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ABSTRACT

INTEGRATED CONTROL OF THERMALLY DISTORTED LARGE
SPACE ANTENNAS

Robert H. Tolson
Old Dominion University, 1990
Director: Dr. Jen-Kuang Huang

Studies on controlling the thermal distortion of large space antennae have generally
investigated a single orbital position and have optimized actuator locations based on
minimizing the RMS surface deviation from the original parabolic shape. One study showed
the benefits of directly using far zone electric field characteristics as the performance
measure; but, this approach resulted in a nonlinear programming problem. The objective
of the current study is to develop an approach to designing a control system that (1)
recognizes the time dependence of the distortion and (2) controls variables that are directly
related to far field performance in a quadratic cost sense. The first objective, to explicitly
include the time dependence, is accomplished using a principal component analysis to
expand an "aperture phase function" into components that are orthogonal ii1 space and time.
The aperture phase function is readily calculable from surface distortion and accommodates
tapered feeds and arbitrary polarizations. Actuator strokes are shown to be linear
combinations of the time dependent components. The spatial components provide a natural
space in which to determine the optimal actuator locations and as basis vectors for
extrapolating sensor measurements to the entire antenna surface. The approach for the
second objective is to expand the far zone electric field in a Zernike-Bessel series. For
surface distortions of less than a quarter wavelength, it is shown that the coefficients of this
series provide a reliable measure of far field performance. Simulations are performed for a
geosynchronous radiometer to determine the robustness of both the open and closed loop

systems to variations in solar geometry, structure materials and thermal properties.
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Chapter 1 - Introduction

Large space antennas have been proposed for numerous applications over the last 20
years. Civil applications generally have included communications, astrophysics, and
earth observation. In almost every application there is a demand for a "larger” dish to
either increase resolution and/or gain. In the earth observation area, a recent report1 has
recommended a "Mission to Planet Earth" as one of the grand challenges. This "Mis-
sion" involves extensive remote observations of the Earth from orbiting platforms. To
make the proposed observations will require sensors with wavelengths that range from
shorter than visible light to as long as millimeter radio waves. The large space antenna
applications are of course at these longer wavelengths. Radio frequencies between 1 and
37 gigahertz (GHz) are particularly useful for mezsuring water related characteristics of
the earth. The 1979 World Administrative Radio Conference? has allocated various
microwave frequencies for passive remote sensing. Specifically, the band at 1.4 GHz is
useful for measuring soil moisture and ocean salinity, bands between 2.6 and 7 GHz are
for sea surface temperature, and bands between 6.4 and 15.4 GHz can be used for wind,
rain and ice measurements. Frequencies between 11 and 37 GHz are useful for atmos-
pheric water vapor, rain, ocean ice, snow and sea surface state. To achieve 1 to 10 km
spatial resolution from Sun synchronous altitudes around 1000 km requires antenna

3. To maintain high beam efficiency and reduce side lobe

diameters of about 100 meters
levels, antenna surface accuracy must be maintained between 1/20 and 1/50 of a

wavelength. For a 30 GHz signal these correspond to 0.5 and 0.2 mm respectively.
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There are a number of reasons that the surface of an antenna could deviate from the "per-
fect” parabola. First there are manufacturing and fabrication tolerances. Unlike earth an-
tennas which are designed for the 1-g environment, space antennas most probably could
not support their own weight and so cannot be assembled or deployed before launch. Er-
rors in the geometric or physical characteristics must be accommodated in the design
process or corrected after assembly in orbit. Hedgcpeth4 shows that the tetrahedral truss
is the best structure from the standpoint of minimizing surface shape deviations due to

length errors in structural members.

The second source of errors for large space antenna is due to the space environment.
These include structural vibration, radiation and thermal expansion. There is an exten-
sive research activity currently underway to develop methods to control the vibration of
large space structures. The control of thermal distortions for large space structures has
not been given as much attention. This is partly due to the assumption that structural
components can be fabricated with graphite epoxy to yield nearly zero coefficient of ther-
mal expansion (CTE). This has been demonstrated over a limited range of temperatures.
However, Sharp5 shows that the CTE can be a strong function of temperature and can
vary by more than 10E-6 or a factor of two over the range of temperatures expected for
orbiting structural members. For a 100 meter antenna this could produce surface distor-
tions of more than 1 mm which would be unacceptable. Additional concerns include the
effect of outgassing, space radiation and thermal cycling on the properties of composite

members, which can have significant effects®’ depending on layup and coatings.

Controlling thermal distortions of optical telescopes has received much attention® in
recent years under the general research area of active optics. There are some major dif-
ferences between an orbiting radiometer and an Earth based telescope. First, radiometers

have tapered feeds to improve beam efficiency at the expense of antenna efficiency while
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telescopes generally emphasize antenna efficiency and are satisfied with diffraction
limited images. The thermal environment for ground based telescopes has a small
temperature range, but the heat balance is very difficult to predict because it is due to con-
vection, conduction and radiation in a very complicated geometric enviroment. Orbiting
radiometers on the other hand have much larger temperature extremes that are dominated
by radiation in a somewhat simpler geometric environment. Attempts to actively control
the thermal distortions of terrestrial telescopes have met with some success and this

naturally raises the question of controlling thermal distortions of orbiting radiometers.

Antenna surface shape control methods have been developed9 for single orbital heating
conditions (i.e. a static shape control method) based on minimizing the RMS surface
deviation over the antenna surface. Optimal actuator locations have also been deter-
mined© for the same case. No studies address the temporal variation of the field and the
subsequent effect on the optimal locations. In addition, radiometer feeds are generally
highly tapered. Consequently, since surface errors in highly illuminated areas of the an-
tenna will contribute more to far field distortion than the same error in a lower il-
luminated area, surface RMS may not be the most appropriate objective function. The
effect of random manufacturing errors on the actual far field pattern has been studied!
using a nonlinear programming approach. This study demonstrates the merits of includ-
ing far field characteristics in the objective function. However, optimal actuator loca-
tions in this study were based on RMS surface deviations and of course no consideration

of the temporal variation was included.

The purpose of the current study is to develop a method for actively controlling the RF
performance of a radiometer to ameliorate the effect of thermal distortion due to the
temperature variations in orbit. Specific objectives include designing a control system

that (1) recognizes the time dependence of the distortion and (2) controls variables that
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are directly related to far field performance in a quadratic cost sense. Based on the recog-
nition that over a few orbits the distortion of the antenna can be considered a periodic
function, the first objective is accomplished using a principal component analysis to ex-
pand an "aperture phase function" into components that are orthogonal in space and time.
The aperture phase function is readily calculable from surface distortion and accom-
modates tapered feeds and arbitrary polarizations. Actuator strokes are shown to be
linear combinations of the time dependent components. The spatial components provide
a natural space in which to determine the optimal actuator locations and as basis vectors
for extrapolating sensor measurements to the entire antenna surface. The approach for
the second objective is to expand the far zone electric field in a Zernike-Bessel series. For
surface distortions of less than a quarter wavelength, it is shown that the coefficients of
this series provide an excellent measure of far field performance. These coefficients are
related to the principal component eigenvalues and "significant” principal components
are selected on the basis of the root mean square contribution to deviations of the electric
field from the nominal field. Simulations are performed for a geosynchronous
radiometer to determine the robustness of both the open and closed loop systems to varia-

tions in solar geometry and structure material and thermal properties.
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Chapter 2 - Theoretical Developments

In this chapter the theoretical basis will be developed. These developments will include a
new Zernike-Bessel expansion of the far zone electric field, developing control system
objective or cost functions in terms of this expansion, decomposing the aperture field
using a principal component analysis and relating the eigenvalues to the far field,
developing a method for optimally locating actuators to correct the errors, and finally,
using the principal component eigenvectors to extrapolate sensor measurements to the en-

tire antenna surface.

2.1-Far Field Calculations for Small Deviations from a Parabolic Surface

The objective of this section is to develop a series expansicn of the far field for a slightly
distorted parabolic antenna. In subsequent sections this expansion will be used to
develop control system cost functions that can be easily calculated from the surface dis-
tortion without resorting to traditional RF performance calculations, which require exten-
sive computations and are not very amenable to either the design environment or to real
time applications. To accomplish this objective, an approximate method for calculating
the far field of a radiometer whose parabolic surface has been distorted by less than a
quarter of a wave length is developed. Even though this is a receiving antenna, it is tradi-
tional to work in terms of a transmitting antenna when developing far field patterns. To
calculate the far zone electric field the physical optics approach described in Collin and
Zucker12 will be utilized. In this section, numbers in brackets refer to equations in Collin

and Zucker. The coordinate system is shown in figure 2.1-1, where the capital letters
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(R, ©, @) refer to the far field point, the small letters ( p, 0, ¢ ) refer to a point on the an-

tenna and r = p sin® is reserved for the cylindrical coordinate system radius.

The electric field incident on the antenna {17.11} from the feed is

—jkp 2.1-1)
€ e_,) Vol eter

P 1Y)
E p.0,9)={ W% 5 G (8, 9)]
where 236, ¢) defines the direction of the incident electric field, which for a y polarized
feed would be

?_e_)x(?x ) (2.1-2)
S >34 I
and 53 = (cos¢ sinB, sin@ sinB, cosO ), P; is the total power radiated by the feed in watts,

G is the feed gain function or the fractional energy radiated in direction (8, @), k is the

wave number k = 2%, = 9 and [ and ¢ are the free space permeability and permittivity

7
with values € = ;m—zfamdf/m and . = 4nx10” hervygpn,
e

Such an incident electric field induces surface currents {17.10} of
=L @x (X ED] haer

where N = VW&=120n ohms is the intrinsic iiapedence and &n is the unit vector normal to
the reflector surface. These surface currents produce a far zone electric field given by an

integral over the surface of the antenna {3.47})

. —jkR )
R0, 0)=- 1% [l - g2 ah) X @s, @13
S
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%5in@ d d o
where dS = p—’e:?l——‘g and 2§ = (cos® sin®, sind sin®, cos@ ). For the purposes here,
pen

only the radiation pattern near the central lobe is of interest and for the narrow beam an-
tennas that would be used for radiometers it is common to set cos® =~1 and use the ap-

proximation = (cos® sin®, sin® sin®, —1 ) in the integral.

The far field has no 8 component and the other two components are given by {17.19}
) ¢ IR ikp( 2g - 2R)
Eo=— {27 [[3. 2/ (% ®as an
S

e 3 2005 B a

where 2@ = (cosPcos®, sindcos®, —sin®) and b= (—sin®, cosd, 0). The z-component
of E¢ is zero and the z- component of Eg is proportional to sin®, which may be

neglected near the central beam. Thus the integral of interest

. —ikR
E9=_J_(°£L:£M;_ [[ 72e 0@ Ty
S

may be approximated as a two-vector. However, for completeness the three-vector na-
ture will be maintained during the theoretical development; but, the two vector approach

will be used for the validation studies for reasons to be discussed later.

Substituting for J?and E} and collecting terms outside the integral into

jo e_ij P V2 It
Cr=- LZER% {\/"75“2;} vo s/metear‘2
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gives

—jkp(1 - e3eR) (2.1-5)
E=C ‘U IT)\/—C—;—E]—-F—eP——'dS
S

where #: E,’x(égx'e?}.

The next step is to evaluate the integral 2.1-5 for a reflector with a surface that is dis-
torted from the desired parabolic shape. To evaluate the integral only the effects of dis-
tortion on the phase of the reflected rays will be considered, that is, the effects of
distortion on ray direction and angular spreading are neglected. This approximation will
only be used in developing an objective function for control system design. Far field pat-
terns, to be presented later, are based on a complete physical optics simulation!3 which

include changes in the slope of the surface.

For a parabolic reflector
__oF (2.1-6)
P=1%cos®’

where F is the focal length. As seen from figure 2.1-2, the distance a ray travels from the
focus to the reflector and back to the aperture plane through the focal point is p+p cos8

or 2F. For a distorted surface the distance will no longer be 2F, but will be modeled as
¥ (6, @) =p (6, ¢)(1 + cosB) - 2F. 2.1-7)

¥ is then similiar to the wave aberration function discussed in Born.* If the distorted
surface is modeled as displacements in the z direction &z, then the relation between ¥
and 8z can be obtained by refering to figure 2.1-2. The displacements are assumed to be

small compared to the focal length. The path length for the undistorted surface is FA +
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AP and for the distorted surface is FB + BQ. The difference is ¥ = AB + BD. Now CB
is the z displacement 8z. Since the rays satisfy Snell’s law at the surface, ABC is an isos-

celes triangle and so AB = BC = 8z. Since BD =BC cos6,
¥ = (1+c0s0)dz, (2.1-8)

which is linear in the displacement and depends on the location on the antenna. Using
the relation between p and ¥ in the phase part of the integral along with the approxima-

tion 8 = (cos® sin®, sind sin®, —1 ) from above gives in the exponent
p(1 — e3-28) = 2F +¥ — p sind sin® cos(® — ¢).
Thus

¢ IkP(~EZR) _ ~UkF k¥ jkpsind sin® cos(® - ¢)

The first term is a constant and combined into C2 to give C1 = ¢ ¥ ¢y, The second

term can be written as

eIk = 1-—25in2%¥- — jsink'P.

So that

eikpsine sin® cos(d - @)
P

E=C1 [[ TG, ¢) (1-2sin’EL - jsinkw)
\)

It is now convenient to change variables from 6 to r using 7 = p sinf. Evaluating differen-

tials on a parabolic surface { 17.2 & 17.4 } leads to dr = p d6, and the integral becomes
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2ra jkr sin® cos(® — ¢)
P=1 | [ @G (1-2sin’E" - jsink) a
00

ocos%s rdrde,

where the antenna radius is *a’ and |e_p)-e_,,) I =cos9% has been used. In the exponential,

terms of order ¥ sin®, which are of second order near the central beam, were neglected.

The denominator is also evaluated on the parabola so that pcos92 = cof%' Lett="%abe

the non-dimensional radius and combine the focal length F and a® with C to give

C=Ci1d%to yield the final expression for the far zone electric field,

1 o (2.1-9)
P=c [ [ 3G (1-25in?EE — jsink®) cosd4e/*® S OS@=0) ¢ 4 4o,
5 P
00
.2 _jk(R+2F) P
_ Joua“e £\ V2
where C = — 2nRFT {M 21c} voltS/eter

Thus the far zone field can be written as the sum of a field from the undistorted reflector

and a field determined by the distortion.

The integral in equation 2.1-9 will now be reduced to an infinite series by using Zernike
polynomial expansions (see appendix A). The Zernike polynomials are complete with
respect to the ring of polynomials in x and y on the unit circle and if #, G, and ¥ admit to

Taylor series expansions then vectors Apm, Bam, Cam, Gnms Bam, and Yam exist such that

M8, 9) =iNG cos¥2="Y, Anm Rum(T) cos m(@—Gium) (2.1-10)

n.m

70, ¢) =200, @Ysineo = 3. Bhm Rum(s) cos m(@-Bim. @.1-11)

nm

10
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and

WO, 9) = D6, Q)sink¥ = Y Chm Ram(t) cos m(¢—Tam), 2.1-12)
nm
where the relation 6 =2 tan—l(g%)is used to eliminate 6 in favor of t. The sums are for

n from O to e and for m from 0 to n with n-m even. The notation for the phase is non-
conventional; but, the meaning is that if the x component of Dis being calculated, then

the x component of Anm and the x component of Onm should be used in the sum.

Introduce these two expansions and the well used Bessel expansion

00

kat sin® cos(® - ¢) _ Jo(kat sin®) + 2 2 jP Jp(kat sin®) cos p(® — @)
p=1

into the integral. Then integrate with respect to ¢ term by term using the usual Fourier or-

thogonality conditions and in particular

2n

jcosn((p—a) cosm(@—B) dp = nt ( 1+ ) cosn(o—B)Sy’, where 8} is the Kronecker delta,
0

to get

1
B=2nC| 3 /™ (149% ) x
On,n

{Anm cosm(@®—0nm)—Bam cosm(®—Bam)—~Chm cosm(@Tam)Rm(Dm(¥T) Tdt,

where Y= kasin®. The main advantage of using Zernike polynomials is the relation

(Born, 1980, pg. 772)

11
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l )
[Run(®) Imtyeye e = (_1)"—2"—’ !y;ﬁ

0

which reduces the last integral to evaluating the infinite series

E=2nCYy, Jﬂ;—(ﬁz 780 )-1) 2
n m

{&Rmcosm(®—Gnm)-Bamcosm(®-PBam)~jCrmcosm(@am).  (2.1-13)

Thus the far zone electric field, E@ = e&-E’and Eq = ed-E: is a sum of Bessel functions
that depend only on © with amplitude and phase that depend on ®, G(6,¢), the feed
polarization through #8,¢) and the surface distortion through ¥(8, ¢). The coefficients
Z",,m determine the field of the undistorted reflector and the coefficients B'),,m and Cf,m
determine the field due to the distortions of the reflector. The Bam terms are in phase
with the Ajm while the T are quadrature terms being %2 out of phase. Both of these ef-
fects contribute to distorting the far zone field; and, in particular, when © = 0 only the

n =0 term will contribute so that
E{0, 0) = nC {A%o — Boo ~iCoo ) (2.1-14)

It should be noted that Tho is a generalized "piston” term representing the average phase
shift across the aperture weighted by the polarization and the feed gain. The Bao is a
generalized average square phase error and can be interpreted as a generalization of the
Ruze criteria.! Explicit expressions for Ajm, Bam and Chm and the corresponding

phases can be obtained using expressions from appendix A; namely,

2n

1 . (2.1-15)
Zon ofom 2 I j Qtt, 9) Rum(t) €™ 1 dr dp,
0

iNnm 0

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B’ 2 2n 1 (2.1-16)
nm __ jmQ
Bl &P = v b[ { M, ) Rum(®) €™ ¢ dr do,

a1 2.1-17)

P 2 .
Com & = v E'; '([ W, ) Rum(t) €™ T dr do,

0
m

n+l

where Npm = is the normalization factor so that the integral of the squared Zernike

polynomials over the unit circle are unity (see appendix A).

Recall that W= G sink¥ cos%, where G is the feed gain function and ir1s a vector of
no more than unit length and is determined by the polarization of the feed. For highly
tapered feeds the term VG cos% will primarily determine the relative importance of phase
errors in the aperture plane. But #’will also contribute to the relative importance. For ex-
ample, it can be shown {17.17 & 17.18} that for a y-polarized feed

T —c0s%2 {sin@ cos@(1—cos0)ez — (sin2¢ cos0 + cosz(p)e—} } - sing cos® sin e (2.1-18)

N1- sinicp sini_e—

which is a slowly varying function of 0 and ¢. If the antenna has a large ratio of 7/, then
cosB=1 and iz’~ &y is a constant. Feeds can be designed 16 50 that the far field has little
or no cross polarization, i.e. will have a constant direction. If both z’and G are constant
then Yum = 0 for all n and m and the expressions reduce to the classical uniform circular
aperture case with the Cpnm, representing the classical aberrations. For example, C40 is

spherical aberration and C2 is astigmatism.

From (2.1-18) it is seen that the y-component of #is unity to second order in 6 and the x-
component is zero to second order. The z-component is only zero to first order in 6. To

calculate the far field, however, the z-component gets multiplied (2.1-4) by sin®, which

13
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is small in the area of interest for narrow beam radiometers. Thus, while the z- com-
ponent is generally larger than the x-component in i, it’s contribution to the far field is
actually smaller. This discussion will be used later to justify ignoring the z-component in

the calculation of C’,,m.

14
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The purpose of the control system will be to distort the surface in such a way as to im-
prove radiometer performance; that is, to reshape the far zone field in some desired man-
ner. In terms of the formulation of section 2.1, this means modifying the amplitudes
Bm and Chm and phases Bm and ¥im due to thermal distortion. Radiometer performance
requirements3 can be stated in terms of beam efficiency, resolution, side lobe level, etc.
By varying the surface shape and therefore the amplitudes and phases, any of these quan-
tities can be controlled in theory. However, such an :approach11 leads to a nonlinear
programming problem and consequently a nonlinear control problem, neither of which
may be practical or necessary for real time control. An alternate approach, to be fol-
lowed here, is to design a linear control system to return the far field as "close" as pos-
sible to the undisturbed field with reasonable control resources e.g. number of actuators

and power.

In the following 8Bnm, 8Cnm, 8, etc. are considered to be the result of both control and

thermal distortions.

One measure of "close" might be Z Nim ( 8Bnm-5Bam + 8Cnm-8Chm ), where

nn
1+3m o . :
Npm = ] This objective function is proportional to the mean square values of

8V’and SW since by applying Parseval’s theorem to (2.1-11) and (2.1-12) yields

”DSV) Vs =% ENnm 8B?xm - 8Bym and HSW SWds =§ ZNnm Sczzm . SC;Im
S nm S nm

16
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For the level of distortion acceptable for radiometers, [k8¥| < 12':- or | 8¥| <¥4. So that
2kdY

5 < | sink8¥| and consequently _USV’- dV'ds < I ISW- W ds.

N S

2sin

Thus ZNmn SBom - SBym < ZNnm 8Chm - 8Chm, and controlling the latter sum assures
nm nm

control of the former sum. To complete the process of linearizing the problem, it is as-
sumed that k8 is sufficiently small that the small angle approximation is valid. The
8Chm are now linearly related to reflector displacements and the cost function is therefore
quadratic in the displacements. The problem has now been put into a traditional control
problem format; but, still no consideration has been given to the fact that the antenna dis-

tortions and therefore the Chy, are time dependent.

It may be very expensive, from a control system viewpoint, to control performance at all
times as the radiometer orbits the Earth. In particular, during a short interval around
entry into and exit from the Earth shadow there can be relatively rapid and large changes
in the temperature of radiometer components. One method to reduce the over influence
of such phenomena in the design of the control system is to utilize an average perfor-

mance of some type. One candidate cost function is

P
%J' Z Nnm SC')nmﬁC)nm dt,
Onm

where P is the orbital period.

Both of these objective functions will be discussed later and will be refered to as the Zer-

nike-Bessel cost or J1 and the Zernike-Bessel average cost or J2 where

17
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= ZNnm SC?szC‘?.m =%H§W SWds 2.2-1)
nm S

and

{ P 1 P (2.2-2)
Y= [ 110 dt =2 [ T, Num 8Chm 8Chm .
0 Onm

Recall that when © = 0 for the undistorted antenna the field is given by E{0, 0) = nC Ao.

J J
Possible goals for the control system might be to control D %., and/or T ;_, to be less
040 0410

than 20 dB, since this would imply that the terms in equation 2.1-13 representing the an-
tenna distortion are contributing no more than 1% of the power at the center of the beam.
If tmax and ¢min are the times when J1 attains its maximum and minimum values during
the orbit, then clearly J1(tmin) <J2 <J1(fmax). Two approaches to account for the tem-

poral variation come to mind and are discussed below.

First Approach:

The first approach emphasizes J1 and calculates the temporal variations of each of the
coefficients Cym, determines the maximum amplitude over an orbital period, and
evaluates if each coefficient at its maximum value is a major contributor to the far field.
This process results in the set of coefficients that must be controlled, and the control sys-
tem would be designed to conirol this set of coefficients. In a flexible body dynamics
problem, this is equivalent to determining the modes that must be controlled. The disad-
vantage of the direct approach is that the full set of coefficients must be evaluated at a suf-
ficiently large number of orbital positions that the maximum of each coefficient can be

determined. The far zone field can be calculated from equation 2.1-13

18
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E=2nCY, Jﬁ;—mz P8 2 X
n m

{A')nmcosm(Q—a)nm)—-B')nmcosm(@ﬁm%jvwosm(Wm)}.

where Y = kasin® and the coefficients are determined by integrals over the aperture from

equations (2.1-15 to -17), and in particular:

2 1
Tonlt) & 70 = —2— [ [ Wiz, ¢, ) Ram(®) ™ 2 v do,
nm 00

where the linearized version (2.1-12) of Wis used, i.e. W(t, @, t) = u NG k ¥(f) cos%2
which is now considered to be a function of time, t. The only term in W that is time de-
pendent is P, that is, the phase error in the aperture plane. The temporal variation Chm(t)
can be determined from the integral. For each coefficient there will be a time when the

coefficient reaches its maximum absolute value, say znm.

<1, the maximum relative power that any term can contribute

Since, for n >0, M‘

is dm(’"’")'@"mo'""). Selecting terms to control can be based on a specified dB level of
AcoAco

say -20 or -30 dB.

An alternate version of an approach that emphasizes the Zernike- Bessel cost J1 is to start

with equation 2.2-1: J1 = % _USW- 3W dS. Under the assumption of small phase errors,
N

this approach is similiar to minimizing RMS surface distortion except that it would

generalize the RMS approach to include polarization and feed taper with only a modest

19
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increase in computational cost. But, like previous resultsg, there is still the difficulty of

handling the temporal effect.

Second Approach:

The second approach, which emphasizes the Zernike-Bessel average cost from equation
2.2-2, will be the major focus of this work because the temporal variations can be readily
included in the development of optimal actuator locations and control laws. A principal
component approach is used to decompose the linearized version of W into spatial and
temporal components. Principal component analysis has a long history, spanning almost
a century, and has been applied to a number of diverse fields including geometry”, statis-

18 matrix theorylg, and meteorology.20 It has been extensively applied in geophysi-

tics
cal data analysis21 and has recently been applied to control theory.22 The salient feature
of principal component analysis, as used in the latter two applications, is the ability to
decompose a time dependent spatial vector field intc components that are both spatially

and temporally orthogonal.

For a sufficiently large number of points (T, ¢i), i = 1...., N suitably distributed over the
aperture plane 0 < T < 1, 0 < ¢ < 2r, the quadrature for Chy, (2.1-17) can be ap-
proximated by

j Yam(t) 2 S impi 2.2-3)
Chm() & T ~ —0— Z; Wi, @i, ) Rum(t) €"% AS,

where AS = 1; dv; dg; =% is independent of i. With such a set of points, form the N by 3

matrix

20
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Wx(t1, 91, 1), Wy(T1, 91,1), W(T1, 91, 1) (2.2-4)
Wx('t2, (P2, t), Wy(tZy @2, t)’ WZ(TZ’ (P2v t)
G(t) — . . . y

Wx(TN, 9N, 1), Wy(TN, ON, 1), W2(TN, ON, 1)
where Wy is the x component of W, etc.

The following development of the principal components and their properties is special-
ized to the problem at hand, but follows the development of Moore.2? Form the Gram-

mian matrix:

1 T (2.2-5)
H=~ jo 6o GT () d,
where P is the orbital period. H is a symmetric, positive semi-definite matrix with non-
negative "principal eigenvalues" of > 63...> ok>0and real, orthogonal, unit "prin-
cipal eigenvectors” €1, &3, . . , eN.
N (2.2-6)

G can be expanded in terms of the eigenvectors as G = Z e g;r(t)
i=1

where
g =G ei 2.2-7)

is a 3 by 1 matrix of the projection of the three columns of G onto the eigenvectors and e;
is the N by 1 matrix form of the eigenvector & The gi(z) are called the “principal com-
ponent amplitudes.” In what follows interchanging between vector and matrix notation

will take place without further comment. Equation 2.2-6 is therefore an expansion of G

in a set of time dependent, spatially orthogonal "principal components" e; g,T .

21
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If the above expansion for G is substituted into equation 2.2-5 one obtains

1P N N N N lP
H=2 {3 Fadoaod (a=3 T al5] 020 e
0 |=1/=1 i=1j=1 0

Premuitiply by eg and postmultiply by e4 and use the orthogonality of the eigenvectors to
get
1 P (2.2-8)
5 | 850 2a( =} H eq=f o eq= e eq= 3 8

0

The principal component amplitude vectors gi(¢) are therefore orthogonal in time.

It is convenient to collect the eigenvectors as columns in an N by N matrix E and the

component amplitudes as rows in a N by 3 matrix Ge so that
G =E Ge. (2.2-9)
For later reference note that

N (2.2-10)
IGI? = IGe? =Ygl gi .

=1

To obtain an approximate relation between the eigenvalues, the coefficients Cpm and the

objective functions without control start with

N 2rl
IGI = twrace G G = 3, Wi, @i, - W(wi 93, 0= [ [ Wer, 0, 0We, ¢, ) v v do.
=1 00

22
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T 2
But from above, '”W Wtdt do= % anm C’nm . C’m = 5"1' Thus, J1 = NIIGIIZ'

nm
y 1 f N k N
Also, 2612 =trace H = FI trace GGT dt ~ 2P I anm C’nm(t) . C;m(t) dt= 5 Jo.
n=1 0 Onm

So the two Zernike-Bessel costs have been related to the G matrix and the eigenvalues of

the Grammian:
N (2.2-11)
2 2
1=~ NIIGIIZ =3 Vi
=1
and
(2.2-12)

N P
2 1
n=Yot=5[nwa
=1 0

One of the rationales for using the principal component decomposition is the expectation
that the eigenvalues decrease rapidly so that the cost J2 is dominated by a small number
of the largest eigenvalues. In this case, the control system design would be reduced to
controlling only the far field distortion due to the eigenfunctions corresponding to the

reduced set.

To develop a criteria for selecting the significant eigenvalues consider the first term in
the Zernike-Bessel expansion A”oo (2.1-14) which determines the far field at the center of

the beam for an undistorted antenna:

(2.2-13)

2rn
Ao =;lt-f lw, ¢) T dt do.
0

O ey
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J2
2

If << 1 then the distortions of the far field averaged over an orbital period will be

00

2 2« of
e

values that contribute some preset limit, say -30 dB, in the control system design. The in-

negligible. But, . Thus, it is only necessary to consider those eigen-

fluence of the omitted principle components must, of course, be evaluated after the

system is designed.

-A r Control L Locati

In section 2.2, methods were discussed for selecting the coefficients Chm(?) or the prin-

cipal components efg;T to be controlled. The emphasis here will be on the latter set, i.e.

the principal components of the thermal distortion field. Given this set, the next question

is how many actuators should be used, where should they be located, and how should

they be controlled? In what follows the objective function will be IISGII2, where 3G is the

difference between the G matrices due to thermal and control distortions.

Open Loop Control With Actuators Fixed

First consider the design of an open loop control when the actuator locations are known.
Assume there are M actuators at preselected sites. For the o-th actuator at=1,...,M a unit
stroke will produce a reflector surface displacemant field which can be converted to a
phase function Wq(7, ¢) and then to a Wq(r, o) field. As was done above for the thermal
distortion field, the control field can be discretized to form a N by 3 matrix for each of

the M actuators

24
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[ Wa(t1, 91), Way(t1, 91), Wa,(t1, ¢1) ] (2.3-1)
Wou (12, 92), Way(T2, 92), Wo, (T2, ¢2)

| Wou(™V, @N), Woo (T, ON), Wo (TN, ON)
where W, is the x component of Wa, etc.

Each of these matrices is decomposed into components along the principal eigenvectors

to get

N (2.3-2)
Ga.:Zeif&:EFew

=1
wherefw=G€ ejis3 by land Fe(,:ET GgisNby3, o=1.M

Let so represent the the stroke of the a-th actuator. As stated above, the goal is to select
a set of sq, so that the difference, 8G, between the surface thermal distortion and the ac-

tuator induced distortions has minimum norm, that is, minimize

M (2.3-3)
18611 = | |G - Tos0: G |-
o=1

Minimizing IISGII2, which will minimize the cost J1 (2.2-11), is thus a classical least
square problem of finding the M values of sq that minimize the sum of squares of the ele-

ments in the 8G matrix. Setting agiG" =0 foreach a = 1,...,M leads to the system of
o

equations

25
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(G1.*G1), (G2.*G1), - - (GM*Gy) | |1 (G+Gy) (2.3-4)
(G1.*G2), (G2.*G2), - - (GM.*G2)| |52 (G.*G2)

- s

(G1.*GM), (G2.%GMm), - - (GM-*Gpm)| |[sM| [(G*Gpm)

where (A.*B) is a short hand notation for the sum of the element by element products of

Aand B, e.g. IIA1I% = (A.*A).

Since the coefficient matrix is a function of only the actuator locations and can be pre-in-
verted, this set of equations would be convenient for real time control. The right hand
side vector can be calculated from either M stored Go, matrices or can be written as a N

by N matrix times the phase error ¥ at the N points. The solution gives $ from which the

. . . 2 ]
minimum cost at each time J§ = N ||8(§|I2 can be determined.

However, in order to relate the solution directly to the cost, it is convient to also solve the

equations in principal component form. From 2.2-9 and 2.3-2 write

M M
8G=EGe-Y 50 EFey=E [Ge —Y'sa Fea].
a~=1 o=1

For any matrix ¥, Y12 = tr Y¥T = tr ¥Y, so that
M T M
I8GI? = tr | E{Ge ~ ¥ 50 Feof | [E{Ge— Y sa Fed]
o=1 o=1

Since ET E=1,

26
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2.

oM M M
I8GI? = tr| Ge — Y0 Feq | [Ge~ YsuFea] = |[Ge~ TsoFea
o=1 o=1 o=1

From the form of this equation, it is seen that the solution will give the sq as linear com-

binations of the components of Ge, which are the time dependent amplitudes of the prin-

cipal components. Consequently, the open loop optimal control for each actuator will be
a linear combination of the principal component amplitudes. Clearly minimizing J; at

each time will minimize J.

To put the above expressions into a standard least square format, form the 3N vector y,

the 3N by M matrix F and the M vector s :

g1 [ fuy, f21, - My | 51 (2.3-5)
22 flz, f22, <M 52

y - . F — . . .. . s = .
8N SN, fon, - - fMy M

In this notation, I3G!l =1l y — F s |l, with the least square solution s given by
$=[FTF]'F"). (2.3-6)
The minimum nomm is I8&12 =1y - F s 12 =yT (1 - FET F) 1 FT} .
LetP=I-F(FFy 1 FT (2.3-7)

P is the idempotent projection associated with the least square estimator, so

_2 sph2 2 T (2.3-8)
h=x el =5y'Py.
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In the case of a linearily polarized aperture pattern, both G and G are vectors and an ex-

plicit relation between the minimum norm and the eigenvalues can be obiained, since

N N

when y() = gi then 18612 = Y ¥ ¢ P(i,j) gj.
i=1j=1

P
Form the integral over the period and recall (2.2-8), %J.gi ng dt= 6,2 5L, so that
0

) , .
n=y5 [iobiar = XY Jei PG gjar= ) of P(i).
0 1=1]=1 0 =1

Open Loop Control & Actuators Free To Move:

The optimal location of sensors and/or actuators is a fundamental problem in control, sys-
tem identification and state estimation. A survey23 of current methods demonstrates that
no general solution to the problem exists and existing approximate techniques have
various inadequacies. The problem of locating sensors or actuators usually influences the
cost or objective function through the inverse of a matrix. When the locations are dis-
crete, changing a location means changing a row and/or column of the matrix and then
reinverting. Thus in addition to the exponential explosion in combinations with the num-
ber of possible sites, testing a new stte requires a large matrix inverse. There are no
general methods for obtaining the new inverse without actually performing the complete
numerical inverse. Specifically, for the problem at hand, changing an actuator location

changes the F matrix (2.3-5), which influences the cost through the P mattix, which re-

quires inverting FTF. Approximate solutions will be discussed below.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e Sy K! -
If there are K possible sites for M identical actuators, there are =M M1 distinct con-

figurations of actuators. To select among all these configurations requires the definition
of optimal. Two obvious candidates are to minimize J2 or to minimize the maximum
value over time of J1. In the general case, both of these candidates have the problem dis-

cussed above.

P
To minimize J2, first perform the one time quadrature Y(iy) = ;1; I ¥(i) y(j) dt as suggested
0

by equation 2.3-8. If the eigenvalues decrease rapidly, then 1Y (i)l should also decrease
rapidly with i and j since by Cauchy’s inequality:

P P P A R
e el sty as

where the second inequality holds because y(i) is one of the three components of gx;.

The Zernike-Bessel average cost can thus be written as

, WWE Y (2.3-10)
R=E3S, [y PG yipar = 32 2 Y PG,
i=1j=10 i=1j=1
N 2.3-11)

For the linearly polarized case J2= %Z 0',2 P(ii)

i=1

In either case, the remaining problem is a discrete optimization problem with no known

K

algorithm to obtain the optimum except exhaustive search. In this case, =M ML K—Mi! 7

projection matrices P must be calculated, each of which involves the inverse of a M by M

29
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matrix. Generally it is also desirable to determine the minimum number of actuators that
will satisfy some antenna performance criteria, so the optimal must be determined for a

number of values of M as well.

Though there are numerous theoretical papc:rs23 on optimal sensor and actuator location,
there are in fact few methods. Many of the methods'? are substitution approaches
wherein the least effective occupied location and the most effective unoccupied location
are identified and interchanged until there is no improvement in the objective. There are
also approaches24 where all locations are initialized as occupied (unoccupied) and then

the least (most) effective location is removed (occupied).

3N 3N
For the objective J2 = %Z Z Y(ij) P(ij) it is possible to develop a method that optimal-
i=1 j=1

ly adds an additional actuator. Let P and F correspond to some actuator configuration
and P and F+ be the same configuration with one additional actuator. The task is to find
an expression for P that does not require a new matrix inverse. The required expression

can be developed from the well known relation for partitioned symmetric matrices:

-1
A B

A4 A71B(C-BTA 1By 'BTA™!, _A~1B(C-BTA71B)!
, .
BT

~(c-8"47'By'B"a7, (Cc-B"A71By™!

Write F1+.= | F, f 1|, where fis the additional column to be appended to F for the addi-
tional actuator. Before applying the expression above to (Iv‘.,7.11?'+)_1 note that the term cor-

responding to C-BTA™IB is a scalar and can be written as fT Pf, thus
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o1 FIRY WP g TFETRY ! -F R \FYf

21 [(FTF ,
£Tp -1 |F'F, fTF e rpf P
(R = el —TF&TF)! 1
fer rer

Direct substitution leads to

Py=P+ PP @312
Nl

It is seen that after the 3N vector Ff is formed, calculating P+ from P only requires 1 vec-
tor outer product and 1 vector inner product. Even fewer calculations are required for a

linearily polarized antenna where only the trace of P is required.

Given any configuration of actuators, the above equations provide the basis for identify-
ing the most effective actuator for augmentation of the configuration. For large struc-
tures there may be a large variety of sites and it would therefore be convenient to restrict

the total set to a smaller subset of the "most effective” sites prior to beginning the above

N
search technique. Recall that for the linearily polarized case J2 = %Z 0’12 P(i,i). Suppose

i=1
that the sensitivity matrix for each of the actuators G, a vector for this case, is a linear
combination of only the eigenvectors corresponding to the L largest eigenvalues. Then

Jo;=0fori=L+1,L+2,..N, and so Fe, has the form

Fey,= I:)L‘ , where F is an L by L matrix which is assumed to have an inverse so that
y S P
the sq have a solution. In this case, P =1 ~ FL(FL™ FL) "FL", 0 = {g (I)'

0, 0
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N
So that, J2 = %Z of . TheL largest eigenvalues are therefore excluded from the cost,
i=L+1

and it can be shown22 that this is the absolute minimum cost for any L actuators. The
result does not extend easily to the general polarization case, but does suggest that a

criteria for ordering potential actuator sites is the “"effectiveness" ratio

L L (2.3-13)
Y foifo; Z’a.-faa )

- _ il _ WFo,ll
N G2 1G?”

> fefos

=

where Fo;, = Gg Ey and E| is the N by L matrix of the first L eigenvalues. Also,

N
Ejg,-fa,- = |IFem|l2 = IIGmII2 has been used in the denominator. The effectiveness is a rela-

i=1

tive measure of the extent to which the a.-th sensitivity matrix can be represented as a
linear combination of the first L eigenvectors. If € = 1 then the columns of Gg are vec-
tors in the hyperplane determined by the first L eigenvectors, and the first L principal
components can be controlled without "exciting” the remaining principal components.
On the other hand, if £ = 0 then the columns of Gq are orthogonal to the hyperplane. In
the latter case locating actuators at such sites can contribute nothing to reducing the con-

tribution of the first L eigenvalues to J2.

Even though £¢ provides a means of ordering the possible actuator location sites, care
must be exercised in the use of such an ordering. If two sites could produce the same G,
they would have the same g but including both in the potential site list is clearly redun-

dant. The goal is to pick actuator sites that are effective as measured by £q and mutually
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orthogonal. One measure of orthogonality, to be used later, is the rod "correlation factor"”

for two actuator sites o and

(2.3-14)

L
> fou o
i=1

€ = WPl IFp I

4-Pr in n

In section 2.3 an open loop control law was developed that minimized the norm of

M

G =G - ZSaGa and a method was presented for obtaining the optimal set of actuator
o=1

locations which define the matrices Gq. If perfect models existed for predicting the an-
tenna distortion then an open loop system would be adequate for controlling the far field.
However, there are many potential sources of uncertainties in these models. To account
for such errors a closed loop system, which relies on measurements to determine devia-

tions from the nominal state, will be required normally.

It is assumed that the fundamental measurements are measurements of displacements of
the reflecting surface in the z direction. Such measurements can be provided by reflecting
laser beams off of corner cubes attached to the surface. The question then becomes how
many reflectors (sensors) are required, where to place them on the surface and how to

feed back these data to control the distortion?

First, convert these measurements to equivalent aperture plane phase shift using equation
2.1-8. It is assumed that the possible sensor sites are on the reflector surface and, without
loss of generality, are some subset of the N surface locations used to discretize the per-

turbed electric field integral (2.2-3). Sensors could be placed at other points; but, then a
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transformation would be required to convert the measurement to an aperture plane phase
shift. However, with such a transformation the methods discussed herein are directly ap-

plicable.

In the ideal situation the phase shift would be measured at all points in the aperture plane;
unfortunately, this would take an excessive number of sensors. On the other hand with a
few sensors large errors can result during extrapolation to the global shape. The heart of
the optimal sensor location problem is selecting the minimum number and locations so
that the extrapolation error is acceptable. The use of cubic splines has received much at-
tention for this purpose; but, for the problem at hand, the principal component eigenvec-
tors provide a natural basis for extrapolation. The sensor information vill consequently
be used to directly estimate the principle component amplitudes as defined by equation
2.2-7. The approach taken here will thus be to select sensor locations that provided the
best estimate of the principal component amplitudes. As a result of this approach the ab-
solute minimum number of sensors will be found below and the minimum number re-
quired to meet peformance requirements will be found in the usual parametric search
manner. Once the principal component amplitudes have been estimated, an estimate G of
G can be made using equation 2.2-6. Then the actuator strokes sq will be selected, using

M
equation 2.3-4, to minimize the norm of 6G = 6 - zsaGa, where & is an estimate of G
o=1

obtained from the sensors.

Before formulating an estimator for G, note that the three columns of G are not inde-
pendent, since they are just the three components of W, which are related by the three
components of T through equation 2.1-12. Thus if one component is known the other
two can be calculated. Conversely, there is only a need to estimate the amplitude cor-

responding to one column of the G matrix. For example, if the y-component is selected,
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equation 2.2-9, G = E Ge, reduces to Wy =E §}) Since the chosen component is ar-
bitrary, the y subscript will be dropped in the following. The observation equation is

therefore
W=Eg (24-1)

If one had measurements of aperture phase W at all N points the full W would be known
and the full magnitude vector g could be calculated. In practice, sensors are not placed at
all N points. Further, estimating all components of the amplitude vector is not required

since some components will not contribute to errors in the far field.

Let S be the number of sensors on the surface. Convert the measurement at each sensor
into aperture plane phase and then into W form, as assumed above. With these S meas-
urements form the S vector, Ws. With only S measurements it will not be possible to es-
timate all N components of g, so select P < S of the columns of E to form the N by P
matrix Ep. Fromi this matrix select the rows corresponding to the sensor locations to
form the S by P sub-matrix Esp. The relation between the measurements Ws and the un-

known amplitudes g_p) becomes the observation equation
Ws=Esp2p 24-2)

The magnitudes of the "significant” principal components, that is, the components that
have principal eigenvalues that are sufficiently large to contribute to unacceptable far
field errors, must be estimated. Assuming that it is possible to identify significant com-
ponents, the minimum number of sensors is therefore equal to the number of significant
principal components. Recognizing that there are measurement errors in W, equation

2.4-2 becomes a classical estimation problem with well known solution
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- -1 - -
2=1ERT VEp1  ELT W, (24-3)
where I is the covariance on the measurement vector Ws, which is readily calculated
from the covariance on the fundamental measurements of surface displacement. It is

especially important to include this term for highly tapered feeds.

Once an estimate ﬁp is obtained, the estimate of the entire column W of G is obtained

from
W= Ep gp. 2.4-4)

and the other two columns of G can be calculated as mentioned above to give the final es-

timate &, which will be used in equation 2.3-4 to obtain the optimal actuator strokes.

The remaining problem is how many sensors to place on the surface and where to place
them. Like the optimal actuator location problem this is a discrete optimization problem
and there are a number of discrete optimization approaches23 for solving the problem as

formulated above.
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Chapter 3-Validation Studies

In this chapter the theory developed in Chapter 2 will be tested using a typical large
space radiometer model. Since there are no experimental results against which the theory
can be tested, a number of simulations have been generated to define limits of ap-

plicability and areas for future improvements.

- i lidation M
Radiometer and Orbit Parameters

The 55-meter tetrahedral truss (figure 3.1-1) studied by Haftka® and by Padula!! was
selected as the antenna against which to test the theory developed in Chapter 2 and to
validate some of the concepts. Appendix B shows the antenna geometry and illustrates

grid and rod locations. The original design25 was based on a material with a Young’s

modulus of 2.6x10'! V4.2 (37x10° psi) and a clamped-clamped rod buckling load of
4000-N (900-1bs). This leads to the 8-m long tubes on the front and back faces of the an-
tenna having a diameter of 4-cm and wall thickness of 0.1-cm. A more conservative

modulus, currently used for designing operational spacecraft like Space Station Freedom,

of 1.1x10'! (16x10° psi) will be used for this study. For an actively controlled structure,
the members must be able to support the stresses produced by the actuators. Based on
nominal values of structural and thermal properties, structrual deformations are expected
to be in the millimeter range. So one might expect actuator strokes in the same range.

The equivalent compressive force for a constrained rod would be about 2000 N, which
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cannot be met with the reduced modulus. Consequently, the diameter of all the rods was
increased to 5 cm and the thickness maintained at 0.1 cm. thereby providing a 75% buck-

ling safety margin for 1 mm strokes.

The orbit geometry studied is a geosynchronous orbit (GEO). The 55-meter antenna can
not meet all the science requirements specified in Table 3 of reference 3, but would pro-
vide adequate resolution for sensing atmospheric water vapor, rain and clouds, which re-
quire frequencies between 15 and 31 GHz. Sensing soil moisture, sea surface
temperature, and salinity requires lower frequencies and higher resolution, both of which
mean a larger radiometer. The 55-meter antenna will, nevertheless, generically exhibit

all the thermal, structural, RF, and control characteristics of a larger antenna. The z-axis
of the antenna (figure 2.1-1) points directly away from the center of the earth with the y-
axis normal to the orbit plane in the same direction as the orbital angular momemtum vec-

tor.

Thermal Effects During the Orbit

The temperature at any point on the antenna is determined by conduction and radiation
among the components of the antenna and from the radiant energy received from the
Earth and the Sun. Deviations in temperature from the design temperature lead to thermal
distortions which can be determined by thermal analysis26 and/or by thermal/vacuum test-
ing. For the purposes of calculating these distortions, it is assumed that a knitted mesh is
supported on the truss structure to reflect radio frequency waves. Knitted meshes are
isotropic membranes that conform to a minimal surface?’ so the surface shape is solely a
function of the boundary shape. Attachment of the mesh at only the node points, which
are 8 meters apart, would lead to unacceptable deviations from the desired parabolic
shape.28 Thus, a system of tic downs will be required to constrain the mesh. The tie

downs may also undergo thermal distortions; however, the result of such distortions will
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depend on the details of the tie down geometry. For this study, it is assumed that the tri-
angle of mesh between structural nodes behaves like a rigid surface and that this surface
translates with the nodal displacements at the three comners. The displacement of any
point on the mesh is thus a linear combination of the displacements of the three truss

nodes surrounding the point.

Thermal analyses26 of space trusses of this type show that conduction and intra-antenna
radiation are of secondary importance when compared to direct solar and terrestial radia-
tive heating and radiative cooling to deep space. Consequently, for the purposes here it
will be assumed that each rod in the antenna structure is isothermal and the radiative

input only depends on its orientation with respect to the Earth and Sun. The solar flux g5

is taken to be 1380 "/ and is modeled as a point source at infinity. The emitted radia-

W/229

tion from the top of the earth atmosphere ge is 241 "/»°.“” The temperature of each rod

in the antenna is then calculated from the usual energy balance equation

me DrGeA T4 =14 [ assinB() gs + aeAet) gl

(3.1-1)

where m is the mass of the rod, 1 is the length, d is the outer diameter, ¢ is the specific

heat, o5 and o are the absorbtivities for short and long wave respectively, ¢ is the Stefan-

Boltzmann constant (5.67x10_8 */n?) and ¢ is the rod emissivity. The angle between the
axis of the rod and the direction to the sun is B, which will be a function of time. A¢is a
measnre of *he earth fiux intercepted by the red. Assuming that this flux i< diffuse and

isotropic at the top of the atmosphere, then at any altitude above the Earth the flux pass-

ing through an element of area is given by Cunningham.30

To provide an easy check of the numerically integrated results, values for the parameters

above were selected to be similar to those of Mahaney.31 Specifically, rod density was
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1550 %43, 0 = 045 = 0.9, € = 0.8 and c=1050 Yz k. The absorbtivity and emissivity cor-
respond to uncoated graphite epoxy tube. Coating is not required in geosynchronous
orbit because there is no atomic oxygen to degrade the composite. The numerical integra-
tion used a fourth-order, constant step size Runge-Kutta scheme. To eliminate transients,
integration of equation 3.1-1 was performed around a complete orbit prior to using the
numerical results . Figure 3.1-2 shows the temperature variation around the orbit for
three selected rods in the antenna. By connecting grid points 23 and 31, rod 64 ( see Ap-
pendix B) lies in the orbit plane and shows the largest solar effect. Rod 84, which con-
nects 30 and 31, is nearly at right angles to the orbit plane and shows a minimal solar

effect. Rod 235 connects grid 31 to the back structure and shows an intermediate effect.

The temperature deviations from the reference temperature 300° K for all 420 rods are
calculated throughout the orbit and the displacements of structural grid points are deter-
mined by using a sensiﬁvity matrix calculated using NASTRAN. The sensitivity matrix
provides the change in the z- location of the 61 reflecting surface grid points for a unit in-
crease in length of each of the 420 rods. There are changes in the other two directions at
each node; however, these have a small effect on the phase of the radio wave for shallow
antennas, but could be included without difficulty if required. The sensitivity matrix will
also be used for optimally locating actuators since the actuators will be assumed to pro-
vide a change in length of the rod to which it is attached. The displacements 0z in the z-

direction can be converted to phase changes using equation 2.1-8, ¥ = (1+cos0) 8z.
Radio Frequency Characteristi

The 55-meter antenna has an f-number of 1.5 and a focal length of 82.5 meters. An
operating frequency of 30 GHz is assumed giving a wave length of 1 cm. It is also as-

sumed that the feed is y- polarized so that #” has the form given by 2.1-18, i.e.
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T —c0s92 { sing cos@ (1 — cosb) & ~ (sin2<p cosO + cos2¢gy’} — sing cos0 sin%2 é?.
V1- sin2(p sin“0

High resolution radiometers will also have a highly tapered feed to increase beam ef-
ficiency. High beam efficiency implies suppressing the side lobes well below the diffrac-
tion limited value of -17 dB. A -30 dB level is used for the validation antenna as both a
nominal design value and the goal for the control system to maintain. A cosine power

law, as defined by Balanis 2 (page 624) is assumed for the taper:
G(O) =2(w+1) cos™, 0<0<7 and G(O) =0 otherwise.

A taper of 15 dB at the edge of the antenna, will provide a side lobe level of -30 dB, and
this requires n = 62.

Thus G(8,9) = 126 cos®2. (3.1-2)

Figure 3.1-3 shows four sections through the far field pattern for a parabolic surface. The
angles © and @ are the far field point angle shown in figure 2.1-1. The ® =0 and 60 cur-
ves coincide and the ® = 30 and 90 coincide. This is due to the selection of points on the
surface to perform the integration, which results in the geometry being invariant under a
60 degree rotation. The difference between these two sets is due to the geometry not
being invariant under an arbitary rotation. The difference could be reduced by selecting a
smaller spacing for the numerical integration, but the 1 to 2 dB difference in the side

iobes was considered accurate enough for this study.

The first term in the Zernike-Bessel expansion, Abo determines the far field at the center

of the beam for an undistorted antenna. From 2.1-15,
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With these functions for i’ (2.1-18) and G (3.1-2), the x and z components vanish and the

y component becomes

A

V126 ¢ lcosz% cossle(sin?‘cp cos6+cos2(p)
ooy ="+ I f ddg
00

V1- sinz(p sin“0
Based on a numerical quadrature, Aooy = 5.309 (3.1-3)

Whenever, in subsequent discussions, the cost J1 or J2 (2.2-11 or 12) are given in dB, the

reference will be A%oy.
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Figure 3.1-1. Geometry of the 55-meter tetrahedral truss.
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Figure 3.1-2. Temperature variations during one orbit for three typical rods.
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Figure 3.1-3. Far field pattern for 55-m parabolic reflector at 30 GHz with 15 dB. taper.
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2-Open

This section will discuss the design and performance of an open loop control system, that
is, a system where there is no feedback from sensors that measure the deviation from the
desired state. Rather, it is assumed that there is perfect knowledge of the system and its

enviroment. The next section will discuss the closed loop system and its performance.

A geosynchronous radiometer will experience a significant variation in the direction of
solar flux during the 24 hour orbital period; and, for 22 days before and after the equi-
noxes, the satellite will pass through the shadow of the earth causing a rapid decrease in

heating. The seasonal variations in solar heating are due to the apparent motion of the

sun relative to the orbital plane. At the solstices, the sun will be either 23.5° north or
south of the orbital plane. This variation in declination of the sun causes the periodic
heating due to the orbital motion to vary through the year. Since the satellite is fixed
over one geographic area, the only variation in heat flux from the earth will be the diur-

nal/seasonal variations in emitted and reflected energy; however, the total flux from the

earth is less than 6 ***%»? and even 20% to 30% variations> are going to be small com-

pared to the solar flux variation taking place at the same time.

To design any control system it would be highly desirable to design for a single nominal
condition and consider variations from that condition as robustness issues. For the
geosynchronous case the nominal conditions will be equinox with the shadow of the
earth neglected in calculating the solar heating input. The initial configuraticn has the
earth and the sun at opposition as seen from the spacecraft. With these assumptions the

design of the open loop system followed these main steps:
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1. Mapping Thermal Distortion into RF Parameters

The G(r) matrices (2.2-4) were calculated at 180 equally spaced orbital positions using
every second surface distortion result from the thermal analysis. During this process the
value of Jj can be determined (2.2-11) to identify the orbital position where the far field
will be most distorted as measured by J1. From figure 3.2-1 it is seen that double extrema

in J1 occur when the sun is illuminating the edge of the antenna. The maximum Jj is

about +3 dB and occurs at an orbit position of 114°. The far field pattern corresponding
to this position is shown in figure 3.2-2, where it can be seen that the thermal distortion
has an unacceptable influence on the beam width when compared to figure 3.1-3. Note
that, for 50% of the orbit, the value of J; exceeds -20 dB. It will be seen later that this is

about the maximum value of J1 that will meet the -30 side lobe goal.

2. Principal Component (PC) Analysis

The grammian H from equation 2.2-5 is approximated by arithmetically averaging the

180 GGT matrices. The 20 largest eigenvalues of H and corresponding eigenvectors
were extracted using a sub-space iteration method (Parlett, 1980, pg. 292, implementa-
tion #3), which converged to 6 places in the eigenvectors (sic) in less than 10 iterations.
To confirm that all of the largest eigenvalues have been capiured in the sub-space itera-
tion, a value of J2 using 2.2-12 was calculated from the eigenvalues and compared with
the average value of J1 from the first step. For the present case, 7 place agreement was
obtained. The eigenvalue results are shown in figure 3.2-3. Only 4 PC’s contribute more
than -40 dB. The variation of the power, g.Tg.' from equation 2.2-7, for these PC’s is
shown in figure 3.2-4. Each PC is expected to contribute its maximum distortion to the
far field at the time of maximum amplitude. Recall that the actuator strokes will be linear

combinations of the PC amplitude functions gi(z). At the times of maximum amplitude,
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the far field distribution for each PC was determined and is shown in figure 3.2-5. The
first three PC’s, with maximum J cost between +3 and -15 dB, must clearly be control-
led, the fourth, with a maximum J1 of - 19.9 dB, must be included if the side lobes are to
kept below -30 dB, but the fifth and higher PC can be neglected if controlling the first
four does not "excite" the higher PC’s. From these results, a tenative criterion of -20 dB
can be selected for the maximum value of Jj that is acceptable. This criterion will need
to be validated with further examples; but, if validated would mean that acceptable perfor-
mance can be maintained as long as the distortion part of the far field contributes no

more than 1% of the peak power.

3. Optimal Actuator Locations

Initially all 420 rods in the structure were considered as potential sites for length chang-
ing actuators. The sensitivity matrix generated in NASTRAN, as discussed in section
3.1, was mapped into 420 G matrices using equation 2.3-1. To perform the initial
screening using 2.3-13 requires an assumption of the number, L, of PC’s to be included
in determining the effectiveness, ex. Step 2 above suggest that L must be 4 or greater.
Selecting L to be 4 would assure the ability to control the nominal structural system and
orbit geometry; but, may not provide a robust system that can accommodate off nominal
conditions that no doubt will "excite” higher PC’s. On the other hand picking L too large
assures that higher PC’s will be "excited" while controlling only the lower PC’s. Two
values of L (5 and 10) were selected for testing. Figure 3.2-6 shows the variation of g
with rod number when L=5 and table 3.2-1 summarizes the number of effective rods for
four levels of €. The 156 front surface rods generally have higher values (mean = 0.91)
than the 120 back surface rods (mean = 0.86) and both are clearly more effective than the
144 rods that connect the front to the back (mean = 0.50). Figure 3.2-7 shows a similiar

result when L=10. Over three times as many front surface rods have £¢ > 0.975 than
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back surface rods. The relative ineffectiveness of the middle rods is due to the very local-
ized surface distortions caused by middle rod extension; whereas, front and back rod ex-
tensions generally cause distortions with longer spatial wave lengths. The spatial
waveiengin of the PC generally decrease as the eigenvalue decreases. The front surface
rods are clearly the most effective and no further consideration was given to back and

middle rods unless the front rod set proved to be inadequate.

Having identified the effective locations for actuators, the next task is to find the optimal
locations for some fixed number, M, of actuators. Given some initial configuration of ac-
tuators, the procedure to attach an actuator to the next most effective rod is given by equa-
tions 2.3-10 and 2.3-12. This process was tried for a case with L.=10 and the condition
that € 2 0.975. The procedure started with the most effective rod, #31 connecting grid
points 11 and 18 (see Appendix B for the rod connectivity table), then repeatedly added
the next most effective rod. Before the number of rods, M, reached 5 it was found that
this process added rods that had nearly proportional G¢ matrices, leading to numerically
unstable solutions. The eqp criteria, given by 2.3-14, was thus used as a second filter on
the rods to be consider for actuator sites. Generally, the numerical solutions became un-
stable if two rods o and 3 were included in the set and €op > 0.99. With this criteria the
procedure showed no tendency toward numerical instability. Thus a two step process
was used to select candidate rods. Each rod must first pass the €q test. Then rods were
compared pairwise to calculate €. If €gf was too large the least effective of the two

rods was dropped from the candidate set.

It became clear that only a few actuators were going to be required to control the thermal
distortions and that the combinatorial explosion associated with the discrete optimization
problem was not going to be serious. Thus, in an attempt to arrive at a more optimal set

of actuators a ’two step forward-one step back’ approach was used. In this approach
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equation 2.3-12 is used to sequentially add two actuator locations, then the actuator that
has been in the selected set the longest is deleted. Each cycle of this process only adds
one actuator. This procedure provided considerable confidence in the final results be-
cause it was found that after only a few cycles the deleted location was generally immedi-

ately returned to the set.

Ten sets of optimal locations were generated using two values of L (5 & 10) and 5
values of M (5,7,9,11 & 15). For both cases €q8 < 0.98 was used. For L=5, £€>0.95 and
for L=10, £> 0.975 were used. The result are summarized in table 3.2-2. Rod 31 is the
only rod that appears in every set; but, many rods, once added to the set, remain in the op-
timal set. Rods 75 and 76 have a €75,76 = 0.998 and appear in 7 sets. They are an ex-
ample of an effective pair that produce nearly proportional G matrices. The column
labeled Jz is the value obtained from equation 2.3-10 summed over the twenty PC’s
recovered from H as discussed in step 2. It will be seen later that this is not a reliable in-

dicator of the actual value of J2 that will result from the open loop control.

Each of the ten sets of actuator locations was used in conjunction with equation 2.3-4 to
determine the optimal stroke variations sq(f) throughout the orbit. The resulting Zemike-

Bessel costs, calculated from
2 2 2 ¥ 2
=2 186 =2 | |G-21saaa| B
o=

are tabulated in table 3.2-3. Actuator strokes are shown for the case L=5and M =5 in
figure 3.2-8. The strokes are in the one millimeter neighborhood as assumed in section
3.1 during the discussion on buckling loads. It should be noted that the strokes reported
here and elsewhere are equivalent unconstrained elongations. That is, the actuator forces

are those necessary to extend an unconstrained rod the amount shown in figure 3.2-8.
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Actual elongations in the tetrahedral truss will be between 60% to 80% of the uncon-
strained values. Figure 3.2-9 shows the open loop variation of J1 throughout the orbit for
the limit cases in table 3.2-3. The figure demonstrates the expected trend that increasing
the number of actuators reduces the Zernike-Bessel cost. But, another general result is
also illustrated, namely, that the best performance is achieved with a given number, M, of
actuators if the parameter L is selected to be about the same as M. The values of Zemnike-
Bessel average cost, J2, shown in the table are the average J1 over the orbit (2.2-12) and,
when compared with the corresponding values in table 3.2-3, it is seen that the earlier
predicted values do not agree well with the actual values. This must be due to the error in-
troduced by truncating the cost (2.3-10) to 20 PC’s since that is the only approximation

in the process.

The largest value of J) for any of the case is -18.8 dB for the L =5 and M = 5 case. At
the orbit position corresponding to this J1 the far field pattern was calculated, and is
shown in figure 3.2-10. The peak power occurs at the desired center and is only 0.17 dB
below the parabolic case shown in figure 3.1-3. The first side lobe is at -29.2 dB and is
slighlty above the goal of -30 dB. It is to be noted from figure 3.2-9 that this violation
will only occur during a small fraction of the orbit. Further, any of the other 9 cases from
table 3.2-3 will provide acceptable far field patterns. This is a second case that suggest

selecting - 20 dB for the maximum value of Zernike-Bessel cost, J.

Thus, as few as five actuators can control the far field pattern to acceptable levels for the
nominal orbit. The next issue is the performance for off nominal cases. It should be
noted from table 3.2-3 that for a -20 dB criterion, there is at most a 6 dB margin to hand-

le the off nominal conditions with no more than 15 actuators.
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Figure 3.2-1. Zernike-Bessel cost, J1, for the nominal case.
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Figure 3.2-2. Far field pattern at maximum J1. Orbit position = 114°.
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Figure 3.2-4. Power of the four largest principal components.
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Figure 3.2-5. Far field corresponding to the four largest principal components at the times of respective maximum
power.
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Figure 3.2-6. Rod effectiveness, €¢, with L=5.
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Figure 3.2-8. Actuator strokes for the nominal case with L =5and M = 5.
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Figure 3.2-9. Effect of L and M on the nominal case cost.
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Figure 3.2-10. Far field at maximum J; with open loop control for L =M =5.
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L=5 L=10

€q range | Frontrods (Middle rods| Back rods | Front rods [Middle rods| Back rods

1.0-0.975 34 6 9 82 16 24
0.975-0.95 31 7 14 32 8 27
0.95-0.925 26 3 21 20 10 14
0.925-0.90 28 6 15 7 4 18

0.90-0.0 37 122 61 15 106 37

Mean €q 0.91 0.50 0.86 0.94 0.62 0.93

Table 3.2-1 Number of front, middle and back rods in specific €o ranges.
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Optimal actuator locations, L =5, €ggn =0.95, €afmax =0.98

M Rod number for actuator location J2,dB.
5 31,75, 118, 130, 155 -29.8
7 31,44,75,78, 118, 130, 155 -32.3
9 31, 34,75, 78, 118, 125, 130, 139, 155 -34.3
11 31,44, 46,78, 102, 111, 118, 125, 130, 139, 155 -37.1
15 31, 44, 46,47, 75, 78, 100, 102, 111, 118, 125, 129, 130, 144, 155 -40.2

Optimal actuator locations, L = 10, &g, =0.975, EaBpay =0.98
M Rod number for actuator lIocation J2,dB.
5 31, 76, 100, 126, 150 -29.8
7 2, 31, 43,76, 100, 126, 150 -32.9
9 2, 31,43, 76, 98, 100, 118, 126, 150 -36.0
11 2,20, 31, 43, 76, 98, 118, 126, 139, 150, 154 -38.6
15 2,20, 31,43, 46, 76, 83,98, 107, 111, 118, 126, 139, 150, 155 -41.1

Table 3.2-2 Results of optimal actuator location study.
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L=5
M, # actuators Max. stroke, mm. Max. 11, dB. Ja, dB.
5 0.90 -18.8 -28.4
7 0.80 -20.5 -29.9
9 0.75 -20.7 -30.7
11 0.74 -209 -30.9
15 0.73 -21.6 -324
L=10
M, # actuators Max. stroke, mm. Max. J1, dB. J2, dB.
5 1.2 -19.0 -27.8
7 1.2 -21.2 -294
9 09 -22.1 -31.1
11 08 -249 -33.0
15 0.64 -26.2 -345

Table 3.2-3 Results of open loop control for nominal case.
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The optimal actuator locations developed in section 3.2 were based on a nominal orbital
heating condition and assumed perfect knowledge of the structural and thermal properties
of the antenna. The issue of the effectiveness the open loop system for off nominal condi-

tions will be addressed in this section.

Other Orbit Configurations.

The nominal orbit ignored the shadow of the earth, which as seen in figure 3.1-2 has a
dramatic effect on rod temperature. While in the shadow, however, all rods are at about
the same temperature, so the deviation for a parabolic shape could be small. To quantify
the effect on the far field pattern the shadow was included in the thermal calculations and
the G(¢) matrices of equation 2.2-4 were regenerated. The maximum J1 of +3.09 dB was
the same as the nominal case while the J2 value was 0.6 dB higher. Equation 2.3-4 was
used to determine the optimal actuator strokes. The resulting open loop variation in Jj is
shown in figure 3.3-1 for the actuator locations corresponding to the case of L =5 and M
=5 in table 3.2-2 and can be compared to the nominal case in figure 3.2-9. Before the
satellite goes into shadow the results are the same as the nominal case and within 15
minutes after exiting from the shadow the results are essentially the same. During the
shadow period the value of J1 peaks 5 dB below the maximum of -18.8 dB, which is, of
course, the same as the nominal case. Thus, the transients produced by the shadow of the

earth produce no more difficulty than the nominal case.

The nominal case also assumed an equinox position for the sun; that is, the sun is in the

plane of the orbit. At solstices the sun is 23.5° north or south of the orbit plane. Again
G(#) matrices were regenerated for both solar locations and the open loop control was ap-

plied. With the sun at maximum northerly (southerly) declination a maximum J; of
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+5.03 (+4.94) dB. nccured during an orbit. These are about 2 dB higher than the nominal
case and will require more actuators to meet the -30 dB maximum side lobe goal. With
less than 11 actuators the J1 value is greater than -20 dB; but, the case withL =5 and M
=11is at-19 dB. So detailed RF calculations will be required to validate this case. Fig-
ure 3.3-2 shows the open loop control value of J1 for this case (L =5and M = 11) and
figure 3.3-3 gives the far field at the maximum J1. The first side lob¢ is at -29.4 dB, thus,
there will only be short periods when the open loop system with 11 actuators can not
meet the -30 dB side lobe requirement. Fewer actuators give longer violation of the side

lobe goal.

System Errors.

Another possible limitation of the open loop system is the accuracy of the structural
model. Individual elements of the structure will vary in cross section measurements, in
elastic modulus, in coefficient of thermal expansion, emissivity, absorbtivity, etc. In
order to begin to quantify some of these effects a number of simulations were performed.
In the first simulation the 420 rods in the structure were assumed to have errors in EA
that are uniformly distributed between +2%. Such errors are consistent with manufactur-
ing tolerances for large graphite epoxy tubes (H. Bush, private communication). These er-
rors have two effects on the results. First, the distortions due to thermal effects will be
different than the nominal case, and second, the sensitivity of the surface changes due to

actuator forces will be different.

In this simulation one random sample was generated for the EA of the 420 rods. A new
sensitivity matrix was generated in NASTRAN that was used to calculate the thermal dis-
tortion throughout the orbit. The actuator strokes were calculated using the sensitivity
matrix without errors; but, when these strokes were used to calculate the surface correc-

tions, the erronous sensitivity matrix was used.
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The maximum value of the uncontrolled cost J; was within 0.1 dB of the nominal maxi-
mum cost, suggesting that manufacturing errors at this level would be acceptable from
the radiometer performance standpoint. Further, the maximum value of the controlled
cost was within 0.4 dB of the nominal maximum controlled cost forL=5and M =5 or
11. Although there is a degradation of controlled performance it is probably not severe

enough to justify increased quality control for the rods.

The final system errors considered are errors in the thermal properties of the structure,
namely the coefficient of thermal expansion, the emissivity and the absorbtivity. These
parameters directly determine the temperature of the rods and/or directly influence the
surface distortion. The error in CTE due to the manufacturing process would be due to
the same type of errors that produce variations in EA; thus, a 2% uniform distribution is
assumed for CTE. Optical properties for coating can vary greatly during the manufactur-
ing process and can change with age in orbit. However, the rods for this study are un-
coated graphite epoxy and nearly black. Thus only small variations in ¢ and € are
expected. Again a uniform distribution of 2% is selected. The maximum uncontrolled
value of J1 was 0.1 dB. lower than the nominal case and the uncontrolled value of J2 was
0.2 dB higher. After applying the open loop control with five actuators the maximum
value of J1 was reduced to -18.5 db, similiar to the nominal case; however, the variation
of cost throughout the orbit is significantly different as seen in figure 3.3-5. Whereas for
the nominal case, and the other variation from the nominal presented above, the cost
decreased significantly away from the peak, this is not true for this case. The reason for

this behavior is that 2% variations in the emissivity and absorptivity produce variations in

temperature that can be as large as 5° K. This may not seem large; but, for the nominal

case at an orbit position of zero, the maximum temperature excursion across the entire an-

tenna is only 26° K. These errors thus introduce a random component with a significant

amplitude which introduces a significant random variation in the aperture phase. These
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random variations produce a background in J1 of about -24 dB. that cannot be corrected
by the open loop system. Increasing the number of actuators to 15 reduces the peak to -
21.86 dB, but there is still the high background around -25 dB. Figure 3.3-6 gives the far
field at the maximum cost. As expected, with J1 = -18.5 dB, the side lobes do not meet
the -30 dB goal and the beam width is broadened noticably. The case with 15 actuators

provides marginally acceptable far field performance.
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Figure 3.3-1. Open loop cost, J1, with the earth shadow included.

J1, dB.

(o] 60 120 180 240 300 360
Orbit Position, deg.

Figure 3.3-2. Open loop cost, J1, with the Sun at 23.5° north declination.
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Figure 3.3-3. Open loop far field pattern with the Sun at 23.5° north declination

J1,. dB.
[o]

o] 60 120 180 240 300 360
Orbit Position, deg.

Figure 3.3-4. Open loop cost, J1, with 2% random error in EA.
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Figure 3.3-5. Open loop cost with 2% errors in CTE, absorptivity and emissivity.
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Theta, deg.

Figure 3.3-6. Open loop far field with 2% errors in CTE, absorptivity and emissivity.
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3.4-Closed Loop Contro]

As discussed in section 2.4, the closed loop system will utilize measurements of surface
deviations to estimate one column of the G matrix using equations 2.4-3 and 2.4-4, from
which the full & matrix can be formed. Then the actuator strokes will be calculated from
equation 2.3-4 with G replacing G on the right hand side. The first question is where to
place the sensors. For the validation antenna the illumination of the surface is nearly in-
dependent of the angle @ because of the assumed y-polarization and the feed gain func-
tion (3.1-2), so it is natural to select sensor locations that are uniformly distributed in ¢.
In addition, because of the high taper, it is more important to measure the distorted shape
near the center than at the edges. Based on these arguments, two arrays of sensors were
assumed as shown in figure 3.4-1. Thirteen sensors are denoted by circles at the nodes to
which the sensor is assumed to be attached. In the second case, an additional 6 sensors,
denoted by the squares, are on the perimeter to give a total of nineteen. These two cases
will be denoted by S=13 and S=19 respectively. The second question is how many prin-
cipal component amplitudes to estimate using equation 2.4-3. Two values were selected

for this study, P=5 and P=10.

All of the simulations reported in section 3.2 on open loop robustness were performed as
closed loop simulations. For the nominal case, the case with 2% variation in EA and for
the case with the earth shadow, the values of J1 were within less than 1 dB of the open
loop results for any of the combinations of P and S above. Thus for these cases, estimat-
ing only five principal component magnitudes from as few as thirteen sensors yields es-
sentially the same performance as assuming perfect knowledge of the system. For the
case of the Sun at maximum declination; however, estimating five components was not
adequate. This can be seen by comparing the open loop case with the closed loop case

shown in figures 3.3-2 and 3.4-2 respectively. Both case have 11 actuators located at the
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positions in the top of table 3.2-2. Estimating only five components (P=5) results in a
value of J1 of -14.1 dB, which would not meet the goal. It should be noted however that
the -20 dB limit is exceeded for only a small part of the orbit. Increasing the number of
estimated components to 10 provides what appears to be acceptable closed loop perfor-
mance. Further increasing the number of sensors to 19 does not provide any additional
improvement. With P=10 and S=13, the far field at the maximum cost (figure 3.4-3) has
side lobes below the -30 goal; however, it is noted that the second side lobe is also at -30
dB. This suggests further study of the far field pattern. Figure 3.4-4 shows additional
sections through the pattern. It is seen that in the third quadrant, the -30 dB goal is not
reached. Thus it appears that to reach the -30 dB goal will require more than 13 sensors;
but a closed loop system with 13 sensors, estimating 10 principal component magnitudes

would be adequate to control this case for all but a short time during the orbit.

Finally, the case with 2% errors in CTE, absorptivity and emissivity was simulated with
the closed loop system with P=5 and S=13 for both 5 and 15 actuators. The closed loop
system provided a better value for the maximum Jj in both cases than the open loop sys-
tem. For M=5(15) it was 0.2(0.8) dB better. Thus, as expected, the closed loop system
performs better than perfect knowledge in the presence of system errors. The far field
pattern, figure 3.4-5, also shows a modest improvement over the open loop pattern in fig-

ure 3.3-6.
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Figure 3.4-1. Sensor locations on the front surface .

J1, dB.
o

— (5,13)
.......... (10' 13)
== (10, 19)

o 60 120 180 240 300 380
Orbit Position, deg.

Figure 3.4-2. Closed loop cost, J1, with the Sun at 23.5% north declination.
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Figure 3.4-3. Closed loop pattern, Sun at 23.5° north declination, first quadrant.
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Figure 3.4-4. Closed loop pattern, Sun at 23.5 © north declination, other quadrants.
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Figure 3.4-5. Closed loop pattern for 2% errors in CTE, absorptivity and emissivity.
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Chapter 4-Concluding Remarks

A theoretical basis has been developed for controlling the thermal distortions of large
space radiometers due to orbital motion. The original objective of developing a control
system cost function that is quadratic in form and is directly related to radiometer perfor-
mance has been met by expanding the far zone electric field in a Zernike-Bessel series.

In this expansion the cost function naturally appears and it is shown that this cost is a con-
sistent indicator of the deviation of the far field from the desired pattern. The second of
the original objectives, to include the temporal variations in the development of the op-
timal actuator locations, was accomplished by expanding an aperture integral using a
principal component analysis. It is shown that the eigenvalues are directly related to
average deviations of the far field pattern from the desired pattern. Further, the eigenvec-
tors are used as a basis for directly estimating far field deviations from sensors measure-

ments.

Simulations for a geosynchronous radiometer demonstrate that the method provides a
convenient and meaningful means to quantify the influence of various orbit geometries

and deviations of the system from nominal due to manufacturing and other errors.

The simulations also suggest that for the particular antenna geometry studied, 5 actuators
and 13 sensors are adequate to control the nominal case and some deviations from
nominal; but, that 11 actuators and 19 sensors are required to control the worst case

studied.
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Although the process may appear to be computationally intensive, except for two
NASTRAN static analyses, all of the calculations were performed on a 16 MHz
80386/80387 computer, usually in 64 bit arithmetic. Some typical times for calculations
include 12 minutes to calculate the temperatures of 420 rods at 360 orbital postions in-
tegrating equation 3.1-1 and then mapping the temperature variations into reflecting sur-
face deviations, 13 seconds to calculate G(f) matrices at 180 orbit positions using
equation 2.2-4 and forming the grammian (2.2-5), two minutes to extract 20 eigenvectors
and eigenvalues of the grammian, 30 seconds to calculate 420 G, matrices of equation
2.3-1, 15 minutes to determine the optimal locations for 15 actuators using the method
described in section 3.1, and finally less than 3 minutes to calculate optimal actuator
strokes at 180 orbital positions using equation 2.3-4 for either the open or closed loop

simulations.

Like most research projects there remain a number of unexplored areas and open ques-

tions. A few of these are mentioned here.

1. The Zernike-Bessel cost, which reliably predicted performance for the 55 meter anten-
na, should be validated for other feed polarizations and gain functions and other antenna

geometries, such as offset feeds to clear the aperture and off center feeds for scanning.

2. Low earth orbit (LED) geometries should also be explored. Sun synchronous low or-
bits will be somewhat similiar to the geosynchronous case, since the sun will appear to
move from one side of the orbit plane to the other through a limited angle during the
year. Other orbits will be more challenging since there are large variations in the direc-
tion to the sun in just a few weeks due to orbital precession. Temperature variations are
moderated by the radiation from the earth and the required coatings in LEO. On the
other hand, the control system must accommodate the geographic, seasonal and diurnal

variations in the flux from the earth.
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3. The Zemnike-Bessel cost approach may also be useful for determining the significance

of forced or free vibration modes on antenna performance.

4. The principal component analysis can be directly applied to obtain representations of
distortions of spacecraft with cther geometrical shapes, for example, long straight booms

or flat platforms.
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Appendix A - Zernike Polynomials

Zemike polynomials have been used extensively in optics for describing the aberration
function for circular apertures and for representing the classical aberrations, for example,
piston, tilt, coma, astigmatism, etc. They have found limited use in the radio frequency
literature, perhaps because their principal application is to circular apertures with uniform
illumination, which is not always the case for antennas. They are used under the name of
’modified Jacobi polynomials’ for representing the far field when the feed is offset from
the focus>® and for calculating secondary patterns for offset reflectors. 36 Though these
applications were not the motivation for the current approach, there are similiarities. The
main motivation is that Zernike polynomials provide a ~c:.venient set of functions to rep-
resent wave front phase as demonstrated by their extensive use in optics14 and because
they are orthogonal and complete over the unit circle3” with respect io the ring of real
polynomials in x and y. This section provides the definition of the Zernike polynomials,
some properties of interest for their application to Rf performance calculations, and new

recursion relations that are use for numerical calculations.
In real form the Zernike polynomials are defined as
Dpm (p,8) = Rnm (p) cos mO and ¥pnm (p,8) = Rnm (p) sin mH,

with n=0, 1, 2,... and m € M, where My ={m 10 £m < nand n—mis even } and where
0 € p < 1is the normalized radial distance and 0 is the angular coordinate, i.e. p and 0 are
the usual polar coordinates for the unit circle. It will be seen that ®p, and ¥y are each

polynomials inx = p cos © and y = p sin 6. The radial polynomials Rpy, can be related to
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the Jacobi polynomials, can be derived from a generating function or can be obtained

from the seriesl4:

(n-my)
N i (n=9)! n2s
Rum (p) —s§0< D iTems s (e —sii P

The radial polynomial Rnm is a polynomial of degree n with a minimum exponent of m.

A few of the radial polynomials are shown in table B-1 and plotted in figure B-1.

Seriec Expansion of Functions

Any function f{p, 0) that has a Taylor series expansion about the origin and radius of con-
vergence at least one can be expanded in terms of the Zernike polynomials over the unit

circle, that is

f0.0)=Y, Y Anm Brn(p, 6) + Buam ¥nm(p, 6)
n=0 meM,

where Anm and Bpm are constants given by

2rn 1
Anm| _ 2(n+1) 0 {d),.m(p, e)} do d6
{Bnm} n(1+86')£ gﬂp’ )\ #anlp, 0)f P P X

The factor of 2(n+1) comes from (Born, 1987)

‘ A
fan(P) Rpm(p) p dp = 20n+)’

0

There is also the amplitude-phase version of the expansion
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Rp,0)= z ZC'W Rnm(p) cosm(6—tnm).
n=0 meM,

B
where as usual (Cam)” = (Anm)® + (Bum)” and tanmsr; = — .
nm

Recursion Relations

The following recursion relations were developed to improve the computational efficien-

cy of calculating values of the polynomials:
Roo =1 to initialize the process.

Rn+1, n+1 = p Ran for diagonal stepping withn = m,

(n+1) R2n420 = (2p2 - 1)(2n+1) R2a,0 — n R2a-2,0 for generating the terms with m =0,

Rut1,m+1=p (Rum+ Rnm+2 ) — Rn—-1 m+1 for diagonal stepping starting at an m =0 term.

These can all be verified using the series expansion above. The recursion with m = Q was

derived from a recursion formula®® for Legendre polynomials and the relation’*

R210 (p) =Pn (2p% - 1)
where Pj, is the Legendre polynomial.

Using simple trigonometry identities leads to the corresponding recursion relations for

the Zemike polynomials ®nm and ¥ pp:
doo=1and WYoo=0 for initialization,

Dn+1,n+1 =x Dpn—y Wnn and Ynt1p+1 =y Opn+ X Pun
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for diagonal stepping with n = m,

(n+1) D2me2,0 = (2p°=1)(2n+1) D200 — n D220

for the terms with m = 0, which can be seen to be even polynomiais in p and thus even

and symmetric polynomials in x and y as expected,

Dn+1,mtl =X (Prm+ Pnmi2 ) =y (¥nm —¥nmi2 ) — Ppmil
and

WYriimi1 =y (Pnm — Pnmi2 ) = x (¥Ynm +¥nmi2 ) — Pnmrl

for diagonal stepping from each m =0 term. These later relations clearly illustrate that

each Zernike polynomial is in fact a polynomial in x and y.

If the antenna surface distortions is represented in terms of Zernike polynomials then the

gradient of the polynomials is required for RF performance calculations, and recursive

relations for these can be derived starting with the recursion relation:>°

d d
E;; Roim=n[ Rp-1m-1+ Rn-1m+11+ 25 Rp-2.m.

For convience, the notation % =f; x will be used in the following.

In the recursion relation for the derivative, the term in brackets can be replaced using the

diagonal stepping equation for Rp+1, m+1 to yield

an; p =n (Rllm + Rn—2.m) +Rll-2,m; p-

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




The gradients with respect to x and y are required and these can be obtain in the follow-

ing manner:
Dnm; x = Pnm; p P; x + Pnm; 0 0; x.

e . .. . 2_ ngi 2 _ . .
Substituting the definition for ®»m, and using p“ =x* + y“ and tan® = Y4 yields:

x cos mO m
(Dnm;x=_2“——an,p+_:'zy"I"’m.

p p

Substituting for Rpm; p from above gives
x cos mB

Prm; x==—35— [ n Rnm+Rn-2m) +Rn-2,m;p ] ‘*"’ﬁlepnm
P p

Finally, eliminate Rp-2 m; p by using the expression above for ®pm; x evaluated for

n=n-2to get
X
DPpm; x =Pn-2m; x + % (Pnm+ Pn2,m) + _’2_22 (¥nm —¥Yn-2,m).
p P
A similiar development gives the other three recursions:

Pnm; y = Pn-2,m;y + B‘ZX (Prm+ Pp-2,m) — m% (¥Ynm — ¥n-2,m).
p P

Yrm; x =¥n2m x+ 'n—;‘ Fnm+Y¥n-2m) - 'l’_ZX (Prm — Pr-2.m).
P P

Yom;y=¥n2,m;y+ L:;% ¥rm+¥n-2m) + ﬂzl (Dnm — ©n-2,m).
p
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These recursions increment n for a fixed m and are started at n = m. The starting condi-

tions are easily derived from ®n, = p” cos #€, ctc. Differentiation as above gives

Dpp; x = g (x Ppn+y Pnn), ®nn; y =§ O ®nn —x ¥nn),

‘Prm;x=§ (x ¥nn —y Dnn), 1I’mn;y=§(.)"1’nn +x Dpp).

The gradient recursions are not defined at p = 0; but, all gradients are zero except when

m = 1, then it is easily shown that
Dn1;x=Yn1;y= (--1)'th n and ®p1;y=Y¥n1;x=0 forp=0.
Normalization

The polynomials above are normalized so that the maximum absolute value of each poly-
nomial is one on the circle p = 1. It is some times convient to normalize the polynomials

so that each polynomial has a RMS value of unity over the unit circle, i.e.
1 1 2xn

and similarily for ¥nm. To implement this normalization each polynomial above must be

multiplited by a normalization constant an where ap = V2(n+1) if m = 0 and
an=Vn+1 it m=0°
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m\n 0 1 2 3 4 5
0 1 2p2— 1 6p4— 6p2+ 1
1 P 3p>-2p 10p°- 12p%+ 3p
2
2 P ap*-3p?
3 03 5p3- 4p°
4 p4
5
pS
Table A-1. Zernike radial polynomials, Rym(p).
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Figure A-1. Variation of selected radial polynomials, Rp2.
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Appendix B - 55m Radiometer Geometry

This appendix contains the NASTRAN graphical output showing the grid points and rods

that form the structure of the 55m tetrahedral truss.
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Figure B-1. View of antenna along the z axis showing 420 rods.
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26 314 42 49 55 60
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Figure B-2. View of the 156 front surface rods with grid points numbered.
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Figure B-3. View of the 120 back surface rods with grid points numbered.
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Figure B-4. View of front surface rods from 15° elevation.
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