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Figure 5. The distribution of the amplitude of transverse velocity (m/s) within the model 
of 2 km wide and 70 km long. (a, b) Distributions corresponding to depth functions defined 
in Figure ld with Y0 - 0 and 0.95D, respectively; (c, d) distributions corresponding to depth 
functions defined in Figure le with b - 100 and 1000 m, respectively; and (e, f) distributions 
corresponding to depth functions defined in Figure If with b - 100 and 600 m, respectively. 

the axis (Figure 9a) with the maximum values on the 
edges of the bottom slope and close to zero elsewhere in 
the fiat region. Similarly, the magnitude of the vorticity 
over nonsymmetric bathymetry (Figures 9b-9f) is zero 
or close to zero in the deep channel and reaches its max- 
imum at the edges of the bottom slopes. Like the other 
properties of the solution, vorticity is highly affected by 
the bathymetry. The largest transverse shear of along- 
channel velocity occurs at the edges of large transverse 
slopes of the bottom, producing the largest vorticity lo- 
cally. For gentler depth variations, the vorticity can be 
smaller than 10 -4 s -• (not included in Figure 9) and 
spread across the width rather than being confined to 
the region of large bottom slopes. 

3.5. Error Estimates for the Model 

In order to find the solution, we have assumed that 
the lateral variation of the elevation is small. This 

approximation introduces an error into the continuity 
which is used to solve the elevation. Therefore the ele- 

vation and thus the velocity (which is obtained in terms 
of elevation) all have the same order of dynamical error. 
Since the lateral variation of elevation is of the order of 

(cg•/Oy)D, we can define the ratio between this quan- 
tity and the amplitude of the elevation as the relative 
error as discussed in section 2. Figures 10a-10f show the 
relative error of the solution with the depth functions 
defined in (21)-(26), which is of the order of 5 x 10 -2, 
or 5%. With a I m tidal amplitude, a 5% error is equiv- 
alent to a lateral difference of elevation of 5 cm, a small 
value compared to the tidal amplitude. 

For wide estuaries, for instance D ,• 20 km, the lat- 
eral variation of elevation can be larger not only because 
of the effect of the bathymetry but also because of a 
more likely nonuniform forcing across the width at the 
mouth. In addition, Coriolis force will become more im- 
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Figure 6. The amplitude of velocity (m/s) at the open end of the model as a function of the 
transverse distance (km) for all depth functions: each curve shows the result calculated from 
one depth function. (a-f) The amplitude of longitudinal velocity. (g-l) The amplitude of the 
transverse velocity. Figures 6a-6f (or Figures 6g-61) correspond to the depth functions defined 
in Figures la-lf, respectively. 

portant in the along-channel momentum balance as the 
width becomes comparable to the deformation radius. 
For these reasons, the present model is appropriate only 
for narrow estuaries. 

4. Discussion 

We have presented a solution of a 2-D tidal model 
for a narrow estuary with arbitrary lateral depth vari- 
ation, and we have applied it to various depth profiles. 
Now we will further discuss the solution. We will com- 

pare model results to some observations obtained in the 
James River Estuary. We will fit the data to the phase 
of the longitudinal momentum equation to estimate the 
bottom drag coefficient, and we will apply the analytic 

model, using the estimated CD and the real bathymetry, 
to where observations took place in the James River Es- 
tuary. 

4.1. Comparison With Observations 

Previous observations showed some bathymetric in- 
fluences on tidal flow in shallow estuaries similar to 

those presented by the solution. For instance, the study 
of Jay and Smith [1990] indicated that the M2 tidal cur- 
rent amplitude in the Columbia River Estuary is larger 
at the mouth and decreases toward the head. Acous- 

tic Doppler current profiler (ADCP) observations in the 
lower Chesapeake Bay [Valle-Levinson and Lwiza, 1995, 
1997] and the bay entrance [Valle-Levinson et al., 1998] 
showed that the semidiurnal tidal velocity amplitude 
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Figure ?. Tidal ellipses with the depth functions defined in equations (21)-(23). The circles 
indicate the position of the velocity vector at high tide (when the elevation is at its maximum 
value). The solid ellipses represent counterclockwise rotation, and the dashed ellipses represent 
clockwise rotation of the velocity vector. The depth contours are shown by dashed straight lines. 
(a) The depth function is equation (21) and b - 100 m. (b) b - 1000 m. (c) The same as 
Figure 7a except that the depth function in equation (22) is used. (d) The same as Figure 7c 
except that b = 600 m. (e) The same as Figures 7a and 7c except that equation (23) is used as 
the depth function. (f) The same as Figure 7e except that b = 600 m. 

70 km 

was higher in the navigational channels (0.5-0.6 ms -i ) 
and weaker (0.3 ms -i ) over the shoals. The flow in 
the channels also exhibited lags in phase compared to 
the adjacent shoals by -• 30 ø or 1 hour. These results 
are consistent with the present analytic model. Next, 
we will show more observational evidence in the James 

River Estuary. 
Velocity profiles were sampled along two cross-estuary, 

4- km long transects in the lower James River (Fig- 

ure lla) throughout two spring (October 26-27) and 
two neap tidal cycles (November 2-3) in 1996. The pro- 
files were obtained during 25-hour cruises with a 600 
kHz broadband RD Instruments' ADCP. The ADCP 

was mounted looking downward on a small (roughly 1.2 
m long) catamaran and towed at 2.5 ms -1 to the side 
of a small boat. The ADCP recorded profiles of veloc- 
ities which were averaged over 30 s intervals and gave 
a horizontal spatial resolution of -• 75 m. The vertical 
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Figure 8. Tidal ellipses. (a) The same as Figure 7 except that here the depth function is 
equation (24) and y0 = 0. (b) The same as Figure 8a except that y0 = 0.95D. (c) The same as 
Figure 7a except that equation (25) is used for the depth function. (d) The same as Figure 8c 
except that b = 1000 m. (e) The same as Figure 8c except that equation (26) is used for the 
depth function. (f) The same as Figure 8e except that b - 600 m. 

resolution was 0.5 m, and the closest bin to the surface 
was located at 0- 2 m below the surface. Compass cal- 
ibration and data correction were performed following 
Joyce [1989]. Navigation was carried out with differ- 
ential Global Positioning System (GPS). In addition to 
the underway sampling, which provided spatial cover- 
age, moored digiquartz pressure sensors (SeaBird SBE 
26) were deployed at both ends of one transect and val- 
idated the assumption of small cross-estuary variations 
of surface elevation (• 5%) relative to the tidal ampli- 
tude (Figure 11b). The time series of current veloc- 
ity recorded at each point along each transect and at 

each depth consisted of 20 values for the spring tide 
cruise and 17 values for the neap tide cruise. These 
time series spanned two tidal cycles and were subject to 
least- squares harmonic analysis on the semidiurnal and 
diurnal frequencies [e.g., Valle-Levinson et al., 1998]. 
The analysis yielded the across-estuary distribution of 
the semidiurnal tidal current amplitude shown in Fig- 
ure 12. The along-estuary tidal current amplitude was 
clearly influenced by bathymetry as explained by the 
analytic solution. Greatest values were found in the 
channel, and weakest values were seen over the shoals. 
The small channel to the southwest of transect 1, pot- 
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Figure 9. Amplitude of the vorticity (s-•). (a-f) Amplitudes corresponding to the depth 
functions defined by (21)-(26), respectively, with the smallest parameter values (which generate 
the largest slopes). 

traying bathymetry similar to that of Figure l c, showed 
a local maximum in tidal current amplitude, similar to 
the analytic solution presented in Figures 2-3. 

To quantitatively compare the model results with the 
observations, we now use the actual bathymetry (depth 
function across the two transects) and apply the ana- 
lytic model to both transects at spring and neap tides. 
For simplicity, we assume a constant drag coefficient, 
which can be estimated from the phase relation of (8). 
By virtue of (8), we have the phase relationship 

½v = ,½,B + ,•,.,4,,, 

in which ½u, ½B, and ½• are the phase values for U, 
-g/(icr + fi/h), and OA/Ox, respectively. Since we are 
interested in narrow estuaries in which the length scale 
of the depth variation is much smaller than the length 
scale of the phase variation of the along-channel pres- 
sure gradient across the channel, ½• can be considered 
as a constant along a transect. The value for ½s is 

___ 

Taking ½A• and • as two unknowns, we may find their 
values by fitting (27) to the observed phase of the depth- 
averaged tidal velocity using a least- squares method. 
We then use the obtained • to calculate the drag co- 
efficient from (2). This method is more dynamically 
oriented than a simple scaling [Godfrey, 1980] and sim- 
pler than the adjoint numerical method [e.g., Ullman 
and Wilson, 1998]. The drag coefficients obtained by 
this approach are 1.5x10 -3 and 1.8x10 -3 for the spring 
and neap tides, respectively. The drag coefficients are 
then used with the analytic model. It should be noted 
that Wang and Craig [1993] also used a fitting tech- 
nique to estimate parameters of friction, but they used 
the solution of a simplified model and were thus lim- 
ited to the specific solution. In contrast, here we only 
use the momentum balance. Therefore the method pre- 
sented here is not limited to the simple geometry and 
depth functions we have chosen. The comparison be- 
tween the model-produced tidal amplitude and phase 
and those of the observations is shown in Figures 13- 
15. The model has reproduced the observed features 
of tidal amplitude and phase as functions of the water 
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Figure 10. Maximum relative error of the model (percent), I(O•/Oy)/(a/D)l, which is propor- 
tional to the transverse gradient of surface elevation. (a-f) Maximum relative errors correspond- 
ing to the depth functions defined by (21)-(26), respectively. The maximum relative error is of 
the order of 5%. 

depth. Particularly, the observed increase of amplitude 
of the along-channel velocity with the increase of wa- 
ter depth is similar to that shown by the model (Figure 
13). The rate of increase decreases as depth increases, 
as mentioned at the end of section 2. The observed 
transverse phase difference of the along-channel veloc- 
ity had the same order of magnitude as that predicted 
by the model (Figure 14): about 300-40 ø , or roughly 
I hour in time. The phase of along-channel velocity 
at shallow water leads that at deep water. The am- 
plitude of the transverse velocity from the observation 
appeared to be larger than the model result (Figure 
15a). The observed phase (20 ø) of the transverse veloc- 
ity is larger than the model result (15 ø ) but otherwise 
with the same trend (Figure 15b). The quantitative 
agreement demonstrates that the model, although sim- 
ple in dynamics, represented the main tidal properties 
well. We also note that there are apparent discrepan- 
cies between the model and observations, particularly in 
the amplitude of the transverse velocity. This could be 
caused by the oversimplification of the model. For ex- 
ample, here we are using a constant drag coefficient. In 
reality, the drag coefficient can be a function of position. 
In addition, stratification, meandering of the channel, 
along-estuary variation of the bathymetry, and advec- 
tion of momentum are neglected in our model. The 
errors of the momentum and continuity equations are 
again due to the approximation taking • as indepen- 
dent of y. The estimated maximum relative error for 
the simplified James River Estuary model, as defined 

by the magnitude of (O(/Oy)/((/D) is -- 2.5%. This 
value is smaller than the observed value of •0 5% (Fig- 
ure l lb), a fact that may be related to all sources of 
errors not included in the model. 

4.2. Significance of This Work 

This work presents a series of steps and approxima- 
tions that allow the depth-averaged tidal velocity to be 
resolved in a two-dimensional domain. The solution 

is obtained from a complete set of dynamic equations 
for a tidal wave and does not need to specify the pres- 
sure gradient as in the work of Friedrichs and Hamrick 
[1996]. In addition, the solution for the transverse veloc- 
ity is obtained by integration of the continuity equation, 
which makes the results insensitive to the form of the 

transverse momentum balance. The method allows an 

arbitrary lateral depth variation in a two-dimensional 
model. As a result, this solution provides a convenient 
way to study the effects of arbitrary lateral depth vari- 
ation on the tidal current. Variable depth functions 
usually make the problem too complicated to allow an 
analytic solution to be obtained in a simple way. For 
an arbitrary depth function, it often becomes even more 
remote to permit an analytic solution without a simpli- 
fication. In a numerical model, a strong bottom slope 
such as those represented by the functions used here 
(Figures la-lf) may cause convergence problems. This 
analytic solution can also be useful for testing of nu- 
merical models [e.g., Thacker, 1981; Lynch and Gray, 
1978; Chen, 1989]. Since the present solution allows at- 
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Figure 11. (a) Area of study showing sampling transects. (b) Time series of transverse variation 
of surface elevation (percentage of the elevation) obtained from two pressure sensors across the 
James River in 2 months. For better visualization, only one month data representative of the 
whole record are shown. 

bitrary depth functions, it may be particularly valuable 
for testing of high-order numerical models with large 
depth gradients. 

5. Summary 

We have presented a solution for a two-dimensional 
depth-averaged model of tidal motion in narrow estuar- 
ies with arbitrary lateral depth variations. The solution 
is obtained by assuming that the lateral variation of the 
surface elevation is small in narrow estuaries. The lat- 

eral variation of elevation calculated from this solution 

is indeed small (•0 5% of the tidal amplitude). The 
model is in contrast to that of Friedrichs and Hamrick 

[1996] in which the along-channel pressure gradient was 
prescribed, rather than being part of the solution. This 
model resolves the tidal wave propagation and velocity 
field in a two-dimensional domain, rather than along 
a single section [Friedrichs and Hamrick, 1996]. Com- 
bined with the along-channel momentum equation, a 
cross-channel integration of the continuity highly sim- 
plifies the mathematics for the tidal elevation and, at 
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Figure 12. M2 tidal current amplitude (cm/s) and the corresponding depth-averaged values 
obtained from observations at two transects in the James River Estuary during two cruises in 
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along transect 2, November 2-3, 1996. (c) Amplitude along transect 1, October 26-27, 1996. 
(d) Amplitude along transect 1, November 2-3, 1996. 

the same time, allows an arbitrary depth function. The 
solution is compact and easy to apply to different depth 
functions. 

It should be emphasized that the tidal elevation is 
solved without using the transverse momentum equa- 
tion. The transverse velocity is obtained from continu- 
ity. The transverse momentum equation is only used 
to check the validity of the uniformity assumption for 
the elevation. As a result, only OA/Oy is crucially sen- 
sitive to the precise form of the cross-channel balance. 
This approach makes the solution not sensitive to the 
transverse momentum balance. 

Dozens of depth functions in six groups with various 
degrees of bottom slopes are applied to calculate the so- 
lution. The velocity field is highly correlated with the 
depth variations. The longitudinal velocity is stronger 
at the mouth than it is in the interior and stronger in 
deep waters than it is over the shoals. The transverse 
velocity has weak longitudinal variability and is small 

in the channels and on the sides but is relatively large 
on the edges of the maximum bottom slopes. The tidal 
ellipses are also sensitive to the depth variation. At 
the mouth, the flow behaves as a progressive or par- 
tially progressive wave and at the head as a standing 
wave. The vorticity of the flow is greatest where depth 
changes most dramatically and can reach 10 -3 and even 
10 -2 s -• over very large depth slopes. This shear flow 
should therefore contribute to increase the dispersion 
coefficient, a subject that we have omitted for the mo- 
ment. It is found that with a maximum relative error 

of 5%, the solution satisfies both momentum and mass 
balances. 

ADCP observations along two transects of -• 4 km 
in the James River Estuary during two cruises in 1996 
showed characteristics similar to those of the analytic 
solution. By fitting the observed phase of the semidi- 
urnal tide to the phase relationship of the longitudinal 
momentum equation, we estimated the bottom drag co- 
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respectively. (a) Spring tides. (b) Neap tides. 

efficient to be 1.5 x10 -3 and 1.8 x 10 -3 for the spring 
and neap tides, respectively. This method of drag coef- 
ficient estimation is much simpler than the traditional 
adjoint numerical modeling technique. Using these val- 
ues of drag coefficient and the real bathymetry along the 
two transects in the James River Estuary, we calculated 
the analytical solution which showed remarkable agree- 
ment with observations. The relative error (or the ratio 
between the transverse difference of elevation and the 

elevation) of the simplified James River Estuary model 
is about 2.5%. Two months of time series data from 

pressure sensors at two sides of the James River Estu- 
ary showed small transverse difference of elevation (• 
5%). The slightly higher-than-theory value of the trans- 
verse difference in elevation could be caused by the cur- 
vature of the coastlines and other factors which are not 

included in the present model. 
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Appendix- The Solution Expressed in 
Detail 

In this appendix, we will express the solution in de- 
tail so that the real and imaginary parts are separated. 
It should be noted, however, that with some software 
(e.g., MATLAB) the solution in its complex form can 
be calculated directly without separating the real and 
imaginary parts. Nevertheless, this appendix is pre- 
sented here for completeness. It can be shown, by a 
straightforward mathematical derivation, that the com- 
plex form of the solution for A can be expressed as 

/•0 1/4 I COS ( • • A -- a-•- (T12 q- T2 2) al •) - a2 sin(•) 

+ 
(A1) 

in which i, •0 = •/•, L, and a are •1, the fric- 
tionless wavelength, the length of the estuary, and the 
tidal amplitude at the mouth, respectively, and 

01 dy' 71 -- --70 1 + r 2' 

r0- rrh0' r- rrh 
h y,_ y 

j(o • •dy' 

0•1 -- •00(T• q- T22) --1/4 COS( ) 
I •b 

/,02 -- •00(T• q- T22) --1/4 sin(•) 

tan-x ( T1 ) I-2 

az -- cOS [COx (x -- L)] cosh [co2 (x - L)] 
a2 - sin [COl (x - L)] sinh [co2 (x - L)] 

(A2) 



23,542 LI AND VALLE-LEVINSON: ANALYTIC TIDAL MODEL 

where/3, ho, h, c•, and D are the linear friction coef- 
ficient, the transverse mean depth, the depth function, 
the angular tidal frequency, and the width of the estu- 
ary, respectively. A dimensionless version of (A1) can 
be obtained by dividing by a. In (A1), there are two 
parameters: (1) the ratio between the frictionless wave- 
length scale •0 and the length of the model œ and (2) 
the ratio between the tidal time-scale c• -1 and the fric- 
tional decay time-scale ho//3, i.e., 7.0. In addition, there 
is also a function •, similar to •0. The difference of • 
is that h(•) instead of ho is used. The terms or fac- 
tors in (A1) are determined with either of these two 
ratios or with a transverse integration of a function of 
•. The along-channel decay of the tidal amplitude due 
to friction is represented by a• and a2. 

The longitudinal gradient of A can be expressed as 

dA _ • (T• + T•) --1/4 •(•1 + /•2) (A3) - + 

where 

bl ½1 COS(•) -- ½2 sin(•) 

[ ½ sin( ½ ] + 
(A4) 

bl cl cos(•) q- c2 sin(•) 

[ ½ sin( ½ ] cos() - 
(A5) 

b• = cos(v:•L) cosh(v:2L), b2 - sin(c•lL)sinh(v:2L) 
C1 ---- sin [v:l (x - L)] cosh [v:2 (x - L)] 
c2 = cos [v:• (x - L)] sinh [•2(x - L)] 

It can be seen that dA/dx is of the order of a/•o, an 
expected result. 

Similarly, the complex amplitude of the longitudinal 
velocity can be expressed as 

a (T12 +T22) --1/4 

ho (b• + b•)(1 + h2a2 ) (A7) 

in which (a/ho)x/•ho is the frictionless velocity scale, 
the factors (7.•' + 7'22) --1/4 and 1/(bl • + b•) show the 
effect of friction, and the factor 1/(l+/?•'/(h•'a•'))shows 
the variability of friction contributed by the variation 
of depth. 
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