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ABSTRACT

IMPROVEMENTS IN WAVELENGTH MODULATION
SPECTROSCOPY USING RATIOS OF HIGHER HARMONICS

James Michael Barrington
Old Dominion University, 2002
Director: Dr. Amin N. Dharamsi

Experiments in Wavelength Modulation Spectroscopy have been conducted at

Old Dominion University since 1996. The method provides a highly sensitive, non-

intrusive method of probing gases. Research has concentrated on effectively modeling

the higher harmonic shapes that are measured experimentally. Accurately modeling these

signals will result in the ability to reliably extract the information contained in transition

line shapes.

In order to accurately depict the signals, the theory must be thoroughly

understood. This thesis develops the theory of Wavelength Modulation Spectroscopy

from two aspects: a direct Fourier series expansion of a time varying intensity profile and

through communication theory. In addition, a method of ratioing higher harmonics is

introduced. This method reduces the subjectivity in modeling and will eventually lead to

future automation.
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CHAPTER I

INTRODUCTION

Accurately measuring the line shape of an electron transition in a gaseous medium

can result in precise measurements of molecular density, temperature, and pressure. In

addition, it can provide insight to the basic physics of the system, such as molecular

collision parameters. However, obtaining a precise line shape measurement is not easy.

Conventional Absorption spectroscopy has been used for over one hundred years to

identify molecular species; however, its ability to measure the line shape of a single

transition is severely limited by the precision of its dispersion device. One interesting

and useful variant of absorption spectroscopy is Wavelength Modulation Absorption

Spectroscopy (WMS)' This method uses several fundamental engineering principles,

such as frequency modulation and Fourier series expansion, to increase the signal to noise

ratio.

The primary advantage of WMS is that it can provide a precise measurement of

an absorption feature with limited equipment, lending it to field use. Since all the

information about a transition resides in the line shape function, the method is a powerful

tool for mining such information. However, a complete understanding of this method is

required to exploit its results. Current applications overlook the information inherent in

the higher harmonics. This thesis develops the theory of WMS and the advantages of

higher harmonic detection.

The journal model for this thesis is Journal ofApplied Physics.



1.1 Basic Theory

This section discusses the fundamentals of WMS in a qualitative manner and is

added to provide an intuitive explanation of the method. A more rigorous development

of each step of the experiment will be provided in later chapters.

Absorption spectroscopy has been used for over one hundred years to identify

molecular species. A simple example of absorption spectroscopy is a molecule that only

contains two energy levels, Ei and E2 in which an electron can exist. If an electron starts

in the lower level, the only way for it to transition to the upper level is to add the energy

equal to the difference between the levels. This can be accomplished by absorption of a

photon at the correct color or frequency, E, — E, = E =hv, where h is Planck's constant

and v is frequency of light. Therefore, passing white light through a medium and then

separating the spectrum by using a prism or diffraction grating, the presence of this

simplified molecule can be identified by the dark or dim line at the frequency that

corresponds to the appropriate energy. This is the procedure for conventional Absorption

Spectroscopy. Figure 1 is a simple example of this experiment showing four absorption

lines of an arbitrary molecule. However, in real molecules there are numerous energy

levels with their separations controlled by complex bounding schemes, which results in a

unique signature for each molecule.

Additionally, figure 1-1 shows that an absorption line is not at a single frequency,

i.e., note that the absorption lines do not have well defined edges. This is because

absorption lines are not delta functions but are distributed over a frequency region.

Primarily, this distribution is a result of collisions and Doppler shifts in a gaseous



medium. Embedded in this distribution is information about the system For example,

the magnitude of the Doppler shift a molecule can experience depends on its kinetic

energy, which is dependent on temperature; e.g., the distribution of absorbed frequencies

Fig. 1-1 An absorption spectrum of an arbitrary molecule showing four absorption profiles.

is smaller at lower temperatures. Therefore, a precise measurement of the absorption

profile, frequency versus magnitude, will allow for the extraction of this information. In

order to obtain this information using the equipment in figure l-l, a light source with a

uniform distribution across the spectrum and a high resolution diffraction grating or

prism would be required. However, a much simpler and less expensive experimental

setup reverses the resolution of the source and the detector. In this case, a tunable light

source, laser, is detected by a photodiode with a flat response in the frequency range of

concern, see figure I-2a. In order for this to work, the laser linewidth has to be much

smaller than the absorption feature to be probed, i.e., the laser profile should be

essentially a delta function in comparison to the absorption profile. Therefore, as the

laser is tuned across the absorption feature, the intensity variation is a direct



representation of the absorption profile, as shown in figure I-2b. Although the

equipment has changed, this is still simply Absorption Spectroscopy. Unfortunately, the

precision of this method is limited by noise. For example, light from any other source

with a frequency within the spectrum of the detector's bandwidth wiII also be detected.

The easiest way around this is to provide the laser signal with a unique time domain

signature of its own allowing its intensity to be identified and separated from other

sources, thus, the wavelength modulation.

Wavelength modulation is spectroscopy's counterpart to frequency modulation

techniques used in communications engineering. The frequency of the carrier is

proportional to the magnitude of the modulation signal, and the desired unique signature

is provided by the frequency characteristics of the modulation signal. For example, if

the laser is modulated with a sinusoid, the frequency of the laser will oscillate

sinusoidally at the frequency of the modulation, with the magnitude of the frequency

variation controlled by the magnitude of the modulating sine wave. It is important to

note that in the absence of absorption, the detector is oblivious to this modulation, i.e., the

detector is only sensitive to intensity variations, not frequency variations.

Fig. 1-2a Direct absorption experiment setup using a tunable laser.
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middle figure shows the effect of the modulation on the laser's frequency. The lower graph
presents the time domain signal of the detected intensity over two oscillations of modulation.



However, in the presence of absorption, the absorption profile is sinusoidally sampled

resulting in the detector's intensity to vary at a frequency proportional to that of the

modulation. Now the light emitting from the laser has a unique signature that can be

extracted from the detector. Figure 1-3 shows the intensity variations over two cycles of

modulation with laser initially tuned to the left of the absorption line. Although the

modulation has provided a method to separate the signal from the noise, the absorption

line is now encoded in a nonlinear sample and can no longer be directly extracted.

However, any periodic function can be expanded using a Fourier series, i.e., equating the

signal to a summation of sinusoidal waves at harmonics of the fundamental frequency;

f(t) = A, + g A, cos(kruet) + B, sin(kctiet),
k=1

(1.1)

where Ao is the DC signal and rtso is the fundamental frequency, or the modulation

frequency in this instance. The coeAicients, Az and Bi„ indicate the contribution of each

harmonic to the composite siytal.

I: (is

Fig. 1-4 A Fourier series expansion of a single cycle of an AC coupled intensity signal, blue.
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Fig. 1-5 Upper figure shows the laser tuned off to the left side of an absorption profile. The
middle figure shows the effect of the modulation on the laser's frequency. The lower graph
presents the time domain signal of the detected intensity over two oscillations of modulation.

Figure 1-4 graphically shows the first step of a Fourier series coefficien calculation for

the first four harmonics of the AC coupled intensity variations detected when the center

of the modulation is to the left of the absorption line. One cycle of the intensity variation

is multiplied with the sine/cosine of the harmonic signals and summed to determine their

coefficients. Note that the odd harmonic signals are expanded with a sine wave and the

even harmonic signals are expanded with a cosine function, resulting in a 90'ifference.

When the modulation is combined with sweeping of the center frequency, the harmonic

coefficients vary accordingly. Figures 1-5 and 1-6 show the intensity variations at two

other laser center frequencies, slightly to the left of the absorption profile and centered on

the profile respectively.
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Fig. 1-7 Nl through N4 Fourier coefficient variations as ramp is used to sweep the center
frequency of the modulation across an absorption line.



Figure 1-7 shows the variation of the first four Fourier expansion coefficients as the laser

is swept across an absorption line. Therefore, WMS is simply a Fourier series expansion

of a sinusoidal sampled absorption profile. Although its concept is simple, the technique

of analyzing higher harmonics is underutilized and generally not well understood. The

strengths of this method will be developed further in the detailed theory section.
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CHAPTER II

DETAILED THEORY

Chapter two develops the theory of wavelength modulation from two different

aspects: a method based on laser intensity directly sampling an absorption feature and a

model based on communication sidebands. Both methods require the modulation of a

light source's frequency. There are several ways this can be achieved. For example, a

diode laser can be phase modulated using the Kerr effect'r frequency modulated using

the drive current. However, the overall goal of this project is to develop a reliable,

portable and cost effective means of making precise measurements of absorption profiles.

Therefore, most discussions are directed towards frequency modulation through drive

current.

2.1 Fourier Series Expansion of the Detected Intensity Signal

This method, developed by Wilson', was introduced in chapter one. An

absorption shape is sampled with a delta function whose frequency has a sinusoidal

variation; then the intensity variation is expanded with a Fourier series. The harmonic

coefficients versus the laser's unmodulated center frequency are the resulting signals.

This section will discuss this method more rigorously.

Unfortunately, the first step in this procedure is an approximation. As stated

above, the absorption profile is sampled by a delta function. In WMS, the absorption

profile is probed with a laser; therefore, the laser profile is considered a delta function.

This approximation is acceptable if the absorption profile is much wider than the laser

linewidth. However, if necessary, the laser linewidth can be incorporated, as is done at
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the end of this section. While this refinement of the theory comes at a significant

computational expense, it is shown that the results obtained by using the delta function

approximation do not introduce any uncertainty in the results, within the experimental

precision of this work.

The absorption of light in a weakly absorbing medium is defined by the Beer-

Lambert Law,

-a(N)L
0

where a(ro) is the angular frequency dependent absorption coefficient, an absorption line,

L is the path length, Io is the initial intensity, and I is the detected intensity. The initial

intensity in this case is that of a frequency modulated diode laser. As stated above, the

simplest and most inexpensive method of modulating a diode laser's frequency is through

its drive current. Theoretically, as the current is modulated, the temperature varies in the

laser resulting in the variation of the laser cavity's physical dimensions as it dissipates the

heat. An increase in current results in an increase in cavity size and wavelength. In

addition, there is an expected phase difference, 0, between the modulation current and the

cavity variations due to the specific heat and mass of the semiconductor material.

However, using the drive current to tune the laser also varies the intensity, i.e., an

increase in current increases the generation of electron hole pairs, linearly increasing the

radiative recombination, thus intensity. Therefore, the instantaneous intensity and

frequency of a diode laser signal with no linewidth that is modulated with a sine wave is

I(ro,t)=(I,+krAsin(N r+P))S(re krAsin(ai t+0)), (2.2)

Intensity Modulation Wavelength Modulation
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where mz. is the laser center frequency without modulation, co is the modulation

frequency, tt is the phase difference between the drive current and the intensity

modulation, and A is the amplitude of the drive signal applied to the current driver in

volts. Two other constants are incorporated in this equation: the constant of

proportionality between the drive voltage and the intensity, kt, and constant of

proportionality between the drive voltage and the frequency, kj. Both of these values can

easily be obtained experimentally by applying a linear ramp to the drive current and

determining the slope of the intensity and frequency variations. Finally, to determine the

detected time varying intensity signal, the laser signal is integrated over frequency with

the absorption profile as describe by the Beer-Lambert law,

ID(t) = f(Io+k,Asin(co t+P))b(coi — k&Asin(ce t+8))~e ' dco. (2.3)

This simply results in

ID(t) =(I, +k,Asin(cu t+P))~e (2.4)

Next, a Fourier series expansion is conducted on the time varying intensity signal,

f(t) = A, + QA„cos(Ncoot)+ B~ sin(Nco,t),
Ã i

(2.5)

N=1,2,3,4,.

where Ao is the DC offset and the harmonic coefficients are calculated using

r
A~ = — f[(Io+k,Asin(co„t+P))~e ' '"'" ]cos(Nai t)dt,and (2.6)

To 'ot

= —
J [(Io+k,Asin(cir„t+P))~e '""" "" 'sin(Nce„t)dt. (2.7)
0
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These equations can be broken into two distinct sections, pure wavelength

modulation spectroscopy and distortions due to intensity variations. For example, the

pure frequency modulation is described by

A — — J[I ' """
] (N )re d

r
I'0

e cos c0 r,an
T I¹

0

(2.8)

I
T

= — J[I e ' ]sin(Nm t)Ch.J[, s m

0

(2 9)

Similarly, the Fourier components describing the effect of intensity variations are given

by

T

A„= — J[(k,Bsin(ro„r+p))~e ' """"'" ]cos(Nru„)dt, and (2.10)
0

B„, = —J[(k,Asia(ro„r+p))~e ' "" 'sin(Nru r)dt.
0

(2.11)

If a modulation method other than drive current is selected, i.e., angle modulation via a

Pockels cell', then the formulas for pure wavelength modulation could be used.

It is important to note that these equations provide a single set of coeAicients, i.e.,

a ramp has not been included to allow for sweeping the center frequency. Therefore,

these values calculated are assigned to the unmodulated laser center frequency.

However, before adding a ramp to sweep the center frequency of the modulation, it is

important to note several simple phenomena inherent to wavelength modulation. First,

consider the special case of no absorption. In the absence of absorption, equations 6 and

7 simplify to

T T

A„= — J[(&p+&rAsin(co r+p))]cos(Nco t)dt = — Jk,Asin(co r+p)cos(Nco r)dr,
T. T.'
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T

A, = — Jk,Asin(ar r+ p)cos(ro„t)dt
0 , and (2.12)

T T

B„= —
J [(I, + k, A sin(c0 r + p))]sin(Nru„r)dt = —f k, A sin(c0„1+ p) sin(Nm„t)Ch,

T,'.'
B, = —

J k, A sin(roJ+ tit) sin(ro„r)drTo'2.13)
Therefore, only a first harmonic coeAicient is present. This results in an offset of the first

harmonic signal.

Next, consider the case presented in figure 1-3, i.e., the laser is tuned left of the

absorption line. However, for a portion of the modulation the laser's center frequency is

interacting with the absorption line resulting in a periodic signal. Therefore, when the

Fourier coefficients are calculated, each harmonic is assigned a value on the unmodulated

laser's center frequency. This is the source ofmodulation broadening.

Finally, phase differences between harmonics should be addressed. This method

is based on the Fourier expansion of a periodic intensity signal. Experimentally, this is

accomplished with a lock-in-amplifier (LIA) . Basically, the LIA provides phase

sensitive detection of periodic signals by comparing the detected signal to a replica of the

modulation signal. A sync signal from the oscillator that creates the modulation signal is

sent to the LIA. The sync signal is normally a square wave, which indicates the zero

crossings and polarity of the modulation sine wave. The LIA creates tunable phase, unit

magnitude quadrature components, X and Y, at the frequency or a harmonic of the sync

signal. It then multiplies the components with the input signal. The product of the X

component and the input provides Fourier coefficient for the respective harmonic that is

in phase with the modulation signal. The product of the Y component and the input
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indicates provides Fourier coefficient for the respective harmonic that is 90'ut of phase

with the modulation signal. Normally, using a variable delay, the quadrature components

are tuned to maximize the X component and minimize the Y component, i.e., set the

phase difference between the modulation input and actual frequency modulation, 8, to

zero. Additionally, at small frequencies, there is not a phase difference between the

intensity modulation and the modulation signal, thus tI equals 0. Consequently, the sine

coeflicient for the first harmonic can be rewritten as

T

T,
(2.14)

For the second harmonic, the time delay that created the phase difference between the

modulation input and the actual frequency modulation has not changed, but the frequency

that it is compared to has doubled. Therefore, the phase difference must be twice that of

the first harmonic. In addition, the second harmonic is an even signal where the first

harmonic is odd. Therefore, the LIA to Fourier coefficient calculated by the LIA can be

described by

r
B„= — f[(Ip+kiAsin(co„t))*e ' ""' "" ]sin(Nco„i+8~„)dt, (2.15)

T.

'here8~= P8, +90mod((N+1),2) . (2.16)

Finally, to allow for sweeping of the laser, a ramp is superimposed onto the

modulation,

I(co r) (1p + ki (R r + A sin(co r + It))S(coz + kr (R r 2 sin(co„t + 8)), (2. 1 7)

Intensity Modulation Wavelength Modulation
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where R's the slope of the ramp. This signal can easily be added to equation 2.3.

However, for ease of calculation, the ramp is normally consider in steps,

1(ro,t) =(I, +Isn+k,Bsin(ru t+P))8(aiL+ni,n — k&Asin(ni„t+8)), (2.18)

where n= 0, 1,2,3,4...

and the Is and ass are steps in intensity and angular frequency, respectively. The slope of

the ramp must be significantly smaller than that of the modulation to avoid distortion.

Inclusion of laser line shape is actually quite simple mathematically. The laser

line shape replaces the delta function in equation 2.2,

1(co,r) =(I, +k,Bsin(ni r+p))g(mz — k&Asin(ui t+8)). (2.19)

Unfortunately, the exclusion of the delta function requires significantly more

calculations. For example, just one step of the modulation requires numerous

calculations of the absorption profile to be weighted by the laser profile,

Io(t)= J(Ii,+k,Bsin(co t+p))g(ni~ — k&Asin(co r+8))~e dry; (2.20)

however, this has been done in MATLAB with idealized values to validate the theory.

2.2 Derivation using Communication Theory

The last section described wavelength modulation spectroscopy as a Fourier series

expansion of time varying intensity field. In the derivation, the intensity of the laser was

treated as a delta function, which sampled the absorption profile. It ignored the e-field

sidebands normally associated with frequency modulation in communication theory.

Although this formulation adequately describes WMS due to the number of the sidebands
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that interact with the absorption feature, it cannot be extended to Frequency Modulation

Absorption Spectroscopy, which has a modulation frequency larger than width of the

absorption feature. Therefore, as a matter of completeness, this section derives WMS in

the frequency domain using e-fields.

In the frequency domain, the modulated laser is represented by numerous

sidebands spaced by the modulation frequency whose magnitudes are controlled by

Bessel functions. When these sidebands intemct with an absorption feature, intensity

modulations at harmonics of the modulation frequency can be detected with a

photodiode.

Also in this method, to make the mathematics tractable, the linewidth of the laser

is approximated as a delta function in the frequency domain', or a sinusoidal wave in the

time domain,

A = cos(urer), (2.21)

where ro~is the laser angular frequency and t is time. When the laser is frequency

modulated by a sine wave, its instantaneous frequency is defined as

k&V(t) = re k&csin(c0 t+P), (2.22)

where co„ is the modulation frequency, A is the amplitude of the sinusoidal signal and tt

is the phase difference between the modulation signal and the actual modulation. As

discussed in section 2.1, the modulation signal applied to a laser diode drive current

manifests itself in two ways, frequency and intensity modulation; however, before

addressing intensity variations, frequency modulation is derived first. Integrating

equation 2.21 to find the phase results in



18

I p'1
8(r) = jN,dr = JcD — k4sin(N„C+p)dr =N t+8+ —icos(N t+p), (2.23)

0 —C

where P = k 2 and ~t is referred to as the modulation index in communicationr / CD

theory.

Assuming the signal starts with a zero phase, i.e., setting 0 equal to 0, the pure

wavelength modulation laser signal is defined as

Ep cos Ncr + cos(N~C + P)
N

(2.24)

In order to have a better understanding of the signal spectrum of this compact

formula, it is instructive to expand it into its frequency components. Expanding this

signal using trigonometric and Bessel function identities results in

Ep cos Ncr + cos(N r + P)
CD

Ep cos(Ncr) — cos(cD„t + P) — E, sin(Npr) — sin(N„C + tt)
CD

(2.25)

= E, cos(cD r) J,
[
— + 2g(- I)" J,„[—

J
cos(2n(N t + p))—

N

Ep sill(cDi r) 2g ( I) Jp i cos((2ll 1)(N r + P)) (2 26)
n i Nm

where n=0, 1,2,3



Further expanding the first part of the equation

E, cos(m,r) J, — +2/(-1)" J,„[—icos(2n(m„i+alt))

EpJp[ icos(mz
i) + Ep2/ ( 1) Jz [cos(m,r + 2n(m„t + P)) +

mn n= l mn

cos(m,r — 2n(m.t+ it')],

= E, icos(nrr)J,„—Jcos(m,r+2n(m„t+tt'))
(p \

n — «I

(pl= E, gJ,„— cos(m~r+2n(m r+t(l)+nn)
n-~ al

= E, gJ,„— cosI m,r+2n(m„r+tlt+ —)).

Expanding the second part of the equation

— E, sin(mpt) 2g(- 1)"'l
l

— cos((2n — 1)(m„t + ill))
n=l mn

Ep g ( 1) J2 l[ J[sin(mLt + (2n — 1)(m r + tt ))+
(p') .

«= 1 mn

sin(m~t — (2n — 1)(mJ + P))],
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EpgJi i[ cos~co,r+ (2n — 1)(N t + p) +&& — —J+
(peal (

a=i

cos co,r — (2n — 1)(m„t+til)+nz —— (2.30)

= E,pJ,„,
[
—

)
cos~m r + (2n — 1)(ai„t + p + —

)) +
(I3il (

N-i

cos co,t — (2n — 1)(co t tie+ —) (2.31)

Recombining the equations results in another compact equation, which explicitly

shows the frequency components and phases from the modulation,

E(t) = E, gJ„— cos[co~t+ n(m t+ lit+ —)). (2.32)

Although classically the e-field is what interacts with the absorption feature,

optical detectors (eyes, photographic emulsions, and photoelectric devices) respond to

radiation intensity; therefore, the Poynting vector of the e-field is calculated',

1 E'=S=— ExH= —,
2

2g'2.33)
where S is the Poynting vector, I is intensity, E is the e-field, H is the magnetic field and

il is the impedance in free space. Consequently, the time varying intensity detected is

2

I(r)= —' J„— cos[co~t+n(ro„t+p+ —
)J (2.34)

Ei /
This can be simplified by defining I, = %; however, the second part of the equation

still consists of an infinite number of sinusoidal signals squared. Fortunately, since the

magnitudes are controlled by Bessel functions, the number of sinusoidal signals is
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essentially finite; however, experimentally, there are over 10'ignificant sidebands that

interact. For discussion purposes, the number of sidebands is reduced in the following

paragraphs.

Visualizing the source of the harmonic signals in the time domain is cumbersome;

therefore, it is best to convert the laser e-field profile to the frequency domain, then

graphically convolving the signals to illustrate the source of the harmonic intensity

signals. The Fourier transform of the e-field results in delta functions spaced by the

modulation frequency. Figure 2-1 illustrates the magnitude plot of laser frequency

spectrum for a modulation index of 5. Figures 2-2 and 2-3 illustrate the phase plot for the

positive and negative frequencies. Note the effect that the Bessel functions have on the

phase angle, i.e., for odd values n, J„= -L„. This results in a 180'hift for odd sidebands

left of the neo. Also, the angle information for the negative frequency signal reflects that

the even sidebands are actually sine functions, i.e., there is a 180'hift froin their

positive frequency counterparts.

Fig. 2-1 Sideband magnitude plot of a modulation index of 5.
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Fig. 2-2 Angle information positive frequency sidebands.

Fig. 2-3 Angle information negative frequency sidebands.

Figure 2-1 graphically shows the results of the convolution before shifting the

signal. In the absence of absorption, the sum of the magnitude and phase information

equals one, i.e., all of the intensity data is contained in the direct current signal.

However, if an absorption feature were present, an imbalance in the sideband magnitudes

would distribute some signal power through the harmonics. Absorption profiles will be

discussed in greater detail in the next chapter; however, it is also important to understand

the absence of the harmonic signals in pure wavelength modulation when an absorption

feature is not present.
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Fig. 2-4 DC signal generation with no absorption line.
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Fig. 2-5 Nl equals zero in the absence of an absorption line.



25

of 2 otts

Fig. 2-6 N2 equals zero in the absence of an absorption line.



26

Fig. 2-7 N3 equals zero in the absence of an absorption line.
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Therefore, figures 2-4 through 2-7 are presented to show how the first few harmonic

signals would be developed. In figure 2-5, the convolution has continued by shifting the

lower profile by the modulation frequency, i.e., the difference between the sidebands

before the multiplication is r0„. It can be seen that the sum of the magnitudes; however,

it is easy to imagine that an absorption feature that is not centered on the laser profile

would cause an imbalance, i.e., the magnitude of some of the sidebands would be reduced

by absorption and the sum would not be zero; therefore, a residual signal would be

present. Figures 2-6 and 2-7 repeat the process for the second and third harmonics by

shifting the laser profile before multiplying it.

The graphical convolution process (reverse an input, shiA, multiply and then add)

gives some unique insight into the generation of the harmonic signals. Each specific

harmonic signal is developed by the multiplication between the laser profile and a

reversed shifted version of itself where the harmonic is directly related to the amount of

the shift. Therefore, the result after the multiplication can be used to show the effective

probe signal. Figure 2-8 illustrates the effective laser probe signals for the first eight

harmonics. The sources of several properties of wavelength modulation absorption

profiles are evident in this figure. Note the symmetry of the probe signals of the odd

harmonics. In the presence of a symmetric absorption profile centered on one of these

profiles, the signal would still be balanced, i.e., the sum would still be zero. Therefore, as

expected in a derivative-like signal, all odd harmonics are zero at line center. Also,

imagining these profiles being swept past an absorption feature allows for the visual

derivation of the qualitative signal.
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Fig. 2-8 Ell'ective laser profiles for Nl though NS.
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The previous paragraphs developed the frequency modulated laser profile;

however, the intensity variations due to the modulated current have been neglected. In

communications, amplitude modulation is mathematically defined as

E(t) = Eo 1 + sin(co„t) cos(air r + lit),I'2.35)
where "/ is the magnitude of the modulation. Squaring the e-field to determine the/2

intensity results in the following

2

1(t) = I, i+rsin(ro r)+ — sin'(ro„r) cos'(ro~r+tit).
4

(2.36)

However, this does not match empirical data. Equation 2.36 implies that the magnitude

of the Nl offset is directly related to the intensity, but experimentally it is independent.

Therefore, the variation of intensity is not a result of conventional amplitude modulation,

but rather a variation in the laser power, i.e., a modulation current is directly related to the

electron hole pair generation. Intensity modulation is incorporated in the following

equation:

2

l(r) =(Io+cos(ro t+y) gJ„— cosj ro,r+n(ai r+p+ —)J, (2.37)

where y is the phase difference between the modulation signal and the intensity

modulation.
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CHAPTER III

ABSORPTION PROFILES

As stated in the introduction, absorption profiles contain information about the

temperature, pressure, and basic physics of a gaseous system. However, in order to

extract that information, the source of the profiles has to be understood. This chapter

derives the basic line shapes currently used for modeling experimental data.

3.1 Doppler Profile

The intensity of light from a laser can be regarded as a stream of coherent

photons. As light interacts with a medium, photons can be absorbed or stimulated as

determined by the atomic or molecular composition of the medium and the energy or

frequency of the photon, E = hv. If the photon energy matches the energy difference

between two energy levels, whether it is electronic, vibrational, or rotational energy

levels inherent to the molecule, then a transition can occur. In addition, for a transition to

occur, the initial state must be populated. For example, for absorption, the lower state

must be populated. When considering absorption, normally the transition is from a

ground state, which is highly populated, to an excited state, which is normally open;

therefore, in the following descriptions, the necessary population in the lower state is

considered to be present.

For illustrative purposes, let us consider an electronic transition. The major

features discussed below are, however, valid for all radiative transitions, spanning the
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whole electromagnetic spectrum. Such a transition can be modeled quite adequately for

most purposes, by the picture of an elecuon on a "spring" that leads to the Lorentz

description. The fictitious spring in question is used to represent the quantum mechanical

forces that arise when an electron feels an electric field that tends to displace it from a

stationary state. As long as the imposed fields are smaller than any internal fields, the

"restoring" force may be regarded as being proportional to the magnitude of the

perturbation caused by the displacements. Hence, one often uses the simple harmonic

oscillator model for a mass on a spring to describe the dynamics of an electronic

transition induced by a photon. The frequency of the oscillation is controlled by the

standard relationship, r0, =~K/m. In this model, the oscillations are not damped;

therefore, the oscillations are of infinite duration in the time domain and a delta function

in the frequency domain.

One needs to clearly modify this simple model to account actual conditions one is

likely to meet in any experiment. For example, in a gas, molecules are in motion. This

motion results in a Doppler shift. Hence, when a molecule is moving away from an

observer in the z axis, the frequency measured is r0 = r0,(I — v,/c), where ai is the

detected radian frequency, r0, is the oscillation frequency, v, is the molecular line-of-

sight velocity, and c is the velocity of light. Therefore, the photon frequency required to

interact with the oscillator depends on the molecule's velocity.

In an ideal gas, the distribution of the energy is considered to be Maxwellian,

f(E) = Ae ir (3.1)
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where k is Boltzmann's constant and T is the temperature. If the energy contained in a

gas is considered to be strictly kinetic, i.e., the molecules are not interacting with any

potential field, then energy can be equated to mv /2,

f(y )
— ge 2kr

(3.2)

In order to solve for A, this equation has to be normalized to one. Since

fe-'*d = J~, (3.3)

setting x = ~m/2kTv„ then integrating

(3.4)

dt t 2= J /2&T Thetef.,th t d dD PPt t ttydt tto tto

1

m
IIT(v ) e 2kr

]2 kT
(3.5)

As stated above, the frequency spectrum of an undamped oscillator is a delta

function. Incorporating the Doppler shift from the motion, its spectrum is

b(ro-up,(1+v,/c)). Therefore, in order to determine the frequency distribution of a

medium containing numerous oscillators in motion, the spectrum of a molecule is

multiplied with the velocity distribution and integrated over all velocities,

2 1Pte (dt-tho)

8 2rikT l J o ~ 2rrkT

Thus, the Doppler line shape is a Gaussian profile'.
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3.2 The Lorentzian Profile

The Doppler profile assumes that the lifetime of a transition is infinite, i.e., the

oscillation is always present. Additionally, the Doppler profile neglects phase changing

collisions, i.e., the wave train is continuous without interruption. In a gas at low pressure

with few collisions, the Doppler profile is a good approximation of the absorption profile.

However, as pressure and collisions increase, phase changing collisions have to be

considered. The classical damped electron oscillator given by Siegman'rovides an

excellent model for a wave train with a finite period. Not only does this model give

insight to absorption, it also models the phase shift associated with change of index of

reflection. The foundation of this model is a simple damped harmonic oscillator,

d'x dx K F—,+y — + —x= —,dt't m m
(3.7)

where m is the mass of the electron, K is the spring constant,y is the damping constant,

and F is the force to initiate oscillations. As earlier, the electron and nucleus are modeled

as a harmonic oscillator, but damping is added to show the finite period of the wave train

due to phase changing collisions or the finite lifetime of the transition. If an electric field

of a photon interacts with a molecule, it provides a force, -eE, to displace the electron,

which in turn creates a dipole moment, given by -e~x, where -e is the electron charge, E

is the electric field and x is the distance of the displacement. In a medium containing

numerous oscillators, the polarization density is equal to -N~e~x, where N equals the

number of charges per unit volume. Substituting —eE for the force and multiplying both

sides by Ne results in

d'x dx K d'P dP, Ne'E
Ne —, + yNe— + Ne— x = —

i + y — + c0,'P =—
dt' dt m dt't m

(3.8)
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where P is the polarization density. Defining the time varying field and intensity as P =

Pexp(j cot ) and E = Eexp(j cor ) results in the following

Ne'E exp(j cot)(-~'+ coy+ m,')P exp(j~) =-
m

(3.9)

Polarization can also be defined with a complex susceptibility, P = c,gE. Solving for

P
the susceptibility results in, 2 = —. Dividing the time variance from both sides of the

e,E

equation above and manipulating it to solve for susceptibility results in

P Ne'z=
c,E me, (—co'+jcoy+co,')

(3.10)

Defining g, = —, and the damping force y as the width of the transition, Aco
e'N

mcooe,

simplifies the above equation to

Coo
E ZO

Coo — Co + JCOAco
(3.1 1)

Since the primary concern is the line shape near resonance, the following approximations

are made,

co,' co' (co, +co)(co, -co) = 2co,(co, -co), (3.12)

and co = co, in the second term in the denominator. Modeling electric susceptibility as

complex number results in the following equation:

E=E + JZ =$0*,, -Ea
(2coo (coo co)) + (coakco) (2coo (coo co)) + (coaAco)

Manipulating the equation results in
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COp (Cop — N) he@
jNp

(Np — N)' — (Cop — CO)'+

(3.14)

The shape of the imaginary part is the Lorentzian, named aAer the pioneer of this model.

The shape of the real part of electric susceptibility is approximately the derivative of the

imaginary part with a slight asymmetry caused by the disappearance of the effect of gp

above the line shape. The effect of susceptibility on the propagation of light in medium

can be seen by reviewing the electromagnetic propagation of a wave, Ee j
. The

wavevector contains the complex susceptibility,

CO
k = — = NQ8/Ip = N

C

= — jl+g'+ jk',
Cp

k= k jl+Z'+ jk'. (3.15)

If g'«I and g'«I then

k,~lkk'kk',(lk — (Z'+Z')I.1
(3.16)

This allows the separation of the wavevector into real and imaginary parts,

k = n — j— = kp [I+ — + j—
J,2 'i 2 2
J'3.17)

where the index of refraction is n = I+@'/2 and absorption coefficient is a = kpg".

Therefore, the shape of the imaginary part of susceptibility is the absorption profile.

Separating the Lorentzian profile from the imaginary part results in imaginary

susceptibility of

jimpS =-Zp —g(a), (3.18)
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where the absorption line shape is

g(~) =-'
(COO

— CO) +
(3.19)

Therefore, the frequency spectrum of a single oscillator, which has a finite lifetime or

suffers a dephasing collision, is a Lorentzian instead of the delta function used in the

Doppler profile.

3.3 Voigt Profile

If the dephasing collisions and the Doppler effect are considered statistically

independent, then the Lorentzian profile can simply replace the delta function in the

Doppler equation before integrating over the velocity resulting in the Voigt line shape,

Aco

)
ir, 2

, xexp — * dv,. (3.20)
I'v,'3

(2'
(co, — oi — 5 — ')'+-

G 2

Notice that the factor 6 is included to incorporate the change in frequency due to

collisions, i.e., when molecules are close enough to each other, their energy levels are

changed.

Modeling the Voigt is computationally expensive. Fortunately, the Voigt profile

can also be modeled as the real part of the error function, w(z).

2

Re[w(x',y)] = — j dg y' (x' g)'3.21)
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where y is the dimensionless line width, effective frequency of broadening collisions

divided by Doppler halfwidth, Ariip/2; x's the separation from transition frequency,

the (ro — ui, — 6)/(Aron/2); g is a dummy variable for integration. Improving the

computational efficiency even more is Humilcek's approximation" of the error function.

3.4 Profile Narrowing

Although the Voigt incorporates the basics for the transition line shape in a gas, it

lacks the elements to explain the small deviations detected in a precise measurement. For

example, Rautian and Sobel'man'eveloped a line shape that incorporated a narrowing

of the Voigt profile in a dense medium, Dicke" narrowing. As discussed in the

derivation of the Voigt profile, collisions are not considered to have any affect on

molecular velocity; therefore, the contribution of the Gaussian line shape to the Voigt is

not altered by collisions. However, the inclusion of velocity-changing collisions, defined

as collisions that change the velocity of the molecule but not the phase, can change the

measurable velocity distribution.

Physically, it is hard to visualize the Doppler profile narrowing discussed by

Rautian and Sobel'man. For example, their hard collision model considers that after

every collision, the memory of the velocity prior to the collision is lost; its velocity is

redistributed in the Maxwellian distribution. Therefore, the instantaneous velocity

distribution of the molecules is always Maxwellian. If the energy of the gas in the

medium remains the same, it is counter intuitive to expect a narrowing of Doppler profile

due to velocity changing collisions. Varghese and Hanson'resent an extreme case to
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illustrate this phenomenon qualitatively. Consider a dense medium where a molecule is

continuously involved in velocity changing collisions, i.e., the molecule conducts a

random walk in velocity space. If the bulk gas is at rest, the mean velocity will approach

zero even though the instantaneous velocity distribution is Maxwellian. Therefore, the

value of measured velocity will depend on the time it takes to make the measurement.

Spectrally, velocity in the line of sight results in a Doppler shiA cop(I+ v,/c); therefore,

the velocity is measured over the period of a wave. In this extreme case, if there are

enough collisions during one period of the fundamental frequency, i.e., if the path is

much less than a wavelength, 2rcL «1, where L equals the average velocity times the

time between collisions, then the velocity measured will be the mean velocity of the

molecule or in the case of a random walk, zero. However, in the other extreme, if

collision were such that the path is much longer than the wavelength, 2rrL» 2, then

velocity changing collision will just interrupt the wave train, broadening the Lorentzian

part of the line width. Rautian and Sobel'man'erived the following equation to show

this effect,

1
I(co) = — Re

W(v)dv
f Aco cop vu+ — — i(co — co — 5 — —')

2 c
eM (v)dv

Aco copvu+ — -i(cop -co-5 — '
2 c

(3.22)

where W(v) is the velocity distribution and u is the velocity changing collision

frequency. The following changes were made to Rautian and Sobel'man's original

equation for notation consistency: substituting Aco/2 = I'nd co,/c = k, and co, — co was

substituted back into the equation for co. Note, when the velocity distribution is
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Maxwellian, the real part of the numerator is a Voigt profile with the Lorentzian width

equal to hm/2+o. However, the denominator results in narrowing. If the velocity

changing collision frequency is small, i.e., much less than the Doppler width, the second

term denominator of the equation is negligible, and the line shape is a Voigt. However,

in the other extreme, when the velocity changing collision frequency is much larger than

the Doppler width, u » 5coo, the second term in the denominator can approach one at

line center, i.e., the second term of the denominator is simply an inverted Voigt weighted

by the velocity changing collision frequency. When normalized, the center is larger than

the Voigt's and narrowed on the sides; however, the wings are larger due to the inclusion

of the velocity changing collision frequency in the Lorentzian portion of the Voigt.

Varghese and Hanson replaced these computational difficult integrations of the

Voigt with the error function resulting in

NG( ',y,g) = Re
[ I — ~rrgv(x', y + g) J

(3.23)

where g is the dimensionless value of the velocity-changing collision frequency divided

by the Doppler width. Note the change of variables in the error function from the

definition used in the definition of the Voigt. The deviation from the unperturbed

radiation frequency, x', remains the same, but the velocity-changing collision frequency

has been added to the collisional broadening frequency, y+ g.

Numerous other line shapes that are available'nclude speed dependent

asymmetries and collision correlation effects. However, they are currently not used to

model any experimental data. Therefore, they are excluded from this thesis. However,

future precision may require the addition of these shapes.
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CHAPTER IV

EXPERIMENTAL DATA

Previous chapters developed the theory of WMS and absorption line profiles.

This chapter discusses experimental data; however, it is directed at some important

features of the method, i.e., the ratioing of harmonic information, pressure vs. harmonic

curves and modeling several absorption profiles on the same sweep.

4.1 Ratioing Harmonic Information

As discussed in previous chapters, the harmonic information measured

experimentally in WMS is simply the Fourier series coefficients of the intensity

variations detected at the photodiode. Figure 4-1 shows the experimental setup. The

intensity variations come from two sources, intensity modulation in the laser, and

absorption. The intensity modulation from the laser is due to carrier modulation in the

laser and manifests itself as an offset in the Nl signal and distortions in the lobes of the

harmonic signals caused by absorption. The intensity variations from the absorption are

due to the laser probing an absorption profile while the center frequency is modulated.

The addition of a ramp sweeps the center frequency of the modulated laser across the

frequency spectrum, probing different portions of the absorption profile resulting in

changes in the Fourier coefficients. The resulting harmonic signals approach the

derivative of the line shape as the modulation index approaches zero. Although this is a

simple concept, exploiting it is difficult. The sinusoidal sampling of a nonlinear profile

leads to complex intensity variations.
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Fig. 4-1 Experimental Setup.

Therefore, numerical methods are required to calculate the coefficients. Typically in

modeling, the intensity variation of one cycle of the modulation is divided into one

thousand discrete points, which requires the calculation of the magnitude of the

absorption at each of these points. This intensity variation is then multiplied by the

sinusoid harmonic for the appropriate coefficient and the product is summed over the

cycle. Finally, the center frequency of the modulation is stepped to the next frequency,

simulating the ramp, and the calculation is repeated. The entire process for five thousand

steps calculating eight harmonics requires approximately nine minutes on a 700 MHZ PC

for a simple profile. The model is imported into EXCEL and compared with

experimental data. If the model does not match the experimental data, a profile

parameter is adjusted to improve the match. This process is quite subjective and can be

time consuming. However, by analyzing the ratio of the magnitudes of even harmonics

at line center, the computation time can be reduced and the subjectivity of the

measurement can be removed.
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If the absorption is weak, la(co~)L~ «I, then the Beer-Lambert law can be

approximated as

I =I,e '—: I, ~(1 — a(co)L). (4.1)

Therefore, the Fourier coefficients, neglecting amplitude modulation, can be

approximated as

1

B~ = — f[— I,*(a(cot — k&Asin(co t+0))Ljjsin(N(co t+0))dt. (4.2)
0

Tuning the center of the modulated laser to line center results in all odd harmonics being

zero, with the exception of Nl, which is offset by the intensity modulation, and even

harmonics will be at their maximum with a reasonable modulation index. Evaluating the

ratio of the magnitude of two even harmonics at line center results in

fa(cot — k&A sin(co t+ 0)) ~sin(N(co t+ 0))dt
0

Ry ——
'I

fa(cot — k&Asin(co„t+0)) ~ sin(K(co„t+ 0))dt
0

(4.3)

where N and K are even harmonic numbers. Substituting the definition of the frequency

dependent absorption coefficient, a(co)= ncrg(co), into equation 4.3 and reducing it

results in

fg(co, — krAsin(co t+0))'sin(N(co t+0))dt

R~ —— '
g(co, — k&Asin(co„t+0))'sin(K(co t+0)gt

0

(4.4)

If the line shape is assumed, the only unknown in this equation is the line width.

Therefore, the ratio of two even harmonics results in a direct measurement of line width

if the absorption is small. Numerically, this reduces the number of points to be
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calculated to one sweep. Additionally, once the line width is known, the integrated

absorption cross section can now be varied to match the magnitude of the data.

As absorption increases, due to line strength or path length, the small signal

approximation for the exponential is no longer valid resulting in the following equation,

~(alp-kyA$'Ilia I+8))L ~ (// gj
N/'

J
-a(e -R&Asn(m r+8))L

0

(4 5)

In this case, the ratio is much more complex. As the strength of absorption increases, the

line shape is distorted. Thus, in addition to the line width, the combination of path length

and line strength contributes significantly to the ratio. A single ratio can lead to a family

of line width/strength combinations. Therefore, the ratio method is most effective in the

small signal domain. Additionally, this method requires simultaneous measurements of

at least two even harmonics; otherwise, the ratio could be contaminated by intensity

variations in the laser.

The above procedure was used to measure RQ (7,8) in the oxygen A band. First

the line was measured at 154 cm to ensure the absorption was in the small signal domain.

The ratio ofN2 to N8 was used to calculate the width half maximum line width of 0.0505

cm'nd an integrated cross section of 8.73E-24 cm/mol. The current accepted values

from HITRAN're 0.0558 cm'nd 8.83E-24 cm/mol in air. These profiles are

presented in Figure 4-2. Additionally, the direct absorption profile is shown. The path

length was then increased to 3219 cm, and 5279 cm, respectively, to move the signal out

of the small signal approximation. The signals were then modeled using the parameters

calculated at 154 cm and are presented in figures 4-3 and 4-4.
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Fig. 4-3 N2 and Ng harmonic signals of RQ (7,8) measured at 3219 cm. Calculated
models are shown in red and data shown in blue. Calculated line width is .0505 cm'nd
line strength is 8.78 cm/mob
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Fig. 4-4 N2 and NS harmonic signals of RQ (7,8) measured at 5279 cm. Calculated models
are shown in red and data shown in blue. Calculated line width is .0505 cm'nd line
strength is 8.78 cm/mob
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the ratio matches. In addition, the model signal magnitudes at 5279 cm are also slightly

larger than the data. Although these figures may not appear as good as previous data,

they are completely void of normalizations. If normalized at each harmonic as done

previously, these matches would be almost perfect.

4.2 Pressure vs. Harmonic Curves

Another well-documented phenomenon is the variation harmonic magnitudes with a

change in pressure, (see figure 4-5). Physically, this is simply due to the change of the

absorption profile due to collisions. There are two factors affecting the turning points of

the harmonic magnitudes. First, the number of molecules increases the magnitude of

absorption resulting in larger intensity variation at the detector; thus, a larger ac voltage is

sent to the lock in amplifier. This accounts for the sharp increase at low pressures.

Secondly, the increased number of molecules results in more collisions, increasing the

line width. This changes the effective spectroscopy modulation index, i.e., line width

divided by modulation width, KWKMIAk& —— FWKMIAro. (Note this modulation

index definition is different from the standard communication modulation index used

earlier. Due to a large difference in modulation frequency and absorption line width, the

use of the standard modulation index definition would result in modulation indexes of

over 100,000. The spectroscopic definition reduces this number and makes it more

meaningful; however, it is a relative parameter.) This change in line width due to

collisions is critical due to the nature of the sampling. This can easily be visualized by

reviewing figure 1-4. The broadening of the sampled signal will result in a change in the
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Fourier coefficients depending on how well it matches the harmonic of interest. The

turning points also depend on the line shape. For example, Ried and Labrie'alculated

that the optimum modulation index for N2 signals for the Gaussian and Lorentzian line

shapes was 2.2, which has been reproduced in MATLAB.

Even Hnrmnnrn 000pnllnnee ve preeenm

g 0.10

0.1
n

0 00

0

0

P 0 (Ig
Fig. 4-5 Theoretical Even Harmonic Magnitudes vs. Pressure for a Gaussian Line shape.

An experiment was conducted in a chamber to measure this phenomenon using

the RQ(7,8) oxygen line. Ratios were once again used to calculate line width; however,

simultaneous measurements were not. The evolution of the direct absorption line profile

is shown in figure 4-6. The broadening of the line is due to the increased collisions while

the depth of the profile is caused by the increase in absorbers.

After modulation was added at one thousand hertz, the harmonic signals were

recorded using a Lock-in-amplifier. The ratio resulted in a calculated line width of

0.0487 cm'nd a line strength of 8.13E-24 cm/mok HITRAN'ndicates a line width of

0.0508 in oxygen. Figures 4-7, 4-8, 4-9, and 4-10 show the experimental versus model

magnitudes for N2, N4, N6 and Ng, respectively. Note that although the model and data

match qualitatively, lower harmonics have a mismatch in magnitude.
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Fig. 4-6 Direct absorption of RQ(7,8) at 50, 500, 1000, and 1500 torr.
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Fig. 4-7 N2 Line center Magnitude vs. pressure for RQ(7,8) in oxygen. Modeled as a Voigt with a
line width of 0.0487 cm'.
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Fig. 4-8 N4 Line center Magnitude vs. pressure for RQ(7,8) in oxygen. Modeled as a Voigt
with 8 line width of 0.0487 cm'.
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Fig. 4-9 N6 Line center Magnitude vs. pressure for RQ(7,8) in oxygen. Modeled as a Voigt with a
linewidth of 0.0487 cm '.
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Fig. 4-i0 NS Line center Magnitude vs. pressure for RQ(7,8) in oxygen. Modeled as a Voigt with
a line width of 0.0487 cm'.
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Fig. 4-12 Residue vs. Harmonic order for the comparison of a Voigt model of RQ(7,8) with a
line width of 0.0487 cm'nd line strength of 8.13 cm/mol from 50 torr to 1602 torr.

The frequency spectra for 500 torr are shown in Figure 4-11. Although the magnitudes

for the model are lower than the experimental data at line center, the match across the

spectrum is excellent. Figure 4-12 shows the RMS error for all pressures and harmonics.

This experiment is very similar to the experiment conducted by Bullock". Note,

however, that for the experiment described in this thesis a Voigt line shape was used as

the model instead of the Rautian Sobel'man with analogous results, i.e., similar residues.

Unfortunately, there were two errors in the computer model of the Rautian Sobel'man.

First, the narrowing parameter was not included in the line width portion of the complex

error function (See equation 3.23 above). Secondly, this Varghese and Hanson

approximation is inherently not normalized, i.e., the numerator integrates to an area of
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Wn; however, if the narrowing parameter is not equal to zero, the denominator will

always increase this area. This would need to be corrected numerically.

4.3 Modeling several lines with a single ramp

Although it seems a simple extension of WMS, increasing the length of the ramp

to include several lines for modeling results in several problems. First, any nonlinearity

in the ramp causes errors in the frequency of the line center. Secondly, inaccurate

modeling of the intensity modulation results in errors in the qualitative shape and

magnitude of the harmonics. Previously, these problems were overcome by numerous

normalizations, i.e., normalizations at each harmonic for each line. However, the

information contained in the ratio of the harmonics is lost. Therefore, it is important to

model the data without any normalizations to mine all of the information.

An experiment was conducted to include four lines in one sweep; RR(13,13),

RR(13,13), RR(43,43), and RQ(12,13). Table 4.1 presents the calculated data versus the

HITRAN data for these lines.

Table 4-1 Comparison of experimental caicuiations and HITRAN data.

Symbol * indicates 0 0 isotope.
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Figure 4-13 shows the direct absorption of this sweep. Notice that only the strongest line,

RR(13,13) is visible. Figures 4-14 through 4-16 show the power of WMS. Notice that

the weaker lines are more visible at higher harmonics. Although this experiment has

been conducted before, these models used here are not normalized. The laser was

characterized, i.e., the intensity output for a given input was measured and the magnitude

of the harmonics was simply controlled by the amount of absorption.

orssv

I.S

0.5 0.505 0.51 0.515 0.52 0 525 00n 0.555 0.5 ~ 0.505 0.55

Fig. 4-13 Direct absorption of RR(13,13),RR(13,13)~,RR(43,43), and RQ(12,13).

Symbol * indicates ' "0 isotope.

Second Harmonic (N=2) Detection

3,13)

0 000+00
7

Wavelength (nm)

Fig. 4-14 N2 prolde for RR(13,13), RR(13,13)*, RR(43,43), and RQ(12,13).

Symbol * indicates "0 ' isotope.
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Fig. 4-15 N7 profile for RR(13,13), RR(13,13)*, RR(43,43), and RQ(12,13).
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Fig. 4-16 NS profile for RR(13,13), RR(13,13)*, RR(43,43), and RQ(12,13).

Symbol*indicates '' isotope.

Notice on figure 4-16 that a small non-linearity in the ramp is visible, i.e., the relative

position of the lines is slightly offset.
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CHAPTER V

FUTURE WORK

Currently, the precision of the experiments performed in this research is good. As

shown in figure 4-11, the residual between the model and experimental data is less than

3.00% for numerous pressures and harmonics. However, there are several ways to

improve the precision. For example, taking simultaneous measurements of multiple

harmonics to alleviate intensity variations for ratioing. We are just starting to do this on a

regular basis. Also, automating the measurement and modeling will improve precision.

Ratioing removes the subjectivity, which allows for automation. This will allow for

results at almost real time, which will also reduce errors due to any drifts in the laser

characteristics.

In addition, in all the measurements discussed previously, the line shape was

known a priori. Therefore, by ensuring the absorption profile was in weak absorption

environment by controlling the path length, the line shape parameters were solved by

varying them independently. However, more complex line shapes do not allow for this

independent variation. For example, the narrowed Voigt, or Rautian Sobel'man profile,

contains two parameters that control the conventional line width, the narrowing

parameter and the collision line width. The easiest method of separating the affects of

these two parameters is to vary the pressure. This inherently removes some absorption

lines from the weak absorption approximation due to their line strength and density.

Therefore, a non-linear least-squares fit between the actual and experimental data is

required to validate the parameters. The least-squares errors were painstakingly

calculated using EXCEL. The automation of the calculations using MATLAB will
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greatly enhance these measurements. Additionally, the ability to obtain precise

automated measurements of line shapes will allow for the mining of the information

contained within them on a real time basis.

The only approximation currently involved in the models is the exclusion of the

laser line widths. The laser is approximated by a delta function, which is currently

justified by the ratio of absorption profile line width to laser line width, approximately

50:l. In chapter II, a method for inclusion of laser line width was included; however, it

has not been fully implemented. Although the computational cost of adding the line

width is considered prohibitive, as precision increases it may be required for final

measurements.

Finally, work is being conducted on determining the amount of entropy contained

in each harmonic using communication theory. By quantifying the information in each

harmonic, parameters, such as modulation index, can be selected prior to an experiment

to enhance measurements. For example, certain features such as narrowing may be more

pronounced at certain modulation indexes and harmonics. Entropy can be used to

identify which harmonic will contain the most information on the feature being

investigated allowing the investigator to focus their efforts.

WMS provides a cost effective means of obtaining information of a gaseous

system through precise measurements of the transition line shape parameters. Although

current experiments are providing good results, future work should result in a viable real

time measurement device.
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APPENDIX

MATLAB SIMULATION

The following program was written in MATLAB to demonstrate Wavelength

Modulation in the Frequency Domain. The program provides a GUI with eight panels,

displaying the absorption and laser profiles and the detected signals. Although this

program is too slow to efficiently model experimental data, it provided tremendous

insight to the theory and method. On the right, there are several edit boxes, which allow

the entry of the center frequency, Am, modulation frequency, sampling frequency and

line width. Additionally, there is a menu to allow sweeping of the center frequency of the

laser or the modulation index.

clsi ii
s:'ig.

A-1 Top left panel displays the absorption profde. The second panel on the left is the laser
proiile. The third panel is the Fourier Transform of the detected intensity. The bottom panel is
setectabte between the harmonic phase angles or the time domain signal. The right panels show the
magnitudes of Nl through N4.
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When the modulation index is selected, the laser is centered on the line center

while the modulation index is swept. In this case, the panels on the right display the

magnitudes of the even harmonics at each modulation index. A CD containing the

program is included.

function amplitude4(action,s,ss);
'/~mplitude4 Demonstrates Wavelength modulation and detection.

global steps

steps=100;
start=o;
if nargin&1,

action— initialize';
end;

if strcmp(action,'initialize',
shh = get(0,'ShowHiddenHandles');
set(0,'ShowHiddenHandles','on'
figNumbe~igure( ...

'Name','Wavelength Modulation Simulator', .

Randlevisibility'",callback',...
'IntegerHandle",on',...
'NumberTitle'",off);

% Set up the axes
framel Hndl = axes( ...

Vnits",normalized', ...
'Position',[0.08 0. 76 0.30 0.18], ...
XTick',[],YTick',[], ...
Box, oil);

frame2Hndl = axes( ...
Vnits",normalized', ...
'Position',[0.08 0.51 0.30 0.18], ...
XTick',[],'YTick',[], ...
'Box',hn');

frame3Hndl = axes( ...
Vnits'",normalized', ...
'Position',[0.08 0.26.30 0.18], ...

XTick',[],'YTick',[], ...
'Box",on';

frame4Hndl = axes( ...
Vnits','normalized', ...

'Position',[0.08 0.03 .30 0.18], ...
XLim',[start steps], ...
XTick',[],'YTick',[], ...
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'Box','on');
frameSHndl = axes( ...

Vnits",normalized', ...

Position',[0.46 0.76 0.30 0.18], ...

XTick',[],'YTick',[], ...
Tlox','on';

frame6Hndl = axes( ...
Vnits','normalized', ...
Position',[0.46 0.51 0.30 0.18], ...
XTick',[],'YTick', [], ...
'Box",on';

frame7Hndl = axes( ...
Vnits",normalized', ...
'Position',[0.46 0.26.30 0.18], ...

XTick',[],'YTick',[], ...
'Box',bn');

framegHndl = axes( ...
Vnits','normalized', ...
Position',[0.46 0.03 .30 0.18], ...

XTick',[],'YTick',[],
Box'",on';

'/o
'/o Information for all buttons (and menus)
IabelColot=[0.8 0.8 0.8];
ylnitpos&.90;
menutop=0.95;
btnTop = 0.6;
top=0. 75;
left=0. 82;
btnWid=0. 15;
btnHt=0.06;
textHeight = 0.05;
textWidth = 0.10;
'/u Spacing between the button and the next command's label
spacing&.012;

'/o
'/o The CONSOLE frame
fimBorder-0.019; frmBottom&.04;
frmHeight = 0.92; frmWidth = btnWid;
yPos&rmBottom-frmBorder;
frmpos=[lett-frmBorder yPos frmWidth+2'frmBorder fnnHeight+2 sfrmBorder];
hmicontrol( ...

'Style','frame', ...
Vnits",normalized', ...

'Position',frmpos, ...

TIackground Color', [0. 5 0. 5 0.5]);

0/

N Carrier frequency label and text field
top =.94;
labeIWidth = frmWidth-textWidth-.01;
labelBottom = top-textHeight;
labelLeit = left
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h textHeight];labelPos = [labelLett labelBottom labelWidt
h = uicontrol( ...

'Style','text', ...
Vnits','normalized', ...
'Position',labelPos, ...
'HorizontalAlignment','left', ...
'String','Fc', ...
Tnterruptible','off, ...
'BackgroundColor',[0.5 0.5 0.5], ...
'ForegroundColor",white');

'/o Text field
textPos = [labelLeft+labelWidth labelBottom
callbackStr = 'amplitude4("setFc")';
FcHnd1 = uicontro1( ...

'Style','edit', ...
Vnits",normalized', ...
'Position',textPos, ...
TIorizontalAhgnmenf,'center', ...
'Background",white', ...
'Foreground',black', ...
'String','8192',Vserdata',8192, ...
'callback',callbackStr);

a/o

Yo Change in Frequency and text field
labelBottomNop-2~textHeight-spacing;
labelLeft = left;
labelPos = [labelLeft labelBottom labelWidth
h = uicontrol( ...

'Style",text', ...
Vnits",normalized', ...
Position',labe)Pcs, ...
TIorizontalAIignmenf,'left', ...
'String','Df', ...
'Interruptible','off, ...
'BackgroundColor',[0.5 0.5 0.5], ...
'ForegroundColor','white');

'/a Text field
textPos = [labelLeft+labelWidth labelBottom
callbackStr = 'amplitude4("setDP')';
D1Hndl = uicontrol( ...

'Style",edit', ...
Vnits','normalized', ...
'Position',textPos, ...
TIorizontalAlignmenf,'center', ...
'Background",white', ...
'Foreground',black', ...
'String','100',Vserdata',100, ...
'callback',callbackStr);

0/

textWidth textHeight],

textHeight];

textWidth textHeight];

'/a Set Modulation frequency and text field
labelBottomNop-3 stextHeight-2sspacing;
labe)Left = left;
labelPos = [labelLeft labelBottom labelWidth textHeight];
h = uicontrol( ...

'Style",text', ...
Vnits",normalized', ...
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'Position',labelPos, ...
'HorizontalAlignment',1eft', ...
'String',T'm', ...
'Interruptibfe','off, ...
'BackgroundColor',[0.5 0.5 0.5], ...

'Foreground Color','white');
% Text field

textPos = [labelLeft+IabeIWidth labelBottom textWidth textHeight];
callbackStr = 'amplitude4("setFm")'I
FmHndl = uicontrol( ...

'Style','edit', ...

Vnits','normalized', ...
'Position',textPos, ...
'HorizontalAlignment','center', ...
'Background",white', ...
'Foreground','black', ...
'String','I',Vserdata', I, ...
'callback',callbackStr);

th textHeight];

m textWidth textHeight];

% Sampling frequency label and text field
labelBottomNop-4"textHeight-3 aspacing;

labelLeft = left;
labelPos = [labelLeft labelBottom labelWid
h = uicontrol( ...

'Style",text', ...
'Units','normalized', ...
Position',IabeIPos, ...
'String','Fs', ...
'HorizontalAlignment',1eft', ...
'Intenuptible'",off, ...

'Background',[0.5 0.5 0.5], ...
'Foreground','white');

% Text field
textPos = [labelLeft+labelWidth labelBotto
callbackStr = 'amp litude4("setFs")'I
FsHndl = uicontrol( ...

'Style','edit', ...
Vnits",normalized', ...
Position',textpos, ...
'HorizontalAlignment','center', ...
Background",white', ...
'Foreground','black', ...
'String','32768',Vserdata',32768, ...
'Callback',callbackStr);

% Absorption Signal
labeIBottomaop-5 atextHeight-4aspacing;

IabeILeft = left;
labelPos = [IabeILeft labelBottom labelWidth textHeight];
h = uicontrol( ...

'Style",text', ...

Vnits','normalized', ...

'Position',labelPos, ...
'String',13v', ...
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'HorizontalAlignmenf,'leff, ...
qntenuptible'",off, ...

q)ackground',[0.5 0.5 0.5], ...
'Foreground','white');

% Text tield
textPos = [labelLett+labelWidth labelBottom textWidth textHeight];
callbackStr = 'amplitude4("setDv")',
DvHndl = uicontrol( ...

'Style','edit', ...
Vnits','normalized', ...
'Position',textPos, ...
'HorizontalAlignment','center', ...
'Background','white', ...
'Foreground','black', ...
'String','I 00',Vserdata',100, ...
'Callback',callbackStr);

% Absorption Signal
labe(Bottom&op 6stextHeight-5sspacing;

labelLett = left;
labelPos = [labe)Lett labelBottom labelWidth textHeight];
h = uicontrol( ...

'Style','text', ...

Vnits",normalized', ...
'Position',labelPos, ...
'String','m', ...
qforizontalAlignmenf,'leff, ...
'Interruptible'",off, ...
'Background',[0.5 0.5 0. 5], ...
'Foreground','white');

% Text field
textPos = [labelLeft+labelWidth labelBottom textWidth textHeight];
callbackStr = 'simulat4("modulate")'1
MHndl = uicontrol( ...

'Style",edit', ...
Vnits','normalized', ...
'Position',textPos, ...
'HorizontalAlignment','center', ...
'Background",white', ...
'Foreground','black', ...
'String',", ...

'Callback',callbackStr);

% The Sweep Menu
menuNumber=2;
labelStr=T'requencylLinewidth';

% Generic button information
SweepHndl=uicontrol( ...
'Style','popupmenu', ...
'Units','normalized', ...
'Position',[left frmBottom+6s(btnHt+spacing) btnWid btnHt], ...
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'String',labelStr, ...
'Interruptible",on');

% "Pause" button
btnNumber=1;
labe!Str —'Pause',

% Generic button information
PauseHndl~icontrol( ...
'Style",togglebutton', ...
Vnits','normalized', ...
Position',[left frmBottom+4'(btnHt+spacing) btnWid btnHt], ...

'String',labelStr);

0/

% "Stop" button
btnNumber=1;
labelStr='Stop';

% Generic button information
StopHndlmicontrol( ...
'Style','togglebutton', ...
Vnits",normalized', ...

'Position',[lett frmBottom+3a(btnHt+spacing) btnWid btnHt], ...

'String',labelStr);

0/

% "Sweep" button
btnNumber=2;
labelStt='Sweep',
callbackStr='amplitude4("sweep");

% Generic button information
SweepHandl=uicontrol( ...

'Style",pushbutton', ...
Vnits",normalized', ...

Position',[left frmBottom+5 "(btnHt+spacing) btnWid btnHt], ...
'String',labelStr, ...
'Cagback',callbackgtr);

0/

% The Angle Menu
menuNumber=l;

labelStr='Nl Angle]N2 Angle(N3 Angl/N4 Angl/Time Domain',

% Generic button information
anglHndlmicontrol( ...
'Style",popupmenu', ...
Vnits','normalized', ...

Position',[left frmBottom+2a(btnHt+spacing) btnWid btnHt], ...
'String',labelStr, ...
'Interruptible",on');
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% Message box in center of figure - usually invisible
messageHndl = uicontrol('style",edit',..,

'string',Resampling speech waveform ...',...
'units','normalized',...
'position',[.15 .45 .5 .15],...
'max',2,...
'visible",olY);

% The INFO button
labe]Stt='Info';
callbackStr='amplitude4("info")';
helpHndlmicontrol( ...

'Style','pushbutton', ...
Vnits",normalized', ...

Position',[lett frmBottom+btnHt+spacing btnWid btnHt], .

'String',labelStr, ...

'Callback',callbackStr);

0/

% The CLOSE button
labelStr='Close';
callbackSn='close(gcf)';
closeHndtmicontrol( ...

'Style",pushbutton', ...
Vnits','normalized', ...
'Position',[left frmBottom btnWid btnHt], ...
'String',labelStr, ...
'Callback',callbackStr);

hndlList=[framelHndl frame2Hndl frame3Hndl ...
FcHndl FsHndl ...

messageHndl helpHndl closeHndl DIHnd1 FmHndl ...

DvHndl, frame4Hndl, frame5Hndl, frame6Hndl, frame7Hndl, framegHndl, PauseHndl ...
anglHndl, MHndl, SweepHndl, StopHndl];

set(figNumber, ...
Visible",on', ...

VserData',hndlList);

set(gcf,Pointer','watch);
drawnow
amplitude4('modulate'
set(gcf,'Pointer",arrour);
set(0,'ShowHiddenHandles',shh)
retufll

elseif strcmp(action,'setFc'),
hndlList=get(gcf,Vserdata');
filtHndl = hndlList(5);
v = get(gco,Vserdata');
s = get(gco,'String';
vv = eval(s,num2str(v));
Fs = get(filtHndI,VserData);
if vv&Fs/2

I
vv&0, vv = v; end

vv = round(vv);
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set(gco,Vserdata',vv,'String',num2str(w))
amplitude4('modulate'
return

elseif strcmp(action,'setDf),
hndlList=get(gcf Vserdata');
v = get(gco,Vserdata');
s = get(gco,'String';
w = eval(s,num2str(v));
if w&&, w = v; end
w = round(w'10)/1 0;
set(gco,Vserdata',w,'String',num2str(vv))
amplitude4('modulate'
fetulll

elseif strcmp(action,'setDv'),
hndlList=get(gcf,Vserdata');
v = get(gco,Vserdata');
s = get(gco,'String';
w = evel(s,num2str(v));
if vv&K, vv = v; end
w = round(vva10)/10;
set(gco,Vserdata',vv,'String',num2str(w))
amplitude4('modulate'
fetufn

elseif strcmp(action,'setFm'),
hndlList=get(gcf,Vserdata');
v = get(gco,Vserdate');
s = get(gco,'String';
vv = eval(s,num2str(v));
if w&K, vv=v; end
w = round(w 10)/10;
set(gco,Vserdata',vv,'String',num2str(vv))
amplitude4('modulate'
fetufn

elseif strcmp(action,'setFs'),
set(gcf,'Pointer",watch';
v = get(geo,Vserdata');
s = get(gco,'String';
vv = eval(s,num2str(v));
if w&K, vv =v; end
vv =

round(vva10)/10'et(gco,Vserdata',vv,'String',num2str(w))

hndlList=get(gcf,Vserdata');
messageHndl = hndlList(6);
amplitude4('modulate'
return

elseif strcmp(action,'modulate', % modulate, and update display
set(gcf,pointer",watch';
axHndl=gee;
hndIList=get(gcf,Vserdata');
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framel Hndl = hndlList(1);
frame2Hnd1 = hndlList(2);
frame3Hndl = hndlList(3);
FcHndl = hndlList(4);
FsHndl = hndlList(5);
DfHndl= hndlList(9);
FmHndl= hndlList(10);
DvHndl= hndlList(11);

set(gcf,'nextplot",add')

edgecolor = get(gca,'colororder'); edgecolor = edgecolor(1,:);

Fs = get(FsHndl,VserData'); % Sampling frequency
Fc = get(FcHndI,VserData'); % Carrier frequency
Df = get(DfHndl,VserData'); % Change in Frequency
Fm = get(FmHndl,VserData'); % Modulation Frequency
dv = get(DvHndl,VserData'); % Absorption Linewidth

FFTsamples=Fs;

%Build a signal
t = (0:1/Fs:2)';

y = sin(Fms2~pist);

%Build a double sided absorption signal
ff=FFTsamples/2a(0:(1/(FFTsamples)):2);
fff~(1;(length(ff)-1)/2);

absorp=exp(-2"8.9 10"-23 2.7 10"15 3 10"8 lorentzmf(ff [dv, Fc])), exp(-2 8.9~10"-
23 a2.7a10"15s3s10xgslorentzmf(ff; [dv, FFfsamples-Fc]));

'/oabso~xp(-1 alorentzmf(ff, [dv, Fc])).sexp(-1 slorentzmf(ff, [dv, FFTsamples-Fc]));
absorpDisp=absorp(1:(length(absorp)-1)/2);
axes(framelHndl), plot(fff absorpDisp), grid on, ylabel('Absorption'

%Modulated Signal Generation
%kf=Df/Fs 2spi;
yl=cos(2api "Fest+ Df/Fmsy);

%y1 = (y,Fc,Fs,'fm',kf);

%Laser Signal
www=(0:FFTsamples-1)/2;

Yl = fft(y1,2'FFTsamples);
Y2 = Yl(1:FFTsamples);
axes(frame2Hndl), plot(transpose(www),abs(Y2)/FFTsamples), grid on, ylabel(qaser')

%detection signal
eFieldNranspose(absorp(1:length(Y1))).sYl;
detectl= ifft(eField, 2aFFTsamples);
detect= fll((real(detectl))."2, 2sFFTsamples);
detect2=detect(2:14sFm+10);
www= I/2s(2: 14sFm+10);
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axes(frame3Hndl), plot(www,abs((detect2))/FFTsamples), grid on, ylabel('Detection Signal'
set(gcf,'Pointer', 'arrow/)
return

elseif strcmp(action,'sweep'), % sweep the signal
set(gcf,'Pointer','watch');
axHndl=gee;
hndlList=get(gcf,Vserdata');
SweepHndl = hndlList(20);

sweepSelect = get(SweepHndl,Value'; % Sampling frequency
if sweepSelect = 1

amplitude4('sweepFreq')
elseif sweepSelect = 2

amplitude4('sweepLW')
end
return

elseif strcmp(action,'sweeppreq'), % sweep the signal
set(gcf,'Pointer",watch');
axHndl=gee;
hndlList=get(gcf,Vserdata');

frame 1 Hndl = hndlList(1);
frame2Hndl = hndlList(2);
frame3Hndl = hndlList(3);
FcHndl = hndlList(4);
FsHndl = hndlList(5);
DfHndl= hndlList(9);
FmHndl= hndlList(10);
DvHndl= hndlList(11);

frame4Hndl= hndlList(12);
frameSHndl= hndlList(13);
frame6Hndl= hndlList(14);

frame7Hndl= hndlList(15);
framegHndl= hndlList(16);

PauseHndl= hndlList(17);
anglHndl= hndlList(1 g);
MHndl= hndlList(19);
StopHndl= hndlList(21);

set(gcf,'nextplot",add')

edgecolor = get(gca,'colorordef); edgecolor = edgecolor(1,:);

Og's

= get(FsHndl,VserData'); % Sampling frequency
Fc = get(FcHndl,VserData');% Carrier frequency
Df = get(DtHndl,VserData'); % Change in Frequency
Fm = get(FmHndl,VserData'); % Modulation Frequency
dv = get(DvHndl,VserData'); % Modulation Frequency

WMS Generation

FFTsamples=ps;
t = (0;1/Fs;4/Fm)',

y = cos(Fm~2vpi~t+Ovpi/180); % Wavelength Modulation
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%figure, axes, plot(y(1:2000))

www=(0:FFTsamples-1)/2;
wwwDispla~(Fc-2"Dt)s2:(pc+2~Dt)~2);

%Show Modulation Index
set(MHndl,'String',(Df/dv));

%Sweep Variables
i=1;

%Build modulation signal
yl=cos(2spi~Fc~t+ Df/Fmay);

while i&steps,
%iwteps/2; %use to look at line center
%SweepSignal= g~dv-16si~dv/(steps);
absSweep=Fc+gsdv/2-8sdvs i/steps;
FreqValue(i)=(Fc-absSweep)/(dv);

%Electric Field

%Iaser Signal

yl = cos(2spisFcst+ Df/Fmsy)
ylO=yl;
%ifi=4

figure, axes, plot(yl(1:2000))
%end

Amplitude Modulation
%yl =((5+3 (i/steps))+(,083)acos(2 Fm pist+pi/2)). yl; %AmplitudeModulation — Ramp
%yl =(10+(,083)acos(2sFm pi t+90 pi/180)). yl; %Amplitude without ramp+)

Yl = fll(y1,2sFFTsamples);
Y2 = Yl (1:FFTsamples);

%Build a double sided absorption signal
ff=FFTsamples/2 a(0;(1/(FFTsamples)):2);
'/oabsorp=1-10slorentzmf(ff, [dv, Fc+SweepSignal])-10alorentzmf(ff, [dv, FFTsamples-

(Fc+SweepStgnal)]),
(-2'8.9'IO"-23s2.7'IO"15~3&IO gslorentzmf(ff, [dv, absSwe P])).'e P(-'3

~2.7s10"15s3s10"8slorentzmf(ff, [dv, FFTsamples-(absSweep)]));

%Sweep Signal added to Display scales To display freq shift for visual effect
absorpDisp=absorp(((Fc-2sDf)s2):((Fc+2sDf)"2));
axes(framelHndl), plot(wwwDisplay, absorpDisp), grid on, ylabel('Absorption', axis('tight')

%eField signal
eFietd~nspose(absorp(1: length(Y1))).aY1;

eFieldDisplay=eField((Fc-2'Df)'2:(Fc+2aDI)s2);

axes(frame2Hndl), plot(wwwDisplay, real(epieldDisplay)), grid on, ylabel(F. Field', axis('tight')

%detection signal
detectl= ifll(eField, 2sFFTsamples);
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'/otime domain=(real(detectl))."2;
amplitude info=((5+3"(i/steps))+2s(.083)scos(2sFmspist+pi/2));
time domain=amplitude info(1:length(detectl)).~(real(detectl))."2;
'/oamplitudeM=(0. 169scos(2sFmspist+92upi/180));
'/oamplitudeM=amplitudeM(ldength(time domain));
'/otime domainNime domain.~amplitudeM;

detect= fft(time domain, 2sFFTsamples);
detect2=detect(2H4sFm+1 0);
time domainl =(time domain(1:100));
'/oBuild Arrays for display
'/oFreqValue(i)=(Fc-SweepS ignal);
'/owavelength(i)=3 10"8/FreqValue(i);

NO(i)=detect(1);
Nl(i)=detect(2sFm+1);
N2(i)=detect(4sFm+1);

N3(i)=detect(6sFm+I );
N4(i)=detect(8sFm+1);

N5(i)=detect(10"Fm+1);

'/oBuitd an array to display angle data
'/otest = 1/Fs fit(y10,2sFs);
test axis = transpose(1:2'Fs);
test axisshorttest axis(1:Fs);

phi=0
angle0(i)=angle(detect(1)) s 180/pi-phi;
anglel (i)=angle(detect(2"Fm+1)) s 180/pi+phi;

angle2(i)=angle(detect(4sFm+1)) s 180/pi+phi;
angle3(i)=angle(detect(6sFm+1)) s 180/pi+phi;

angle4(i)=angle(detect(gsFm+1))'180/pi+phi;
angle5(i)=angle(detect(10sFm+1))s180/pi+phi;

angleSelect = get(anglHndl,Value);
if angleSelect = 5,

detect3 = detect(1:14sFm+10);
YMetect3 = detect2(2:size(detect2));
first=(ifft(detect3, 2sFFTsamples));
test axis = transposal:2~Fs);
test axislNest axis(1:Fs);
firstl&trst(1:Fs);
axes(frame4Hndl),plot((test axis 1),abs(first1)), ylabel('Time Domain';
elseif angleSelect = 1

angleDisplay=anglel;
axes(frame4Hndl),plot(angleDisplay), ylabel('Angle'

elseif angleSelect = 2
angleDisplay=angle2;
axes(frame4Hndl),plot(angleDisplay), ylabel('Angle'

elseif angleSelect = 3

angleDisplay=angle3;
axes(frame4Hndl),plot(angleDisplay), ylabel('Angle'

elseif angleSelect = 4
angleDisplay=angle4;

axes(frame4Hndl),plot(angleDisplay), ylabel('Angle'
end
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'/odisplay data
axes(frame5Hndl), plot(FreqValue,imag(N1)/FFTsamples), grid on, xlabel('Frequencl/), ylabel('Nl')
axes(frame6Hndl), plot(FreqValue,real(N2)/FFTsamples), grid on, xlabel('Frequency', ylabel('N2')
axes(frame7Hndl), plot(FreqValue,imag(N3)/FFTsamples), grid on, xlabel('Frequency', ylabel('N3')
axes(frameSHndl), plot(FreqValue,real(N4)/FFTsamples), grid on, xlabel('Frequency', ylabel('N4')

wwwAnalyzer=l/2"(2:14sFm+10);
axes(frame3Hndl), plot(wwwAnalyzer,(abs(detect2))/FFTsamples), ylabel('Analyzers)

drawnow;
i=i+1;
Pause = get(pauseHndt/Value';
if Pause=l

pause
end
Stop = get(StopHndl,Value';
if Sto~l

return
end

end
set(gcf,Pointer', 'arrowr)
N1 data=[real(N1);Freq Value];
N2data=[real(N2);FreqValue];
N3data=[real(N3);FreqValue];
N4data=[real(N4);FreqValue];
N5data=[real(N5);FreqValue];
dlmwrite('nlampdata.txt',Nl data,'m')
dlmwrite('n2ampdata.txt',N2data,&')
dimwrite('n3ampdata.txt',N3 data,&')
dlmwrite('n4ampdata.txt',N4data,W)
dlmwrite('n5ampdata.txt',N5data,"n')

return

elseif strcmp(action,'sweepLW), '/o sweep the signal
set(gcf,'Pointer",watch');
axHndl=gca;
hndlList=get(gcf,Vserdata');
framelHndl = hndlList(1);
frame2Hndl = hndlList(2);
frame3Hndl = hndlList(3);
FcHndl = hndlList(4);
FsHndl = hndlList(5);
DfHndl= hndlList(9);
FmHndl= hndlList(10);
DvHndl= hndlList(11);

frame4Hndl= hndlList(12);
frameSHndl= hndlList(13);
frame6Hndl= hndlList(14);

frame7Hndl= hndlList(15);
frameSHnd 1= hndlList(16);
PauseHndl= hndlList(17);
angIHndl= hndlList(18);
MHndl= hndlList(19);
StopHndl= hndlList(21);

set(gcf,'nextplot','add')
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edgecolor = get(gca,'colororder'); edgecolor = edgecolor(1,:);

Fs = get(FsHndl,VserData'); % Sampling frequency
Fc = get(FcHndl,VserData'); % Carrier frequency
Df = get(DfHndl,VserData'); % Change in Frequency
Fm = get(FmHndl,VserData'); % Modulation Frequency
dv = get(DvHndl,VserData'); % Linewidth

FFTsamples=Fs;
t = (0;1/Fs;2)';

y = sin(Fma2apiat);
%Sweep Variables

ff=FFTsamples/2a(0:(1/(FFfsamples)):2);
fff~f:(length(ff)-1 )/2);
i=1;

www=(0:FFTsamples-1)/2;
wwwD isp laywww((Fc-L 5 aDf)"2:(Fc+1.5aDf)a2);

%Build a double sided absorption signal

absorp=exp(-120vlorentzmf(ff, [dv, Fc])).sexp(-120vlorentzmf(ff [dv, FFTsamples-Fc]));
absorpD isp=absorp((Fc-1.5 aDf)a2:(Fc+ 1. 5 "Df)a2);

absorp~xp(-120sgaussabs(ff, [dv, Fc])).vexp(-120sgaussabs(ff, [dv, FFTsamples-Fc]));
absorpDispG absorpG((Fc-l.5aDf)a2:(Fc+1.5aDf)"2);

axes(framelHndl), plot(wwwDisplay,absorpDisp, 'b',wwwDisplay,absorpDispG, 'g —'), grid on,
ylabel('Absorption', axis('tighf)

dlmwrite('absprof txt',real(absorpDisp),sn')

while i&steps,

%Laser Signal
%kf = (Df+ivDf/1 0)/Fsa2api;
yl cos(2 pi Fc"t+ (Df+iaDf/10)/Fmsy);

%yl = modulate(y,Fc,Fs,'fm',kf);

Yl = m(y1,2vFFTsampfes);
Y2 = Yl(1:FFTsamples);

Yl display=Y1((Fc-1.5'Df)'2:(pc+1.5aDf)'2);

axes(frame2Hndl), plot(wwwDisplay,(real((Y1 display))), 'r'), axisPight'),grid on, ylabel(Vases,
axis('tight')
%dlmwrite(taserdata. txt',real(Y 1 display),%')

%Lorentzian absorbed eField signal
eField&ranspose(absorp(1:length(Y1))).aYl;

eFieldDisplay=eField((Fc-1 5~Df)s2:(pc+1.5~Dt)~2);
axes(frame3Hndt), plot(wwwDisplay,(real(eFieldDisplay)), 1&'), axis('tight', grid on,

ylabel(Lorentzian'), axis('tight')
dtmwrite('absorta.txt',real(eFieldDisplay),tn')
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%Gaussian absorbed eField signal
eFieldG*-transpose(absorpG(1: length(Y1)))."Yl;

eFieldDisplay&=eFieldG((Fc-1. 5 aDI)a2:(Fc+1. 5 aDf)a2);
axes(frame4Hndl), plot(wwwDisplay,(real(eFieldDisplayG)), 'g'), axis('tight'), grid on,

ylabel('Gaussian', axis('tight')

%generate square law detection signals
detectl= ifft(eField, 2aFFTsamples);

detect= fft((real(detect1)). 2, 2'FFTsamples);
detect2=detect(2:20vFm+10);

detectlG ifft(eFieldG, 2aFFTsamples);
detectG fit((real(detect 1 G))."2, 2aFFTsamples);

detect2~etectG(2:20~Fm+10);

%Save data in arrays
NL2(i)=detect2(4aFm);
NL4(i)=detect2(gaFm);

NL6(i)=detect2(12vFm);
NL8(i)=detect2(16"Fm);
NL10(i)=detect2(20aFm);

NG2(i)=detect2G(4aFm);
NG4(i)detect2G(8~Pm);

NG6(i)=detect2G(12aFm);
NG8(i)=detect2G(16aFm);
NG1 0(i)=detect2G(20aFm);

%Determine modulation index
MIdisplay(i)=2"(Df+iaDf/10)/(dv);

%display data

'/oaxes(frame4Hndl), plot(MIdisplay,abs((NL2))/FFTsamples), grid on, ylabel('N2')
axes(frame5Hndl), plot(MIdisplay,abs((NL2))/FFTsamples, 'b',MIdisplay,abs((NG2))/FFTsamples,'g',

grid on, ylabel('N2')
axes(frame6Hndl), plot(Midisplay,abs((NL4))/FFTsamples, 'b',Mldisplay,abs((NG4))/FFTsamples,'g',

grid on, ylabel('N4')
axes(frame7Hndl), plot(MIdisplay,abs((NL6))/FFTsamples, 'b',MIdisplay,abs((NG6))/FFTsamples,'g',gridon, ylabel('N6')
axes(framegHndl), plot(MIdisptay,abs((NL8))/FFTsamples, 'b',MIdisplay,abs((NG8))/FFTsamples,'g',

grid on, ylabel('N8')

www=l/2a(2:20aFm+10);
%axes(frame3 Hndl), plot(www,abs((detect2))/FFTsamples)
set(DtHndl,'String',(Df+i~Df/10));

set(MHndl,'String',(2~(Df+i"Df/10)/(dv)));

drawnow;
iw+1;
Pause = get(pauseHndl,Value';
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ifPause=l
pause

end
Stop = get(StopHndl,Value';
if Stop=i

return
end

end
set(gcf,Pointer', 'arrow)

return

elseif strcmp(action,'info'),
set(gcf,'pointer",arrow')

ttlStr = get(gcf,'Name';
hlpStrl= [...

Runs well
);

hlpStr2 = [...
I t].

hlpStr3 = [...
I j.

myFig = gcf;
helpfun(ttlStr,hlpStr1,hlpStr2,hlpStr3);
return % avoid fancy, self-modifying code which
% is killing the callback to this window's close button
% if you press the info button more than once.
% Also, a bug on Windows MATLAB is killing the
% callback if you hit the info button even oncel

% Protect against gcf changing — Change close button behind
% helpfun's back
ch = get(gcf,'ch');
for i=1:length(ch),
if strcmp(get(ch(i),'type','uicontrof),

if strcmp(lower(get(ch(i),'String'),'close',
callbackStr = [get(ch(i),'callback') ...

'; amplitude4("closehelp",'um2str(myFig) ')'[;
set(ch(i),'callback',callbackStr)
return

end
end

end
returll

elseif strcmp(action,'closehelp'),
% Restore close button help behind helpfun's back
ch = get(gcf,'ch');
for i= 1: length(ch),
if strcmp(get(ch(i),'type'),'uicontrol'),

if strcmp(lower(get(ch(i),String)),'close',
callbackStr = get(ch(i),'callback';
k = lindstr('; amplitude4(',callbackStr);
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callbackStr = callbackStr(l:k-1);
set(ch(i),'callback',callbackStr)
break;

end
end

end
ch = get(0,'ch');
if -isempty(find(ch=s)), figure(s), end% Make sure figure exists

end
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