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A two-dimensional analytic tidal model for a narrow 
estuary of arbitrary lateral depth variation' The 
intratidal motion 

Chunyan Li and Arnoldo Valle-Levinson 
Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, Virginia 

Abstract. An innovative method is introduced to solve a two-dimensional, depth- 
averaged analytic model for narrow estuaries or tidal channels with arbitrary lateral 
depth variations. The solution is valid if the lateral variation of the amplitude of 
tidal elevation (IAal) is small, i.e., IAal << a, where a is the amplitude of the tidal 
elevation. This assumption is supported by a 60-day observation of elevation in 
the James River Estuary using pressure sensors at both sides of a cross section of 
the estuary. The error introduced by the solution is of the order of IAal/a, which 
has a maximum of • 5% in the James River Estuary. The propagation of the 
tidal wave (elevation) is therefore essentially one- dimensional (along the estuary), 
regardless of the depth distribution, whereas tidal velocity has a strong transverse 
shear and is three- dimensional in general. Dozens of depth functions in six groups 
of various forms are used to calculate the solution. The tidal velocity is highly 
correlated with the bathymetry. The largest amplitude of the along-channel velocity 
is in the deepest water. The phase of the along-channel velocity in the shallow 
water leads that in deep water, causing a delay in time of flood or ebb in the deep 
water. The transverse velocity is generally small in the middle of a channel but 
reaches its maximum over the edges of bottom slopes. The depth function has a 
significant effect on the ellipticity and the sense of rotation of the tidal ellipses. 
By fitting the observed phase of semidiurnal tide in the James River Estuary to 
the phase of the momentum equation, we have obtained optimal values of the drag 
coefficient: 1.5 x10 -a and 1.8 x10 -a for the spring and neap tides, respectively. 
Then we apply these values of the drag coefficient and the model to the James River 
Estuary using the real bathymetry. Results show remarkable agreement between the 
observations and the model along the transects for both spring and neap tides. The 
cross-channel phase difference of the along-channel velocity between the channel 
and the shoal is found to be • i hour, a value consistent with that from the model. 
The model-estimated lateral variation of elevation is 2.5% of the tidal amplitude, 
which is slightly smaller than the observed value. 

1. Introduction 

Tidal motion in estuaries is induced by tidal waves 
generated in the ocean and propagated into shallow wa- 
ter. This is often referred to as the "cooscillating tide." 
One of the most quoted earliest studies on the cooscil- 
lating tide was that of Taylor [1921]. Taylor's work 
showed that a cooscillating tide in a semi-enclosed basin 
with rotation was a superposition of an incident Kelvin 
wave, a reflected Kelvin wave, and Poincar• waves. If 
the effect of rotation is small, this cooscillating tide de- 
generates to simple incident and reflected waves which 
are applicable to problems of narrow estuaries and tidal 
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rivers [Lamb, 1932; Ippen and Harleman, 1961; Officer, 
1976]. Here a "narrow" estuary is one with a width 
smaller than the barotropic Rossby radius R = x/-•/f, 
where g, h, and f are the acceleration due to gravity, the 
water depth, and the Coriolis parameter, respectively. 

The classic tidal wave solutions found in standard 

textbooks [e.g., Lamb, 1932; Derant, 1961; Proudman, 
1953; Officer, 1976] are for simple bathymetry configu- 
rations, mostly constant depth problems. Tides, how- 
ever, like many wave phenomena, can be complicated 
by at least two factors: the nonlinearities and variable 
water depth. For problems of strong nonlinearities, an 
analytical study is often too difficult to accomplish re- 
gardless of the depth distribution. In a weakly non- 
linear problem of cooscillating tide in an estuary, the 
effect of nonlinearities is of second order while the vari- 

able depth can generate a first-order effect. Thus the 

23,525 
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first-order problem will be linear and usually tractable. 
However, only a handful of general wave problems with 
simple bottom topographies have been resolved. These 
problems are mostly frictionless, vorticity free, and rep- 
resented by velocity potentials [Keller, 1958; Carrier, 
1966; Nachbin and Papanicolaou, 1992]. As shown 
by several studies [e.g., LeBlond, 1978; Prandle, 1985; 
Speer and Aubrey, 1985; Parker, 1991], tidal wave mo- 
tion in estuaries is often highly frictional. Wang and 
Craig [1993] used-a linear frictional model for the Hey 
Estuary (maximum width of 4 km) and solved it ana- 
lytically. The model, however (like other analytic mod- 
els), assumed that the estuary had rectangular cross- 
sections, and the transverse momentum was neglected. 
Consequently, the effect of the transverse depth varia- 
tion and the transverse structure of the along-estuary 
flow could not be resolved. 

Depth variations across an estuary are found to be 
crucial in determining the flushing time or residence 
time [Li and O'Donnell, 1997], which is an important in- 
dicator of ecological health and self-cleaning capacity of 
estuaries [Oliveira and Baptista, 1996]. An accurate es- 
timate on the flushing time, on the other hand, requires 
an accurate knowledge of the intratidal flow field with 
an adequate spatial resolution across the estuary, which 
often has a significant transverse depth variation. It is 
therefore of great interest to solve a frictional tidal wave 
in an estuary of transverse depth variation. Li [1996] 
has presented some analytic solutions of tidal waves in 
estuaries with variable depth in both horizontal direc- 
tions, using a perturbation method. The drawback of a 
perturbation method is the limitation on the degree of 
the depth variation. The perturbation solution may not 
be convergent if the maximum depth difference within 
the estuary is comparable to or greater than the mean 
depth. 

In this paper, we present a theory for cooscillating 
tidal motion in tidal rivers and shallow estuaries with 

arbitrary lateral depth variations, without using a per- 
turbation method. A simplification is made from the 
fact that the tidal elevation across a narrow estuary 
has a difference that is much smaller than the ampli- 
tude of the elevation, or the elevation is almost laterally 
uniform. This assumption is verified by examining the 
lateral derivative of the surface elevation obtained from 

the momentum balance. In section 2, we present the 
analytic solution. In section 3, we calculate the solu- 
tion for dozens of depth profiles and discuss the solu- 
tion regarding the effect of bathymetry on the strength 
of flow, tidal ellipses, transverse variation of elevation, 
and vorticity. We then estimate the error of approxima- 
tion and the transverse gradient of the surface elevation. 
In section 4, we discuss the propagation of the wave 
and compare the results with some observations using 
a shipborne acoustic Doppler current profiler (ADCP) 
in the James River Estuary. In section 5, we summarize 
the results. 

2. Formulation 

We use a model geometry similar to that of Li and 
O'Donnell [1997]: The model is straight and has paral- 
lel side boundaries. However, here we allow an arbitrary 
lateral depth variation. The x axis is taken to lie along 
the boundary and points toward the head of the estu- 
ary. The y axis lies along the open boundary at x = 0. 
A single-frequency, semidiurnal tide is imposed at the 
mouth of the estuary. Both the amplitude and the phase 
of sea level variation at the mouth are assumed to be 

uniform across the estuary and are specified. 
We use the depth-averaged, shallow water momentum 

and continuity equations [Li and O'Donnell, 1997]: 

(•u 

Ot 

Ot 

where u, v, (, h, x, y, t, •, f, and g are longitudinal veloc- 
ity, lateral velocity, elevation, water depth, longitudinal 
coordinate, lateral coordinate, time, friction coefficient, 
Coriolis parameter, and the gravitational acceleration, 
respectively. The friction coefficient • is defined by 
[Proudman, 1953; Parker, 1984] 

8CU0 
- (2) 

where CD and U0 are the bottom drag coefficient and 
the magnitude of the longitudinal velocity, respectively. 
The friction coefficient •, which may be a function of 
y, is dependent on the velocity amplitude and the drag 
coefficient. It will be shown later in this section that 

the solution allows the drag coefficient CD to be any 
reasonable function of y. In our study, we will use a 
constant (7D for simplicity. Li [1996] has discussed in 
depth the effect of a variable friction coefficient • on 
tidal and subtidal flows. The results showed no funda- 
mental differences. 

It can be shown, by a scaling analysis, that the ad- 
vection terms, the cross-product frictional terms (i.e., 
•u•/h 2 and •v•/h2), and the Coriolis force term in the 
along-channel momentum have higher orders of mag- 
nitudes (than other terms) [e.g., Li, 1996]. The Cori- 
olis force in the transverse momentum, on the other 
hand, can be more important than the local accelera- 
tion (Ov/Ot). This is because a typical estuary has a 
length (L) much larger than its width (D), which leads 
to the scaling fUo/crVo •0 fL/crD (the ratio between 
the Coriolis force and transverse local acceleration) >> 
1, where U0 and V0 are the longitudinal and transverse 
velocity scales, respectively, and cr is the angular fre- 
quency of the tide. We will therefore keep the Coriolis 
force in the transverse momentum. To keep the gener- 



LI AND VALLE-LEVINSON: ANALYTIC TIDAL MODEL 23,$27 

ality of the solution, we will also keep the local acceler- 
ation Ov/•t. The linearized equations are then 

(3) 

The depth is assumed to be a sufficiently smooth 
(differentiable) but otherwise arbitrary function of the 
across-estuary position: 

h- h(y) (4) 

For a single-frequency cooscillating tide, the solution 
can be expressed as 

u- Ue iat, v- Ve iat, •- Ae iat (5) 

where cy, i, U, V, and A are the angular frequency of the 
tide, the unit imaginary number v/Z- 1, the complex am- 
plitude of the longitudinal velocity, the complex ampli- 
tude of the lateral velocity, and the complex amplitude 
of the tidal elevation, respectively. 

Substituting (5)into (3) yields 

- -gxx - 
OA fi 

icyV + IV- -g•yy - •V 
hOU OhV i cy A + •xx + O y - 0 

(6) 

In the following, we use the first and third equations 
of (6), i.e., the x- momentum and the continuity, re- 
spectively, to solve for U and A. The y- momentum 
equation will not need to be referred to again until we 
solve for OA/Oy to verify the assumption that OA/Oy is 
small. For a cooscillating tide problem, the tidal ampli- 
tude at the mouth is usually known. The longitudinal 
velocity at the head (x = L, a solid boundary) vanishes. 
Since the side boundaries are parallel to each other and 
the y axis is perpendicular to the side boundaries, the 
lateral velocity at the side boundaries (y = 0, D) must 
be zero. Therefore the boundary conditions associated 
with (6) are 

A x--O -- a, 
OA 

x=L 
- O, Vl•,=0,o - 0 (7) 

The first equation of (6) yields 

g OA 
icy + fi/h Ox 

OU 

Ox icy + fi/h Ox 2 

(s) 

(9) 

In a study by Friedrichs and Hamrick [1996], a sim- 
ilar dynamical balance was used in which the pressure 
gradient (OA/Ox) was assumed known and independent 
of y. Li [1996] has shown that on the basis of a pertur- 
bation solution, the lateral variation of tidal elevation 
in an estuary or tidal river of a few kilometers wide is 
very small compared to that of the longitudinal varia- 
tion. We therefore assume that the lateral variation of 

elevation is negligible in the x- momentum and the con- 
tinuity equations. The complex amplitude of the tidal 
{.4evation is thus taken to be approximately independent 
of y, which leads to a dramatic simplification of the solu- 
tion. The validity of this approximation will be verified 
in section 3. It will also be shown in section 3.5 that the 

transverse gradient of the elevation IOA/Oyl, obtained 
from the y- momentum (second equation of (6)), is in- 
deed very small in the present problem of interest. Note 
that similar approximations, which are justified by scal- 
ing arguments, have been used by Li [1996] and Li and 
O'Donnell [1997] in the study of tidally induced resid- 
ual circulation. These studies produced results that are 
almost identical to those from exact solutions [Li, 1996]. 

The differences between the work of Friedrichs and 

Hamrick [1996] and the present work are that (1) the 
former used a prescribed value for O•/Ox, whereas the 
present work solves the problem in the context of a 
cooscillating tidal wave, in which the pressure gradi- 
ent is given by the solution, and (2) the former solved 
the velocity field u(y,z) at one cross section in which 
z is the vertical coordinate, whereas the present work 
solves both the tidal elevation and the depth-averaged 
tidal velocity throughout the model domain. Note that 
by assuming a known pressure gradient at a single po- 
sition, the solution of Friedrichs and Hamrick was only 
valid at that position and could not demonstrate the 
characteristics of a tidal wave (with incident and re- 
flected wave components), since the tidal elevation was 
not solved, while here our objective is to solve the tidal 
wave problem. 

In order to solve for A from the third equation of (6), 
we multiply (9) by h and then integrate the product 
across the estuary from y = 0 to y = D, which yields 

foD h OU D - -fo 
gh 02A _02A 

icy + fi/h Ox • dy • J--•5-x2 (10) 

where 

fo D gh (11) 

Note that we have neglected the lateral variation of 
O•A/Ox • in obtaining (10). The error of the approxi- 
mation of (10) is •O2IAAI/Ox •, where AA is the mag- 
nitude of the lateral variation of A. The relative error 

is therefore [02AA/Ox2[/[O2A/Ox2[ • [AA[/[A[, or the 
lateral variation of A over the amplitude of A. Integrat- 
ing the third equation of (6) across the estuary yields 
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_02A 

ianD + Y:•-•x 2 - 0 (12) 
Again, we have used the assumption that A is laterally 
independent in obtaining (12). We have also applied 
(10) and the boundary condition for V in (7). Equation 
(12) has a solution satisfying the boundary conditions 
(7) for A: 

cos [co(x - L)] A- a (13) 
cos(coL) 

in which 
iaD 

co2 = (14) 

Consequently, we have, by virtue of (8), (9), and (13) 
the solutions for U and the along-channel gradients of 
A and U: 

U - g aco sin [co(x - L)] (15) ß 

zrr + •/h cos(coL) 

dA aco 

dx = -cos(coL) sin[co(x - L)] (16) 
OU g aco2 gco2 A = + - - + 

(lZ) 
Note that if either the depth function is dependent 

on x or the width D varies along the channel, the coef- 
ficients of (12) will no longer be constant. For variable 
coefficients, a general explicit solution for (12) is not 
readily obtainable. For a constant depth (h-const) and 
exponential width, an analytic solution can be derived, 
but it can not be extended to the case when the depth 
is variable. With a lengthy but straightforward deriva- 
tion, A, U, and their derivatives can be expressed in 
terms of their real and imaginary parts (see appendix). 
Evidently, the lateral dependence of U is dictated by 
the form of h(y) as shown in (15). For a constant h, the 
solution is the same as that of previous theories [e.g., 
Ippen and Harleman, 1961; O•cer, 1976]. Substituting 
(17) into the third equation of (6) yields 

gh• • OhV 
iaA + . A + = 0 (18) 

• + •/h Oy 

which can be used to solve V by integration with respect 
to y: 

1(• ygh•2 ) V- -• iay + i••/h dY A (19) 
It can be shown that for a constant h, V is identically 

zero. It follows from the second equation of (6) and (19) 
that 

OA 1 
= + + fv] 

Oy g 

_ ia+•/h iay+•: •dy A __ 

gh ia + •/h 
f OA 

ia + •/h Ox 
(20) 

from which the magnitude of OA/Oy can be calculated 
and used to check the assumption that A is almost 
laterally uniform. The solutions for A, U, and V, 
i.e., equations (13), (15), and (19), are obtained re- 
gardless of the actual form of fi(y) and therefore al- 
low a variable CD across the estuary. Physical in- 
sights can be obtained from the solution. For instance, 
from (15), the amplitude of the along-channel velocity 
is IUI - ah/x/a2h2 +/?2, where a is a constant with 
a unit of ms -2 at a given x. It can be shown that for 
typical shallow estuaries, the larger h is, the larger IUI 
will be, although the relationship is not linear, particu- 
larly at large h (> 20 m). The dependence of phase of 
along-channel velocity on the variation of water depth 
can be seen from the function -tan-l(ah/fi), which 
gives a larger value for a smaller h indicating that both 
flood and ebb occur first at shallow water. Note that 

friction (fi) is crucial in determining these characteris- 
tics of tide: if • is zero, then both IUI and the phase of 
U will be independent of h. In section 3, we will present 
some examples for the solution obtained here. We will 
also estimate the error of the approximation. 

3. Results 

In this section, different depth functions are applied 
to the solution obtained in section 2. The depth func- 
tions are described first, followed by a discussion of the 
solution. Emphasis will be given to the effect of the 
bathymetry. We will examine the strength of the flow, 
the tidal ellipses, the lateral variation of elevation, and 
the vorticity, in relation to the depth distribution. 

3.1. Depth Functions 

For convenience, we present the depth functions in 
six groups. These functions are chosen as examples to 
study the effect of arbitrary transverse depth variations 
with the emphasis on the effect of channel-shoal config- 
uration and bottom slopes. The width D is chosen to 
be 2000 m for all six groups of depth functions. The 
first group defines symmetric depth profiles (Figure la) 
represented by the following equation: 

h(y) = 5 + 3e -(y-D/•)•'/•' (21) 
in which y, D, and b are the transverse coordinate, the 
estuary width, and a parameter that adjusts the depth 
profile, respectively. This function defines a depth pro- 
file with minimum and maximum depth values of 5 and 
8 m, respectively. The value of b is between 100 and 
1000 m. For b = 100 m, (21) represents a flat shoal at 
each side with a relatively deep funnel-shaped channel 
in the middle (the uppermost curve in Figure la). For 
b = 1000 m, (21) represents a simple v-shaped profile 
with no flat shoals (the lowest curve of Figure la). The 
second group of depth functions is 

h(y) - 5 + 3e -(y-D/5)2/15ø•' q- 3e-(y-4D/5)•'/b•' (22) 
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Figure 1. (a-f) Depth (in meters) as a function of transverse distance y. Figures la-lf corre- 
spond to the depth functions defined in equations (21)-(26), respectively, with given parameter 
ranges as described in the text. 

which represents two separate channels of 8 m deep and 
a middle shoal with a minimum depth of 5 m (Fig- 
ure lb). The value of b is chosen to vary from 100 to 
600 m. The third group of depth functions defines two 
channels of different depths (8 and 5 m, respectively) 
separated by a shoal of 2 m (Figure lc), which is ex- 
pressed as 

h(y) 2 q- 3e -(y-D/5)2/b2 - q- 6e-(y-4D/5) (23) 

with b varying from 100 to 600 m. The fourth group is 
defined by 

h(y) - 2 + 3e -(y-D/5)2/15ø2 q- 6e -(y-yø)•'/3øø2 (24) 

with Yo varying from 0 to 0.95D (Figure ld). The vari- 
able yo results in a channel with variable axial position 
across the width. Therefore, for those values of yo that 
are away from D/5, this depth function produces two 
channels. As yo becomes closer to D/5, the two chan- 
nels tend to merge into one channel. The fifth group 
defines depth profiles with a fiat channel on one side 

2 + (y _< z/2) (2s) h(y)- 8 (y > DI2) 

Depending on the value of b, which we choose to vary 
from 100 to 1000 m, the depth defined by (25) decreases 
either gradually or abruptly from a fiat channel to a 
fiat shoal (Figure le). The sixth group defines two fiat 
channels with different depths on the two sides, which 
are separated by a shallow shoal with a minimum depth 
of 2-3 m in between (Figure lf). The analytic function 
of this group is 

5 + 6e -(y-4D/5)•'/b•' (y _< 4D/5) 
h(y) - 2 + 3e -(y-D/5)•'/15ø•' + 6e-(y-4D/5)•'/f' 

(D/5 < y _< 4D/5) 
8 (y > 4D/5) 

(26) 
in which b varies from 100 to 600 m. These depth func- 
tions are chosen to represent various channel-shoal con- 
figurations found in estuaries, and they allow very steep 
depth profiles that may cause some numerical models 
to fail. 

3.2. Strength of Flow 

By applying the depth functions defined in section 
3.1, we have calculated the solution. Tidal amplitude 
at the mouth is chosen to be I m for all the calcu- 

lations. Figures 2-5 show the amplitude of u and the 
amplitude of v with the depth functions defined by (21)- 
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Figure 2. The distribution of the amplitude of longitudinal velocity (m/s) within the model 
of 2 km wide and 70 km long. (a, b) Distributions corresponding to depth functions defined in 
Figure la with b = 100 and 1000 m, respectively; (c, d) distributions corresponding to depth 
functions defined in Figure lb with b = 100 and 600 m, respectively; and (e, f) distributions 
corresponding to depth functions defined in Figure lc with b = 100 and 600 m, respectively. 

(26). Depth functions corresponding to Figures 2-5 are 
those of the uppermost and lowermost curves of Fig- 
ures la-lf (i.e., either maximum or minimum values of 
b or Y0 for the depth functions are selected). A distinct 
feature of the flow is that the longitudinal velocity u 
has a larger amplitude in deeper water than it does in 
shallower water, and it decreases from the mouth to the 
head. The amplitude of u is also strongly influenced by 
the rate of change of depth across the channel. The 
steeper the channel is, the larger the maximum value of 
the amplitude of u and its lateral shear will be (compare 
Figure 2a with Figure 2b, Figure 2c with Figure 2d, and 
Figure 2e with Figure 2f). The lateral distribution of 
the amplitude of u closely follows the depth function. 
This can be better presented with a cross-channel view 
of the amplitude of u at the mouth for all the depth 
functions (Figures 6a-6f). Obviously, the magnitude 
of the longitudinal velocity follows the depth function. 
The number of maxima of the longitudinal flow equals 
the number of depth maxima. 

The amplitude of the transverse velocity component 
has a different response to the bathymetry. Figures 4 
and 5 show the amplitude of v with the same depth 
functions as those of Figures 2 and 3. For better vi- 
sualization, F•.gures 6g-61 show the amplitude of v at 
the mouth for all the depth functions, just as in Fig- 
ures 6a-6f. From Figures 4, 5, and 6g-61, we see that the 
transverse velocity is zero at the lateral boundaries, an 
expected result. In addition, it is zero or small (depend- 
ing on whether the depth is symmetric) in the middle 
of the channel, and its maximum occurs at the edge of 
the slopes, i.e., over the shoulder of the channels. The 
variation of transverse velocity at the edges of slopes 
may imply a tendency to cause intratidal convergence 
or divergence at these locations. 

3.3. Tidal Ellipses 

The discussion in section 3.2 of the flow strength only 
deals with the amplitude of tidal velocity. The distri- 
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Figure 3. The distribution of the amplitude of longitudinal velocity (m/s) within the model 
of 2 km wide and 70 km long. (a, b) Distributions corresponding to depth functions defined 
in Figure ld with y0 = 0 and 0.95D, respectively; (c, d) distributions corresponding to depth 
functions defined in Figure le with b = 100 and 1000 m, respectively; and (e, f) distributions 
corresponding to depth functions defined in Figure If with b = 100 and 600 m, respectively. 

bution of the phase of the velocity provides informa- 
tion about the evolution of tidal velocity vectors in a 
tidal cycle or the orientation, direction of rotation, and 
the ellipticity of the tidal ellipses. Calculations show 
that for all the depth functions considered, the phase 
of the longitudinal flow in deep water always lags that 
on the shoals as predicted at the end of section 2 by a 
direct analysis to the solution. Depending on the ac- 
tual depth function, the phase lag can reach 200-30 ø 
(or 40-60 min) for a semidiurnal tide, comparable to 
previous observations [ Valle-Levinson and Lwiza, 1995, 
1997]. The distributions of phase and phase differences 
among •, u, and v determine the two-dimensional (2-D) 
structures of the tidal motion and flow characteristics. 

In this section, we discuss the tidal ellipses. We show 
schematically the sense of rotation and ellipticity of the 
ellipses and the flow vectors at high tides for the depth 
functions of (21)-(26) with maximum and minimum pa- 
rameters of selection. 

For a better visualization, the transverse velocity 
has been exaggerated. For depth functions symmet- 
ric about a longitudinal axis (Figure la), the tidal el- 
lipses are also symmetric about the axis (Figures 7a 
and 7b). For all depth functions used, there are some 
common characteristics of the tidal ellipses. First, the 
tidal ellipses are sensitive to the distribution of depth 
(Figures 7 and 8). For instance, when b changes from 
100 to 600 m in (22), the sense of rotation of the tidal 
ellipses changes (compare Figure 7c with Figure 7d), in- 
dicating that the depth variation has a strong influence 
on phases. Similar results are obvious by comparing 
Figure 7e with Figure 7f, Figure 8a with Figure 8b, 
Figure 8c with Figure 8d, and Figure 8e with Figure 8f. 
Second, a larger slope of the bottom causes a larger vari- 
ation in the ellipticity and the magnitude of flow across 
the slope (compare Figure 7e with Figure 7f, Figure 8c 
with Figure 8d, and Figure 8e with Figure 80. Third, 
the flow is close to a progressive wave at the mouth but 
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a standing wave at the head. This can be seen by the 
position of the circles on the ellipses: at the mouth, the 
flow at high tide is landward and close to the maxi- 
mum strength, while in the interior, particularly close 
to the head, the flow at high tide is close to its mini- 
mum strength (Figures 7 and 8). Fourth, when there 
is a large lateral depth variation with a relatively deep 
channel and a shallow shoal, there is a significant lateral 
variation of phase of the velocity, and the flow over shal- 
low water reaches its maximum much earlier than that 

over deep water does. This can be seen by the circles 
on the ellipses over shallow water (Figures 7e-8f). This 
phenomenon has been observed at the Chesapeake Bay 
Mouth and attributed to the effect of bottom friction 

[Valle-Levinson and Lwiza, 1995]. Fifth, the strongest 
cross-isobath flow occurs over the largest slopes (Fig- 
ures 7e, 8a, 8b, 8c, and 8e). 

3.4. Vorticity 

Because of strong bottom frictions in shallow estu- 
aries, velocity potentials can not be used to formulate 
the governing equations since vorticity is expected to be 
important. In the present model, the longitudinal tidal 
velocity dominates over the transverse velocity as in 
most narrow estuaries. Therefore the vorticity approx- 
imately reflects the transverse shear of the longitudinal 
velocity. Again, we only show the vorticity distribu- 
tion for the depth functions with the steepest bottom 
slopes of (21)-(26) (Figures 9a-9f). In general, the vor- 
ticity is larger at the mouth and decreases to zero at the 
head. The maximum magnitude of the vorticity is 10 -4 
s -1 except for the steepest bottom slopes where it can 
reach 10-3-10 -2 s -1 locally (Figure 9). For the sym- 
metric depth function (21), the vorticity is zero along 
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the axis (Figure 9a) with the maximum values on the 
edges of the bottom slope and close to zero elsewhere in 
the fiat region. Similarly, the magnitude of the vorticity 
over nonsymmetric bathymetry (Figures 9b-9f) is zero 
or close to zero in the deep channel and reaches its max- 
imum at the edges of the bottom slopes. Like the other 
properties of the solution, vorticity is highly affected by 
the bathymetry. The largest transverse shear of along- 
channel velocity occurs at the edges of large transverse 
slopes of the bottom, producing the largest vorticity lo- 
cally. For gentler depth variations, the vorticity can be 
smaller than 10 -4 s -• (not included in Figure 9) and 
spread across the width rather than being confined to 
the region of large bottom slopes. 

3.5. Error Estimates for the Model 

In order to find the solution, we have assumed that 
the lateral variation of the elevation is small. This 

approximation introduces an error into the continuity 
which is used to solve the elevation. Therefore the ele- 

vation and thus the velocity (which is obtained in terms 
of elevation) all have the same order of dynamical error. 
Since the lateral variation of elevation is of the order of 

(cg•/Oy)D, we can define the ratio between this quan- 
tity and the amplitude of the elevation as the relative 
error as discussed in section 2. Figures 10a-10f show the 
relative error of the solution with the depth functions 
defined in (21)-(26), which is of the order of 5 x 10 -2, 
or 5%. With a I m tidal amplitude, a 5% error is equiv- 
alent to a lateral difference of elevation of 5 cm, a small 
value compared to the tidal amplitude. 

For wide estuaries, for instance D ,• 20 km, the lat- 
eral variation of elevation can be larger not only because 
of the effect of the bathymetry but also because of a 
more likely nonuniform forcing across the width at the 
mouth. In addition, Coriolis force will become more im- 
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portant in the along-channel momentum balance as the 
width becomes comparable to the deformation radius. 
For these reasons, the present model is appropriate only 
for narrow estuaries. 

4. Discussion 

We have presented a solution of a 2-D tidal model 
for a narrow estuary with arbitrary lateral depth vari- 
ation, and we have applied it to various depth profiles. 
Now we will further discuss the solution. We will com- 

pare model results to some observations obtained in the 
James River Estuary. We will fit the data to the phase 
of the longitudinal momentum equation to estimate the 
bottom drag coefficient, and we will apply the analytic 

model, using the estimated CD and the real bathymetry, 
to where observations took place in the James River Es- 
tuary. 

4.1. Comparison With Observations 

Previous observations showed some bathymetric in- 
fluences on tidal flow in shallow estuaries similar to 

those presented by the solution. For instance, the study 
of Jay and Smith [1990] indicated that the M2 tidal cur- 
rent amplitude in the Columbia River Estuary is larger 
at the mouth and decreases toward the head. Acous- 

tic Doppler current profiler (ADCP) observations in the 
lower Chesapeake Bay [Valle-Levinson and Lwiza, 1995, 
1997] and the bay entrance [Valle-Levinson et al., 1998] 
showed that the semidiurnal tidal velocity amplitude 
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the depth function. (f) The same as Figure 7e except that b = 600 m. 

70 km 

was higher in the navigational channels (0.5-0.6 ms -i ) 
and weaker (0.3 ms -i ) over the shoals. The flow in 
the channels also exhibited lags in phase compared to 
the adjacent shoals by -• 30 ø or 1 hour. These results 
are consistent with the present analytic model. Next, 
we will show more observational evidence in the James 

River Estuary. 
Velocity profiles were sampled along two cross-estuary, 

4- km long transects in the lower James River (Fig- 

ure lla) throughout two spring (October 26-27) and 
two neap tidal cycles (November 2-3) in 1996. The pro- 
files were obtained during 25-hour cruises with a 600 
kHz broadband RD Instruments' ADCP. The ADCP 

was mounted looking downward on a small (roughly 1.2 
m long) catamaran and towed at 2.5 ms -1 to the side 
of a small boat. The ADCP recorded profiles of veloc- 
ities which were averaged over 30 s intervals and gave 
a horizontal spatial resolution of -• 75 m. The vertical 
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resolution was 0.5 m, and the closest bin to the surface 
was located at 0- 2 m below the surface. Compass cal- 
ibration and data correction were performed following 
Joyce [1989]. Navigation was carried out with differ- 
ential Global Positioning System (GPS). In addition to 
the underway sampling, which provided spatial cover- 
age, moored digiquartz pressure sensors (SeaBird SBE 
26) were deployed at both ends of one transect and val- 
idated the assumption of small cross-estuary variations 
of surface elevation (• 5%) relative to the tidal ampli- 
tude (Figure 11b). The time series of current veloc- 
ity recorded at each point along each transect and at 

each depth consisted of 20 values for the spring tide 
cruise and 17 values for the neap tide cruise. These 
time series spanned two tidal cycles and were subject to 
least- squares harmonic analysis on the semidiurnal and 
diurnal frequencies [e.g., Valle-Levinson et al., 1998]. 
The analysis yielded the across-estuary distribution of 
the semidiurnal tidal current amplitude shown in Fig- 
ure 12. The along-estuary tidal current amplitude was 
clearly influenced by bathymetry as explained by the 
analytic solution. Greatest values were found in the 
channel, and weakest values were seen over the shoals. 
The small channel to the southwest of transect 1, pot- 
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traying bathymetry similar to that of Figure l c, showed 
a local maximum in tidal current amplitude, similar to 
the analytic solution presented in Figures 2-3. 

To quantitatively compare the model results with the 
observations, we now use the actual bathymetry (depth 
function across the two transects) and apply the ana- 
lytic model to both transects at spring and neap tides. 
For simplicity, we assume a constant drag coefficient, 
which can be estimated from the phase relation of (8). 
By virtue of (8), we have the phase relationship 

½v = ,½,B + ,•,.,4,,, 

in which ½u, ½B, and ½• are the phase values for U, 
-g/(icr + fi/h), and OA/Ox, respectively. Since we are 
interested in narrow estuaries in which the length scale 
of the depth variation is much smaller than the length 
scale of the phase variation of the along-channel pres- 
sure gradient across the channel, ½• can be considered 
as a constant along a transect. The value for ½s is 

___ 

Taking ½A• and • as two unknowns, we may find their 
values by fitting (27) to the observed phase of the depth- 
averaged tidal velocity using a least- squares method. 
We then use the obtained • to calculate the drag co- 
efficient from (2). This method is more dynamically 
oriented than a simple scaling [Godfrey, 1980] and sim- 
pler than the adjoint numerical method [e.g., Ullman 
and Wilson, 1998]. The drag coefficients obtained by 
this approach are 1.5x10 -3 and 1.8x10 -3 for the spring 
and neap tides, respectively. The drag coefficients are 
then used with the analytic model. It should be noted 
that Wang and Craig [1993] also used a fitting tech- 
nique to estimate parameters of friction, but they used 
the solution of a simplified model and were thus lim- 
ited to the specific solution. In contrast, here we only 
use the momentum balance. Therefore the method pre- 
sented here is not limited to the simple geometry and 
depth functions we have chosen. The comparison be- 
tween the model-produced tidal amplitude and phase 
and those of the observations is shown in Figures 13- 
15. The model has reproduced the observed features 
of tidal amplitude and phase as functions of the water 
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depth. Particularly, the observed increase of amplitude 
of the along-channel velocity with the increase of wa- 
ter depth is similar to that shown by the model (Figure 
13). The rate of increase decreases as depth increases, 
as mentioned at the end of section 2. The observed 
transverse phase difference of the along-channel veloc- 
ity had the same order of magnitude as that predicted 
by the model (Figure 14): about 300-40 ø , or roughly 
I hour in time. The phase of along-channel velocity 
at shallow water leads that at deep water. The am- 
plitude of the transverse velocity from the observation 
appeared to be larger than the model result (Figure 
15a). The observed phase (20 ø) of the transverse veloc- 
ity is larger than the model result (15 ø ) but otherwise 
with the same trend (Figure 15b). The quantitative 
agreement demonstrates that the model, although sim- 
ple in dynamics, represented the main tidal properties 
well. We also note that there are apparent discrepan- 
cies between the model and observations, particularly in 
the amplitude of the transverse velocity. This could be 
caused by the oversimplification of the model. For ex- 
ample, here we are using a constant drag coefficient. In 
reality, the drag coefficient can be a function of position. 
In addition, stratification, meandering of the channel, 
along-estuary variation of the bathymetry, and advec- 
tion of momentum are neglected in our model. The 
errors of the momentum and continuity equations are 
again due to the approximation taking • as indepen- 
dent of y. The estimated maximum relative error for 
the simplified James River Estuary model, as defined 

by the magnitude of (O(/Oy)/((/D) is -- 2.5%. This 
value is smaller than the observed value of •0 5% (Fig- 
ure l lb), a fact that may be related to all sources of 
errors not included in the model. 

4.2. Significance of This Work 

This work presents a series of steps and approxima- 
tions that allow the depth-averaged tidal velocity to be 
resolved in a two-dimensional domain. The solution 

is obtained from a complete set of dynamic equations 
for a tidal wave and does not need to specify the pres- 
sure gradient as in the work of Friedrichs and Hamrick 
[1996]. In addition, the solution for the transverse veloc- 
ity is obtained by integration of the continuity equation, 
which makes the results insensitive to the form of the 

transverse momentum balance. The method allows an 

arbitrary lateral depth variation in a two-dimensional 
model. As a result, this solution provides a convenient 
way to study the effects of arbitrary lateral depth vari- 
ation on the tidal current. Variable depth functions 
usually make the problem too complicated to allow an 
analytic solution to be obtained in a simple way. For 
an arbitrary depth function, it often becomes even more 
remote to permit an analytic solution without a simpli- 
fication. In a numerical model, a strong bottom slope 
such as those represented by the functions used here 
(Figures la-lf) may cause convergence problems. This 
analytic solution can also be useful for testing of nu- 
merical models [e.g., Thacker, 1981; Lynch and Gray, 
1978; Chen, 1989]. Since the present solution allows at- 
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bitrary depth functions, it may be particularly valuable 
for testing of high-order numerical models with large 
depth gradients. 

5. Summary 

We have presented a solution for a two-dimensional 
depth-averaged model of tidal motion in narrow estuar- 
ies with arbitrary lateral depth variations. The solution 
is obtained by assuming that the lateral variation of the 
surface elevation is small in narrow estuaries. The lat- 

eral variation of elevation calculated from this solution 

is indeed small (•0 5% of the tidal amplitude). The 
model is in contrast to that of Friedrichs and Hamrick 

[1996] in which the along-channel pressure gradient was 
prescribed, rather than being part of the solution. This 
model resolves the tidal wave propagation and velocity 
field in a two-dimensional domain, rather than along 
a single section [Friedrichs and Hamrick, 1996]. Com- 
bined with the along-channel momentum equation, a 
cross-channel integration of the continuity highly sim- 
plifies the mathematics for the tidal elevation and, at 
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the same time, allows an arbitrary depth function. The 
solution is compact and easy to apply to different depth 
functions. 

It should be emphasized that the tidal elevation is 
solved without using the transverse momentum equa- 
tion. The transverse velocity is obtained from continu- 
ity. The transverse momentum equation is only used 
to check the validity of the uniformity assumption for 
the elevation. As a result, only OA/Oy is crucially sen- 
sitive to the precise form of the cross-channel balance. 
This approach makes the solution not sensitive to the 
transverse momentum balance. 

Dozens of depth functions in six groups with various 
degrees of bottom slopes are applied to calculate the so- 
lution. The velocity field is highly correlated with the 
depth variations. The longitudinal velocity is stronger 
at the mouth than it is in the interior and stronger in 
deep waters than it is over the shoals. The transverse 
velocity has weak longitudinal variability and is small 

in the channels and on the sides but is relatively large 
on the edges of the maximum bottom slopes. The tidal 
ellipses are also sensitive to the depth variation. At 
the mouth, the flow behaves as a progressive or par- 
tially progressive wave and at the head as a standing 
wave. The vorticity of the flow is greatest where depth 
changes most dramatically and can reach 10 -3 and even 
10 -2 s -• over very large depth slopes. This shear flow 
should therefore contribute to increase the dispersion 
coefficient, a subject that we have omitted for the mo- 
ment. It is found that with a maximum relative error 

of 5%, the solution satisfies both momentum and mass 
balances. 

ADCP observations along two transects of -• 4 km 
in the James River Estuary during two cruises in 1996 
showed characteristics similar to those of the analytic 
solution. By fitting the observed phase of the semidi- 
urnal tide to the phase relationship of the longitudinal 
momentum equation, we estimated the bottom drag co- 
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efficient to be 1.5 x10 -3 and 1.8 x 10 -3 for the spring 
and neap tides, respectively. This method of drag coef- 
ficient estimation is much simpler than the traditional 
adjoint numerical modeling technique. Using these val- 
ues of drag coefficient and the real bathymetry along the 
two transects in the James River Estuary, we calculated 
the analytical solution which showed remarkable agree- 
ment with observations. The relative error (or the ratio 
between the transverse difference of elevation and the 

elevation) of the simplified James River Estuary model 
is about 2.5%. Two months of time series data from 

pressure sensors at two sides of the James River Estu- 
ary showed small transverse difference of elevation (• 
5%). The slightly higher-than-theory value of the trans- 
verse difference in elevation could be caused by the cur- 
vature of the coastlines and other factors which are not 

included in the present model. 
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Appendix- The Solution Expressed in 
Detail 

In this appendix, we will express the solution in de- 
tail so that the real and imaginary parts are separated. 
It should be noted, however, that with some software 
(e.g., MATLAB) the solution in its complex form can 
be calculated directly without separating the real and 
imaginary parts. Nevertheless, this appendix is pre- 
sented here for completeness. It can be shown, by a 
straightforward mathematical derivation, that the com- 
plex form of the solution for A can be expressed as 

/•0 1/4 I COS ( • • A -- a-•- (T12 q- T2 2) al •) - a2 sin(•) 

+ 
(A1) 

in which i, •0 = •/•, L, and a are •1, the fric- 
tionless wavelength, the length of the estuary, and the 
tidal amplitude at the mouth, respectively, and 

01 dy' 71 -- --70 1 + r 2' 

r0- rrh0' r- rrh 
h y,_ y 

j(o • •dy' 

0•1 -- •00(T• q- T22) --1/4 COS( ) 
I •b 

/,02 -- •00(T• q- T22) --1/4 sin(•) 

tan-x ( T1 ) I-2 

az -- cOS [COx (x -- L)] cosh [co2 (x - L)] 
a2 - sin [COl (x - L)] sinh [co2 (x - L)] 

(A2) 
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where/3, ho, h, c•, and D are the linear friction coef- 
ficient, the transverse mean depth, the depth function, 
the angular tidal frequency, and the width of the estu- 
ary, respectively. A dimensionless version of (A1) can 
be obtained by dividing by a. In (A1), there are two 
parameters: (1) the ratio between the frictionless wave- 
length scale •0 and the length of the model œ and (2) 
the ratio between the tidal time-scale c• -1 and the fric- 
tional decay time-scale ho//3, i.e., 7.0. In addition, there 
is also a function •, similar to •0. The difference of • 
is that h(•) instead of ho is used. The terms or fac- 
tors in (A1) are determined with either of these two 
ratios or with a transverse integration of a function of 
•. The along-channel decay of the tidal amplitude due 
to friction is represented by a• and a2. 

The longitudinal gradient of A can be expressed as 

dA _ • (T• + T•) --1/4 •(•1 + /•2) (A3) - + 

where 

bl ½1 COS(•) -- ½2 sin(•) 

[ ½ sin( ½ ] + 
(A4) 

bl cl cos(•) q- c2 sin(•) 

[ ½ sin( ½ ] cos() - 
(A5) 

b• = cos(v:•L) cosh(v:2L), b2 - sin(c•lL)sinh(v:2L) 
C1 ---- sin [v:l (x - L)] cosh [v:2 (x - L)] 
c2 = cos [v:• (x - L)] sinh [•2(x - L)] 

It can be seen that dA/dx is of the order of a/•o, an 
expected result. 

Similarly, the complex amplitude of the longitudinal 
velocity can be expressed as 

a (T12 +T22) --1/4 

ho (b• + b•)(1 + h2a2 ) (A7) 

in which (a/ho)x/•ho is the frictionless velocity scale, 
the factors (7.•' + 7'22) --1/4 and 1/(bl • + b•) show the 
effect of friction, and the factor 1/(l+/?•'/(h•'a•'))shows 
the variability of friction contributed by the variation 
of depth. 
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