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ABSTRACT

INTEGRATED CONTROL OF THERMALLY DISTORTED LARGE 
SPACE ANTENNAS

Robert H. Tolson 
Old Dominion University, 1990 
Director: Dr. Jen-Kuang Huang

Studies on controlling the thermal distortion o f large space antennae have generally

investigated a single orbital position and have optimized actuator locations based on

minimizing the RMS surface deviation from the original parabolic shape. One study showed

the benefits of directly using far zone electric field characteristics as the performance

measure; but, this approach resulted in a nonlinear programming problem. The objective

o f the current study is to develop an approach to designing a control system that (1)

recognizes the time dependence o f the distortion and (2) controls variables that are directly

related to far field performance in a quadratic cost sense. The first objective, to explicitly

include the time dependence, is accomplished using a principal component analysis to

expand an "aperture phase function" into components that are orthogonal in space and time.

The aperture phase function is readily calculable from surface distortion and accommodates

tapered feeds and arbitrary polarizations. Actuator strokes are shown to be linear

combinations o f the time dependent components. The spatial components provide a natural

space in which to determine the optimal actuator locations and as basis vectors for

extrapolating sensor measurements to the entire antenna surface. The approach for the

second objective is to expand the far zone electric field in a Zemike-Bessel series. For

surface distortions o f less than a quarter wavelength, it is shown that the coefficients of this

series provide a reliable measure of far field performance. Simulations are performed for a

geosynchronous radiometer to determine the robustness of both the open and closed loop

systems to variations in solar geometry, structure materials and thermal properties.
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Chapter 1 - Introduction

Large space antennas have been proposed for numerous applications over the last 20 

years. C ivil applications generally have included communications, astrophysics, and 

earth observation. In almost every application there is a demand for a "larger" dish to 

either increase resolution and/or gain. In the earth observation area, a recent report1 has 

recommended a "Mission to Planet Earth" as one o f the grand challenges. This "Mis

sion" involves extensive remote observations o f the Earth from orbiting platforms. To 

make the proposed observations w ill require sensors with wavelengths that range from 

shorter than visible light to as long as millimeter radio waves. The large space antenna 

applications are o f course at these longer wavelengths. Radio frequencies between 1 and 

37 gigahertz (GHz) are particularly useful for measuring water related characteristics of 

the earth. The 1979 World Administrative Radio Conference has allocated various 

microwave frequencies for passive remote sensing. Specifically, the band at 1.4 GHz is 

useful for measuring soil moisture and ocean salinity, bands between 2.6 and 7 GHz are 

for sea surface temperature, and bands between 6.4 and 15.4 GHz can be used for wind, 

rain and ice measurements. Frequencies between 11 and 37 GHz are useful for atmos

pheric water vapor, Tain, ocean ice, snow and sea surface state. To achieve 1 to 10 km 

spatial resolution from Sun synchronous altitudes around 1000 km requires antenna 

diameters o f about 100 meters . To maintain high beam efficiency and reduce side lobe 

levels, antenna surface accuracy must be maintained between 1/20 and 1/50 of a 

wavelength. For a 30 GHz signal these correspond to 0.5 and 0.2 mm respectively.

1
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There are a number o f reasons that the surface o f an antenna could deviate from the "per

fect” parabola. First there are manufacturing and fabrication tolerances. Unlike earth an

tennas which are designed for the 1-g environment, space antennas most probably could 

not support their own weight and so cannot be assembled or deployed before launch. Er

rors in the geometric or physical characteristics must be accommodated in the design 

process or corrected after assembly in orbit. Hedgepeth4 shows that the tetrahedral truss 

is the best structure from the standpoint of minimizing surface shape deviations due to 

length errors in structural members.

The second source o f errors for large space antenna is due to the space environment. 

These include structural vibration, radiation and thermal expansion. There is an exten

sive research activity currently underway to develop methods to control the vibration of 

large space structures. The control o f thermal distortions for large space structures has 

not been given as much attention. This is partly due to the assumption that structural 

components can be fabricated with graphite epoxy to yield nearly zero coefficient o f ther

mal expansion (CTE). This has been demonstrated over a limited range o f temperatures. 

However, Sharp5 shows that the CTE can be a strong function o f temperature and can 

vary by more than 10E-6 or a factor of two over the range o f temperatures expected for 

orbiting structural members. For a 100 meter antenna this could produce surface distor

tions o f more than 1 mm which would be unacceptable. Additional concerns include the 

effect o f outgassing, space radiation and thermal cycling on the properties o f composite
iT n

members, which can have significant effects ’ depending on layup and coatings.

Controlling thermal distortions o f optical telescopes has received much attention** in 

recent years under the general research area o f active optics. There are some major d if

ferences between an orbiting radiometer and an Earth based telescope. First, radiometers 

have tapered feeds to improve beam efficiency at the expense o f antenna efficiency while

2
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telescopes generally emphasize antenna efficiency and are satisfied with diffraction 

limited images. The thermal environment for ground based telescopes has a small 

temperature range, but the heat balance is very d ifficult to predict because it is due to con

vection, conduction and radiation in a very complicated geometric enviroment. Orbiting 

radiometers on the other hand have much larger temperature extremes that are dominated 

by radiation in a somewhat simpler geometric environment Attempts to actively control 

the thermal distortions o f terrestrial telescopes have met with some success and this 

naturally raises the question o f controlling thermal distortions o f orbiting radiometers.

Q
Antenna surface shape control methods have been developed for single orbital heating 

conditions (i.e. a static shape control method) based on minimizing the RMS surface 

deviation over the antenna surface. Optimal actuator locations have also been deter

mined10 for the same case. No studies address the temporal variation o f the field and the 

subsequent effect on the optimal locations. In addition, radiometer feeds are generally 

highly tapered. Consequently, since surface errors in highly illuminated areas o f the an

tenna w ill contribute more to far field distortion than the same error in a lower il

luminated area, surface RMS may not be the most appropriate objective function. The 

effect o f random manufacturing errors on the actual far field pattern has been studied11 

using a nonlinear programming approach. This study demonstrates the merits of includ

ing far field characteristics in the objective function. However, optimal actuator loca

tions in this study were based on RMS surface deviations and o f course no consideration 

o f the temporal variation was included.

The purpose o f the current study is to develop a method for actively controlling the RF 

performance o f a radiometer to ameliorate the effect o f thermal distortion due to the 

temperature variations in orbit. Specific objectives include designing a control system 

that (1) recognizes the time dependence of the distortion and (2) controls variables that

3
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are directly related to far field performance in a quadratic cost sense. Based on the recog

nition that over a few orbits the distortion o f the antenna can be considered a periodic 

function, the first objective is accomplished using a principal component analysis to ex

pand an "aperture phase function" into components that are orthogonal in space and time. 

The aperture phase function is readily calculable from surface distortion and accom

modates tapered feeds and arbitrary polarizations. Actuator strokes are shown to be 

linear combinations o f the time dependent components. The spatial components provide 

a natural space in which to determine the optimal actuator locations and as basis vectors 

for extrapolating sensor measurements to the entire antenna surface. The approach for 

the second objective is to expand the far zone electric field in a Zemike-Bessel series. For 

surface distortions o f less than a quarter wavelength, it is shown that the coefficients of 

this series provide an excellent measure o f far field performance. These coefficients are 

related to the principal component eigenvalues and "significant" principal components 

are selected on the basis o f the root mean square contribution to deviations o f the electric 

field from the nominal field. Simulations are performed for a geosynchronous 

radiometer to determine the robustness o f both the open and closed loop systems to varia

tions in solar geometry and structure material and thermal properties.

4
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Chapter 2 - Theoretical Developments

In this chapter the theoretical basis w ill be developed. These developments w ill include a 

new Zemike-Bessel expansion o f the far zone electric field, developing control system 

objective or cost functions in terms o f this expansion, decomposing the aperture field 

using a principal component analysis and relating the eigenvalues to the far field, 

developing a method for optimally locating actuators to correct the errors, and finally, 

using the principal component eigenvectors to extrapolate sensor measurements to the en

tire antenna surface.

2,lT ar Field Calculations for Small Deviations from a Parabolic Surface

The objective o f this section is to develop a series expansion of the far field for a slightly 

distorted parabolic antenna. In subsequent sections this expansion w ill be used to 

develop control system cost functions that can be easily calculated from the surface dis

tortion without resorting to traditional RF performance calculations, which require exten

sive computations and are not very amenable to either the design environment or to real 

time applications. To accomplish this objective, an approximate method for calculating 

the far field o f a radiometer whose parabolic surface has been distorted by less than a 

quarter o f a wave length is developed. Even though this is a receiving antenna, it is tradi

tional to work in terms o f a transmitting antenna when developing far field patterns. To

calculate the far zone electric field the physical optics approach described in Collin and 
12Zucker w ill be utilized. In this section, numbers in brackets refer to equations in Collin 

and Zucker. The coordinate system is shown in figure 2.1-1, where the capital letters

5
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( R, 0 ,d>) refer to the far field point, the small letters ( p, 0, <p) refer to a point on the an

tenna and r  = p sin0 is reserved for the cylindrical coordinate system radius.

The electric field incident on the antenna {17.11} from the feed is

e? wUVmeter
(2.1-1)

where e^Q, cp) defines the direction of the incident electric field, which for a y polarized

feed would be

(2.1-2)

and ep = (costp sin0, sincp sin0, cos0), Pt is the total power radiated by the feed in watts, 

G is the feed gain function or the fractional energy radiated in direction (0, <p), k is the 

wave number k = = °yc and p. and e are the free space permeability and permittivity

107 _7with values £ = — and p = 4jix10 henrys/m.
4 nc

Such an incident electric field induces surface currents {17.10} of

the reflector surface. These surface currents produce a far zone electric field given by an 

integral over the surface o f the antenna {3.47}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2
Js  — ~ [  £ n X  ( e p X  "E l)  ] amP9'meler.

where T\ = V%=120tc ohms is the intrinsic impsdence and e% is the unit vector normal to

(2.1-3)

s

6



p2sin0 dk d(.p
I — —->£p*£n

only the radiation pattern near the central lobe is of interest and for the narrow beam an

tennas that would be used for radiometers it is common to set cos© = -1  and use the ap

proximation ej$ = (cosd> sin©, sinO sin©, -1 )  in the integral.

The far field has no ek component and the other two components are given by {17.19} 

Ee = -  j f *  JJeS • *p ' *&dS and
s

= JJ4 . n  ■ ^ d s ,  (2' 1' 4)
s

where e& = (cosOcos©, sinOcos©, -sin©) and e& = (-sin<I>, cosd>, 0). The z-component 

o f E<t> is zero and the z- component of E& is proportional to sin©, which may be 

neglected near the central beam. Thus the integral of interest

4nR
S

may be approximated as a two-vector. However, for completeness the three-vector na

ture w ill be maintained during the theoretical development; but, the two vector approach 

w ill be used for the validation studies for reasons to be discussed later.

Substituting for T^and Ef and collecting terms outside the integral into

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



gives

-dS.
(2.1-5)

where u*= e%x(epxefi.

The next step is to evaluate the integral 2.1-5 for a reflector with a surface that is dis

torted from the desired parabolic shape. To evaluate the integral only the effects o f dis

tortion on the phase of the reflected rays w ill be considered, that is, the effects of 

distortion on ray direction and angular spreading are neglected. This approximation w ill

only be used in developing an objective function for control system design. Far field pat-
1 ̂terns, to be presented later, are based on a complete physical optics simulation which 

include changes in the slope of the surface.

For a parabolic reflector

where F is the focal length. As seen from figure 2.1-2, the distance a ray travels from the 

focus to the reflector and back to the aperture plane through the focal point is p+p cos0 

or 2F. For a distorted surface the distance w ill no longer be 2F, but w ill be modeled as

surface is modeled as displacements in the z direction 8z, then the relation between 

and 8z can be obtained by refering to figure 2.1-2. The displacements are assumed to be 

small compared to the focal length. The path length for the undistorted surface is FA +

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IF (2.1-6)
^ 1+COS0’

¥  (0, (p) = p (0, <p)(l + cos0) -  IF. (2.1-7)

is then sim iliar to the wave aberration function discussed in Bom.14 I f  the distorted

8



AP and for the distorted surface is FB + BQ. The difference is *¥ = AB + BD. Now CB 

is the z displacement 8z. Since the rays satisfy Snell’s law at the surface, ABC is an isos

celes triangle and so AB = BC = 8z. Since BD = BC cos0,

*P = (l+cos0)8z, (2.1-8)

which is linear in the displacement and depends on the location on the antenna. Using 

the relation between p and 'P in the phase part of the integral along with the approxima

tion eft = (cosd> sin©, sin<I> sin@, -1  ) from above gives in the exponent

p (l -  eip eft) = 2F + 'P -  p sin0 sin© cos(d> -  <p).

Thus

e~ jk p (l -  ep-eft) _  g- 2 jk F  g - j lW  ^psinG sin© cos(4> -  <p)

The first term is a constant and combined into C2 to give C i = e-2- ^  C2 . The second 

term can be written as

e-jW  = i_2sin2̂  -/sintfP .

So that

v rr  v  ________  r , tx u  JfcpsinG sin© cos(C>-  9)
Ci JJ w % (0, <p) (l-2sin 2̂ -  -ysintfP)  ------------------------- dS.

S 1 P

It is now convenient to change variables from 0 to r  using r  = p sin0. Evaluating differen

tials on a parabolic surface { 17.2 &  17.4 } leads to dr = p dQ, and the integral becomes

9
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. 2? f  Jkr sin0cos(<t»-<p)
E ^ C iJ  J sVg  (l-2s in 2̂ - y s in ^ )  9  rrfrrftp,

0 0 p

ep-en I = cos% has been used. In the exponential,where the antenna radius is ’a’ and 

terms o f order *F sin0, which are of second order near the central beam, were neglected.

p
The denominator is also evaluated on the parabola so that pcos% = 'CQ̂ - Let x = r/ a be

2
the non-dimensional radius and combine the focal length F and a with Ci to give 

2
C = C\ cl/f to yield the final expression for the far zone electric field,

2n 1 (2 .1 -9)
E *=cJ J u W (l-2s in 2̂ ~  -jsmKV) cos%eikax sin0 005(0 ~ (?)xdx dtp,

0 0

Thus the far zone field can be written as the sum of a field from the undistorted reflector 

and a field determined by the distortion.

The integral in equation 2.1-9 w ill now be reduced to an infinite series by using Zemike 

polynomial expansions (see appendix A). The Zemike polynomials are complete with 

respect to the ring o f polynomials in x and y on the unit circle and i f  m?G, and ¥  admit to 

Taylor series expansions then vectors 7^m, E*nm, €$m, a*m, Pnm, and exist such that

C^e, (P) = u^G  cose/2  = X  %*nm Rnm{x) cos m(cp—ot^n) (2.1-10)
ntm

V(Q, (p) = 2C^0, tp)sin2̂ -  = '£ l 5iimRnm(x) cos/w(cp-P^m). (2.1-11)
n,m

10
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and

P (̂0, <P) = cte , <p)sin£xF = fnm Rnm(x) COS m((p-ytm), (2.1-12)
njn

where the relation 0 = 2 tan 1
I F  

v y
is used to eliminate 0 in favor o f x. The sums are for

n from 0 to and for m from 0 to n with n-m even. The notation for the phase is non- 

conventional; but, the meaning is that i f  the x component o f i f  is being calculated, then 

the x component of /tfim and the x component of anm should be used in the sum.

Introduce these two expansions and the well used Bessel expansion

jkm  Sin© cos(«l> -  <p) _ /o(Am sin@) + 2 ^ j p Jp{kax sin©) cos p(0> -  <p)
p= 1

into the integral. Then integrate with respect to tp term by term using the usual Fourier or

thogonality conditions and in particular

2n
Jcos«(<p-a) cosm(cp-P) dtp = 7t ( l+8m) cos«(a-p)8?, where 8« is the Kronecker delta,
0

to get

E>= 2 7 tc J X /n (l+ 8 £ )x
Ofiyin

{fthm COSm(<&-a!,m)-Enm COSm(d>~P^,)-yC^OT COSm(<&-yi!m)}Rnm(T)Jm(Yt) *dx,

where y = kasin®. The main advantage of using Zemike polynomials is the relation 

(Bom, 1980, pg. 772)

11
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j iw c )  Jm{yi)x dz = (—I)*  2*
0 1

which reduces the last integral to evaluating the infinite series 

E*=2nC% (l+8m ) ( - l f ? x
n m

{̂ «/«COSm(d>—Onffj)- SnmCOSmC*!*—Pn/w)~ŷ nmCOS/«(<I>-Ĵ n )|. (2.1-13)

Thus the far zone electric field, Ee = e&E^and E& = is a sum o f Bessel functions 

that depend only on 0  with amplitude and phase that depend on <t>, G(0,tp), the feed 

polarization through ut0,cp) and the surface distortion through ¥ (0 , tp). The coefficients 

Atm determine the field o f the undistorted reflector and the coefficients E*nm and Cnm 

determine the field due to the distortions o f the reflector. The E*nm terms are in phase 

with the 7 îm while the Cnm are quadrature terms being Vi out o f phase. Both o f these ef

fects contribute to distorting the far zone field; and, in particular, when 0  = 0 only the 

n = 0 term w ill contribute so that

Eft), 0) = kC {Soo -  Boo -./Coo }• (2.1-14)

It should be noted that Coo is a generalized "piston" term representing the average phase 

shift across the aperture weighted by the polarization and the feed gain. The Boo is a 

generalized average square phase error and can be interpreted as a generalization o f the 

Ruze criteria.15 Explicit expressions for Anm, B*nm and Cnm and the corresponding 

phases can be obtained using expressions from appendix A; namely,

2n 1 (2.1-15)
= \u(l,<?)Rnm(z)el'mVzdTd<?,

™ nmo 0

12
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2*1 (2.1-16) 
E*nm e®™1 = - j —  J J Ffr, (P) Rnm(x) e/mq> x dx dlp,uNfim 1

0 0

^  2*1 (2.1-17) 
eAYnm = -77— J J Wfo, cp) Rnm(t) e!m  x dx da?,

ItNnm
0 0

1+52
where Nnm = ~ + ”̂  is the normalization factor so that the integral o f the squared Zemike 

polynomials over the unit circle are unity (see appendix A).

Recall that W = u$G sinfc'F cose/2, where G is the feed gain function and u\s a vector of 

no more than unit length and is determined by the polarization of the feed. For highly 

tapered feeds the term VGcos% w ill primarily determine the relative importance of phase 

errors in the aperture plane. But M^will also contribute to the relative importance. For ex

ample, it  can be shown {17.17 &  17.18} that for a y-polarized feed

—> -cose/2  {simp cos(p(l-cos0)e£-  (sin2© cos0 + cos2tp)£y} -  sintp cos0 sin% et (2.1-18)

V l -s in 2(psin20

which is a slowly varying function of 0 and <p. I f  the antenna has a large ratio of F/a then 

cos0=l and u*~ey is a constant. Feeds can tie designed 16 so that the far field has little 

or no cross polarization, i.e. mV ill have a constant direction. I f  both w&nd G are constant 

then y%m = 0 for all n and m and the expressions reduce to the classical uniform circular 

aperture case with the Cnm representing the classical aberrations. For example, C40 is 

spherical aberration and C22 is astigmatism.

From (2.1-18) it is seen that the y-component of u*is unity to second order in 0 and the x- 

component is zero to second order. The z-component is only zero to first order in 0. To 

calculate the far field, however, the z-component gets multiplied (2.1-4) by sin©, which

13
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is small in the area o f interest for narrow beam radiometers. Thus, while the z- com

ponent is generally larger than the x-component in it ’s contribution to the far field is 

actually smaller. This discussion w ill be used later to justify ignoring the z-component in 

the calculation of C*nm.

14
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Figure 2.1-1. Coordinate system.

Distorted surface

Parabolic surfaci

6z = BC VF = ABD

Figure 2.1-2 Relation between 8z and 'F.
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2.2-Control Considerations

The purpose o f the control system w ill be to distort the surface in such a way as to im

prove radiometer performance; that is, to reshape the far zone fie ld in some desired man

ner. In terms o f the formulation o f section 2.1, this means modifying the amplitudes 

Bnm and Cmn and phases pjwi and ynm due to thermal distortion. Radiometer performance 

requirements can be stated in terms o f beam efficiency, resolution, side lobe level, etc. 

By varying the surface shape and therefore the amplitudes and phases, any o f these quan

tities can be controlled in theory. However, such an approach11 leads to a nonlinear 

programming problem and consequently a nonlinear control problem, neither o f which 

may be practical or necessary for real time control. An alternate approach, to be fo l

lowed here, is to design a linear control system to return the far field as "close" as pos

sible to the undisturbed field with reasonable control resources e.g. number o f actuators 

and power.

In the following SBtm, SChm, 8*P, etc. are considered to be the result o f both control and 

thermal distortions.

One measure o f "close" might be Nnm ( fflnm-SBnm + 8Cnm-8C^m), where
njn

1+5m
Nnm = j - . This objective function is proportional to the mean square values of 

8F*and 8U^since by applying Parseval’s theorem to (2.1-11) and (2.1-12) yields

JjSF*- 8V*dS = ̂  ^JMnm SBnm • 8Enm and JJs tf-8 tfd S  = |  JjNnm SCfc* ■ SCU.
5 njm S njn

16
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For the level o f distortion acceptable for radiometers, I kS¥ I < — or I8 ¥ I <V4. So that

2sin2̂ ^ -  < I sinAS'F I and consequently 8V*dS < JJsP^ ■ 8Ŵ dS.£
s s

Thus ^ N n m  §Enm  ■ 8E tim  < X ^n m  SCnm • SC*nm, and controlling the latter sum assures 
n jn  n jn

control o f the former sum. To complete the process o f linearizing the problem, it is as

sumed that kSV is sufficiently small that the small angle approximation is valid. The 

SCnm  are now linearly related to reflector displacements and the cost function is therefore 

quadratic in the displacements. The problem has now been put into a traditional control 

problem format; but, still no consideration has been given to the fact that the antenna dis

tortions and therefore the Cnm are time dependent

It may be very expensive, from a control system viewpoint, to control performance at all 

times as the radiometer orbits the Earth. In particular, during a short interval around 

entry into and exit from the Earth shadow there can be relatively rapid and large changes 

in the temperature of radiometer components. One method to reduce the over influence 

of such phenomena in the design o f the control system is to utilize an average perfor

mance o f some type. One candidate cost function is

P

Nnm 8Cnm‘8Cnm dt,

0 n jn

where P is the orbital period.

Both o f these objective functions w ill be discussed later and w ill be refered to as the Zer- 

nike-Bessel cost or Jj and the Zemike-Bessel average cost or J2 where

17
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Jl — y .  N nm S&nm'Srfim — ^  dS
njn S

(2.2-1)

and

P P (2.2-2)
J2 = p J J l( t )  d t = — J y. Nnm SCnm-SCnm dt.

0 Qnjn

Recall that when © = 0 for the undistorted antenna the field is given by H%0,0) = jtC Soo.

J \ J lPossible goals for the control system might be to control and/or jp  to be less

than 20 dB, since this would imply that the terms in equation 2.1-13 representing the an

tenna distortion are contributing no more than 1% o f the power at the center o f the beam. 

I f  faax and fain are the times when Ji attains its maximum and minimum values during 

the orbit, then clearly Ji(fain) < J i^  /l(faax). Two approaches to account for the tem

poral variation come to mind and are discussed below.

First Approach:

The first approach emphasizes Ji and calculates the temporal variations o f each o f the 

coefficients Z?nm, determines the maximum amplitude over an orbital period, and 

evaluates i f  each coefficient at its maximum value is a major contributor to the far field. 

This process results in the set o f coefficients that must be controlled, and the control sys

tem would be designed to coniTol this set o f coefficients. In a flexible body dynamics 

problem, this is equivalent to determining the modes that must be controlled. The disad

vantage o f the direct approach is that the fu ll set o f coefficients must be evaluated at a suf

ficiently large number o f orbital positions that the maximum of each coefficient can be 

determined. The far zone field can be calculated from equation 2.1-13

18
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E>=2jtc £  (1+8o )(_ !)"2mx
Yn m

{̂ wnCOS/w(0—Own)—BnffiCOS/M(0-Pnffi)—y£̂ ffiC0S/7z(O—

where y=  fazsin© and the coefficients are determined by integrals over the aperture from 

equations (2.1-15 to -17), and in particular:

2n 1

CW o = 3̂ -  J J wfa, (p. 0 W -c ) ^ m(p X dx dtp,
^ 0  0

where the linearized version (2.1-12) o f W îs used, i.e. Pt̂ (x, cp, t) = uN g  k 'F(r) cos% 

which is r.ow considered to be a function o f time, t. The only term in that is time de

pendent is 'F, that is, the phase error in the aperture plane. The temporal variation Cnm(t) 

can be determined from the integral. For each coefficient there w ill be a time when the 

coefficient reaches its maximum absolute value, say tnm-

Since, for n > 0, Jn+i(Y) £1, the maximum relative power that any term can contribute

is rfunitnm) terms t0 control can be based on a specified dB level of
^OO'̂ OO

say -20 or -30 dB.

An alternate version o f an approach that emphasizes the Zemike- Bessel cost Ji is to start 

with equation 2. 2-1: Ji = — J j8 tf • 5WdS. Under the assumption o f small phase errors,
S

this approach is similiar to minimizing RMS surface distortion except that it would 

generalize the RMS approach to include polarization and feed taper with only a modest

19
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increase in computational cost. But, like previous results9, there is still the difficulty of 

handling the temporal effect.

Second Approach:

The second approach, which emphasizes the Zemike-Bessel average cost from equation 

2.2-2, w ill be the major focus of this work because the temporal variations can be readily 

included in the development o f optimal actuator locations and control laws. A principal 

component approach is used to decompose the linearized version o f into spatial and 

temporal components. Principal component analysis has a long history, spanning almost

a century, and has been applied to a number o f diverse fields including geometry17, statis-
18 19 20tics , matrix theory , and meteorology. It has been extensively applied in geophysi-

21 22 cal data analysis and has recently been applied to control theory. The salient feature

o f principal component analysis, as used in the latter two applications, is the ability to

decompose a time dependent spatial vector field into components that are both spatially

and temporally orthogonal.

For a sufficiently large number o f points (x;, <p/), i  = 1,..., N  suitably distributed over the 

aperture plane 0 < x < 1,0 < tp < 2tt, the quadrature for C*nm (2.1-17) can be ap

proximated by

N  (2.2-3)
C W /) e> ̂ " (0 = X  (x,\ (pi, t) RnmiXi) AS,

i=l

where AS = x/ dXi = Mvis independent o f i. With such a set of points, form the N by 3 

matrix

20
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G(t) =

Wx(%i, cpi, t), W yfai, <pi, t), W fc u  cpi,t) 
WjcCt2, (f>2, t), Wy(x2,<p2,t), Wz(T2,(p2,t)

(2.2-4)

<{W> 0, W y (X N , CpN, t), W2(W, qW, t)

where W* is the x component o f rf, etc.

The following development o f the principal components and their properties is special-
22ized to the problem at hand, but follows the development o f Moore. Form the Gram- 

mian matrix:

1 fP T (2.2-5)
H  = j \ Q G(t)GT(t)dt,

where P is the orbital period. H  is a symmetric, positive semi-definite matrix with non

negative "principal eigenvalues" d  ^  d . . .  > o&> 0 and real, orthogonal, unit "prin

cipal eigenvectors" e l , e2, • -, eft-

N (2.2-6)
G can be expanded in terms o f the eigenvectors as G = £  ei gf(t)

i=\

where

gi(t) = G (t) ei (2-2-7)

is a 3 by 1 matrix o f the projection o f the three columns of G onto the eigenvectors and ei 

is the N by 1 matrix form o f the eigenvector ef. The gi(t) are called the "principal com

ponent amplitudes." In what follows interchanging between vector and matrix notation 

w ill take place without further comment. Equation 2.2-6 is therefore an expansion o f G

in a set o f time dependent, spatially orthogonal "principal components" ei gf(t).

21
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I f  the above expansion for G is substituted into equation 2.2-5 one obtains

o
X X * » W ) < 7
MJ-1 i=l J=  1 0

Premultiply by ep and postmultiply by eq and use the orthogonality o f the eigenvectors to 

get

p JSp(0 $q (f)d t — e p H e q  — ep O qeq — GqCp eq — Gq 8$.
(2.2-8)

The principal component amplitude vectors gi(t) are therefore orthogonal in time.

It is convenient to collect the eigenvectors as columns in an N by N matrix E  and the 

component amplitudes as rows in a N by 3 matrix Ge so that

G = E G e. (2.2-9)

For later reference note that

N

\\G\\2 = \\Ge\\2 = ^ j [ g i
i= 1

(2.2- 10)

To obtain an approximate relation between the eigenvalues, the coefficients Cnm and the 

objective functions without control start with

N  2k I

IIGII2 = trace GGr  = ^  <p,\ r)# (x /, (pi, t) = — J J V?(x, tp, <p, t) x dx rfcp.
i=\ “  00

22
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But from above, J -$ X  d% d(p = ~  ̂ J^nm Cnm • Cnm = ̂  1. Thus, Ji » ^IIGII2'
njn

N P P

Also, £ o ?  = trace ^  J trace GGT dt ~  ^  J ̂ / f nm C*nm(t) • ZXm{t) dt = y  J%
0 Onjn

So the two Zemike-Bessel costs have been related to the G matrix and the eigenvalues of 

the Grammian:

N (2.2- 11)

and

N  P (2.2- 12)

i=l 0

One o f the rationales for using the principal component decomposition is the expectation 

that the eigenvalues decrease rapidly so that the cost J2 is dominated by a small number 

o f the largest eigenvalues. In this case, the control system design would be reduced to 

controlling only the far field distortion due to the eigenfunctions corresponding to the 

reduced set

To develop a criteria for selecting the significant eigenvalues consider the first term in 

the Zemike-Bessel expansion Aoo (2.1-14) which determines the far field at the center of 

the beam for an undistorted antenna:
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«  1 then the distortions o f the far field averaged over an orbital period w ill be

negligible Thus, it is only necessary to consider those eigen

values that contribute some preset lim it, say -30 dB, in the control system design. The in

fluence o f the omitted principle components must, o f course, be evaluated after the 

system is designed.

2.3-Actuator Control Laws and Locations

In section 2.2, methods were discussed for selecting the coefficients T?nm{t) or the prin

cipal components eigf to be controlled. The emphasis here w ill be on the latter set, i.e. 

the principal components o f the thermal distortion field. Given this set, the next question 

is how many actuators should be used, where should they be located, and how should

they be controlled? In what follows the objective function w ill be II8GII , where 5G is the 

difference between the G matrices due to thermal and control distortions.

Open Loop Control With Actuators Fixed

First consider the design o f an open loop control when the actuator locations are known. 

Assume there are M  actuators at preselected sites. For the a-th actuator a = l a  unit 

stroke w ill produce a reflector surface displacemant field which can be converted to a 

phase function vPa(T, <p) and then to a <p) field. As was done above for the thermal 

distortion field, the control field can be discretized to form a N by 3 matrix for each of 

the M actuators

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24



Ga =

Wcbfrl. (pi), Wa>(xi, (pi), Waz(x i,9 i) 
Wax(%2, ((>2), Way(X2,(p2), WWT2, <P?.)

(2.3-1)

<pw), Wa^W, qw), Wa2(W, qw) 

where Wax is the x component o f etc.

Each of these matrices is decomposed into components along the principal eigenvectors 

to get

N (2.3-2)
Go. = eifcu = E Fem

j= 1

where/a,- = Ga ei is 3 by 1 and Fea = ET Ga is N by 3, a  = 1...M.

Let 5a represent the the stroke o f the a-th actuator. As stated above, the goal is to select 

a set o f sa so that the difference, 6G, between the surface thermal distortion and the ac

tuator induced distortions has minimum norm, that is, minimize

M

116011 = | G -  Ga
ct=l

(2.3-3)

Minimizing II5GII , which w ill minimize the cost Ji (2.2-11), is thus a classical least 

square problem o f finding the M values of 5a that minimize the sum o f squares o f the ele-

dl)5Gllments in the 8G matrix. Setting —r ----- = 0 for each a = leads to the system of
05a

equations

25
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(G i.*G i), (G2-*Gi ), • • (Gm .*G i ) si (G.*Gi)
(Gi .*G2), (G2.*G2), • • (Gm .*G2) 52

=
(G.*G2)

_(G\.*Gm ), (G2.*Gm), • • (Gm -*Gm ) SM (G.*Gm )_

(2.3-4)

where (A.*B) is a short hand notation for the sum o f the element by element products of 

A  and B, e.g. IIAII2 = (A.*A).

Since the coefficient matrix is a function o f only the actuator locations and can be pre-in- 

verted, this set o f equations would be convenient for real time control. The right hand 

side vector can be calculated from either M stored Ga matrices or can be written as a N 

by N matrix times the phase error 'P at the N points. The solution gives s from which the

minimum cost at each time J1 = t : IIS&I2 can be determined.
N

However, in order to relate the solution directly to the cost, it is convient to also solve the 

equations in principal component form. From 2.2-9 and 2.3-2 write

M M

5G = E G e- J Jsa EFe<t = E  [G« -  £ s a Fea]
a=l a=l

For any matrix Y, \\Y\f = tr YYT -  tr YTY, so that

M T m

II8GII2 = tr [iE{Ge - 1 >« F Ca}] [ e {G6 -  $ > a ̂ « } ]
a=l a=l

Since E E = I,

26
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M  T M  M  2

HSGII2 = tr [G e -  5 > a Fea]  [ c e -  5 > a F ,J  = 11Ge -  £ s a F e„| | '
a=l ot=l a=l

From the form of this equation, it is seen that the solution w ill give the s<x as linear com

binations o f the components of Ge, which are the time dependent amplitudes o f the prin

cipal components. Consequently, the open loop optimal control for each actuator w ill be 

a linear combination o f the principal component amplitudes. Clearly minimizing Ji at 

each time w ill minimize J2.

To put the above expressions into a standard least square format, form the 3N vector y, 

the 3N by M matrix F  and the M vector s :

SI h i ,  / 21, • • fM i •n
82 h i ,  h i ,  • • fM i S2
• F = ................. s = ■

8N h N ,h s ,  ■ I m n SM

(2.3-5)

In this notation, II8GII = 11 y - F  s II, with the least square solution s given by

= f ]  FTy. (2.3-6)

The minimum norm is II8&I2 = II y -  F  s II2 = yT [ I  -  F(FT F) 1F T] y.

Let P = I - F ( F TF)~l F T (2.3-7)

P is the idempotent projection associated with the least square estimator, so

(2.3-8)

27
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In the case of a linearily polarized aperture pattern, both G and Ga are vectors and an ex

plicit relation between the minimum norm and the eigenvalues can be obtained, since

N  N

when y(i) = gi then II8&I2 = X  X  S' p (iJ) 8j-
i=l j =1

p
Form the integral over the period and recall (2.2-8), j  g iT g j dt -  o f , so that

0

P  N  N  P  N  (2.3-9)
J2 = ̂  Jll5&ll2dr = X  X  \g i  PVJ) gj d t = Y < 3  p m .

o i'=l j=  1 0 r=l

Open Loop Control &  Actuators Free To Move:

The optimal location o f sensors and/or actuators is a fundamental problem in control, sys-
•yi

tem identification and state estimation. A survey o f current methods demonstrates that 

no general solution to the problem exists and existing approximate techniques have 

various inadequacies. The problem o f locating sensors or actuators usually influences the 

cost or objective function through the inverse o f a matrix. When the locations are dis

crete, changing a location means changing a row and/or column o f the matrix and then 

reinverting. Thus in addition to the exponential explosion in combinations with the num

ber o f possible sites, testing a new site requires a large matrix inverse. There are no 

general methods for obtaining the new inverse without actually performing the complete 

numerical inverse. Specifically, for the problem at hand, changing an actuator location 

changes the F  matrix (2.3-5), which influences the cost through the P matrix, which re-

quires inverting F F. Approximate solutions w ill be discussed below.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I f  there are K  possible sites for M identical actuators, there are ■ Kl ■ distinct con-(K-M)l Ml

figurations o f actuators. To select among all these configurations requires the definition 

o f optimal. Two obvious candidates are to minimize J2 or to minimize the maximum 

value over time o f Ji. In the general case, both o f these candidates have the problem dis

cussed above.

To minimize J2, first perform the one time quadrature Y(ij) = j ;  J y(i) y(J) dt as suggested
0

by equation 2.3-8. I f  the eigenvalues decrease rapidly, then iy ( ij) l should also decrease 

rapidly with i  and j  since by Cauchy’s inequality:

r  r- r  -j r r  _ _ r  _ _ r
j;$ yW yV )d t < ~ \ y 2(i)d t ^ \ y 2{J)dt < ± f \ gki\2 dt j j \ g k f d tP

L 0

where the second inequality holds because y(i) is one o f the three components o f gki-

The Zemike-Bessel average cost can thus be written as

3 N 3 N P  3 N 3 N

J2 = X  y(f>d t= - |X  X  yov) p u s -
(2.3-10)

1=1j= 10 i = l j = l

N

For the linearly polarized case J2 =
(2.3-11)

i=l

In either case, the remaining problem is a discrete optimization problem with no known

K\
algorithm to obtain the optimum except exhaustive search. In this case,

(K—M)\ Ml

projection matrices P must be calculated, each o f which involves the inverse of a M by M

29
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matrix. Generally it is also desirable to determine the minimum number o f actuators that 

w ill satisfy some antenna performance criteria, so the optimal must be determined for a 

number of values o f M as well.

fyi
Though there are numerous theoretical papers on optimal sensor and actuator location, 

there are in fact few methods. Many o f the methods10 are substitution approaches 

wherein the least effective occupied location and the most effective unoccupied location 

are identified and interchanged until there is no improvement in the objective. There are 

also approaches24 where all locations are initialized as occupied (unoccupied) and then 

the least (most) effective location is removed (occupied).

3JV 3 N
2 x * _

For the objective J2 = —^  ^  Y (ij) P (ij) it is possible to develop a method that optimal- 
i= \j=  1

ly  adds an additional actuator. Let P and F  correspond to some actuator configuration 

and P+ and F+ be the same configuration with one additional actuator. The task is to find 

an expression for P+ that does not require a new matrix inverse. The required expression 

can be developed from the well known relation for partitioned symmetric matrices:

A-1+ A~1B(C-BTA~1B)~lBTA~1, -A~l B(C-Br A~l B)~l 
-{C -B TA~lB)~XBTA~l , (1C-BTA~l B )~1

Write F+ = I F, f  I , where/is the additional column to be appended to F  for the addi-

 I
tional actuator. Before applying the expression above to (F+F+) note that the term cor

responding to C-BTA~XB is a scalar and can be written as/Tp/, thus

-1
A B

b t C

30
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(F+F+)~l = F TF, f TF  
F Tf ,  f Tf

-1 {FTF)- 1 + (FTF )- lF Tf f TF(FTF )-1 
f TP f  

- f TF(FTF)~1

~(FTF)~lF Tf

f P f

f Tp f

f TP f

Direct substitution leads to

f P f

(2.3-12)

It is seen that after the 3N vector F f  is formed, calculating P+ from P only requires 1 vec

tor outer product and 1 vector inner product. Even fewer calculations are required for a 

linearily polarized antenna where only the trace o f P+ is required.

Given any configuration of actuators, the above equations provide the basis for identify

ing the most effective actuator for augmentation o f the configuration. For large struc

tures there may be a large variety of sites and it would therefore be convenient to restrict 

the total set to a smaller subset of the "most effective" sites prior to beginning the above

N

search technique. Recall that for the linearily polarized case h  = c? P(i,i). Suppose
i=i

that the sensitivity matrix for each of the actuators G a, a vector for this case, is a linear 

combination o f only the eigenvectors corresponding to the L  largest eigenvalues. Then 

fa i = 0 for i = L + l, L+2....N, and so Fea has the form

Fe  « =
Fl
0 , where Fl  is an L by L  matrix which is assumed to have an inverse so that 

the sa have a solution. In this case,P - I - f l (Fl  t Fl Y 1f l  t , o 0 0

o o 0 I
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N

So that, J2 = o? . The L  largest eigenvalues are therefore excluded from the cost,
t=L+l

22and it can be shown that this is the absolute minimum cost for any L  actuators. The 

result does not extend easily to the general polarization case, but does suggest that a 

criteria for ordering potential actuator sites is the "effectiveness" ratio

L (2.3-13)

D U ,
t=l   IIFctf.ll2

IIGall2 IIGall2 ’

Twhere F a i = Ga El  and El  is the N by L  matrix of the first L  eigenvalues. Also,

N

X & f o ,  =  IIFeJI2 =  IIGall2 has been used in the denominator. The effectiveness is a rela-
i=l

tive measure o f the extent to which the a-th sensitivity matrix can be represented as a 

linear combination o f the first L eigenvectors. I f  ea = 1 then the columns o f Ga are vec

tors in the hyperplane determined by the first L  eigenvectors, and the first L principal 

components can be controlled without "exciting" the remaining principal components.

On the other hand, i f  6a = 0 then the columns o f Ga are orthogonal to the hyperplane. In 

the latter case locating actuators at such sites can contribute nothing to reducing the con

tribution o f the first L eigenvalues to J2.

Even though ea provides a means o f ordering the possible actuator location sites, care 

must be exercised in the use of such an ordering. I f  two sites could produce the same Ga 

they would have the same 8a but including both in the potential site list is clearly redun

dant. The goal is to pick actuator sites that are effective as measured by 8a and mutually
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orthogonal. One measure of orthogonality, to be used later, is the rod "correlation factor" 

for two actuator sites a  and p

L (2.3-14)

I / U .
=  t=l_______

^  "  IIFaJI IIF p J f

2,4-Processing Sensor Data

In section 2.3 an open loop control law was developed that minimized the norm of 

M
8G = G - £ s aG a and a method was presented for obtaining the optimal set o f actuator

ot=l

locations which define the matrices Ga. I f  perfect models existed for predicting the an

tenna distortion then an open loop system would be adequate for controlling the far field. 

However, there are many potential sources o f uncertainties in these models. To account 

for such errors a closed loop system, which relies on measurements to determine devia

tions from the nominal state, w ill be required normally.

It is assumed that the fundamental measurements are measurements o f displacements of 

the reflecting surface in the z direction. Such measurements can be provided by reflecting 

laser beams o ff o f comer cubes attached to the surface. The question then becomes how 

many reflectors (sensors) are required, where to place them on the surface and how to 

feed back these data to control the distortion?

First, convert these measurements to equivalent aperture plane phase shift using equation

2.1-8. It is assumed that the possible sensor sites are on the reflector surface and, without 

loss o f generality, are some subset o f the N surface locations used to discretize the per

turbed electric field integral (2.2-3). Sensors could be placed at other points; but, then a
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transformation would be required to convert the measurement to an aperture plane phase 

sh ift However, with such a transformation the methods discussed herein are directly ap

plicable.

In the ideal situation the phase shift would be measured at all points in the aperture plane; 

unfortunately, this would take an excessive number o f sensors. On the other hand with a 

few sensors large errors can result during extrapolation to the global shape. The heart o f 

the optimal sensor location problem is selecting the minimum number and locations so 

that the extrapolation error is acceptable. The use o f cubic splines has received much at

tention for this purpose; but, for the problem at hand, the principal component eigenvec

tors provide a natural basis for extrapolation. The sensor information w ill consequently 

be used to directly estimate the principle component amplitudes as defined by equation

2.2-7. The approach taken here w ill thus be to select sensor locations that provided the 

best estimate o f the principal component amplitudes. As a result o f this approach the ab

solute minimum number o f sensors w ill be found below and the minimum number re

quired to meet peformance requirements w ill be found in the usual parametric search 

manner. Once the principal component amplitudes have been estimated, an estimate 6  of 

G can be made using equation 2.2-6. Then the actuator strokes 5a w ill be selected, using

M

equation 2.3-4, to minimize the norm o f 8G = t l -  ^SaGct, where A is an estimate o f G
a=l

obtained from the sensors.

Before formulating an estimator for G, note that the three columns of G are not inde

pendent, since they are just the three components o f flw h ic h  are related by the three 

components o f u* through equation 2.1-12. Thus i f  one component is known the other 

two can be calculated. Conversely, there is only a need to estimate the amplitude cor

responding to one column o f the G matrix. For example, i f  the y-component is selected,
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equation 2.2-9, G = E Ge, reduces to \&y= E gy. Since the chosen component is ar

bitrary, the y subscript w ill be dropped in the following. The observation equation is 

therefore

r f = E f .  (2.4-1)

I f  one had measurements o f aperture phase 'F at all N points the fu ll would be known 

and the fu ll magnitude vector gkould be calculated. In practice, sensors are not placed at 

all N points. Further, estimating all components o f the amplitude vector is not required 

since some components w ill not contribute to errors in the far field.

Let S be the number o f sensors on the surface. Convert the measurement at each sensor 

into aperture plane phase and then into form, as assumed above. With these S meas

urements form the S vector, W ith only S measurements it w ill not be possible to es

timate all N components o f g tso select P < S o f the columns o f E  to form the N by P 

matrix Ep. From this matrix select the rows corresponding to the sensor locations to 

form the S by P sub-matrix ESp. The relation between the measurements V?s and the un

known amplitudes gp becomes the observation equation

tfs = Espgp (2.4-2)

The magnitudes of the "significant" principal components, that is, the components that 

have principal eigenvalues that are sufficiently large to contribute to unacceptable far 

field errors, must be estimated. Assuming that it is possible to identify significant com

ponents, the minimum number o f sensors is therefore equal to the number o f significant 

principal components. Recognizing that there are measurement errors in equation 

2.4-2 becomes a classical estimation problem with well known solution
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where T is the covariance on the measurement vector which is readily calculated 

from the covariance on the fundamental measurements o f surface displacement. It is 

especially important to include this term for highly tapered feeds.

Once an estimate gp is obtained, the estimate o f the entire column W of G is obtained 

from

f r  = Epgp. (2.4-4)

and the other two columns of G can be calculated as mentioned above to give the final es

timate 6 , which w ill be used in equation 2.3-4 to obtain the optimal actuator strokes.

The remaining problem is how many sensors to place on the surface and where to place

them. Like the optimal actuator location problem this is a discrete optimization problem
23and there are a number o f discrete optimization approaches for solving the problem as 

formulated above.
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Chapter 3-Validation Studies

In this chapter the theory developed in Chapter 2 w ill be tested using a typical large 

space radiometer model. Since there are no experimental results against which the theory 

can be tested, a number o f simulations have been generated to define lim its o f ap

plicability and areas for future improvements.

3.1-Selection of Validation Model

Radiometer and Orbit Parameters

The 55-meter tetrahedral truss (figure 3.1-1) studied by Haftka9 and by Padula11 was

selected as the antenna against which to test the theory developed in Chapter 2 and to

validate some of the concepts. Appendix B shows the antenna geometry and illustrates
25grid and rod locations. The original design was based on a material with a Young’s

modulus o f 2.6x10*1 N/m2 (37xl06 psi) and a clamped-clamped rod buckling load o f 

4000-N (900-lbs). This leads to the 8-m long tubes on the front and back faces of the an

tenna having a diameter o f 4-cm and wall thickness o f 0.1-cm. A more conservative 

modulus, currently used for designing operational spacecraft like Space Station Freedom,

o f l.lx lO 11 (16x10^ psi) w ill be used for this study. For an actively controlled structure, 

the members must be able to support the stresses produced by the actuators. Based on 

nominal values of structural and thermal properties, structrual deformations are expected 

to be in the millimeter range. So one might expect actuator strokes in the same range. 

The equivalent compressive force for a constrained rod would be about 2000 N, which
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cannot be met with the reduced modulus. Consequently, the diameter o f all the rods was 

increased to 5 cm and the thickness maintained at 0.1 cm. thereby providing a 75% buck

ling safety margin for 1 mm strokes.

The orbit geometry studied is a geosynchronous orbit (GEO). The 55-meter antenna can 

not meet all the science requirements specified in Table 3 o f reference 3, but would pro

vide adequate resolution for sensing atmospheric water vapor, rain and clouds, which re

quire frequencies between 15 and 31 GHz. Sensing soil moisture, sea surface 

temperature, and salinity requires lower frequencies and higher resolution, both o f which 

mean a larger radiometer. The 55-meter antenna w ill, nevertheless, genetically exhibit 

all the thermal, structural, RF, and control characteristics o f a larger antenna. The z-axis 

o f the antenna (figure 2.1-1) points directly away from the center o f the earth with the y- 

axis normal to the orbit plane in the same direction as the orbital angular momemtum vec

tor.

Thermal Effects During the Orbit

The temperature at any point on the antenna is determined by conduction and radiation 

among the components o f the antenna and from the radiant energy received from the 

Earth and the Sun. Deviations in temperature from the design temperature lead to thermal
9distortions which can be determined by thermal analysis and/or by thermal/vacuum test

ing. For the purposes o f calculating these distortions, it is assumed that a knitted mesh is

supported on the truss structure to reflect radio frequency waves. Knitted meshes are 
• • 97isotropic membranes that conform to a minimal surface so the surface shape is solely a 

function o f the boundary shape. Attachment o f the mesh at only the node points, which

are 8 meters apart, would lead to unacceptable deviations from the desired parabolic
28shape. Thus, a system o f tie downs w ill be required to constrain the mesh. The tie 

downs may also undergo thermal distortions; however, the result o f such distortions w ill
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depend on the details of the tie down geometry. For this study, it is assumed that the tri

angle o f mesh between structural nodes behaves like a rigid surface and that this surface 

translates with the nodal displacements at the three comers. The displacement o f any 

point on the mesh is thus a linear combination of the displacements of the three truss 

nodes surrounding the point.

Thermal analyses of space trusses o f this type show that conduction and intra-antenna 

radiation are o f secondary importance when compared to direct solar and terrestial radia

tive heating and radiative cooling to deep space. Consequently, for the purposes here it 

w ill be assumed that each rod in the antenna structure is isothermal and the radiative 

input only depends on its orientation with respect to the Earth and Sun. The solar flux qs

is taken to be 1380 W/m2 and is modeled as a point source at infinity. The emitted radia-

W  9 29tion from the top o f the earth atmosphere qe is 241 /m . The temperature o f each rod 

in the antenna is then calculated from the usual energy balance equation

me ̂ + a e A  T 4 = Id [ (Xjsinp(r) qs + aeAe(t) qe] (31_1)

where m is the mass of the rod, 1 is the length, d is the outer diameter, c is the specific 

heat, as and a* are the absorbtivities for short and long wave respectively, a is the Stefan-

Boltzmann constant (5.67xl0-8 w/m) and e is the rod emissivity. The angle between the 

axis o f the rod and the direction to the sun is P, which w ill be a function of time. Ae is a 

measurs o f -he earth fiux intercepted by the rod. Assuming that this flux is diffuse and 

isotropic at the top of the atmosphere, then at any altitude above the Earth the flux pass-
on

ing through an element o f area is given by Cunningham.

To provide an easy check o f the numerically integrated results, values for the parameters
01

above were selected to be similar to those o f Mahaney. Specifically, rod density was
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1550 ^/m, cte = as = 0.9, e = 0.8 and c=1050 J/kg K. The absorbtivity and emissivity cor

respond to uncoated graphite epoxy tube. Coating is not required in geosynchronous 

orbit because there is no atomic oxygen to degrade the composite. The numerical integra

tion used a fourth-order, constant step size Runge-Kutta scheme. To eliminate transients, 

integration o f equation 3.1-1 was performed around a complete orbit prior to using the 

numerical results. Figure 3.1-2 shows the temperature variation around the orbit for 

three selected rods in the antenna. By connecting grid points 23 and 31, rod 64 ( see Ap

pendix B) lies in the orbit plane and shows the largest solar effect Rod 84, which con

nects 30 and 31, is nearly at right angles to the orbit plane and shows a minimal solar 

effect. Rod 235 connects grid 31 to the back structure and shows an intermediate effect.

The temperature deviations from the reference temperature 300° K for all 420 rods are 

calculated throughout the orbit and the displacements o f structural grid points are deter

mined by using a sensitivity matrix calculated using NASTRAN. The sensitivity matrix 

provides the change in the z- location of the 61 reflecting surface grid points for a unit in

crease in length o f each of the 420 rods. There are changes in the other two directions at 

each node; however, these have a small effect on the phase of the radio wave for shallow 

antennas, but could be included without difficulty i f  required. The sensitivity matrix w ill 

also be used for optimally locating actuators since the actuators w ill be assumed to pro

vide a change in length o f the rod to which it is attached. The displacements 8z in the z- 

direction can be converted to phase changes using equation 2.1-8, 'F ~ (1+cosG) 8z.

Radio Frequency Characteristics

The 55-meter antenna has an f-number of 1.5 and a focal length o f 82.5 meters. An 

operating frequency o f 30 GHz is assumed giving a wave length o f 1 cm. It is also as

sumed that the feed is y- polarized so that i t  has the form given by 2.1-18, i.e.
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—» -cos% { sincp cos(p (1 - cosQ) ex- (sin2<p cos8 + cos2(p)ey} -  sing)cos8 sin% et
V 1 -  sin <p sin^0

High resolution radiometers w ill also have a highly tapered feed to increase beam ef

ficiency. High beam efficiency implies suppressing the side lobes well below the diffrac

tion limited value o f -17 dB. A -30 dB level is used for the validation antenna as both a

nominal design value and the goal for the control system to maintain. A cosine power
3 2law, as defined by Balanis (page 624) is assumed for the taper:

G(0) = 2(n+l) cos”0, 0 < 0 5s ~  and G(0) = 0 otherwise.

A taper o f 15 dB at the edge o f the antenna, w ill provide a side lobe level o f -30 dB, and 

this requires n = 62.

Thus G(0,(p) = 126 cos620. (3-1-2)

Figure 3.1-3 shows four sections through the far field pattern for a parabolic surface. The 

angles © and 4> are the far field point angle shown in figure 2.1-1. The d> = 0 and 60 cur

ves coincide and the O = 30 and 90 coincide. This is due to the selection o f points on the 

surface to perform the integration, which results in the geometry being invariant under a 

60 degree rotation. The difference between these two sets is due to the geometry not 

being invariant under an arbitary rotation. The difference could be reduced by selecting a 

smaller spacing for the numerical integration, but the 1 to 2 dB difference in the side 

lobes was considered accurate enough for this study.

The first term in the Zemike-Bessel expansion, Aoo determines the far field at the center 

o f the beam for an undistorted antenna. From 2.1-15,
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2jc 1
2oo = ̂ j  JC A t,9 ) * dxdq>.

0 0

With these functions for u*(2.1-18) and G (3.1-2), the x and z components vanish and the 

y component becomes

V l 26 f f cos20/^ cos310(sin2<p cos0+cos2cp)— r ~ \  J - - - - - - - - zn— r i ;  : ' 2 Q" — ^ ^ 90 0 v l -sm  (psin 9

Based on a numerical quadrature, Aooy = 5.309 (3.1-3)

Whenever, in subsequent discussions, the cost Ji or J2 (2.2-11 or 12) are given in dB, the 

reference w ill be Aooy.
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Figure 3.1-1. Geometry o f the 55-meter tetrahedral truss.
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Figure 3.1-2. Temperature variations during one orbit for three typical rods.
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Figure 3.1-3. Far field pattern for 55-m parabolic reflector at 30 GHz with 15 dB. taper.
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3.2-Open Loop Control

This section w ill discuss the design and performance o f an open loop control system, that 

is, a system where there is no feedback from sensors that measure the deviation from the 

desired state. Rather, it is assumed that there is perfect knowledge o f the system and its 

enviroment. The next section w ill discuss the closed loop system and its performance.

A geosynchronous radiometer w ill experience a significant variation in the direction of 

solar flux during the 24 hour orbital period; and, for 22 days before and after the equi

noxes, the satellite w ill pass through the shadow of the earth causing a rapid decrease in 

heating. The seasonal variations in solar heating are due to the apparent motion o f the

sun relative to the orbital plane. At the solstices, the sun w ill be either 23.5° north or 

south of the orbital plane. This variation in declination o f the sun causes the periodic 

heating due to the orbital motion to vary through the year. Since the satellite is fixed 

over one geographic area, the only variation in heat flux from the earth w ill be the diur

nal/seasonal variations in emitted and reflected energy; however, the total flux from the

watts 9 2 2earth is less than 6 /m and even 20% to 30% variations are going to be small com

pared to the solar flux variation taking place at the same time.

To design any control system it would be highly desirable to design for a single nominal 

condition and consider variations from that condition as robustness issues. For the 

geosynchronous case the nominal conditions w ill be equinox with the shadow o f the 

earth neglected in calculating the solar heating input The initial configuration has the 

earth and the sun at opposition as seen from the spacecraft. With these assumptions the 

design o f the open loop system followed these main steps:
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1. Mapping Thermal Distortion into RF Parameters

The G(t) matrices (2.2-4) were calculated at 180 equally spaced orbital positions using 

every second surface distortion result from the thermal analysis. During this process the 

value o f J i can be determined (2.2-11) to identify the orbital position where the far field 

w ill be most distorted as measured by Ji. From figure 3.2-1 it is seen that double extrema 

in Ji occur when the sun is illuminating the edge o f the antenna. The maximum Ji is

about +3 dB and occurs at an orbit position o f 114°. The far fie ld pattern corresponding 

to this position is shown in figure 3.2-2, where it can be seen that the thermal distortion 

has an unacceptable influence on the beam width when compared to figure 3.1-3. Note 

that, for 50% o f the orbit, the value of Ji exceeds -20 dB. It w ill be seen later that this is 

about the maximum value of J i that w ill meet the -30 side lobe goal.

2. Principal Component (PCI Analysis

The grammian H  from equation 2.2-5 is approximated by arithmetically averaging the

180 GG matrices. The 20 largest eigenvalues o f H  and corresponding eigenvectors 

were extracted using a sub-space iteration method (Parlett, 1980, pg. 292, implementa

tion #3), which converged to 6 places in the eigenvectors (sic) in less than 10 iterations. 

To confirm that all o f the largest eigenvalues have been captured in the sub space itera

tion, a value o f J2 using 2.2-12 was calculated from the eigenvalues and compared with 

the average value o f Ji from the first step. For the present case, 7 place agreement was 

obtained. The eigenvalue results are shown in figure 3.2-3. Only 4 PC’s contribute more 

than -40 dB. The variation o f the power, gfgi from equation 2.2-7, for these PC’s is 

shown in figure 3.2-4. Each PC is expected to contribute its maximum distortion to the 

far field at the time o f maximum amplitude. Recall that the actuator strokes w ill be linear 

combinations o f the PC amplitude functions gi(t). At the times o f maximum amplitude,
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the far field distribution for each PC was determined and is shown in figure 3.2-5. The 

first three PC’s, with maximum Ji cost between +3 and -15 dB, must clearly be control

led, the fourth, with a maximum Ji o f -19.9 dB, must be included if  the side lobes are to 

kept below -30 dB, but the fifth  and higher PC can be neglected i f  controlling the first 

four does not "excite” the higher PC’s. From these results, a tenative criterion o f -20 dB 

can be selected for the maximum value of Ji that is acceptable. This criterion w ill need 

to be validated with further examples; but, i f  validated would mean that acceptable perfor

mance can be maintained as long as the distortion part o f the far field contributes no 

more than 1% o f the peak power.

3. Optimal Actuator Locations

Initia lly all 420 rods in the structure were considered as potential sites for length chang

ing actuators. The sensitivity matrix generated in NASTRAN, as discussed in section 

3.1, was mapped into 420 Ga matrices using equation 2.3-1. To perform the initia l 

screening using 2.3-13 requires an assumption o f the number, L, o f PC’s to be included 

in determining the effectiveness, E«. Step 2 above suggest that L must be 4 or greater. 

Selecting L  to be 4 would assure the ability to control the nominal structural system and 

orbit geometry; but, may not provide a robust system that can accommodate o ff nominal 

conditions that no doubt w ill "excite" higher PC’s. On the other hand picking L  too large 

assures that higher PC’s w ill be "excited" while controlling only the lower PC’s. Two 

values o f L  (5 and 10) were selected for testing. Figure 3.2-6 shows the variation o f ea 

with rod number when L=5 and table 3.2-1 summarizes the number of effective rods for 

four levels o f ea- The 156 front surface rods generally have higher values (mean = 0.91) 

than the 120 back surface rods (mean = 0.86) and both are clearly more effective than the 

144 rods that connect the front to the back (mean = 0.50). Figure 3.2-7 shows a similiar 

result when L=10. Over three times as many front surface rods have e« > 0.975 than
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back surface rods. The relative ineffectiveness o f the middle rods is due to the very local

ized surface distortions caused by middle rod extension; whereas, front and back rod ex

tensions generally cause distortions with longer spatial wave lengths. The spatial 

wavelength o f the PC generally decrease as the eigenvalue decreases. The front surface 

rods are clearly the most effective and no further consideration was given to back and 

middle rods unless the front rod set proved to be inadequate.

Having identified the effective locations for actuators, the next task is to find the optimal 

locations for some fixed number, M, o f actuators. Given some initial configuration o f ac

tuators, the procedure to attach an actuator to the next most effective rod is given by equa

tions 2.3-10 and 2.3-12. This process was tried for a case with L=10 and the condition 

that Ea > 0.975. The procedure started with the most effective rod, #31 connecting grid 

points 11 and 18 (see Appendix B for the rod connectivity table), then repeatedly added 

the next most effective rod. Before the number o f rods, M, reached 5 it was found that 

this process added rods that had nearly proportional Ga matrices, leading to numerically 

unstable solutions. The eap criteria, given by 2.3-14, was thus used as a second filte r on 

the rods to be consider for actuator sites. Generally, the numerical solutions became un

stable if  two rods a  and P were included in the set and E«p > 0.99. With this criteria the 

procedure showed no tendency toward numerical instability. Thus a two step process 

was used to select candidate rods. Each rod must first pass the 6a test. Then rods were 

compared pairwise to calculate Eap. I f  Eap was too large the least effective o f the two 

rods was dropped from the candidate set

It became clear that only a few actuators were going to be required to control the thermal 

distortions and that the combinatorial explosion associated with the discrete optimization 

problem was not going to be serious. Thus, in an attempt to arrive at a more optimal set 

o f actuators a ’two step forward-one step back’ approach was used. In this approach
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equation 2.3-12 is used to sequentially add two actuator locations, then the actuator that 

has been in the selected set the longest is deleted. Each cycle o f this process only adds 

one actuator. This procedure provided considerable confidence in the final results be

cause it was found that after only a few cycles the deleted location was generally immedi

ately returned to the set.

Ten sets o f optimal locations were generated using two values o f L  (5  &  10) and 5 

values o f M (5,7,9,11 &  15). For both cases e«p < 0.98 was used. For L=5, e > 0.95 and 

for L=10, e > 0.975 were used. The result are summarized in table 3.2-2. Rod 31 is the 

only rod that appears in every set; but, many rods, once added to the set, remain in the op

timal set. Rods 75 and 76 have a £75,76 = 0.998 and appear in 7 sets. They are an ex

ample o f an effective pair that produce nearly proportional Ga matrices. The column 

labeled J2 is the value obtained from equation 2.3-10 summed over the twenty PC’s 

recovered from H  as discussed in step 2. It w ill be seen later that this is not a reliable in

dicator o f the actual value of J2 that w ill result from the open loop control.

Each o f the ten sets o f actuator locations was used in conjunction with equation 2.3-4 to 

determine the optimal stroke variations sa(t) throughout the orbit. The resulting Zemike- 

Bessel costs, calculated from

M 2 

a=l

are tabulated in table 3.2-3. Actuator strokes are shown for the case L  = 5 and M = 5 in 

figure 3.2-8. The strokes are in the one millimeter neighborhood as assumed in section 

3.1 during the discussion on buckling loads. It should be noted that the strokes reported 

here and elsewhere are equivalent unconstrained elongations. That is, the actuator forces 

are those necessary to extend an unconstrained rod the amount shown in figure 3.2-8.
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Actual elongations in the tetrahedral truss w ill be between 60% to 80% of the uncon

strained values. Figure 3.2-9 shows the open loop variation o f Ji throughout the orbit for 

the lim it cases in table 3.2-3. The figure demonstrates the expected trend that increasing 

the number o f actuators reduces the Zemike-Bessel cost. But, another general result is 

also illustrated, namely, that the best performance is achieved with a given number, M, of 

actuators i f  the parameter L  is selected to be about the same as M. The values o f Zemike- 

Bessel average cost, J2, shown in the table are the average Ji over the orbit (2.2-12) and, 

when compared with the corresponding values in table 3.2-3, it is seen that the earlier 

predicted values do not agree well with the actual values. This must be due to the error in

troduced by truncating the cost (2.3-10) to 20 PC’s since that is the only approximation 

in the process.

The largest value o f Ji for any of the case is -18.8 dB for the L  = 5 and M = 5 case. At 

the orbit position corresponding to this Ji the far field pattern was calculated, and is 

shown in figure 3.2-10. The peak power occurs at the desired center and is only 0.17 dB 

below the parabolic case shown in figure 3.1-3. The first side lobe is at -29.2 dB and is 

slighlty above the goal o f -30 dB. It is to be noted from figure 3.2-9 that this violation 

w ill only occur during a small fraction o f the orbit. Further, any o f the other 9 cases from 

table 3.2-3 w ill provide acceptable far field patterns. This is a second case that suggest 

selecting - 20 dB for the maximum value of Zemike-Bessel cost, Ji.

Thus, as few as five actuators can control the far field pattern to acceptable levels for the 

nominal orbit. The next issue is the performance for o ff nominal cases. It should be 

noted from table 3.2-3 that for a -20 dB criterion, there is at most a 6 dB margin to hand

le the o ff nominal conditions with no more than 15 actuators.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



J1. dB.
lO

-20

-30

-40

-SOO 45 90 135 270 315180 225 360

Orbit position, deg.

Figure 3.2-1. Zemike-Bessel cost, Ji, for the nominal case.
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Figure 3.2-2. Far field pattern at maximum Ji. Orbit position = 114°.
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Figure 3.2-4. Power of the four largest principal components.
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Figure 3.2-6. Rod effectiveness, £«, with L=5.
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Figure 3.2-7. Rod effectiveness, ea, with L = 10.
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Figure 3.2-8. Actuator strokes for the nominal case with L = 5 and M = 5.
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Figure 3.2-9. Effect o f L  and M on the nominal case cost.
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Figure 3.2-10. Far field at maximum Ji with open loop control for L  = M = 5.
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L  = 5 L =  10

ea range Front rods Middle rods Back rods Front rods Middle rods Back rods

1.0-0.975 34 6 9 82 16 24

0.975-0.95 31 7 14 32 8 27

0.95-0.925 26 3 21 20 10 14

0.925-0.90 28 6 15 7 4 18

0.90-0.0 37 122 61 15 106 37

Meanea 0.91 0.50 0.86 0.94 0.62 0.93

Table 3.2-1 Number of front, middle and back rods in specific ea ranges.
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Optimal actuator locations, L  = 5, Eomu, = 0.95, eapmax = 0.98

M Rod number for actuator location J2,dB.

5 31,75,118,130,155 -29.8

7 31,44,75,78,118,130,155 -32.3

9 31,34,75,78,118,125,130,139,155 -34.3

11 31,44,46,78,102, 111, 118,125,130,139,155 -37.1

15 31,44,46,47,75,78,100,102, 111, 118,125,129,130, 144,155 -40.2

Optimal actuator locations, L  = 10, Ec^, = 0.975, EojJmax = 0.98

M Rod number for actuator location J2,dB.

5 31,76,100,126,150 -29.8

7 2,31,43,76,100,126,150 -32.9

9 2, 31,43,76,98,100,118,126,150 -36.0

11 2,20,31,43,76,98,118,126, 139,150,154 -38.6

15 2,20,31,43,46,76, 83,98,107,111,118,126,139,150,155 -41.1

Table 3.2-2 Results o f optimal actuator location study.
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L  = 5

M, # actuators Max. stroke, mm. Max. J i, dB. J2,dB.

5 0.90

OOOQ1 -28.4

7 0.80 -20.5 -29.9

9 0.75 -20.7 -30.7

11 0.74 -20.9 -30.9

15 0.73 -21.6 -32.4

L  =10

M, # actuators Max. stroke, mm. Max. Ji, dB. J2, dB.

5 1.2 -19.0 -27.8

7 1.2 -21.2 -29.4

9 0.9 -22.1 -31.1

11 0.8 -24.9 -33.0

15 0.64 -26.2 -34.5

Table 3.2-3 Results of open loop control for nominal case.
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3.3-Robustness of Nominal System

The optimal actuator locations developed in section 3.2 were based on a nominal orbital 

heating condition and assumed perfect knowledge o f the structural and thermal properties 

o f the antenna. The issue o f the effectiveness the open loop system for o ff nominal condi

tions w ill be addressed in this section.

Other Orbit Configurations.

The nominal orbit ignored the shadow o f the earth, which as seen in figure 3.1-2 has a 

dramatic effect on rod temperature. While in the shadow, however, all rods are at about 

the same temperature, so the deviation for a parabolic shape could be small. To quantify 

the effect on the far field pattern the shadow was included in the thermal calculations and 

the G(t) matrices o f equation 2.2-4 were regenerated. The maximum Ji of +3.09 dB was 

the same as the nominal case while the J2 value was 0.6 dB higher. Equation 2.3-4 was 

used to determine the optimal actuator strokes. The resulting open loop variation in Ji is 

shown in figure 3.3-1 for the actuator locations corresponding to the case o f L = 5 and M 

= 5 in table 3.2-2 and can be compared to the nominal case in figure 3.2-9. Before the 

satellite goes into shadow the results are the same as the nominal case and within 15 

minutes after exiting from the shadow the results are essentially the same. During the 

shadow period the value o f Ji peaks 5 dB below the maximum of -18.8 dB, which is, o f 

course, the same as the nominal case. Thus, the transients produced by the shadow o f the 

earth produce no more difficulty than the nominal case.

The nominal case also assumed an equinox position for the sun; that is, the sun is in the

plane o f the orbit. A t solstices the sun is 23.5° north or south o f the orbit plane. Again 

G(t) matrices were regenerated for both solar locations and the open loop control was ap

plied. W ith the sun at maximum northerly (southerly) declination a maximum Ji of
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+5.03 (+4.94) dB. occured during an orbit. These are about 2 dB higher than the nominal 

case and w ill require more actuators to meet the -30 dB maximum side lobe goal. W ith 

less than 11 actuators the Ji value is greater than -20 dB; but, the case with L  = 5 and M 

= 11 is at -19 dB. So detailed RF calculations w ill be required to validate this case. Fig

ure 3.3-2 shows the open loop control value o f Ji for this case (L = 5 and M = 11) and 

figure 3.3-3 gives the far field at the maximum Ji. The first side lobe is at -29.4 dB, thus, 

there w ill only be short periods when the open loop system with 11 actuators can not 

meet the -30 dB side lobe requirement. Fewer actuators give longer violation o f the side 

lobe goal.

System Errors.

Another possible limitation o f the open loop system is the accuracy o f the structural 

model. Individual elements of the structure w ill vary in cross section measurements, in 

elastic modulus, in coefficient o f thermal expansion, emissivity, absorbtivity, etc. In 

order to begin to quantify some o f these effects a number o f simulations were performed. 

In the first simulation the 420 rods in the structure were assumed to have errors in EA 

that are uniformly distributed between ±2%. Such errors are consistent with manufactur

ing tolerances for large graphite epoxy tubes (H. Bush, private communication). These er

rors have two effects on the results. First, the distortions due to thermal effects w ill be 

different than the nominal case, and second, the sensitivity o f the surface changes due to 

actuator forces w ill be different.

In this simulation one random sample was generated for the EA o f the 420 rods. A new 

sensitivity matrix was generated in NASTRAN that was used to calculate the thermal dis

tortion throughout the orbit. The actuator strokes were calculated using the sensitivity 

matrix without errors; but, when these strokes were used to calculate the surface correc

tions, the erronous sensitivity matrix was used.
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The maximum value o f the uncontrolled cost Ji was within 0.1 dB o f the nominal maxi

mum cost, suggesting that manufacturing errors at this level would be acceptable from 

the radiometer performance standpoint Further, the maximum value o f the controlled 

cost was within 0.4 dB o f the nominal maximum controlled cost for L = 5 and M = 5 or

11. Although there is a degradation of controlled performance it is probably not severe 

enough to justify increased quality control for the rods.

The final system errors considered are errors in the thermal properties of the structure, 

namely the coefficient o f thermal expansion, the emissivity and the absorbtivity. These 

parameters directly determine the temperature o f the rods and/or directly influence the 

surface distortion. The error in CTE due to the manufacturing process would be due to 

the same type o f errors that produce variations in EA; thus, a 2% uniform distribution is 

assumed for CTE. Optical properties for coating can vary greatly during the manufactur

ing process and can change with age in orbit. However, the rods for this study are un

coated graphite epoxy and nearly black. Thus only small variations in a  and e are 

expected. Again a uniform distribution of 2% is selected. The maximum uncontrolled 

value o f Ji was 0.1 dB. lower than the nominal case and the uncontrolled value o f J2 was 

0.2 dB higher. After applying the open loop control with five actuators the maximum 

value o f J i was reduced to -18.5 db, similiar to the nominal case; however, the variation 

o f cost throughout the orbit is significantly different as seen in figure 3.3-5. Whereas for 

the nominal case, and the other variation from the nominal presented above, the cost 

decreased significantly away from the peak, this is not true for this case. The reason for 

this behavior is that 2% variations in the emissivity and absorptivity produce variations in

temperature that can be as large as 5° K. This may not seem large; but, for the nominal 

case at an orbit position o f zero, the maximum temperature excursion across the entire an

tenna is only 26° K. These errors thus introduce a random component with a significant 

amplitude which introduces a significant random variation in the aperture phase. These
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random variations produce a background in Ji o f about -24 dB. that cannot be corrected 

by the open loop system. Increasing the number o f actuators to 15 reduces the peak to - 

21.86 dB, but there is still the high background around -25 dB. Figure 3.3-6 gives the far 

field at the maximum cost. As expected, with Ji = -18.5 dB, the side lobes do not meet 

the -30 dB goal and the beam width is broadened noticably. The case with 15 actuators 

provides marginally acceptable far field performance.
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Figure 3.3-1. Open loop cost, Ji, with the earth shadow included.
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Figure 3.3-2. Open loop cost, J i, with the Sun at 23.5° north declination.
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Figure 3.3-3. Open loop far field pattern with the Sun at 23.5° north declination
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Figure 3.3-4. Open loop cost, J i, with 2% random error in EA.
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Figure 3.3-5. Open loop cost with 2% errors in CTE, absorptivity and emissivity.
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Figure 3.3-6. Open loop far field with 2% errors in CTE, absorptivity and emissivity.
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3.4-Closed Loop Control

As discussed in section 2.4, the closed loop system w ill utilize measurements o f surface 

deviations to estimate one column o f the G matrix using equations 2.4-3 and 2.4-4, from 

which the fu ll A matrix can be formed. Then the actuator strokes w ill be calculated from 

equation 2.3-4 with fc replacing G on the right hand side. The first question is where to 

place the sensors. For the validation antenna the illumination o f the surface is nearly in

dependent o f the angle <p because o f the assumed y-polarization and the feed gain func

tion (3.1-2), so it is natural to select sensor locations that are uniformly distributed in (p. 

In addition, because o f the high taper, it is more important to measure the distorted shape 

near the center than at the edges. Based on these arguments, two arrays o f sensors were 

assumed as shown in figure 3.4-1. Thirteen sensors are denoted by circles at the nodes to 

which the sensor is assumed to be attached. In the second case, an additional 6  sensors, 

denoted by the squares, are on the perimeter to give a total o f nineteen. These two cases 

w ill be denoted by S=13 and S=19 respectively. The second question is how many prin

cipal component amplitudes to estimate using equation 2.4-3. Two values were selected 

for this study, P=5 and P=10.

A ll o f the simulations reported in section 3.3 on open loop robustness were performed as 

closed loop simulations. For the nominal case, the case with 2% variation in EA and for 

the case with the earth shadow, the values o f Ji were within less than 1 dB o f the open 

loop results for any of the combinations o f P and S above. Thus for these cases, estimat

ing only five principal component magnitudes from as few as thirteen sensors yields es

sentially the same performance as assuming perfect knowledge o f the system. For the 

case o f the Sun at maximum declination; however, estimating five components was not 

adequate. This can be seen by comparing the open loop case with the closed loop case 

shown in figures 3.3-2 and 3.4-2 respectively. Both case have 11 actuators located at the
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positions in the top o f table 3.2-2. Estimating only five components (P=5) results in a 

value o f J i o f -14.1 dB, which would not meet the goal. It should be noted however that 

the -20 dB lim it is exceeded for only a small part o f the orbit. Increasing the number of 

estimated components to 10 provides what appears to be acceptable closed loop perfor

mance. Further increasing the number o f sensors to 19 does not provide any additional 

improvement. W ith P=10 and S=13, the far field at the maximum cost (figure 3.4-3) has 

side lobes below the -30 goal; however, it is noted that the second side lobe is also at -30 

dB. This suggests further study o f the far field pattern. Figure 3.4-4 shows additional 

sections through the pattern. It is seen that in the third quadrant, the -30 dB goal is not 

reached. Thus it appears that to reach the -30 dB goal w ill require more than 13 sensors; 

but a closed loop system with 13 sensors, estimating 10 principal component magnitudes 

would be adequate to control this case for all but a short time during the orbit.

Finally, the case with 2% errors in CTE, absorptivity and emissivity was simulated with 

the closed loop system with P=5 and S=13 for both 5 and 15 actuators. The closed loop 

system provided a better value for the maximum Ji in both cases than the open loop sys

tem. For M=5(15) it was 0.2(0.8) dB better. Thus, as expected, the closed loop system 

performs better than perfect knowledge in the presence o f system errors. The far field 

pattern, figure 3.4-5, also shows a modest improvement over the open loop pattern in fig

ure 3.3-6.
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Figure 3.4-1. Sensor locations on the front surface.
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Figure 3.4-2. Closed loop cost, Ji, with the Sun at 23.5° north declination.
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Figure 3.4-3. Closed loop pattern, Sun at 23.5° north declination, first quadrant.
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Figure 3.4-4. Closed loop pattern, Sun at 23.5 0 north declination, other quadrants.
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Figure 3.4-5. Closed loop pattern for 2% errors in CTE, absorptivity and emissivity.
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Chapter 4-Concluding Remarks

A theoretical basis has been developed for controlling the thermal distortions o f large 

space radiometers due to orbital motion. The original objective o f developing a control 

system cost function that is quadratic in form and is directly related to radiometer perfor

mance has been met by expanding the far zone electric field in a Zemike-Bessel series.

In this expansion the cost function naturally appears and it is shown that this cost is a con 

sistent indicator of the deviation o f the far field from the desired pattern. The second of 

the original objectives, to include the temporal variations in the development o f the op

timal actuator locations, was accomplished by expanding an aperture integral using a 

principal component analysis. It is shown that the eigenvalues are directly related to 

average deviations of the far field pattern from the desired pattern. Further, the eigenvec 

tors are used as a basis for directly estimating far field deviations from sensors measure

ments.

Simulations for a geosynchronous radiometer demonstrate that the method provides a 

convenient and meaningful means to quantify the influence o f various orbit geometries 

and deviations o f the system from nominal due to manufacturing and other errors.

The simulations also suggest that for the particular antenna geometry studied, 5 actuators 

and 13 sensors are adequate to control the nominal case and some deviations from 

nominal; but, that 11 actuators and 19 sensors are required to control the worst case 

studied.
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Although the process may appear to be computationally intensive, except for two 

NASTRAN static analyses, all o f the calculations were performed on a 16 MHz 

80386/80387 computer, usually in 64 bit arithmetic. Some typical times for calculations 

include 12 minutes to calculate the temperatures o f 420 rods at 360 orbital postions in

tegrating equation 3.1-1 and then mapping the temperature variations into reflecting sur

face deviations, 13 seconds to calculate G(t) matrices at 180 orbit positions using 

equation 2.2-4 and forming the grammian (2.2-5), two minutes to extract 20 eigenvectors 

and eigenvalues o f the grammian, 30 seconds to calculate 420 Ga matrices o f equation 

2.3-1,15 minutes to determine the optimal locations for 15 actuators using the method 

described in section 3.1, and finally less than 3 minutes to calculate optimal actuator 

strokes at 180 orbital positions using equation 2.3-4 for either the open or closed loop 

simulations.

Like most research projects there remain a number o f unexplored areas and open ques

tions. A few o f these are mentioned here.

1. The Zemike-Bessel cost, which reliably predicted performance for the 55 meter anten

na, should be validated for other feed polarizations and gain functions and other antenna 

geometries, such as offset feeds to clear the aperture and o ff center feeds for scanning.

2. Low earth orbit (LEO) geometries should also be explored. Sun synchronous low or

bits w ill be somewhat similiar to the geosynchronous case, since the sun w ill appear to 

move from one side o f the orbit plane to the other through a limited angle during the 

year. Other orbits w ill be more challenging since there are large variations in the direc

tion to the sun in just a few weeks due to orbital precession. Temperature variations are 

moderated by the radiation from the earth and the required coatings in LEO. On the 

other hand, the control system must accommodate the geographic, seasonal and diurnal 

variations in the flux from the earth.
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3. The Zemike-Bessel cost approach may also be useful for determining the significance 

of forced or free vibration modes on antenna performance.

4. The principal component analysis can be directly applied to obtain representations of 

distortions o f spacecraft with other geometrical shapes, for example, long straight booms 

or flat platforms.
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Appendix A - Zemike Polynomials

Zemike polynomials have been used extensively in optics for describing the aberration 

function for circular apertures and for representing the classical aberrations, for example, 

piston, tilt, coma, astigmatism, etc. They have found limited use in the radio frequency 

literature, perhaps because their principal application is to circular apertures with uniform 

illumination, which is not always the case for antennas. They are used under the name of

’modified Jacobi polynomials’ for representing the far field when the feed is offset from
35 36the focus and for calculating secondary patterns for offset reflectors. Though these

applications were not the motivation for the current approach, there are similiarities. The 

main motivation is that Zemike polynomials provide a "ouvenient set o f functions to rep

resent wave front phase as demonstrated by their extensive use in optics14 and because 

they are orthogonal and complete over the unit circle37 with respect to the ring o f real 

polynomials in x and y. This section provides the definition o f the Zemike polynomials, 

some properties of interest for their application to R f performance calculations, and new 

recursion relations that are use for numerical calculations.

In real form the Zemike polynomials are defined as

<bnm (p,0) = Rnm (p) cos mQ and *¥nm (p,8) = Rnm (p) sin m0,

with n = 0,1,2,... and m e Mn where Mn = { m \ 0 < m < n  and n-m is even} and where 

0 < p < 1 is the normalized radial distance and 0 is the angular coordinate, i.e. p and 0 are 

the usual polar coordinates for the unit circle. It w ill be seen that $>nm and 'Vnm are each 

polynomials in x  = p cos 0 and y = p sin 8. The radial polynomials Rnm can be related to
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the Jacobi polynomials, can be derived from a generating function or can be obtained 

from the series14:

P‘
n-2s

s =  0
s! [ ("+'”̂ 2 — 5]! [ — 5]!

The radial polynomial Rnm is a polynomial o f degree n with a minimum exponent o f m.

A few o f the radial polynomials are shown in table B -l and plotted in figure B -l.

Seriec Expansion of Functions

Any function f(p, 0) that has a Taylor series expansion about the origin and radius o f con

vergence at least one can be expanded in terms o f the Zemike polynomials over the unit 

circle, that is

oo

AP> 6) -  X  ^ A n m  d>nm(p, 0) + Bnm xF/im(p, 0)
n=0 m z M n

where Anm  and B nm are constants given by

Unml _ 2(n+l) f f m f<JWp, 0)1
W  71(1+55*) n n ['J*iun(p, 0 )J

The factor o f 2(«+l) comes from (Bom, 1987)

There is also the amplitude-phase version o f the expansion
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oo

m  e ) = x  Rnm(fi) COSm(Q-Xnm).
n=0  mzMn

|fl MA
where as usual (C/un) = (Anm) + (Bnm) and tanm-v; = -  — .

Recursion Relations

The following recursion relations were developed to improve the computational efficien

cy o f calculating values o f the polynomials:

ROO = 1 to initialize the process.

Rn+l, n+l = p Rnn for diagonal stepping with n = m,

2
(n+ l) Rln+2,0 = (2p -  l) (2 n+l) Rin.Q -  n Rln-2,0 for generating the terms with m = 0 ,

= p ( Rnm+ Rnjtt+2 ) -  Rn- l,m+l for diagonal stepping starting at an m = 0  term. 

These can all be verified using the series expansion above. The recursion with m = 0 was
QQ 1 A

derived from a recursion formula for Legendre polynomials and the relation

# 2/1,0 (p) = Pn (2p2 — 1)

where Pn is the Legendre polynomial.

Using simple trigonometry identities leads to the corresponding recursion relations for 

the Zemike polynomials ®nm and'¥nm•

d>00 = 1 and 'Poo = 0 for initialization,

^n+1,/1+1 = X ®nn ~ y 'Pnn and 'Pn+l.n+l = y ®nn + X % /,
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for diagonal stepping with n = m,

(n+1) d>2n+2,0 = (2p2- l ) ( 2n+l) & 2n,0 ~  n <I>2/i-2,0

for the terms with m = 0 , which can be seen to be even polynomials in p and thus even 

and symmetric polynomials in x and y as expected,

<frn+l,m+l = X ( &nm +  <&n,m+2 ) - y (  'Vnm ~  'V n jn tl  )  -  

and

xlV rl,m +l =  y  ( *&nm ~  <&njrth2 ) —X ( ^nm  +  2 ) — *&njn+l

fo r diagonal stepping from each m = 0 term. These later relations clearly illustrate that 

each Zemike polynomial is in fact a polynomial in x and y.

I f  the antenna surface distortions is represented in terms o f Zemike polynomials then the 

gradient o f the polynomials is required for RF performance calculations, and recursive 

relations for these can be derived starting with the recursion relation:

Rnm =  n [ R n - l /n - l  +  R n -ljn -

For convience, the notation ̂  = /; x w ill be used in the following.

In the recursion relation for the derivative, the term in brackets can be replaced using the 

diagonal stepping equation for Rn+l,m +l to yield

Rnm; p =  n (Rnm +  Rn-2,m) +  Rn-2jn\ p-

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The gradients with respect to x and y are required and these can be obtain in the follow

ing manner:

Q>nm; x -  ®nm; p P; x + ®nm', 0 9; x•

0  A .T jj O

Substituting the definition for <bnm and using p - x + y  and tanG = y/x yields:

x cos mQ my
x — 5 Knm, p H— y  x’nm-

P P

Substituting for Rnm; p from above gives

. x  cos mQ r ,n n _ m y ,T,
®nm; x -  9 [ « (Rnm + Rn-2,m ) + Rn-2jn\ p ] + 9 ^nm

P P2

Finally, eliminate Rn-2jn\ p by using the expression above for Q>nm\ x evaluated for 

n -  n -2  to get

$>nm; x = $>n-2jn\ x + ̂ y  (®nm + 0>n-2jri) + QVnm ~ 'F«-2,m)-
P P

A similiar development gives the other three recursions:

®nm; y — $>n-2jn\ y +  ~~2 (®nm +  ^>n-2^n) -  y  Q¥nm -
P P

'Pnm; x -  n-2,m; x +  y r  O^nm +  *IV -2,m ) -  (^ /w i _  ® n -2sn)-
P P

y -  ' I ,n -2^i; y +  ""9 +  '^ n -2^ i) +  ^ y  (®nm -  $>n-2/n)-
P P
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These recursions increment n for a fixed m and are started at n = m. The starting condi

tions are easily derived from <3?n/t = pn cos »G, etc. Differentiation as above gives

<J>nn; x  =  ^ ( x & n n + y  'Vnn), ®nn\ y  =  ^ ( y ® n n ~ X  '?„«),
r  r

vI#nn;jr = ~  (x ̂ n n  ~  y  d>/w), T/t/i; y  =  — ( y 'P/m +  X  <S>nn)-
r  r

The gradient recursions are not defined at p = 0; but, all gradients are zero except when 

m = 1, then it is easily shown that

‘&»,l;x = ¥ ii,l;y  = ( - l) * f l « and O /i,i;y = % ,i;x  = 0  fo rp = 0 .

Normalization

The polynomials above are normalized so that the maximum absolute value o f each poly

nomial is one on the circle p = 1. It is some times convient to normalize the polynomials 

so that each polynomial has a RMS value o f unity over the unit circle, i.e.

1
- I  J ® nm  3>pm pdpd0 = 5g
Jt 0 0

and similarily for 'Fwz. To implement this normalization each polynomial above must be 

multiplited by a normalization constant an where an = V2(rc+1) if m  *  0 and 

an = Vn+1 if m  = 0.39
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m\n 0 1 2 3 4 5

0 1 2p2-  1 6p4-6 p 2+ l

1 P 3p3-2 p 10p5-  12p3+ 3p

2 P2 4p4-3 p 2

3 P3 5p5- 4p3

4 P4

5 P5

Table A -l. Zemike radial polynomials, Rnm(p)-

0.5

-0.5

o 0.25 0.5 0.75 1

n

2

6
------ 10

Normalized radius

Figure A -l. Variation o f selected radial polynomials, Rn2-
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Appendix B - 55m Radiometer Geometry

This appendix contains the NASTRAN graphical output showing the grid points and rods 

that form the structure o f the 55m tetrahedral truss.
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Figure B-l. View of antenna along the z axis showing 420 rods.
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Figure B-2. View o f the 156 front surface rods with grid points numbered.
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Figure B-3. View of the 120 back surface rods with grid points numbered.
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Figure B-4. View of front surface rods from 15° elevation.
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