neglecting the higher-order corrections) to the data in this panel. The same fit line is
shown in panel (b) for lower values ofmL, along with a horizontal, solid (red) line showing the infinite-volume energy of the bound state
EBð∞Þ. The horizontal dashed (black) line shows the threshold energy E ¼ 3m. Panel (c) displays EBðLÞ for smallermL, along with the
same two horizontal lines as in (b) and the asymptotic prediction.
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c5
c3

¼
	
a
π



2

ðI2 þ J Þ; ð39Þ

c̃6
c3

¼
	
a
π



3
�
−I3 þ IJ þ 15Kþ CF þ C4 þ C5

þ 16π3

3
ð3

ffiffiffi
3

p
− 4πÞ log

	
L
2π


�
þ 64π2a2C3 þ 3πa: ð40Þ

The numerical values of the constants entering these
expressions are20

I ¼ −8.91363291759;

J ¼ 16.532315960;

K ¼ 8.401923974828; ð41Þ

C3 ¼ −0.05806;

CF þ C4 þ C5 ¼ 2052: ð42Þ

The terms through Oð1=L5Þ were derived in NRQM in
Refs. [35,36]. Relativistic effects first enter at Oð1=L6Þ,
and the relativistic form of c̃6 was determined in Ref. [26]
from our three-particle quantization condition. The deri-
vation was done including all partial waves inK2 andKdf;3,
but holds also in the isotropic limit.
Considering only terms through Oð1=L5Þ, we see from

Eq. (36) that the expansion parameter is a=L. Because of
this, for a fixed range of L, we expect the expansion to
break down as jaj increases. This is borne out by the results
shown in Fig. 3, where only for jaj≲ 1 does the threshold

expansion—shown only through Oð1=L5Þ in the plots—
provide a good description over most of the range of L.
Three-particle interactions enter Eq. (36) only at

Oð1=L6Þ, through the quantityM3;thr, which is a particular
definition of the three-particle divergence-free scattering
amplitude at threshold, and is discussed in Sec. IV C and
Appendix A 2. As noted earlier, the appearance only at high
order implies that the spectrum is only sensitive to three-
particle interactions at smaller values of L, which is the
region where simulations are done. But in this small L
region, the finite-order threshold expansion might not
apply, and one must then use the full quantization con-
dition. By contrast, in this section we are aiming to test our
numerical methods by working in a regime where the
threshold expansion does hold, namely small jaj and large
L. Specifically, we consider a single value of the scattering
length, a ¼ 0.41315, and determine the threshold energy to
very high accuracy for the range L ¼ 5–60, and with
1=Kiso

df;3 ¼ 0.04–0.16. By doing so we are able to extract a
value for M3;thr—which is the only undetermined param-
eter in Eq. (36). Our results forM3;thr as a function ofKiso

df;3

can then be checked against the predictions from the
infinite-volume integral equations, as will be discussed
in Sec. IV C below.
In Fig. 7 we show that the numerical results from the

quantization condition are very well described by the thresh-
old expansion for our choice of scattering parameters. The
top curve shows the results from the quantization condition
for EðLÞ − 3. Here we suppress the comparison to c3=L3 þ
c4=L4 þ c5=L5 as the curves are indistinguishable at this
scale (indeed, c3=L3 þ c4=L4 is already indistinguishable
from the top curve). The plot also shows the residuals as
successively more terms are subtracted from the threshold
expansion, as labeled. We see nice convergence for L≳ 10,
with each successive term improving the agreement, and the
residuals decreasing in the expectedwaywithL.Note thatwe
subtract the log-dependent piece of c̃6 together with c5 in the

FIG. 7. Log-log plot of EðLÞ=m − 3 vs mL (top curve) determined from the quantization condition for ma ¼ 0.41315 and
m2Kiso

df;3 ¼ 10, together with various subtracted curves as labeled. The results are indistinguishable for the two definitions of F̃s, with the
exception of the lowest (maximally subtracted) curve, where the H-function regulator is shown in orange and that based on Ref. [30] in
blue. The oscillations in the former are discussed in the text.

20Note that we need I to greatest accuracy, followed by J ,
while K, C3 etc., are needed to lower accuracy.
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second-to-last residual, as these terms are of similar numeri-
cal magnitude.We stress that we must solve the quantization
condition with a numerical accuracy of better than 1 part in
108 in order to pick out the maximally subtracted result. This
turns out to be straightforward.
The maximally subtracted residual shows oscillatory

behavior. To investigate this, we have repeated the calcu-
lation replacing the sum-integral difference regulated using
H-functions, F̃s

HS, with that regulated following Ref. [30],
F̃s
KSS. The residues are indistinguishable for all but the

lowest curve, in which we find that the results obtained
using F̃s

KSS do not oscillate. Since the difference between
the two choices of F̃s is exponentially suppressed, we
conclude that the oscillations represent a class of neglected
exponentially suppressed finite-volume effects. They are
visible here presumably because we are investigating tiny
contributions to the energy. Other examples of such effects
will be seen below.
As noted above, we can determine M3;thr from the

maximally subtracted results. To do so, we scale up the
residual by L6 and define

R6ðLÞ≡ −L6

�
EðLÞ − 3 −

c3
L3

−
c4
L4

−
c5
L5

−
c̃6
L6

�

¼ M3;thr

48
þOð1=LÞ: ð43Þ

This quantity is shown in Fig. 8 as a function of 1=L for
L≳ 20. Here we again show the results using the two
regulators for F̃s. The oscillations with F̃s

HS are more
pronounced with the new scale, and it is easier to use
the F̃s

KSS results to extrapolate to the infinite-volume limit.
Averaging quadratic and cubic fits in 1=L to the latter yields
M3;thr=48 ¼ 60.0� 0.8, with the uncertainty determined
by half the difference between the two fits.

We close this subsection by considering one additional
infinite-volume quantity that can be extracted from the
threshold energy. With little additional effort we can
determine the dependence of the extracted M3;thr on Kiso

df;3,
using21

L6
∂EðLÞ

∂ð1=Kiso
df;3Þ

����
a;L

¼ −
1

48

∂M3;thr

∂ð1=Kiso
df;3Þ

����
a;E¼3

þO
	
1

L



:

ð44Þ

We determine the derivative numerically by varying Kiso
df;3

close to 10.22 The extrapolation to L ¼ ∞ is done either
linearly or quadratically in 1=L. An example is shown in
Fig. 9. Comparing to the results for R6ðLÞ, we see that the
derivative removes much of the oscillatory volume depend-
ence, in addition to the first three orders in 1=L. We show
the resulting Kiso

df;3 dependence of the extrapolated deriva-
tive in Fig. 10. We take the average of linear and quadratic
extrapolations as the central value and half the difference as
the uncertainty. The solid line shows the infinite-volume
prediction found by solving the integral equation
relating M3;thr to Kdf;3, discussed in Sec. IV C below.
We stress that this is not a fit to the data, but rather the result
of an independent calculation. The agreement between the
two results provides a strong check of our numerical
implementation of the quantization condition, as well as
of the analytic derivation of the threshold expansion
in Ref. [26].

FIG. 8. Plot of R6ðLÞ [defined in Eq. (43)] versus 1=ðmLÞ for
ma ¼ 0.41315 and m2Kiso

df;3 ¼ 10. The oscillating (blue) points
use F̃s

HS, while the smooth (red) points use F̃s
KSS. The solid curves

show quadratic and cubic fits in 1=ðmLÞ to the F̃s
KSS data up to

1=ðmLÞ ¼ 0.05. We take the average of these curves at
1=ðmLÞ ¼ 0 as the central value for the infinite-volume limit,
and half the difference as the uncertainty.

FIG. 9. Extrapolation in 1=ðmLÞ of the left-hand side of
Eq. (44) evaluated at 1=ðm2Kiso

df;3Þ ¼ 0.1 and ma ¼ 0.41315.
Linear and quadratic fits are done to the region of points
indicated by the curves. We stress that this data was generated
using F̃s

HS, but in this case there are only weak oscillations, unlike
in Fig. 8.

21We take the derivative with respect to 1=Kiso
df;3 because this,

rather than Kiso
df;3 itself, is the more natural quantity entering the

quantization condition in the form we use.
22Given the weak dependence of E on M3;thr we need to vary

E over a very small range. For example, for L ¼ 20, the range
E ¼ 3.002067695–3.002067697 leads to a variation in Kiso

df;3
from ≈6–13 when a ¼ 0.41315.
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IV. RELATING Kiso
df;3 TO THE

SCATTERING AMPLITUDE

As explained in Sec. II, to obtain physical infinite-volume
quantities given knowledge of Kiso

df;3 requires solving an
integral equation and performing several integrals. In this
section we show how this can be done by straightforward
extensions of the numerical methods used to solve the
quantization condition, as long as we work below or at
threshold. We divide this section into three parts. In the first
we show results for the quantities needed to relate Kiso

df;3 to
Mdf;3 below threshold. In the second, we show how, in the
case of a three-particle bound state, we can determine a
quantity related to the infinite-volume Bethe-Salpeter ampli-
tude.This quantity can thenbe compared to thepredictions of
NRQM. Finally, we work directly at threshold and calculate
the relation betweenKiso

df;3 and the quantity that enters into the
threshold expansion, M3;thr.

A. Relating Kiso
df;3 to Mdf;3 below threshold

The relationship between Kiso
df;3 and Mdf;3 is given in

Eq. (26), which we reproduce here for clarity, making use
of the results that Lðk⃗Þ ¼ Rðk⃗Þ and that L depends only on
the magnitude of k in the isotropic approximation,

Mdf;3ðk⃗; â�; p⃗; â0�Þ ¼ S
�

LðkÞLðpÞ
1=Kiso

df;3 þ F∞
3

�
: ð45Þ

In this subsection we illustrate how to calculate the
quantities on the right-hand side of this equation when
working below threshold. The methods for doing so are
explained in Appendix A 2. The infinite-volume quantities
F∞
3 and LðkÞ can be obtained simply by taking the L → ∞

limit of appropriate finite-volume quantities. In the case of
F∞
3 one choice of finite-volume quantity is simply Fiso

3 .
In Figs. 11 and 12 we show the approach to the L ¼ ∞

limit for Fiso
3 and Lð0Þ, respectively, taking E ¼ 2.99 as an

example. For fixed a, the approach to the limit is expo-
nential, allowing a controlled extrapolation to L ¼ ∞,
although larger values of L are needed as jaj increases.
Figure 11 illustrates why, generically, there are bound

states for a range of values of Kiso
df;3. We recall that, for any

finite L, there is a solution to the quantization condition if
Fiso
3 ¼ −1=Kiso

df;3. Since F
iso
3 approaches a limiting function

of a as L → ∞, which we observe to be monotonically
increasing, there will be a bound state with E ¼ 2.99 at
some value of a for all values of Kiso

df;3 in the range
−1=Fiso

3 ða ¼ 1Þ < Kiso
df;3 < −1=Fiso

3 ða ¼ −∞Þ. Since the
limiting function is negative for almost all values of a, most
bound states occur with positive values of Kiso

df;3. One
example (for a different value of E) is the bound state
discussed in Sec. III C.
Figure 13 showsexamples of thek-dependenceofLðkÞ for

various choices of a. This quantity describes the effect of
multiple two-to-two scattering with the scattering pair
changing each time to include the spectator of the previous
event. As k increases the scattered pair lies increasingly far
below threshold. For a bound state, LðkÞ is related to the
Bethe-Salpeter amplitude, as discussed in the following
subsection.

FIG. 10. Dependence of −ðm4=48Þ∂M3;thr=∂ð1=Kiso
df;3Þ vs

1=ðm2Kiso
df;3Þ for ma ¼ 0.41315. The points are obtained from

the threshold energy, using extrapolations such as that in Fig. 9,
while the solid curve is obtained from solving the integral
equation relating M3;thr and Kiso

df;3.

FIG. 11. Fiso
3 =m2 vs ma for E ¼ 2.99m and mL ¼ 40–65,

together with an extrapolation to L → ∞ usingmL ¼ 50–65. The
inset shows the small ma region, in which Fiso

3 changes sign.

FIG. 12. Lðk⃗ ¼ 0Þ vs ma for E ¼ 2.99m and mL ¼ 40–65,
together with an extrapolation to L → ∞ using mL ¼ 50–65.
Here Lðk⃗Þ for finite L is given by Eq. (A15). The inset shows the
small ma region, within which Lð0Þ changes sign. Note that
Lð0Þ ¼ 1=3 when ma ¼ 0.
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The results for F∞
3 and LðkÞ can be combined to

determine results for Mdf;3, using Eq. (45). We choose
not to quote results here since the symmetrization that is
needed is complicated, and the results produced are not
transparent. We will, however, quote the corresponding
results below when working at threshold.

B. Determining the wave function of the bound state

Aspecific applicationof the subthreshold relation between
Kiso

df;3 and Mdf;3 is provided by the bound state studied in
Sec. III C. For the fixed values of Kiso

df;3 ¼ 2500 and
a ¼ −104, one can calculate F∞

3 and identify the infinite-
volume bound state pole in Mdf;3, as described in the
previous subsection. Since this is equivalent to solving the
quantization condition Kiso

df;3 ¼ −1=Fiso
3 for asymptotically

large volumes, one finds the same result for the infinite-
volume bound-state energy as from the fit in Sec. III C,
namely EB ¼ 2.98858 (corresponding to κ ¼ 0.106844).
The residues of the pole in Mdf;3 contain information

about the Bethe-Salpeter amplitudes of the bound state.
Specifically, as discussed in Ref. [29], the unsymmetrized
version of Mdf;3 takes the following factorized form near
the bound state:

Mðu;uÞ
df;3 ðk; pÞ ∼ −

ΓðuÞðkÞΓðuÞðpÞ�
E2 − E2

B
: ð46Þ

This assumes that pairwise scattering occurs only in the
s-wave, as is the case in the isotropic approximation. The
quantity ΓðuÞðkÞ is related to the Bethe-Salpeter amplitude
by amputating and going on shell, as explained in detail in
Appendix B of Ref. [29]. We call ΓðuÞðkÞ the residue
function. Combining this expression with Eq. (45) we find
that ΓðuÞðkÞ is proportional to LðkÞ,

jΓðuÞðkÞj2 ¼ lim
E→EB

ðE2
B − E2Þ LðkÞ2

1=Kiso
df;3ðEÞ þ F∞

3 ðEÞ
: ð47Þ

In our approach both F∞
3 ðEÞ and LðkÞ are determined by

taking infinite-volume limits of appropriate finite-volume
quantities. For the purposes of extracting jΓðuÞðkÞj2 it turns
out to be convenient to define a finite-volume version as

jΓðuÞðkÞj2ðLÞ ¼ lim
E→EBðLÞ

ðE2
BðLÞ − E2Þ

×
LLðE; k; LÞ2

1=Kiso
df;3ðEÞ þ Fiso

3 ðE;LÞ ; ð48Þ

where LLðE; k; LÞ is defined as the argument of the limit in
Eq. (A15). Using this quantity, the infinite-volume limit,

jΓðuÞðkÞj2 ¼ lim
L→∞

jΓðuÞðkÞj2ðLÞ; ð49Þ

is approached more rapidly. Figure 14 shows numerical
results for jΓðuÞðkÞj2ðLÞ, calculated by setting E ¼
EBðLÞ þ δE (with δE ¼ −0.001) and using mL ¼ 60,
65, 70. The results fall on a common curve giving
confidence that we have reached the infinite-volume limit.
In Ref. [29] we showed that, in NRQM in the unitary

limit, the residue function is given by23

FIG. 13. LðkÞ versus k=m for choices of ma shown in the
legend. Results using either choice of finite-volume quantity,
Eq. (A14) or (A15), and using any choice of mL ≥ 50, lie on a
common curve. Here we show the results using Eq. (A15) and
mL ¼ 70. Note that, if a ¼ 0, LðkÞ ¼ 1=3 independent of k. For
sufficiently large k, LðkÞ ¼ 1=3 for all a, since the cutoff
functions vanish and remove the correction term.

FIG. 14. Momentum dependence of the magnitude squared of
the bound-state residue function. The points are predictions
following from Eqs. (48) and (49), as described in the text.
Different values of L lead to consistent results, indicating that we
have reached the infinite-volume limit. The curve shows the
prediction of Eq. (50), with the value jAj2 ¼ 0.948 found in
Sec. III C.

23It is interesting to note that the leading finite-volume
dependence of the bound state energy, given in Eq. (35), is
obtained using the leading term in the expansion of the result
presented here for ΓðuÞðkÞ about the singularity at k2 ¼ −κ2. This
leading term is given in Eq. (100) of Ref. [29]. When evaluated on
the real axis, however, it differs substantially from the full result.
Thus it is essential to use the full form given here when studying
the function for real k
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jΓðuÞðkÞNRj2 ¼ jcjjAj2 256π
5=2

31=4
m2κ2

k2ðκ2 þ 3k2=4Þ

×
sin2ðs0sinh−1

ffiffi
3

p
k

2κ Þ
sinh2 πs0

2

; ð50Þ

with s0 ¼ 1.00624 and jcj ¼ 96.351, and jAj the quantity
entering into Eq. (35). This prediction is also plotted in
Fig. 14, and is in excellent agreement with our numerical
results. We stress that this curve is a parameter-free
prediction and not a fit. However, we do expect there to
be relativistic corrections to the relationship between
ΓðuÞðkÞ and ΓðuÞðkÞNR. These should vary in magnitude
between of Oðκ2=m2Þ ¼ Oð1%Þ at k ¼ 0 to of Oðk=mÞ ¼
Oð1Þ for k ≈m. These expectations are consistent with the
small differences we find.
What do we learn from this agreement? The derivation of

Eq. (50) in Ref. [29] does not use the quantization condition
in any way. Instead, it relies only on the definition of the
relativistic scattering amplitude and the standard NRQM
determination of the bound-state wave function. Thus the
agreement is not a consistency check, but rather shows that
the relation (45) reproduces the physics leading to the
Efimov bound-state solution of the NRQM problem. This is
also true for the predicted volume dependence of the
bound-state energy, discussed in Sec. III C, but here the
test is even more stringent because we are predicting a
function and not just a number.
Finally, we note that the curves in Fig. 13 are propor-

tional to the residue functions for bound states that are not
in the unitary regime. This is because, for all values of
a < 1, one can tuneKiso

df;3 to give a bound state at E ¼ 2.99,
and then use Eq. (47). Since the k dependence comes only
from LðkÞ, it follows that jΓðuÞðkÞj ∝ jLðkÞj. We observe
that, away from the unitary regime, the dependence on k
varies substantially with a. It would be interesting to
compare these results to predictions from NRQM.

C. Relating Kiso
df;3 at threshold to M3;df;thr and M3;thr

As discussed above, Mdf;3 is finite for all energies and
choices of momenta (aside from bound-state poles). In
particular it is finite at threshold, and we denote its value
there by Mdf;3;thr. This divergence-free scattering ampli-
tude is defined by subtracting an infinite series of terms
from the usual three-to-three scattering amplitude,M3. An
alternate definition of a finite, three-particle threshold
amplitude was introduced in Ref. [26], based on subtracting
from M3 only those parts of Dðu;uÞ that contain IR
divergences. It is this new quantity, called M3;thr, that
appears in the threshold expansion, Eq. (36) above.
In Sec. III D above, we studied the threshold state

predicted by the quantization condition for a ¼ 0.41315
and Kdf;3 ¼ 10 and found that the volume dependence is
very well described by the threshold expansion with

M3;thr=48 ¼ 60.0� 0.8. In this section we aim to test this
result by directly applying the relation between Kiso

df;3 and
Mdf;3;thr as well as that between Mdf;3;thr and M3;thr [26].
We begin by solving the integral equations relating Kiso

df;3
to Mdf;3;thr. At threshold, the general relationship of
Eq. (45) simplifies to

Mdf;3;thr ¼
9Lð0Þ2

1=Kiso
df;3 þ F∞

3

; ð51Þ

with the factor of 9 arising from symmetrization. Thus we
need only to determine Lð0Þ and F∞

3 at E ¼ 3, for the
chosen value of a. This is slightly more complicated than
the subthreshold determinations discussed above because
the finite-volume analogs of L and F∞

3 both diverge for
E ¼ 3. We have two methods to circumvent this issue. One
option is to take the L → ∞ limit for a set of subthreshold
values of E (using the method described in previous
subsections) and then extrapolate E → 3. An alternative,
direct approach is to define modified versions of the finite-
volume objects in which the singularity at E ¼ 3 is
removed. As explained in Ref. [26], this removal does
not affect the L → ∞ limit. The direct approach has the
advantage that only one limit need be considered. We have
confirmed that the two methods give consistent results and
in this subsection only show results using the direct
approach. The details of its numerical implementation
are summarized in Appendix A 3.
We show the extrapolations for F∞

3 and Lð0Þ in Figs. 15
and 16, respectively. Note that here the use of finite volume
is simply a tool to discretize the equations, and is not related
to the volume of any simulation. We have worked up to
L ¼ 100, which, as the figures show, is enough to provide
reasonable control over the extrapolation. For F∞

3 , the
results show oscillations for L≲ 40, but for larger L settle
to a constant value. We estimate the infinite volume value
by fitting the large L results to a constant. For Lð0Þ we take
the average of the linear and quadratic fits as the central
value, and half the difference as the error. We find

FIG. 15. F∞
3 =m

2 vs 1=ðmLÞ for ma ¼ 0.41315 at threshold.
The line indicates a fit of the points shown in blue to a constant,
which we use as our estimate of the L → ∞ value.
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F∞
3 ¼ 4.0068ð1Þ×10−5; Lð0⃗Þ¼ 0.276203ð7Þ;

ða¼ 0.41315Þ: ð52Þ

Inserting these results into Eq. (51) we obtain

Kiso
df;3 ¼ 10 ⇒ M3;df;thr ¼ 6.8633ð1Þ; ða ¼ 0.41315Þ:

ð53Þ

We now turn to the relation betweenM3;thr andM3;df;thr.
The latter is given by

M3;thr ¼ Mdf;3;thr þ Ĩ1 þ Ĩ2 þ SI; ð54Þ

where Ĩ1, Ĩ2 and SI are defined in Appendix A 3. In all
cases the quantities are obtained by taking infinite-volume
limits of appropriate finite-volume quantities. As above,
this is only a tool for discretizing integral equations and the
parameter L used here does not correspond to the finite
volume of the system.
Results for Ĩ1, obtained using Eq. (A20) are shown in

Fig. 17. Values of L up to 100 are easily attained, and the
extrapolation to L ¼ ∞ is well controlled. We find

Ĩ1 ¼ 4233� 2; ða ¼ 0.41315Þ: ð55Þ

The corresponding extrapolation for Ĩ2, based on
Eq. (A21), is shown in Fig. 18. Our result for the
infinite-volume limit is

Ĩ2 ¼ −425� 10; ða ¼ 0.41315Þ: ð56Þ

Finally, the extrapolation leading to SI is shown in Fig. 19,
based on Eq. (A22), yielding

SI ¼−1005�23; ða¼ 0.41315Þ: ð57Þ

Combining these results we find that

M3;thr−M3;df;thr¼2803�25; ða¼0.41315Þ; ð58Þ

where Ĩ1 dominates the overall value while Ĩ2 and SI
dominate the error. This shift dominates the value of
M3;df;thr ¼ 6.9 found above. The final result is thus

FIG. 16. Lð0Þ vs 1=ðmLÞ for ma ¼ 0.41315 at threshold.
Quadratic and cubic fits to the entire set give very consistent
results at L ¼ ∞. (Both curves are plotted but are indistinguish-
able aside from a thickening of the line.) The average and half the
difference of these results is used to determine the central value
and uncertainty respectively.

FIG. 17. Ĩ1 for ma ¼ 0.41315 plotted versus 1=ðmLÞ, together
with linear and quadratic fits to the range indicated by the curves.
(Both curves are plotted but are indistinguishable aside from a
thickening of the line.) The average of the two L → ∞ extrap-
olations is used as the central value and half the difference as the
uncertainty.

FIG. 18. Ĩ2 for ma ¼ 0.41315 plotted versus 1=ðmLÞ, together
with quadratic and cubic fits to the range indicated by the curves.
The average of the two L → ∞ extrapolations is used as the
central value and half the difference as the uncertainty.

FIG. 19. SI for ma ¼ 0.41315 plotted versus 1=ðmLÞ, together
with quadratic and cubic fits to the range indicated by the curves.
The average of the two L → ∞ extrapolations is used as the
central value and half the difference as the uncertainty.
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M3;thr

48
¼ 58.5� 0.5: ð59Þ

This is in good agreement with M3;thr=48 ¼ 60.0� 0.8,
the indirect value found using the threshold expansion
Sec. III D. This provides an important cross-check on our
calculations and formalism.
Finally, we calculate the dependence of M3;thr on Kiso

df;3,
in order to compare to the results obtained using the
threshold expansion. Noting that the relation between
M3;thr and M3;df;thr is independent of Kiso

df;3 we find, using
Eq. (51), that

−
1

48

∂M3;thr

∂ð1=Kiso
df;3Þ

����
a;E¼3

¼ −
1

48

∂M3;df;thr

∂ð1=Kiso
df;3Þ

����
a;E¼3

¼ 1

48

9Lð0Þ2
ð1=Kiso

df;3 þ F∞
3 Þ2

: ð60Þ

Since we have determined Lð0Þ and F∞
3 , we can immedi-

ately calculate this quantity. We plot the result in Fig. 10
above as the solid line. The uncertainty in this line from the
volume extrapolation, which comes dominantly from the
uncertainty in Lð0Þ, is less than the width of the curve. In
the figure we compare this result to that obtained above
using the threshold expansion and find good agreement.

V. UNPHYSICAL SOLUTIONS

In this section we briefly discuss unphysical solutions
that we have identified numerically when solving the
quantization condition for certain values of a and Kiso

df;3.
As we explain below, to guarantee physical solutions
for all choices of a and Kiso

df;3, F
iso
3 ðE;L; aÞ must be a

monotonically decreasing function of E. However, we find
that this condition is violated for certain parameter choices.
An example is shown in Fig. 20.
The monotonicity condition on Fiso

3 is derived as follows.
We consider the finite-volume correlator,

CLðEÞ ¼
Z
L
d4xeiEth0jTOðxÞO†ð0Þj0iL; ð61Þ

where O†ðxÞ is any operator that creates three-particle
states. This is the correlator that is used in the derivation of
the quantization condition in Ref. [9]. From Eq. (42) of that
work, we find that, when restricted to the isotropic
approximation, the correlator in the vicinity of a pole
has the form

CLðEÞ¼ iAðEÞ 1

Kiso
df;3ðEÞþFiso

3 ðE;L;aÞ−1A
�ðEÞþ regular;

ð62Þ

where AðEÞ is an infinite-volume matrix element connect-
ing the vacuum to a three-particle state by the action of O.
From the spectral decomposition of CLðEÞ, we know that
the pole has the form

CLðEÞ ¼ i
c

E − EnðLÞ
þ regular; ð63Þ

with EnðLÞ the pole position and c a positive, real constant.
For this to be true for the pole in Eq. (62), the following
condition must be satisfied:

FIG. 20. Plot showing an example of the unphysical solutions that arise for certain choices of parameters, here for ma ¼ −10 and
large, negative values ofKiso

df;3. The left panel shows the lowest finite-volume level, with −10−4m2Kiso
df;3 ranging from 1 to 19 in unit steps.

This level also appears in Fig. 4, but here we extend the results to more negative values ofKiso
df;3. The unphysical behavior is the doubling

back of the spectrum, so that there are three, rather than one, levels for a range ofmL around 5.4 (the value shown by the vertical dashed
line). To understand how this doubling back arises, we show in the right two panels plots of Fiso

3 =m2 vs E=m formL ¼ 5.4, together with
the values of −1=ðm2Kiso

df;3Þwhose intersections give the solutions. The middle panel looks reasonable, but the enlargement shown in the
right panel reveals that Fiso

3 is not decreasing monotonically, leading to the triplet of solutions for the largest three values of jKiso
df;3j. As

explained in the text, the middle solution corresponds to a pole with an unphysical residue.
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�∂Fiso
3 ðE; L; aÞ
∂E þ ∂1=Kiso

df;3ðEÞ
∂E

�
E¼EnðLÞ

< 0: ð64Þ

For a constant Kiso
df;3, as used in most of this work and,

specifically, in Fig. 20, this implies that Fiso
3 must be

decreasing at the crossing point. Assuming that there are
physical theories with all values of Kiso

df;3, the crossing
point can occur anywhere along the curve, and thus Fiso

3

must be monotonically decreasing. Assuming that all
values of a are physical, this monotonicity property must
hold in general.
We now return to Fig. 20. This shows an example where

Fiso
3 does not decrease monotonically with E, but instead, as

shown in the right panel, has a small upward excursion.
This implies that, in a small range of Kiso

df;3 there are three
solutions to the quantization condition, the middle of which
violates the condition Eq. (64). To obtain three states, the
spectral curves must double back, as shown in the left
panel. Thus this doubling back is an alternative criterion for
unphysicality.
Clearly the appearance of such solutions is problematic

and needs to be understood. This is work in progress, but
based on our tests so far we can offer some remarks. We find
that Fiso

3 only develops a positive slope in regions where its
magnitude is small and, as the volume is increased, these
regions always go away and the function becomes “healthy.”
This leads us to suspect thatwe are seeing a formof neglected
finite-volume effects that are formally exponentially sup-
pressed but with oscillatory energy dependence. These cause
problems when small values of Fiso

3 are sampled by large-
magnitude values of Kiso

df;3.
In addition, the oscillations in Fiso

3 share similarities with
the oscillations observed in the threshold state of Fig. 7, and
seem to be connected. In that case we found that using a
different definition of F̃s removed the oscillations and this
points to the fact that the smooth cutoff function,Hðk⃗Þ, may
be the source of the issue. This is plausible because,
although smooth, the cutoff function does have vanishing
support above a certain value of k. It is well known that
sharp cutoffs lead to oscillatory behavior, and the oscil-
lations here might be a related phenomenon.
It is also possible that the unphysical solutions are an

indication that the isotropic, low-energy approximation is
breaking down for certain choices of parameters. Our
approach for now is to avoid the (relatively small) regions
in which unphysical solutions occur, while at the same time
actively investigating their source.
We close with some more general remarks about the

condition Eq. (64). First, we stress that, since Kiso
df;3 can

depend on E, one should in general use the full condition
including the derivative of 1=Kiso

df;3ðEÞ. Second, we note
that a similar condition holds for the two-particle quanti-
zation condition, in the s-wave approximation, namely

�∂FsðE; k⃗; LÞ
∂E þ ∂1=Ks

2ðk⃗Þ
∂E

�
E¼EnðLÞ

< 0; ð65Þ

where Fs ¼ 2ωkF̃sðk⃗Þ, E is the total two-particle energy,
and EnðLÞ is here a solution to the two-particle quantization
condition, Fs ¼ −1=Ks

2. Note that here we are considering

also a moving frame, with −k⃗ being the total momentum.
The result (65) can be derived using the result of Ref. [30]
for the two-particle correlation function, following similar
steps to those outlined above. To our knowledge it has not
been presented before. The solutions to the two-particle
quantization condition shown in the left panel of Fig. 1 all
satisfy this condition.
We can use Eq. (65) to learn about the way in which such

consistency conditions can fail. In all examples that we are
aware of, Fs is a monotonically decreasing function of E.
Thus a violation of this condition requires 1=Ks

2 to rise
sufficiently rapidly at the crossing point. If this is the case,
there will be spectral lines that double back, similar to those
shown in Fig. 20. If this occurs for some L, the problem
will go away as the box size increases, because Fs becomes
an increasingly steep function of E as L is taken larger. In
this case it seems that there are two possible causes for the
problem. One is that it is caused by neglected exponentially
suppressed corrections, the other that the choice of rapidly
increasing 1=Ks

2 is simply unphysical within the s-wave
approximation. The problem cannot, however, lie with the
H functions, since Fs can be regulated in other ways.
Our third observation is that the consistency condition,

Eq. (65), turns into the condition introduced in Ref. [37] if a
subthreshold solution persists as L → ∞. This is because
Fs → ρ in this limit, and one can then show algebraically
that the conditions are equivalent. This is as expected since
the persistence of a subthreshold solution is equivalent to
the existence of a bound state, and Eq. (65) is just the
requirement that this pole, which remains isolated as
L → ∞, has a residue with the proper sign.
Finally, we can relate Eq. (65) to a result from Ref. [31].

In that work it was noted that Lellouch-Lüscher factors
were physical only if the condition ∂ðδs þ ϕPÞ=∂E� > 0

was satisfied, where δs is the s-wave phase shift and ϕP is
the Lüscher pseudophase, related to F̃s. It is straightfor-
ward to show that this condition is equivalent to Eq. (65).
We note also that, from the perspective of Refs. [23,38],
this equivalence is clear since the Lellouch-Lüscher-like
relation is derived there via the same matching condition
that leads to Eq. (65) here.

VI. CONCLUSIONS AND OUTLOOK

In this work we have numerically explored the relativ-
istic three-particle quantization condition derived in
Refs. [9,10]. In order to capture the key features of the
formalism, and to compare the work flow to that described
in Ref. [18], we have made a number of simplifications.
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Specifically we have restricted attention to vanishing total
momentum in the box, truncated the infinite-volume
scattering observables to the s-wave, isotropic approxima-
tion, and taken the two-particle sector to be dominated by
the scattering length in the effective-range expansion.
Within this reduced setup, we find that the quantization

condition is numerically straightforward to implement and
that a great deal of interesting physics is buried in the
simple formula. For example, as summarized in Fig. 3,
the condition provides a useful benchmark, by predicting
the part of the volume dependence of three-particle energies
that is due only to two-particle scattering—i.e., the case
where the three-particle contact interaction is neglected,
Kiso

df;3 ¼ 0. This is a useful starting point in lattice calcu-
lations since infinite-volume, three-particle scattering infor-
mation can only be recovered by measuring deviations
from these benchmark curves.
Going beyond this, we show how turning on nonzero

values of Kiso
df;3 predicts a rich set of phenomena, including

resonancelike avoided level crossings (Fig. 5) and the
finite-volume energy shift for an Efimov-like three-particle
bound state (Fig. 6). The latter case is particularly clean as
we can study the state over a vast range of volumes, mL ¼
4 to 70, and show that the predicted level matches the
asymptotic predictions for κL ≫ 1 (in our case implying
mL ≫ 10), but also show how the level deviates from the
asymptotic form and thus that the full formalism is needed
to make reliable predictions for realistic volumes. Finally,
our result also describes the regime of weak interactions
and, as we discuss in Sec. III D, we can numerically resolve
all known terms in the 1=L expansion of the threshold state,
including the logðmLÞ=L6 dependence.
Beyond predicting detailed finite-volume behavior, our

formalism also provides a powerful tool in understanding
the infinite-volume scattering of three-particle states. This
is because a simple form of Kiso

df;3 corresponds to a
complicated three-particle scattering amplitude, M3, with
nontrivial phase space dependence generated dynamically
by the integral equations relating Kiso

df;3 to M3. The most
dramatic example of this is summarized in Fig. 14, where
we take two inputs designed to produce a shallow bound
state (Kiso

df;3 ¼ 2500 and a ¼ −104) and from this predict
the wave function with no free parameters. The numerical
reproduction of this complicated functional form, which
spans many orders of magnitude, gives us confidence that
the approach of relatingKdf;3 toM3 should be a useful tool
in describing three-particle physics for a variety of systems.
Despite these successes, future work is needed to bring

this formalism to maturity for use in realistic numerical
LQCD calculations. In this direction it is instructive to first
compare our approach to that using NREFT, described in
Refs. [17,18]. One key difference between our formalism
and the NREFT proposal is that the latter uses a hard cutoff
in place of our smooth cutoff functionHðk⃗Þ, and places this
cutoff at much higher spectator momenta.

Recalling that ðE; P⃗Þ is fixed, the spectator momentum
ðωk; k⃗Þ determines the invariant mass squared of the non-
spectator pair to be E�2

2;k ¼ ðE − ωkÞ2 − ðP⃗ − k⃗Þ2. Thus,

taking k⃗ very large takes E�2
2;k not only below 4m2 but in fact

to negative values with large magnitude. From the per-
spective of our approach, dependence on the deep sub-
threshold values of the two-to-two scattering amplitude is
undesirable, leading us to introduce Hðk⃗Þ. Among other
things, this avoids the region of the left-hand cut in the two-
to-two amplitude. This region is accessed in the approach
of Refs. [17,18], but the left-hand cut is avoided by
restricting the nonrelativistic expansion to a few terms.
We emphasize the role of Hðk⃗Þ once more here, because

we suspect this to be related to unphysical finite-volume
energies that we find for certain values of Kiso

df;3. As we
describe in Sec. V, the finite-volume function Fiso

3 is
generally monotonically decreasing with energy, but can
exhibit small upward oscillations for volumes up to
mL ≈ 6, i.e., including nearly all present-day lattice cal-
culations. These oscillations lead to unphysical solutions
when jKiso

df;3j is large enough to intersect them.
Understanding the exact nature of these artifacts and

modifying the formalism to remove them is clearly crucial.
As a first step we note that varying the width of the cutoff
function, Hðk⃗Þ, can show which regions suffer from these
effects. Thus one can identify values of Fiso

3 where the
artifacts do not arise and restrict attention to values of Kiso

df;3

that only intersect these regions. This is only a first step as
our ultimate goal is a formalism that works for all possible
scattering parameters, with no need to identify safe regions
numerically.
In addition to addressing the issues mentioned above,

future projects include going beyond the isotropic approxi-
mation in a systematic way, including the role of the mixing
of different angular-momentum states in finite volume.
Such mixing is already built into our full quantization
condition so the task is one of block diagonalization, or
subduction, onto the irreps of the finite-volume symmetry
group. Additional formal steps include incorporating K2

poles, multiple two- and three-particle channels and non-
identical and nondegenerate particles into our formalism, as
well as particles with intrinsic spin. Finally, on the side of
infinite-volume physics, we are in the process of develop-
ing tools to numerically relate Kdf;3 and M3 also above
threshold. Here it will be crucial to develop realistic
parametrizations of three-particle scattering amplitudes,
especially in resonant channels.
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APPENDIX A: NUMERICAL IMPLEMENTATION

The numerical implementation naturally falls into two
parts: (i) applying the finite-volume quantization condition,
Eq. (6), and (ii) solving the infinite-volume integral
equation, Eq. (21), and doing the integrals in Eqs. (27)–
(29). We consider these parts in turn. As in the rest of this
work, it is convenient to use units in which m ¼ 1. Factors
of m can be added back using dimensional analysis.

1. Implementing the quantization condition

The matrices F̃s, G̃s, etc., entering the quantization
condition (6) are all of size N × N. Here N is determined
by the cutoff functionHðk⃗Þ. For given choices value of E, L
and α, Hðk⃗Þ is nonzero only for a finite number of finite-
volume momenta k⃗. For example, if E ¼ 4 thenN ¼ 19, 93
and 895 for L ¼ 5, 10 and 20, respectively.
To simplify the numerical computation, and, in particu-

lar, to allow a straightforward determination of the depend-
ence on a, we rewrite Fs

3 as

½Fs
3�kp ¼ 1

L3

�
F̃s

3
−
F̃s

ζ

	
1

HFG − 1=a



F̃s

ζ

�
kp
; ðA1Þ

ζkp ¼ δkp
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32πωkE�
2;k

p ; ðA2Þ

½HFG�kp ¼ δkpjq�2;kj½1 −Hðk⃗Þ� þ
�
F̃s

ζ2
þ 1

ζ
G̃s 1

ζ

�
kp
: ðA3Þ

HFG is a real, symmetric matrix that can be diagonalized as

HFG ¼
XN
n¼1

jniλnhnj; ðA4Þ

where λn and jni are its eigenvalues and eigenvectors
respectively. To implement the sums over k⃗ and p⃗ in the
definition of Fiso

3 , Eq. (7), we use the vector j1i introduced
following Eq. (6) in the main text. Putting this together we
find

Fiso
3 ¼ 1

L3

�h1jF̃sj1i
3

−
X
n

h1jF̃s=ζjni2
−1=aþ λn

�
: ðA5Þ

Thus, in order to determine Fiso
3 , it is convenient to

construct HFG, then diagonalize it, and finally calculate
the (real) matrix elements h1jF̃sj1i and h1jF̃s=ζjni. Given
the eigenvalues and these matrix elements we know Fiso

3 (at
the chosen values of E and L) for all values of a. An

example of the a dependence is shown in Fig. 21 where the
energy and volume have been fixed to E ¼ 4 and L ¼ 10

respectively. Because of the overall factor of 1=L3, Fiso
3 has

a small magnitude except near the poles at a ¼ 1=λn. The
figure shows a typical example in that most of the poles are
in the region a ≥ 1 where our formalism does not hold.
We can substantially reduce the size of the matrices

needed in the calculation using group theory [9]. The finite-
volume momenta fall into “shells,” the members of which
are related by elements of the octahedral group Oh (which
we define to include parity). For example, the first four
shells have 1, 6, 12 and 8 members, respectively, with
representative elements being 2πn⃗=L with n⃗ ¼ ð0; 0; 0Þ,
(0,0,1), (0,1,1) and (1,1,1). The matrices ρ̃, F̃s and G̃s are
invariant under cubic group transformations, implying that
the eigenvectors of HFG lie in irreducible representations
(irreps) of the group. The state j1i projects each shell onto
the fully symmetric Aþ

1 irrep, and the invariance of F̃s and ξ
implies that only eigenvectors jni lying in the Aþ

1 irrep
contribute to Fiso

3 . The net result is that we need only invert
the Aþ

1 block of HFG, which is an Nsh × Nsh matrix, with

Nsh being the number of shells for which Hðk⃗Þ ≠ 0. This
drastically reduces the matrix size and concomitantly
speeds up the numerical evaluation. For the examples
given above, where E ¼ 4, and L ¼ 5, 10 and 20, the
values of Nsh are 3, 8 and 40 (compared to N ¼ 19, 93 and
895). Note also that the eight poles in Fig. 21 directly
correspond to the eight shells for E ¼ 4, L ¼ 10. Although
we focus on systems at rest here, one may speed up
calculations for systems with nonzero total momenta by
consider the irreps of the little groups of Oh.
F̃s is our version of the zeta function introduced by

Lüscher in Refs. [6,7]. We give a brief description of the
methods we use to calculate it in Appendix B, below.

2. Implementing the integral equations
and integrals below threshold

As discussed in Sec. II C, in order to relate Kiso
df;3 to

physical quantities, it is general necessary to solve an

FIG. 21. Fiso
3 =m2 vs ma for E ¼ 4m and mL ¼ 10. There are

eight poles in total (shown by vertical [red] dashed lines), one per
momentum shell.
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integral equation, Eq. (21). In this study we have restricted
our attention to energies below and at threshold, where this
procedure is relatively straightforward. Here we explain
how the infinite-volume limit can be achieved for these
kinematics. The below-threshold case is simplest and we
discuss it first. In particular, we are interested in determin-
ing the quantities appearing in the equation for Mdf;3,
Eq. (26). In particular, there will be a bound state whenever
F∞
3 ¼ −1=Kiso

df;3, with Lðk⃗Þ ¼ Rðp⃗Þ being proportional
to the on-shell Bethe-Salpeter wave function of this bound
state.
The determination of F∞

3 below threshold is straightfor-
ward: we can simply take the L → ∞ limit of our numerical
evaluations of Fiso

3 , i.e.,

F∞
3 ¼ lim

L→∞
Fiso
3 ¼ lim

L→∞

X
k⃗;p⃗

½Fs
3�kp: ðA6Þ

This is an example of the limit employed in Ref. [10] in
order to relate the finite- and infinite-volume scattering
amplitudes.
To explain why Eq. (A6) is valid, we first note that, as

explained in Ref. [10],

F̃sðk⃗Þ !L→∞
ρ̃ðk⃗Þ: ðA7Þ

This holds for all values of E, but we are interested only in
E < 3, where ρ̃ is real. Naively one would have expected
the right-hand side to vanish, but the nonzero result arises
because we use the PV prescription in the integral in F̃s.24

The expression for Fs
3, Eq. (8), can thus be rewritten in the

infinite-volume limit as

½Fs
3�kp !L→∞ 1

L3

�
ρ̃

3
− ρ̃

1

1=ð2ωMs
2Þ þ G̃s ρ̃

�
kp

; ðA8Þ

¼ 1

L3

�
ρ̃

3
− ρ̃ð2ωMs

2Þρ̃þ ρ̃
1

1þ ð2ωMs
2ÞG̃s

×ð2ωMs
2ÞG̃sð2ωMs

2Þρ̃
�
kp
: ðA9Þ

Here the new matrices are

ρ̃kp ¼ δkpρ̃ðk⃗Þ and ½2ωMs
2�kp ¼ δkp2ωkMs

2ðk⃗Þ;
ðA10Þ

and to obtain Eq. (A8) we have used the definition of
Ms

2, Eq. (22).
Next we note that the integral equation for Dðu;uÞ,

Eq. (21), can be discretized as

Dðu;uÞ
kp ¼ −½L3ð2ωMs

2ÞG̃sð2ωMs
2Þ þ ð2ωMs

2ÞG̃sDðu;uÞ�kp:
ðA11Þ

Here Dðu;uÞ
kp ¼ Dðu;uÞðk⃗; p⃗Þ for finite-volume momenta, and

we have used the definitions of G̃s and G∞ in Eqs. (12) and
(24).25 Since Eq. (A11) is now a finite matrix equation, its
solution is

Dðu;uÞ ¼−L3
1

1þð2ωMs
2ÞG̃s ð2ωMs

2ÞG̃sð2ωMs
2Þ: ðA12Þ

Using this we can rewrite Eq. (A9) as

Fs
3 !L→∞ ρ̃

3L3
−

1

L3
ρ̃ð2ωMs

2Þρ̃ −
1

L6
ρ̃Dðu;uÞρ̃: ðA13Þ

Comparing to Eqs. (27) and (28), and using the fact that
1=L3

P
k →

R
k⃗ as L → ∞, we find the claimed result,

Eq. (A6).
By similar arguments, one can evaluate the Bethe-

Salpeter amplitudes using either of the forms

LðkÞ ¼ RðkÞ ¼ lim
L→∞

1

3
−
X
p

�
1

1=ð2ωMs
2Þ þ G̃s ρ̃

�
kp

;

ðA14Þ

¼ lim
L→∞

X
p⃗

L3½½F̃s�−1Fs
3�kp: ðA15Þ

We stress that, when using the results Eqs. (A6)–(A15),
L is no longer playing the role of the spatial volume in the
lattice calculation. Instead, it allows for a convenient
discretization of integral equations. In particular, we are
here interested only in the limiting values as L → ∞, and
not to the form of the finite-L corrections.

3. Implementing the integral equations
and integrals at threshold

We now explain how we solve the integral equations and
perform the integrals when working directly at threshold.
The only change compared to the subthreshold case is that
G̃s has a pole when k⃗ ¼ p⃗ ¼ 0, which leads to an IR
divergence in Dðu;uÞ. However, this IR divergence is absent
for all the quantities of interest, either because it is
multiplied by ρ̃ð0⃗Þ, which vanishes at threshold, or because
it appears in an IR finite integral. Thus we can regularize in
the IR simply by removing the single divergent entry in G̃s:

24This result also serves as a useful check of our numerical
evaluation of F̃s.

25In general, to take the L → ∞ limit of G̃s, we have to
introduce a pole prescription [9], but this is not the case below
threshold, because there are no poles. Note that G̃s does not come
with a built-in pole prescription, unlike F̃s.
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G̃s
kp → =Gkp ¼

�
0 k⃗ ¼ p⃗ ¼ 0

G̃s
kp otherwise:

ðA16Þ

The finite-volume version of Dðu;uÞ is then given by

=Dðu;uÞ ¼ −L3
1

1þ ð2ωMs
2Þ=G

ð2ωMs
2Þ=Gð2ωMs

2Þ; ðA17Þ

which is simply Eq. (A12) with G̃s replaced by =G. Now,
since F̃s → ρ̃ even at threshold, we can still use Eqs. (A8),
(A9) and (A13), as long as G̃s → =G and the quantity being
calculated is IR finite. This leads to the results (all at
threshold)

F∞
3 ¼ 1

3L3
trðρ̃Þ − 1

L3
trðρ̃ð2ωMs

2Þρ̃Þ −
1

L6

X
kp

½ρ̃=Dðu;uÞρ̃�kp

þOð1=LÞ; ðA18Þ

Lð0⃗Þ¼Rð0⃗Þ¼ 1

3
−

1

L3

X
k

½=Dðu;uÞρ̃�0kþOð1=LÞ: ðA19Þ

The quantities on the right-hand sides of these equations
can be evaluated numerically by a slight extension of the
work needed to solve the quantization condition, and taking
L → ∞ gives the left-hand sides. These are then combined
to determine Mdf;3;thr using Eq. (51) in the main text.
Similar methods allow the numerical determination of

the relation between M3;thr and M3;df;thr that is given in
Eq. (123) of Ref. [26]. The basic relation is given in
Eq. (54), and we give here the definitions of the quantities
Ĩ1, Ĩ2 and SI that appear in that equation.
First, making uses of Eqs. (119), (123) and (126) of

Ref. [26], we find

Ĩ1 ¼ 9L3½ð2ωM2=GÞ22ωM2�00

þ 9 × 212m2π3a3
1

L3

X
k⃗≠0

�
Hðk⃗Þ2
k4

þ a

ffiffiffi
3

p

2

Hðk⃗Þ3
k3

�

þOð1=LÞ: ðA20Þ

Both terms have linear and logarithmic divergences as
L → ∞, but these cancel to leave a finite limit. The
corresponding result for Ĩ2, obtained using Eqs. (122),
(123) and (125) of Ref. [26], is

Ĩ2 ¼ −9L3½ð2ωMs
2=GÞ32ωMs

2�00

− 9 × 216m2π4a4
1

L6

X
k⃗1;k⃗2≠0

Hðk⃗1Þ2Hðk⃗2Þ2
k21½k21 þ k22 þ ðk⃗1 þ k⃗2Þ2�k22

þOð1=LÞ: ðA21Þ

Here the two terms have canceling logarithmic divergences.

The final quantity is SI ¼
P∞

n¼3 In, where In is defined
in Eq. (124) of Ref. [26]. Given this definition, it is
straightforward to evaluate the geometric sum to arrive at

SI ¼ 9L3

�
1

1þ 2ωMs
2=G

ð2ωMs
2=GÞ42ωMs

2

�
00

þOð1=LÞ:

ðA22Þ

In the numerical evaluation of F∞
3 , Lðk⃗Þ, Ĩ1, Ĩ2 and SI ,

we can use the same group-theoretical simplifications as
described in the numerical solution of the quantization
conditions. Thus the matrices involved have dimensions
given by the number of momentum shells. We also note that
Ĩ1 is the simplest of the quantities to calculate, since it
involves only a column of =G rather than the full matrix.

APPENDIX B: EVALUATION OF F̃s

In this Appendix we describe how we numerically
evaluate the two versions of F̃s that we use. Since both
differ from the more standard choice of Refs. [7,39], based
of zeta-function regulation, we think it is useful to present a
short description.
We begin with F̃s

HS. We rewrite Eq. (11) as

F̃sðk⃗Þ ¼ F̃s
rðk⃗Þ þ δF̃sðk⃗Þ; ðB1Þ

F̃s
HSðk⃗Þ¼

1

2ωk

Hðk⃗Þ
32π3ðE−ωkÞ

2π

L

�X
n⃗a

−PV
Z
n⃗a

�
Hða⃗ÞHðb⃗Þ
x2− r2

;

ðB2Þ

where δF̃s is exponentially suppressed. F̃s
HS is the form

introduced in Eqs. (43) and (44) of Ref. [26], and contains a
sum and integral over the vector of integers n⃗a, with a⃗ ¼
ð2π=LÞn⃗a and b⃗ ¼ −a⃗ − k⃗, while x2 ≡ q�22;kL

2=ð4π2Þ is a
quantity that can have either sign. Finally, r is magnitude of
a vector whose parts parallel and perpendicular to −k⃗ are

rk ¼
nak − jn⃗kj=2

γ
; r⊥ ¼ na⊥; ðB3Þ

with γ ¼ ðE − ωkÞ=E�
2;k.

The reason for this rewriting is that it is now easier to
numerically implement the PV prescription, following a
method introduced in Appendix A of Ref. [26]. Using
d3na ¼ γd3r, the integral can be rewritten as

PV
Z
n⃗a

Hða⃗ÞHðb⃗Þ
x2−r2

¼ γPV
Z
r⃗

Hða⃗ÞHðb⃗Þ
x2−r2

ðB4Þ
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¼ γ

�
−
Z
r⃗

Hða⃗ÞHðb⃗Þ
r2

þ x2
Z
r⃗

Hða⃗ÞHðb⃗Þ − 1

r2ðx2 − r2Þ

þ x2PV
Z
r⃗

1

r2ðx2 − r2Þ
�
: ðB5Þ

The pole prescription is needed only for the third integral
on the right-hand side (rhs), and this integral vanishes
identically for all real x2 (of either sign). The first integral
on the rhs is IR finite, while in the second the pole at
x2 ¼ r2 is canceled by the difference in the numerator. Thus
both integrals are straightforward to evaluate numerically,
which we do by breaking them up into regions where
Hða⃗ÞHðb⃗Þ vanishes, is nontrivial, or equals unity.
For the calculations presented in the main text, we have

dropped the quantity δF̃s, since it is exponentially sup-
pressed. This is theoretically consistent, since the quanti-
zation condition is only accurate up to exponentially
suppressed corrections in the first place.
We now turn to F̃s

KSS. Here we again drop δF̃s, and then
use the exponential regulator of Ref. [30] to define the sum
and integral

F̃s
KSSðk⃗Þ¼ lim

α→0

1

2ωk

Hðk⃗Þ
32π3ðE−ωkÞ

2π

L

�X
n⃗a

−PV
Z
n⃗a

�
eαðx2−r2Þ

x2−r2
:

ðB6Þ

Unlike for F̃s
HS, where theH-functions cut off the sums and

integrals at finite values of n⃗, here both extend to infinite
jn⃗j, albeit in a convergent fashion. We cut off the sum when
the contributions of higher terms drop below our desired
precision (roughly 1 part in 1011). The integral, however,
can be evaluated analytically, using the same method as in
Eq. (B5) to take care of the principal value prescription:

PV
Z
n⃗a

eαðx2−r2Þ

x2−r2
¼ γ

�
−
Z
r⃗

eαðx2−r2Þ

r2
þx2

Z
r⃗

eαðx2−r2Þ−1

r2ðx2−r2Þ

þx2PV
Z
r⃗

1

r2ðx2−r2Þ
�

ðB7Þ

¼ 4πγ

�
−

ffiffiffiffiffiffi
π

4α

r
eαx

2 þ πx
2
erfið

ffiffiffiffiffiffiffi
αx2

p
Þ
�
; ðB8Þ

where erfiðzÞ is the imaginary error function, defined by
derfiðzÞ=dz ¼ 2ez

2

=
ffiffiffi
π

p
and erfið0Þ ¼ 0. The final issue is

how to take the limit α → 0. As shown in Ref. [30], the α
dependence comes in the form e−cL

2=α, where c ¼ Oð1Þ.
Thus for sufficiently small α the corrections become
numerically negligible. We find that, for the range of
values of L that we use, taking α ¼ 0.5–1 suffices for
the desired numerical accuracy.
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