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ABSTRACT

AN ADAPTIVE REMESHING FINITE ELEMENT METHOD FOR
HIGH SPEED COMPRESSIBLE FLOWS USING
QUADRILATERAL AND TRIANGULAR ELEMENTS

Gururaja R. Vemaganti
Old Dominion University
Director : Dr. Earl A. Thornton

In this study a new adaptive remeshing method for high speed
compressible flow analysis is presented. The method uses quadrilateral
elements where possible, and triangles are introduced as needed. The primary
goal of this study is to develop a remeshing method which uses both the
concepts of unstructured and structured meshes for the finite element analysis
to predict accurate aerodynarhic heating in problems related to high speed
viscous flows. The remeshing method uses a solution based on an old mesh to
create a new mesh based on an advancing front technique. in the present
implementation, a stuctured mesh of quadrilaterals is created in the boundary
layer and an unstructured mesh consisting of quadrilaterals and triangles is
created in the inviscid region. Studies of convergence rates show that for
problems with highly localized solution variations, the remeshing approach
gives smaller solution errors with fewer unknowns than refinement of uniform,
structured meshes. Results for high speed compressible flows show that the
remeshing method improves the solution quality significantly without

necessarily increasing the number of unknowns in large proportions.

i
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Chapter 1
INTRODUCTION

Design, performance, and optimization studies for new aerospace
vehicles require techniques which can calculate aerodYnamic heating rates
accurately and efficiently. Aerodynamic heating has a significant affect on the
thermo-structural response of high speed flight vehicles. Typical flight vehicles
that have significant aerothermal-structural interactions include hypersonic

cruise vehicles, the space shuttle, and the National Aero-Space Plane.

Approximate analytical methods to predict aerodynamic heating are
reviewed in [1]'. The approximate methods are applicable mainly for a perfect
gas or equilibrium air and simple shapes of the body such as plates and cones.
These approximate methods in general are not extendable to separated flows
and flows with significant chemical nonequilibrium effects. Some of these
analytical methods also have limitations on the geometry(e.g. 2-D geometry

only), Mach number, Reynolds number of the flow etc.

* numbers in [] indicate references

n ——

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.1 Background

Numerical techniques such as finite difference, finite volume, and finite
element methods play a significant role in fluid, thermal, and structural
analyses. Numerical flow simulation has created a new discipiine named
"Computational Fluid Dynamics" (CFD). CFD has grown out of its infancy as an
alternative to wind-tunnel testing for many flows of interest. Finite difference
methods are the predominant numerical methods for Computational Fiuid
Dynamics. A major problem in finite difference CFD is the generation of grids
for realistic three dimensional vehicles such as a finned projectile or a complete
aircraft. The development of well-constructed CFD grids has been the subject
of intensive research for several years. However, the generation of a single grid
that discretizes the entire flow region for a complex configuration is an
extremely difficult and sometimes an impossible task. These difficulties have
led to recent research into alternative approaches for handling complex
geometries including zonal schemes, the finite vclume approach, and the finite

element method.

However, finite difference and finite volume methods in many cases suffer
from lack of mathematical rigor. There are no true error-estimates for the
methods in many situations because of the fact that they are based on local
Taylor series expansions, which are invalid in presence of singularities (2]. On
the other hand, finite element methods are backed by mathematical theory and
can be applied to arbitrary domains on unstructured grids. In addition finite
elements often offer advantages in handling complex boundary conditions. For
the solution of parabolic and elliptic partial differential equations, finite element

error estimates have been established, and the finite element method
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possesses the best approximation property for this class of problems [3,4]. In
addition, the finite element flow-field solution methodology can be easily
coupled to existing finite element structural or heat transfer analysis codes
within the same integrated database. The finite element method also avoids
transformation techniques to map a real domain into a computational domain
for a complex geometry and thus provides ease in data-processing in a multi-
disciplinary environment. Use of unstructured grids gives the Finite Element
Method(FEM) the capability to adapt to the deformation of a body during an

analysis as well as to high transient gradients in the flow-field [5].

Research is underway in the Aerothermal Loads Branch at the NASA
Langley Research Center to improve the capabilities and efficiency of finite
element high-speed flow analysis methods and to develop more efficient
integration of finite element fluid, thermal and structural analyses. The focus of
the research is the prediction of aerothermal loads for complex three
dimensional bodies. The research combines analyses with experimental
studies. The aerothermal loads research includes aerodynamic heating on
control surfaces, pronounced localized heating effects on wavy surfaces,
localized heating in shuttle tile gaps and leading edge heating on scramjet fuel
injection struts. Detailed aerothermal loads for a hypersonic vehicle are shown

in Fig. 1, as described in [6].

For high speed viscous compressible flows, typical CFD algorithms
including the finite element method require efficient mesh generation schemes
since these flows involve very high gradient regions like thin boundary layers
and sharp discontinuities like strong shocks. Fig. 2 [7] shows a regular

refinement of a mesh requires more than 11,000 nodes for the sharp leading
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edge analysis of a Mach 11 flow over a compression corner. A mesh having
more than 15,000 nodes is required in the compression corner region to
capture all the flow features. A regular refinement thus becomes enormously
expensive for high-speed flows. Adaptive refinement based on a previous
solution is an alternative that is efficient and computationally economical in this
context. Adaptive refinement reduces the number of grid points relative to a
uniformly refined mesh because it refines the mesh where the refinement is

required.

1.2 Research Goals and Objectives

A majority of research in the area of adaptive mesh refinement is confined
to structured meshes(literature survey in this field is given in Chapter 2). But
structured meshes have certain limitations like they are suitable for fairly regular
geometries and transition between a refined region and an unrefined region
may not be smooth. On the other hand unstructured meshes can handle the
transition between a refined region and a relatively crude region easily and are
applicable to any irregular geometry. However, less information is available on
unstructured grids in the literature. Error estimates and convergence rate
studies are not performed on the unstructured grids as extensively as they are
performed on the structured grids. The full potential of unstructured meshes in
terms of geometric flexibility, control over mesh density(number of nodes per

unit area) is yet to be fully explored.

Nevertheless, structured meshes excel in boundary layers where flow
gradients are predominant in the the transverse direction of the flow and

elements that are stretched in the streamwise direction of the flow are required.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Structured meshes can easily accommodate the high aspect ratio(of the order
of 1000) elements that are needed to optimize the number of elements in the
boundary layer region. These considerations suggest that a combination of
structured and unstructured meshes may be suitable for high-speed flow
applications. Thus, there is a strong motivation for developing mesh generation
schemes that make use of both the concepts of structured and unstructured

meshes.

The goal of this dissertation is to investigate adaptive finite element mesh
generation methods for high speed viscous compressible flows. Ultimately, the
adaptive mesh generation method when combined with an effective solution
algorithm will provide an efficient, reliable approach for predicting detailed
aerothermal loads for problems with complex geometries and boundary

conditions.

Specific objectives of the research are to:

(1) Develop an algorithm for two-dimensional adaptive mesh generation
using the concepts of structured and unstructured meshes such that the

number of unknowns is a minimum.

(2) Validate the code on some simple elliptic problems with exact solutions

where error-norms can be computed based on the exact solution.

(3) Study applications of the code for hyperbolic problems with known

analytical solutions to examine the convergence rates.
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(4) Investigate different error-indicators for high-speed viscous flows in order
to predict accurate aerodynamic heating and optimize the number of grid

points.

(5) Apply the mesh generation code in association with existing analysis

programs to solve practical hypersonic viscous flow problems.

(6) Investigate the feasibility of extending the adaptive method to three-

dimensions.
1.3 Scope of the Dissertation

After the background, purpose, and goals of the research are introduced
in this chapter, recent trends in finite element mesh generation are presented in
the second chapter. Recent developments in the automatic mesh generation
followed by the conventional adaptive refinement techniques are presented in
Chapter Two. At its end , the concept of remeshing is introduced and potential

benefits of the method are cited.

In chapter 3, the remeshing method is described. Adaptivity of the
method to a previous solution is described first, followed by a discussion on
different stages of remeshing. This chapter concludes with the concept of
"structured remeshing” which is desirable for discretizing boundary layers. In
the fourth chapter, convergence studies of the new method on some elliptic
problems are presented. Comparative results with a uniform mesh refinement

for these problems are tabulated.
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The governing equations followed by the description of the numerical
algorithm for the compressible flows are presented in Chapter 5. The numerical
algorithm is based on an upwinding method using a cell-centered scheme.
Application of the remeshing method to problems in high speed viscous flows
which include typical flow complexities is described in Chapter 6. Results
showing improvement in the solution quality through successive remeshing are
presented in the sixth chapter. Conclusions are drawn based on this research

and recommendations for future work in this area are presented in Chapter 7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2
TRENDS IN FINITE ELEMENT MESH GENERATION

The generation of high quality finite element models is vital for
effective finite element analysis. The generation of optimal meshes to
achieve the solution accuracy is always a challenge for the analysts. Though
automatic mesh generators are commercially available (e.g. PATRAN), they
are not efficient for high speed flow applications since these generators do
not take the flow features into consideration. To resolve strictly one-
dimensional features like shocks and boundary layers in high speed flows,
mesh refinement at the location of the flow feature is desirable to obtain an
optimal mesh. Adaptive strategies based on a posteriori error estimates have
bean found to be very effective in identifying the location of the flow features
with strong gradients and the direction in which they occur. In this chapter,
automatic mesh generation techniques are discussed first. Then adaptive
strategies and conventional mesh refinement techniques are discussed
focusing on current research in this area. Finally the link between automatic
mesh generation and adaptive mesh control is brought out in light of the

evaluation of adaptive remeshing method which is the core of this research.

21 AUTOMATIC MESH GENERATION

An automatic mesh generator is an algorithmic procedure capable of

producing an optimal finite element mesh in a domain of arbitrary complexity
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given no input past the computerized geometric representation of the
domain to be meshed. Earlier automatic mesh generators used the
application of mapping techniques for generating structured meshes.
Zienkiewicz et al. [8] used the concept of the isoparamatric element to
generate well-controlled meshes within individual cells called as "patches” in a
domain. Each "patch" is treated like an isoparamatric element for further
subdivision. PATRAN, a commercially available mesh generation program
uses the same "patch" concept to automatically generate two-dimensional and
three-dimensional meshes. However, reducing a general three-dimensional
domain into a set of mappable regions (patches) which gives the desired mesh

is complicated.

Recently efforts have been made to generate unstructured meshes
automatically, avoiding the definition of patches and with only the boundary
of the domain being defined. These unstructured meshes in general
consist of simplex element topologies, i.e. triangles in two-dimensions and
tetrahedra in three-dimensions. Cavendish et al. [9,10] and Watson [11] used
the approach of node generation foliowed by element creation to generate
unstructured meshes. In this approach, nodes are generated first in the
entire domain based on a specified mesh density and elements are created
based on the concept of "Delaunay triangulation” [12]. In this concept a
new element is generated out of the available nodes such that no other node
in the domain exists within this element and the sides of the new element do
not intersect the sides of any other existing element. Although the concept of
Delaunay triangulation is extendable to three-dimensions, there is no
guarantee that the resulting elements will have a satisfactory shape in terms of

the volume to surface area. Since the method always tries to generate

11
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elements close to equilateral triangles in the computational domain, it is not
quite suitable to resolve solution features which show a strong directionality
because stretched elements are desired in the neighborhood of these flow
features. Lee et al. [13] proposed another scheme which uses the concepts
of constructive solid geometry. The geometric definition of the object and a

value for the required mesh density are the only inputs in this scheme.

The advancing frontal technique proposed by Lo [14] follows a different
approach of simultaneous node generation and element creation. In this
approach the front defines the chain of line segments that surround the domain
to be discretized. The front changes as the mesh construction proceeds and
vanishes when the mesh generation is complete. Joe and Simpson [15]
reduce a two-dimensional domain into simply connected regions by the same
procedure and then triangulate each of these sub-domains. Shephard and
Yerri and others [16,17] use another approach of decomposing the domain of
interest into a set of simple cells and to then mesh the individual cells in such
a manner that the resulting mesh is optimal. The quadtree and the octree
mesh generators in two and three dimensions developed by Shephard et al.

[18] follow this approach.

In addition to the ability to generate a valid mesh for any geometry,
automatic mesh generators must permit mesh gradations necessary to
produce efficient and accurate finite element models. Ideally, the mesh control
criteria available allow for the convenient specification of both a priori and a
posteriori  mesh control information. a prion mesh control devices are used to
specify the distribution of elements in the initial finite element model, while a

posteriori mesh control devices are used during an "adaptive analysis”

12
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process to improve the mesh as dictated by the results on the current mesh.
The ease with which particular forms of mesh control can be exercised
depends both on the mesh generation and its implementation. Since the basic
input to an automatic mesh generator is a geometric representation, any a
priori mesh control device mustbe tied to the geometric representation. A
general method to define mesh control information is to tie this information
to the model through the topological entities such as vertices, edges, faces,

and regions in the boundary representation of the object.

One major limitation of any a priori control device is that it is
independent of the finite element solution. In problems related to high
speed flows, steep gradients in flow variables may occur even on fairly regular
geometries and a priori knowledge regarding the location of these gradients
may not be available in many situations. Therefore indicators based on an
earlier solution are required to identify regions where refinement is necessary.
So an a posteriori control or an adaptive mesh refinement is a better suited
approach, since it takes the solution into account. Oden [19] has proven that
such a control is computationally more economical than a priori control of

the meshes.
2.2 ADAPTIVE MESH REFINEMENT

In an adaptive finite element analysis, the solution ona given mesh
in combination with knowledge of the mesh, are used to estimate the accuracy
of the solution and modify the mesh to improve the solution accuracy.

The major components of such an analysis include:

(1) Finite element solution algorithms,

13
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(2) a posteriori error estimation techniques

(3) error indicators to determine where and how to improve the finite

element discretization, and

(4) mesh generation schemes to produce the finite element

discretization as suggested by the errorindicators.

Since this research is mainly related to the last two components of
an adaptive finite element analysis approach, the following discussion is
mainly focused on these aspects. Since application of the adaptive
procedure is for high-speed flows, only references in this area are cited.
Though efforts were made to survey the entire research in this field, the

author feels the survey is neither exhaustive nor covers every work.

Adaptive mesh refinement methods mainly fall in to four categories:

(1) "h-refinement” where a mesh is refined and/or derefined when local

errors fall outside preassigned upper and lower bounds,

(2) "p-refinement" where the order of the polynomial is increased when

the error is larger than a preassigned value,

(3) "r-refinement" where the positions of the nodes are relocated with in

a given mesh topology so as to equi-distribute error and

(4) combination of any of these methods.

Each method has its advantages and disadvantages with respect to
the quality of the solution, computational efficiency, ability to capture features

of the flow accurately and the overall modelling which are discussed below.

2.2.1 h-refinement method
This is one of the most commonly used methods where more elements

of the same type are introduced by subdividing elements of the original mesh.

14
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This is done in an adaptive manner where the selection of elements to be
divided is based on a local error estimation. Lohner et al. [20] have
employed this method using linear triangular elements for high-speed inviscid
flows. Linear triangles are especially suitable since they do not create new
nodes on the element edges during refinement. ~Though the method is
computationally efficient and improves the solution, it increases the number of
unknowns from refinement to refinement. Also the method lacks the
directional refinement required for resolving one-dimensional features. Oden
et al. [ 21,22] employed a similar concept using quadrilateral elements, but
used a derefinement strategy in association with mesh enrichment by
subdivision. Though the method has some control over the increase in the
number of unknowns, quadrilateral elements give rise to midside nodes during
refinement. One way to handle the midside nodes is to employ constraint
equations which average nodal vaiues at the end nodes to obtain the
variables at the midside nodes. Ramakrishnan and Thornton [23] used an
alternate approach to avoid midside nodes by transitioning from a crude

quadrilateral mesh to a fine one using triangular elements.

Shapiro and Murman [24] used a similar refinement/derefinement
method as Oden et al. but introduced a directional adaptation to it, by either
dividing an element into four smaller elements or two elements along either
horizontal or vertical direction. The three "h-refinement” schemes are shown in

Fig. 3 for supersonic flow over a compression corner.

The ‘“h-refinement” method mainly lacks directional refinement
near the one-dimensional flow features and increases the number of

unknowns from refinement ‘o refineament which are major considerations for a

15
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complex flow field. The original location of the node points remain at the
same place in this method, though this limitation can be avoided by

combining the method with "r-refinement” method which is discussed later.

2.2.2 p-refinement method

The "p-method” in which the local degree of the polynomial shape
function is increased where the error is large, is closely related to spectral
element methods. The "p" method has been applied to incompressible,
viscous steady flow by Patera [25] and Devloo [27]. Shapiro and Murman [26]
used a biquadratic element in a Galerkin formulation using biquadratic
interpolation functions. They faced certain problems related to smoothing
near discontinuities. It was also difficult for them to compute the stability limit
and they found that these higher-order elements are unstable for certain
algorithms. Devloo [27] et al. proposed a combination of "h" and "p" methods of
refinement for high-speed flows, where the mesh is refined to a specified level
in both "h" and "p" parameters in the bqundary layer and a "h" refinement
performed in the inviscid region where discontinuities like shocks exist. The
algorithm associated with the "p* method must work for general orders of the
polynomial and some current flow algorithms  do not have this capability.
Implementation of the "p" method results in major changes in the analysis
codes and this method is still under development. A combination of "h" and
"p" methods suggested by Odenet al. applied to supersonic viscous flow over

a flat plate is shown in Fig. 4.

2.2.3 r-refinement method
The "r-method", also called the relocation method or mesh movement

method, is based on some node moving criteria and is being successfully

17
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over a flat plate. [ref.27]

Fig. 4. "p - refinement” method applied to a supersonic viscous flow
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used for the solutions to nonlinear parabolic and hyperbolic problems. A
recent review on this method is found in [28]. This method is also common in
finite difference and finite volume schemes. Eiseman and Erlebacher [29]
gave an extensive review of this method in finite difference and finite volume

applications where structured grids are adapted to a previous solution by
moving the nodes with respect to a weight function. Erlebacher [30]
implemented the method for unstructured triangular meshes for solving
Euler equations. Abolhassani [31] implemented the method to adapt finite

difference grids dynamically for high speed flow applications.

Lohner, Morgan, and Zienkiewicz [32] applied the method in finite
elements for solving the compressible Navier-Stokes equations. In this
work, the sides of an element are treated as a system of springs which exert
a force proportional to the length of each spring . The stiffness coefficients
are defined through some weight functions derived from the local error. The
mesh isthen movedin such away thatthe resultant of the spring-forces at
each node vanishes and the equivalent spring system is thus in equilibrium.
The method sometimes gave rise to badly distorted elements, and they tried
to eliminate this distortion by flipping the diagonals of a quadrilateral which
would result by combining any two bad shaped triangles. Oden [22]
implemented a similar method for quadrilateral elements using the principle of
equi-distribution of the error. The method applied to a supersonic flow over a
compression corner is shown in Fig. 5. Oden [22] found in some instances, a
deterioration in the solution quality after four adaptations due to the badly
graded mesh produced from the oscillations of the adaptive scheme.
Though the "r" method takes the least computational time compared to any

other refinement method, and is suitable for transient analysis, it has certain
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limitations. There is a limit on the solution accuracy possible because the
number of elements does not change during refinement. The method also
requires special care to maintain the shape of the elements and numerical
stability of the meshes as the nodes move. These limitations become more

critical as the dimensionality of the problem increases.

2.2.4 Combination of "h","p" and "r" methods

As mentioned earlier, Devloo [27] combined the "h" and "p" methods for
compressible viscous flows and research is still underway. Shapiro and
Murman's [26] implementation of biquadratic element in association with the
regular bilinear elements can be classified under the same category.
Ramakrishnan and Thornton [33] combined the "r" and "h" methods for high-
speed inviscid flows and improved their solution quality obtained by the "h"

method alone.

In the case of elliptic problems with singularities present, it has been
shown [34] that proper combination of "h" and "p" methods is an extremely
efficient combination and optimal "h-p" refinement can give exponential rates
of convergence. Such research related to parabolic and hyperbolic problems

is yet to be initiated.

2.3 ADAPTIVE REMESHING

All the mesh refinement methods discussed above try to improve the
original mesh. Usually these methods start from a uniform mesh which is
crude and try to refine it. For complex geometries, creating an initial mesh is

not trivial and refining these meshes may not give optimal meshes within three
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or four adaptations. Combining the mesh refinement procedure directly with
the functionality of an automatic mesh generator results in an improvement in
the mesh's approximation to the domain being analyzed and an improvement
of the mesh within the domain to increase the quality of the finite element
solution. A feedback approach to the development of improved finite element
meshes is to use the results on the current mesh to guide the generation of an
entirely new mesh. This approach is referred to as "adaptive remeshing". In
this approach a posteriori parameters are converted into a priori parameters

and used for the development of a new mesh.

One technique that has been developed [35] plotted contours of a
specific solution parameter e.g. stress contours in structures problems that
gave an indication of how the mesh should be distributed and then allowed
the user to generate a new mesh interactively that followed these contours.
This approach is not practical to solve problems related to high speed flows
because of the complexity of the solution features involved. Peraire and
Morgan [36] developed a new adaptive remeshing approach using linear
triangles mainly designed for high speed flow problems. The method
regenerates entirely a new mesh adaptively and accommodates stretching
of the elements along shocks and boundary layers so as to align the
elements along these one-dimensional features. The method has been
successfully employed in solving several inviscid problems. The method
applied to analyze an expansion fan is shown in Fig. 6. It was also found that
the number of degrees of freedom on the final mesh is not significantly larger
than the number used in the original mesh. Peraire et al. recently [37]
extended this approach to three-dimensions generating meshes consisting of

tetrahedron elements.
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expansion corner. [ ref.36]



Out of all the methods discussed above, the most promising
approaches are the adaptive refinement/derefinement method and the
adaptive remeshing method. The adaptive remeshing method seems to be
very effective in solving inviscid problems. In three dimensions, this method
created meshes with high element to node ratios (of the order of 5 to 6) , that is
5 to 6 elements were associated with each node in the mesh. Instead, if a
mixture of hexahedron and tetrahedron elements is used to generate three-
dimensional meshes, such a method would reduce the element to node ratio
and reduce the total number of elements relative to an all tetrahedra mesh.
Extension of the remeshing method to boundary layers using structured layers
of elements is to be investigated. For this éxtension, the boundary layer edge is

to be identified in an adaptive manner.

A new remeshing method that uses the concepts of structured and
unstructured meshes for the high speed viscous flows is presented in the
next chapter. In this method the boundary layer edge is determined from an
earlier solution and layers of quadrilaterals are created in the boundary layer
and the inviscid region is discretized in an unstructured manner. The new
method uses a mixture of quadrilateral and triangular elements in the inviscid

region and quadrilateral elements in the viscous region.
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Chapter 3
ADAPTIVE REMESHING USING
QUADRILATERAL AND TRIANGULAR ELEMENTS

The adaptive remeshing method developed by Morgan and Peraire
[36] that creates unstructured meshes consisting of linear triangles proved to
be very effective in inviscid flows. But using a combination of quadrilateral
and triangular elements may reduce the number of elements compared to
using triangles alone. Thus a combination of quadrilateral and triangular
elements may result in less computer storage requirements and processing
time. These savings may become much more significant in three
dimensions. In boundary layers the gradients of the flow variables dominate
in the transverse direction of the flow compared to the streamwise direction.
Hence an optimal mesh in the boundary layer will consist of elements with a
larger dimension in the streamwise direction and a smaller dimension in the
transverse direction (high aspect ratio elements). It is very difficult to generate
unstructured meshes with such elements. Even if such meshes are created
[38] they contain highly distorted triangles with large aspect ratios and large
variation in the internal angles. A structured mesh with highly stretched
quadrilateral elements is desirable in boundary layers. So there is a need to
combine the concepts of both structured and unstructured meshes in the
context of adaptive remeshing applied to high speed viscous flows. Such a

combination may be suitable for a "h-p" refinement algorithm too.
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This chapter describes a new remeshing method which uses
predominantly quadrilateral elements. The method uses quadrilateral
elements where possible, and triangles are introduced as needed. The
remeshing method at each stage uses the soiution based on a previous
mesh to generate a new mesh. Unstructured meshes are created except for
high speed viscous flows where a structured mesh of quadrilateral
elements is created in the boundary layer and an unstructured mesh
consisting of quadrilateral and triangular elements is created in the inviscid

region .

The concept of adaptive remeshing is discussed first followed by a
discussion of remeshing with a mixture of quadrilateral ("quads”) and
triangular elements. Later, element generation based on an advancing front
technique is described. Finally the concept of structured remeshing using
quadrilateral elements and the integration with unstructured remeshing is
presented. A simple procedure to smooth the meshes based on "Laplace

filter" suggested by Baehmann et al. [39] concludes the chapter.

3.1 Adaptive Remeshing

3.1.1 Concept of remeshing

The main idea of remeshing lies in generating a completely new mesh
based on solution information from a previous mesh. This information
takes the form of mesh generation parameters computed on the previous
mesh at all the nodal points. The method becomes adaptive when these
parameters are computed from a numerical solution onthe previous mesh.

The mesh generation process produces smaller elements where refinement
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is required and provides smooth transition from a high resolution region to a
low resolution region thiough triangles. This method also introduces
stretching of the elements along strictly one dimensional features like shocks
which is highly desirable for high speed flows. Proper clustering of the
elements near regions of high gradients is achieved in the method without
refining existing elements. Since the remeshing method is a combination
of automatic mesh generation and adaptive refinement, the nodal location as
well as their number change from mesh to mesh. Numerical examples (see
Chap 4) show that with remeshing the quality of the solution may sometimes
be improved significantly without increasing the total number of unknowns.
In some instances, solution quality increases even with a reduction of the
number of unknowns since the node points are ideally distributed.

The crude initial mesh in this method is referred to as the background
mesh. Initially a mesh with few elements can be used as a background
mesh. Since a solution may not be attainable on this mesh, mesh
generation parameters may be specified at the nodal points of the mesh.
Intuitive solution knowledge may be useful in this specification, but a regular
and uniform distribution of the parametersis sufficientin many cases. Once
this information is available, a new mesh is created within the domain that
is to be discretized. The domain boundaries are predefined by the user.
The mesh generation parameters needed for the new mesh at various
locations within the domain are linearly interpolated from the background
mesh. A search algorithm based on the nodal coordinates of an element is
used to determine the elernent on the background mesh to interpolate these
parameters for a new point and is described in Appendix A. The initial
background mesh need not coincide with the domain of discretization. Then

a finite element solution is obtained on the new mesh, and the mesh
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generation parameters are computed based on the numerical solution.
Continuing, the current mesh becomes a background mesh for the next mesh
to be generated. The process of generating sequential meshes continues
until the desired convergence for the solution is achieved.

3.1.2 Mesh generation parameters

The mesh generation parameters used for the construction of a new
mesh are shown in Fig. 7. They are: (1) two components of a vector o along
which an element is to be stretched, (2) a spacing hy normal to this vector,
and (3) a spacing h tangential to this vector. Thus a new element has a
dimension ho in the direction of the vector and a dimension hy in a direction
normal to the vector .

To compute these mesh generation parameters adaptively, a
dependent variable from an earlier solution is considered as an indicator and
the magnitude and the direction of the error related to this indicator are
used. The error estimator can be constructed in different ways depending
on the error norm considered. One way to [40,41] determine the error
estimation is by computing the interpolation error. This method has the
advantage that it does not require the solution of local auxiliary problems for
error indicators for each element, but among other things it has the
disadvantages of requiring the computation of higher-order derivatives over
each element and being global. A numerical scheme is devised to
compute higher-order derivatives and is described in Appendix B. Though
this scheme lacks mathematical rigor, it has proven adequate for practical
purposes .

In one-dimensional problems the interpoiation error E [42] for an

element is defined as
E(x) = Te(x) - Tre(X) (3.1)
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where Tg is the exact solution, Trg is the finite element solution and h is the
length of the element. A one-dimensional element whose end nodes are "i"
and "i+1" is shown in Fig. 8. Taylor series expansion of the error about an

interior point M can be written as follows,

Now, select xu at the point where the error is maximum so that

dE(xM) _ o

dx (3.3)
Hence equation (3.2) can be written as follows, after neglecting the third and
higher order terms in Taylor expansion.

_ 1 9ECM)
E(x) = E(xm) + 2 dx (x-xw? (3.4)

Assuming the finite element solution matches with the exact solution exactly at

the end nodes, that is E(x) = E(xs1) = 0. Atx; we have

_ 1 ()
0= E(a) + TE20 (- P .

or

E(xm) = - le—(iM—)(Xi'XM)Z

2 dx2 (3.6)
or
1|dPEm)|
IECu] < 2| g | (3.7)

We can choose node "i" or "i+1" in computing x; such that
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- <h
1% - xul < 5 (3.8)

Implementing equation (3.8) in equation (3.7) we have the following

expression which bounds the maximum interpolation error in the element.

h2 dzE(XM)

1
< L

< 1p2 d?Texm) _ FTre(xm)
8 dx2 dx2

1 h2 dZTE(XM)
8 dx2

(3.9)

In the above expression, the second derivative of the finite element solution is
made zero because of interpolation function is assumed linear. Iri elliptic
problems it is proved [43] that equi-distribution of the interpolation error would
yield optimal meshes. This approach is extended to hyperbolic problems
successfully by several researchers [22,23,32,36,44]. This principle
motivates the following equation which provides a requirement for obtaining

near optimal meshes in 1-d applied to hyperbolic problems.

= CONSTANT

ha
. (3.10)

d? T
i dx2

where h, is the length of the element "e". In adaptive refinement schemes,
the adaptive strategy is based on equal distribution of solution error for
elements. In remeshing, the adaptive strategy is based on an interpolation of

the solution error at nodes.
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In an extension of the one-dimensional interpolation error concept to two-
dimensions, E(x,y) can be written in a Taylor expansion about an interior point

(xmym) as follows, after neglecting the higher order terms.

+(y-ywm) ————BE(XM'YM’

dE(xm)Ym)
dX ay

Elxy) = E{Xp, ym)+(x-%m)

2 2
20 E{xpm, 20 E{xpy,
{ w;VM}”y_yM) ( N;YM’

1
t3 {x - xp)
9 X ay

2
d E{xm,Y
+ (x-xMHy-yM) _(_ﬁ_M_)
Ix oy (3.11)
By selecting the point (xm,ym) such that the interpolation error is° maximum,
equation (3.11) can be written as

2 2
20 E{xwm,Y 20 E{xu,Vy
(N; M)"'(Y‘YM) { Mz M)

E(xy = E{xm.¥Ym) + 15 (x-xm)
d X ay

2
o E(xm.ywm)

+ (x-xm){y-ym) 3x 0y

(3.12)
At a typical node "i* of an element , E(x;yi) = 0. Hence at this node,

equation (3.12) can be written as follows,
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2 2
20 E{XM.YM) 20 E(xMryM}
2

1
0 = E{xm,yuM) + 5|(Xi-Xu) +(Yi-ym) >
o0X oy
3 E{xuyul
XM, Y
+ (xi-xmhyi-ym) TN
dx ady
(3.13)
or in other words,
3 E(xw. Yl 3 E(Xu: Yu)
1 2 XM, Y 2 XM, Y
E{xm ym) = - 3|{Xi- *u) — 2+ (yi-ym) e
d x . ay
3 E{xu:yu]
XM
+ (Xi'xM)(Yi'yM”"‘_‘M"
ax dy
(3.14)

For a square element of side "h", by making suitable assumptions the maximum

interpolation error is bounded by the following expression.

2| 3% 3T 3T
h E , E + 2 E

E {Xm:¥M]1 S =
|E (xmoyml| < 5 2 o awey

(3.15)
When the expression given by equation (3.15) is applied with the principle of
equi-distribution of error, it resulted in the following expression in two-

dimensions.

2 2
e |8Te , @Te  ,8Te | _ consTANT
dx2 dy2 ox dy (3.16)
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But the above condition would give information about only one dimension of
an element "h"i.e. in other words the condition would yield meshes with very
regular elements like squares and equilateral triangles. It is highly desirable
in hyperbolic problems where discontinuities like shocks exist, to stretch the
elements along these one-dimensional features. So Peraire and Morgan [36]
have modified this approach to accommodate a stretching factor in element
creation. In this approach the local principal directions Xy and Xz are
determined from the nodal second derivative tensor of the dependent variable
¢ and the corresponding eigenvalues A; and A are computed along these

principal directions as follows

2 2
Moo= $ i A o= L
X2 oX2 (3.17)

Now the equi-distribution of error principle in 1-d is applied to each of these

principal directions separately resulting in
h#A1 = h§ka = CONSTANT (3.18)
where hy and hp are the spacings required in X{and Xz respectively. The

constant in the right hand side of the equation (3.18) is computed as h2min

|Amax] where hnin is the minimum spacing specified by the user and Amax iS
the maximum eigenvalue in the whole domain. Now the stretching

parameter S is computed as

.- 3}
A2 (3.19)
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Maximum allowable values hyax and Spmax are specified by the user to put an
upper bound to the aspect ratio of the element. in addition, in practice the
shape of the element is constrained by limits on the internal angles so thata
bad shaped element is not created. Usually these limits are between 45° to
135° for a quad element and 30° to 150° for a triangle [39].
3.1.3 A remeshing example

To illustrate the basic steps in remeshing, an example is presented in
Fig. 9. The figure illustrates a new mesh being created from a solution
obtained on a previous mesh. In Fig. 9a, the initial mesh is shown. Using
this mesh, a finite element solution has been obtained. Figures 9b-9¢ show
the evolution of the new mesh. Figure 9b shows the boundary points that are
created first; Figs. 9c and 9d show the mesh attwo stages of development,
and Fig. 9e shows the final remesh. Notice the remeshing proceeds inward
from the boundary, and that quads as well as triangles are generated as

the remeshing proceeds .

3.2 REMESHING WITH QUADS AND TRIANGLES

3.2.1 Boundary discretization

The mesh generation process starts with boundary discretization.
Boundary segments joining fixed boundary nodes are ordered in an counter-
clockwise manner for an external boundary and are ordered in a clockwise
manner for an internal boundary defining a hole within the domain. This way
the domain to be discretized always exists on the left hand side of the
boundary .

Additional boundary nodes are included to satisfy the spacing

requirements compatible with the background mesh. Each boundary
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(a) Initial mesh

Fig. 9 An adaptive remeshing example
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(b) Boundary discretization

Fig. 9 An adaptive remeshing example (continued)
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(c) A stage of remeshing

Fig. 9 An adaptive remeshing example (continued)
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(d) Later stage of remeshing

Fig. 9 An adaptive remeshing example (continued)
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(e) Final mesh

Fig. 9 An adaptive remeshing example (concluded)
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segment is discretized in order until the entire boundary is covered. For
each boundary segment, the total length L is computed. The mesh generation
parameters are interpolated from the background mesh at some sampling
points along the segment(typically this number is chosen to be 100 in this
work). From known mesh parameters, the value of the spacing in the
direction of the segment is computed at all the sampling points .

Atter the spacing hy along the boundary line has been evaluated at
the sampling points, the number of sides N which need to be created along

the boundary line is calculated as follows .

M-1

- 1| _1 1 .
N= 3wt e

i=1

(3.20)

where M is the number of sample points, L; is the distance between
adjacent sample points. Note that N is the nearest integer of the right hand
side value in equation (3.20). Then the intermediate spacings between these
points are computed based on the local hy values. The spacings are scaled
appropriately to account for adjusting the value of N. Once the intermediate

spacings are established, the coordinates of the new points are computed.

3.2.2 The advancing front technique

The mesh generation process is based on an advancing front
technique similar to the method proposed by Lo [14]. The front consists of
adjacent nodes joined by line segmenis. The initial front consists of the
boundary segments that link adjacent boundary nodes. As the mesh
construction goes on, the front changes its shape. When an element is

created, new sides are included in the front which can be used for further
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creation, and the sides that cannot be used further are deleted from the front.
This updating process is shown in Fig 10a. When a new element 1 is created
new nodes C and D are created and hence the frontal segments AD, DC and
CB become active in the front. At the same time the segment AB that
cannot be used any further is deleted from the front. During this updating
process a check is made whether any other existing frontal segment
counteracts a new segment in which case both the segments are deleted
from the front. This is illustrated in Fig. 10b, where a new element 2 is
created adjacent to element 1 in Fig. 10a with B, E, | and C as its nodes, the
new side BC counteracts with the already existing segment CB and hence
both are eliminated from the front. Thus the front can be defined asa chain
of line segments that surround the domain that remains to be discretized.
The front changes its shape constantly during the construction process and
vanishes when the mesh is complete. Fig. 9 shows different stages of

front evolution as the mesh generation progresses .

3.3 ELEMENT GENERATION

Element generation in this method takes place along with node
creation. Element generation always proceeds from the smallest frontal
segment giving priority to regions which require refinement. Once this frontal
segment is identified, nodes are created corresponding to this segment so
that a new element is generated having this frontal segment as one of its sides.
There are two options that are attempted in a sequence until an element is
created. The first option creates quadrilateral elements and the second option

creates a triangular element. Once the mesh is complete, a post-process
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NEXT FRONT: X-A, A-D, D-C, C-B, B-E, E-F, F-G

(a) Updating the front after element (1) is created
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INITIAL FRONT: X-A, A-D, D-C, C-B, B-E, E-F, F-G
NEXT FRONT: X-A, AD, D-C, C, I-E, E-F, F-G

(b) Updating the front after element (2) is created

Fig. 10 Updating a front during mesh generation
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combines two triangles ata time, wherever possible, to create as many well-

shaped quadrilaterals as possible. These options are discussed below.

3.3.1 Option 1

This option attempts to make a quadrilateral on the smallest frontal
segment by locating two points within the domain. Shape limitations constrain
the internal angles of the element and aspect ratio limitations bring the proper
stretching to the element. Maximum values of the stretching factor used in
this work are 3 to 4 since higher values resulted in unacceptable
elements or incomplete meshes. This is a limitation of the method. The
different steps involved in this option to create an element are discussed
below .

(1) The smallest frontal segment is chosen as a base and the end
nodes of this segment are denoted as A and B. The local mesh generation
parameters are computed at the midpoint Mof this segment based on the
values of the mesh generation parameters at the end nodes. A local
coordinate axes transformation is made in such a way that the local x-axis is
aligned with oty , vector of stretching at the midpoint and is scaled by a factor
Sum (stretching parameter) at the midpoint of the segment.

(2) In this transformed coordinate system two points D andC are located
on the normals to the segment AB at A and B respectively . The distance )

between the new points and the old points is computed as follows :
d = 0.5*AB (if dm<0.5AB) ;
8§ = 20*AB (if du>2.0AB) ;

5 = du (if 0.5 AB< du<2.0AB) (3.21)
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This is to assure that the new element to be created is close to a square in the
transformed system. This procedure is illustrated in Fig. 11a.

(3) Two sets of nodes that already exist (illustrated as "x" in Fig. 11) and
are active are identified corresponding to the newly located points C and D
respectively. These sets of nodes are identified in such a way that they are
within a circle of radius k& from each of the points C and D where k is a
constant (in the current work k is chosen to be 0.5). In each set the nodes are
ordered according to the distance between their location and the
corresponding newly located point (either C or D) in an increasing manner.
For convenience the set corresponding to D is called set1 and the one
corresponding to C is called set2 in future discussion. C and D are added to
sets 2 and 1 respectively at the end of each set.

(4) A selection of points, N1 from set1 and N2 from set2 is made in such
a way that the first point in set1 is chosen as N1 and the points in set2 are
chosen in the order, for N2 so that an acceptable element is created. The
following checks are made to ensure that the quadrilateral joining A, B, N2
and N1 is acceptable;

(a) The diagonals of the quad, A-N2 and B-N1 intersect with each

other (This is required to avoid elements with internal angles greater

than 180°),

(b) no other frontal segment intersects either of the diagonals A-N2

or B-N1 and

(c) no active node on the front exists either in the triangle AN2N1 or
BN1N2. If an acceptable element is not created, the next point in set1 is
chosen as N1 and the whole process is repeated. The selection of these
points among a set of points is required because before new nodes are

created, already existing nodes in the immediate vicinity are considered
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(@) Option 1
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CHOOSE N1

(b) Option 2

Fig. 11 Options considered in element creation
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instead, so that the number of nodes is optimized. This process also avoids
odd-shaped elements that have to be accommodated between the closely
spaced new and old nodes.

(5) Once an element is created, it is included in the list of elements and
its connectivity information is stored. The front is updated as explained in the
earlier section on the front concept. If N1 and N2 happen to be C and D(new
nodes) the mesh generation parameters are interpolated from the background
mesh at these nodes and stored along with their coordinates .

A new element is attempted on the updated front starting from the
smallest segment following the same steps explained above. In case a
quad elementis not created anywhere in the front, then the next option of
creating a triangle is attempted.

3.3.2 Option 2

In this option, a triangle is created instead of a quadrilateral. The
procedure to create a triangle is similar to option 1, except one node instead of
two is created for element construction at the frontal segment. After the local
coordinate transformation is performed on the frontal segment AB as in option
1, a third point C is located which is equidistant from A and B as shown
in Fig. 11b. The distance between C and A or Bis same as & in option 1
so that an element close to an equilateral triangle is created in the
transformed coordinate system. A set of active nodes on the front are
identified which are within a circle of radius k3 where k is a constant (in the
current work k is chosen as 0.8) with the center at C and are ordered according
to the distance between their location and the point C in an increasing manner.
Point C is added in the end of this set. A point N1 is chosen from this set,
starting from the first node in the set, so that an acceptable triangle ABN1

can be formed. The following checks are made for this purpose:
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(a) No other frontal segment intersects the line joining N1 and

M (midpoint of AB)

(b) No other active node exists within the triangle ABN1 .

If an element cannot be formed with N1, the next pointin the setis
chosen as N1 and the checks are repeated. If an element cannot be
created at this frontal segment, another segment is chosen as the base AB
and the entire process is repeated. Once an element is created the
coordinates are transformed back and the element is included in the list of
elements. The front is updated and the minimum frontal segment on the new

front is determined. Then option 1 is attempted again to create a quad element.

3.4 STRUCTURED REMESHING

The unstructured remeshing method discussed above is directly
applicable to several problems including inviscid flows. Any flow variable that
undergoes significant changes either in a shock, expansion fan or a shear
layer can be used as an indicator. The unstructured meshes generated in
this manner are not the optimal meshes for boundary layers. A structured
mesh stretched in the streamwise direction of the flow, with the spacings
gradually increased in the transverse direction, is a highly desirable mesh for
boundary layers. A stretched mesh is desirable because gradients in the flow
variables dominate in the transverse direction compared to the streamwise
direction. In high-speed flow applications, the elements near the wall where
these gradients are maximum sometimes require aspect ratios of the order of
1000. It was found that it is difficult to generate such a mesh in the boundary
layer using unstructured remeshing. Even if such a mesh is created it consists

of high-aspect ratio triangles which show poor performance in the analysis.

-
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Thareja et al. [44] used a structured mesh generating algorithm to create well
stretched meshes in the viscous region and generated unstructured meshes in
the inviscid region by remeshing. The edge of the boundary layer was
explicitly defined in this method. A method of adaptively determining the
boundary layer region is desirable. Determination of the edge of the boundary
layer is difficult in problems where there is a strong shock-boundary
layer interaction. Moreover, if the structured mesh is not created in an
adaptive manner, there is a possibility of over-prescribing the number of mesh
points in the boundary layer. Data management is also cumbersome in using
two mesh generation schemes to generate a single mesh for the whole

domain.

A new adaptive method of generating a structured mesh in the boundary
layer region has been developed. In this method, as the initial front is set up
along the boundary of the domain, mesh géneration begins on the part of
the front covering the "no-slip” surface of the boundary. Imaginary lines are
drawn at all nodal points on the "no-slip” surface in a direction normal to the
surface. A layer of quadrilateral elements is placed on this surface by
locating points on these imaginary lines. The location of these points is
based on the local spacing values that are interpolated from the
background mesh. Mesh construction proceeds as more layers of elements
are created one above the other. Every time a new layer is started, a check is
made whether the edge of this layer falls within the boundary layer. This
check is adaptively based on a viscous indicator from a solution obtained on
an earlier mesh. Thus as the edge of the boundary layer is reached, no more
elements are created. The frontis updated as in the case of unstructured

remeshing during this process at the end of which the front defines the
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edge of the inviscid flow-field. Generation of elements in a simple boundary
layer and the final front defining the inviscid region is shown in Fig. 12.
After the structured mesh in the boundary layer is complete, the
unstructured mesh for the inviscid region is then generated in the usual
manner. So the viscous-inviscid interface is determined adaptively, and

the same indicator can be used for remeshing in both regions.

In developing the adaptive structured remeshing method for boundary
layers, the following assumptions are made: (1) the maximum gradient of the
flow variable used as an indicator occurs at the no-slip surface, and (2)
principal directions of the second derivative tensor of the indicator coincide
with the tangential and normal directions of the no-slip surface within the

boundary layer .

3.5 MESH SMOOTHING

The mesh that is generated may have some distorted elements because
of maximum angle tolerances and/or aspect ratios permitted. To minimize
element distortions, the nodes are repositioned. This operation is referred to
by some researchers as mesh smoothing. In the smoothing process every
interior node is moved to the centroid of the polygon formed by the nodes that
are connected to it. Boundary nodes are constrained to move along the

boundary edge on which they lie .
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Let C denote the node that is to be repositioned, and let M denote the
number of elements that share C as a common node. Then the new position

vector of node C R, is computed from

i=1 o (3.22)

where A, denotes the area of the ith connected element, and R; is the position
vector of the centroid of the ith element. The new position of all nodes are
computed in this fashion. Then the process is repeated for several iterations
until the nodes reach their final positions. Typically ten iterations are sufficient
to bring the nodes to their final positions. When this repositioning is done
adaptively the smoothing process becomes the "r-refinement" method

discussed earlier.
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Chapter 4
ADAPTIVE REMESHING FOR FINITE ELEMENT
THERMAL ANALYSIS

The new remeshing method described in Chapter 3 was tested for
convergence and effectiveness before it was used for high speed viscous flow
applications. Thermal analysis was chosen because the governing equation,
i.e. the steady state heat conduction equation, is elliptic, and convergence rates
with respect to error norms have been established [3]. Three steady state heat
conduction example problems are solved to study the convergence rates of the
L, -norm of the temperature error. All three problems have exact solutions and
error norms are computed based on the exact and finite element solutions.
Geometry for this problems is selected to be simple since Chapter 3 shows

that the new method can handle complicated geometries.

4.1 Applications

For heat conduction problems, let Te(x,y) be the exact solution, and
Tee(x,y) be the finite element solution. The error E(x,y) in the approximation at
any point is the function

E(xy) = Tely) - Tre (xy) (4.1)

In the examples that follow, the global error in the approximate solution is

measured in the L,-norm defined by
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1
f (Te-Tre)? dxdy |2
A

A (4.2)

NEl =

where A is the érea of the solution domain. The integral is evaluated on an
element basis and summed over all elements in the domain. Four point Gauss
integration is used to evaluate the integrals; a check with nine point integration
for a solution with steep gradients verified the accuracy of the four point

approach.

4.1.1 Exampie 1
The first example (Fig. 13) consists of the classical problem of heat
conduction in a square plate where T(x,y) is a solution of the steady state

equation,

0 X ay (4'3)

subject to the boundary conditions,
aT
— - ; T . = 0
™ 0y) =0 (ay)

oT
P x0=0 ; Txa) =0
dy (x0) xa) (4.4)

for constant thermal conductivity k and heat generation Q. The exact solution

given by Carslaw and Jaeger [45] is
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Ry L2 ny
Q(az-xz) _ 160322 {-1) cos(2n+1)Zal cosh(2n+1)2a
3

2k

T(xy) =

kn "0 (2n+1)° cosh(2n+1) T
2 (4.5)

Finite element solutions were obtained for: (1) three meshes with uniform h
refinement of square elements, and (2) two adaptive remeshes where the
remeshing started from the solution on uniform mesh 2. The meshes used in the
remeshing approach are shown in Fig. 14, and solution errors are tabulated in
Table 1.

The remeshes (meshes 2 and 3) shown in Fig. 14, do not differ greatly
from those obtained in a uniform h refinement. The exception is the two
triangles that appear in mesh 3, Fig. 14c. The triangles are generated
spuriously by the program, possibly due to the tolerance for element distortions.
Some studies of mesh movement (not shown) indicated that a nearly optimum
mesh for this problem consists of square elements slightly distorted into quads
but with very smooth element interface curves. The remeshes shown in Fig. 14
appear to have some features of the optimum meshes, but fall short of
producing smooth optimum meshes. Nevertheless, when solution errors are

considered, the remeshes of Fig. 14 gave acceptable results.

Considering Table 1, note that uniform h refinement reduces the giobal
solution error according to h2 as predicted by finite element theory. Using the
average element size h,, the solutions based on the remeshes follow the same
trend; that is, the solution is O(h,2). Thus in this problem, remeshing is

improving the solution quality at the same rate as a uniform h refinement. The
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(@) Initial mesh

Fig. 14 Successive remeshes for Examplel.
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(b) Adaptive remesh 1

Fig. 14 Successive remeshes for Example1 (continued).
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(c) Adaptive remesh 2

Fig. 14 Successive remeshes for Example1 (concluded).
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Table 1 Comparative Solution Errors for Example 1

Uniform h Refinement

Mesh Unknowns h Error, |l e ||
1 36 4.0 4.348
2 121 2.0 1.087
3 441 1.0 0.2717

Remeshing

Mesh Unknowns h* Error, || e |
1 121 2.0 1.087
2 144 1.818 0.8816
3 196 1.539 0.6381

h* denotes an average element size defined as the
square root of the area A divided by the number of
elements in the remesh.
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reason that remeshing shows no advantage over uniform h refinement is that
the problem solution is smooth with no steep gradients and the remeshes look

similar to uniform meshes.

4.1.2 Example 2
This model problem [41] assumes a solution that satisfies Eq. 4.3 and

homogeneous Dirichlet boundary conditions. The solution takes the form

T(xy) = w(x % Cx) w(¥,Yo Cy)

y(XXo, Cx) = (X+X%X)*+ Ax + B (4.6)

where A and B are selected so that the homogeneous boundary conditions are
satisfied. In the example, xo = yo =0.03, and ¢, =¢y = -0.25. The solution is
formulated to give steep gradients near the coordinate axes. For the finite
element computations, the solution, Eq. 4.6, is substituted into the governing
equation 4.3 which is solved for Q(x,y). The heat generation Q is then integrated
over each element, and nodal temperatures are computed. Temperature

contours for the exact solution , Eq. 4.6 are presented in Fig. 15.

Finite element solutions were obtained for: (1) three meshes with uniform
h refinement of square elements, and (2) three adaptive remeshes where the
remeshes started from the solution on uniform mesh 2. The meshes used in the
remeshing approach are shown in Fig. 16, and solution errors are tabulated in

Table 2.

The remeshes shown in Fig. 16 consist of a mixture of quadrilateral and

triangular elements generally of good proportions. The elements do not follow
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(a) Adaptive remesh 1

Fig. 16 Adaptive remeshes for Example 2.
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(b) Adaptive remesh 2

Fig. 16 Adaptive remeshes for Example 2 (continued).
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(c) Adaptive remesh 3

Fig. 16 Adaptive remeshes for Example 2 (concluded).
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Table 2 Comparative Solution Errors for Example 2

Uniform h Refinement

Mesh Unknowns h Error, || e ||
1 36 1.0 0.1272
2 121 0.5 0.07982
3 441 0.25 0.03305

Remeshing

Mesh Unknowns Error, || e |
1 121 0.1272
2 299 0.01969
3 288 0.01270
4 572 0.00550
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any clear pattern that might be intuitively suggested, but as the meshes are
adaptively created there is clear refinement of elements at the sharp gradients
near the coordinate axes. At the same time larger elements are being created
away from the boundaries in regions of smaller gradients. Although the
remeshes are not aesthetically satisfying, they are effective in producing high

quality solution convergence as demonstrated in Table 2.

From Table 2, note that uniform h refinement reduces the global solution
error at a rate less than the optimum rate, O(h,2). This appears to be caused by
the steep gradients present in the solution. Additionally, the optimum
convergence rate is O(h,2) only as an asymptotic limit which apparently has not

been reached.

The errors based on the remeshes are reduced at a faster rate than for
uniform refinement. The first remesh, which produced mesh 2 with 299
unknowns, gives an error || E || = 0.01969 which is smaller than the error
produced on uniform mesh 3 which has 441 unknowns. In addition, the second
remesh which produces mesh 3 has reduced the number of unknowns from 299
to 288 and simultaneously has reduced the error. Finally, if one more uniform h
refinement were made assuming an optimal convergence rate of four, the
solution error would reduce from 0.03305 to 0.00826 for over 1600 unknowns.
Yet, the third remesh which produced mesh 4 has an error of 0.00550 for only
572 unknowns. Clearly for this problem with steep gradients the remeshing
approach produces higher solution quality for reduced computational effort than

uniform h refinement.
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4.1.3 Example 3

In example 2, the gradients were roughly one-dimensional with the
solution varying steeply normal to the x and y axes. For this final example, a
model problem [41] is solved where the gradients are more two-dimensional.
As before the model problem assumes a solution that satisfies Eq 4.3 and

homogeneous boundary conditions. The solution takes the form

T(xy) = o(xXo.cx) ¢(Y.yo.Cy)

+ Ax + B

= 1 !
o(xXo0,C) exp (c") eXp( (x-Xo )2 +C (4.7)

where again A and B are selected so that homogeneous boundary conditions
are satisfied. In the example, xo = 0.55, yo =0.50, and ¢x = 0.02, ¢, = 0.05.
The solution gives very steep gradients near (xo,Yo). As in the previous
example, the solution is substituted into the governing equation, Eq. 4.3, to give
a variable heating rate Q(x,y) for the finite element solution. Temperature

contours for the exact solution, Eq. 4.7, are presented in Fig. 17.

Finite element solutions were obtained for two remeshes starting from a
solution on a uniform mesh. The meshes obtained from remeshing are shown in
Figs. 18(a) and 19(a), and the finite element solutions on these meshes are

shown in Figs. 18(b) and 719(b). The solution errors are tabulated in Table 3.
Table 3 shows that for the first remesh there was an error reduction of

about 15 even though the number of unknowns was reduced by more than one-

half. For the second remesh, the number of unknowns are less than 75% of the
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Fig. 17. Problem statement for heat conduction, Example 3.
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(a) Remesh 1

Fig. 18 Adaptive remesh 1 for Example 3.
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(b) Temperature contours of the finite element solution

Fig. 18 Adaptive remesh 1 for Example 3 (concluded).
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(@) Remesh 2
Fig. 19 Adaptive remesh 2 for Example 3.
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(b) Temperature contours of the finite element solution

Fig. 19 Adaptive remesh 2 for Example 3 (concluded).
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Table 3 Comparative Solution Errors for Example 3

Type Unknowns Error, || e ||
Uniform h, 441 0.4150
(21x21)
Remesh 1 176 0.02870
Remesh 2 322 0.002868
75
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unknowns in the original mesh, yet the solution error has been reduced by more
than two orders of magnitude. The example shows the strong benefits that were

obtained by adaptively refining a mesh in regions of steep gradients.

4.2 Closure

For a problem with a smooth solution with no steep gradients, the
remeshing approach produced convergence rates of order h2 the same as
uniform refinement. Hence, for problems with few gradients the approach offers
no advantage . However, for two examples with steep gradients the approach
consistently out-performed uniform refinement. In both examples, the
remeshing approach gave much faster convergence rates. For these problems,
it may be possible to generate regular meshes with proper gradations near the
regions with large variations in temperature. Such graded meshes may give
faster convergence compared to uniform meshes. But in general, solution
features may not exhibit symmetry and a priori knowledge is not available
regarding the location of steep gradients. Therefore generation of a graded
regular mesh is not a viable task in many situations. On the other hand the
remeshing method proved to capture gradients in these examples adaptively
and is applicable to any problem in general. Moreover, in both cases there
were instances where the error in the solution was reduced even though the
number of unknowns was actually smaller than in the previous mesh. This
desirable behavior has also been observed by Peraire and Morgan [36] who
had previously developed the method using all triangles. The present
implementation of the method has some advantages over an all triangle mesh

including the fact that fewer elements are required with quadrilaterals.
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Chapter 5
GOVERNING EQUATIONS AND SOLUTION ALGORITHM
FOR COMPRESSIBLE VISCOUS FLOWS

This chapter presents the governing equations and the solution
algorithm for compressible  viscous flows. Numerical algorithms
[22,23,24,32,36] for solving problems related to high speed flows using
unstructured meshes have received attention recently because of their
capability for handling arbitrary geometries and complex localized flow features.
Taylor-Galerkin [7] and Runge-Kutta [23] schemes proved to be successful
finite element algorithms for analyzing compressible flows. Although, these
schemes are second-order accurate, because of their explicit time marching
nature solution convergence to steady state may be slow for viscous problems.
In addition, a two step Taylor-Galerkin [23] scheme was unstaule for certain

unstructured meshes.

The implicit upwind differencing algorithm proposed by Gnoffo [47]
proved to be a robust finite-volume scheme that can run at very high Courant
numbers (of the order of 1,000) resulting in faster convergence. Thareja et al.
[44] extended this scheme in the context of unstructured meshes and
implemented the viscous effects in a finite element sense. Dechaumphai et al.
[5] modified this algorithm presented by Thareja et al. [44] by incorporating

dimensional quantities and non-uniform boundary conditions. This modified
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algorithm is used in the current work and is described in this chapter after a

formal introduction of the governing equations.
5.1 Governing Equations

The governing equations for a laminar viscous compressible flow are the
conservation of mass, momentum and energy equations. These equations are

written in conservation form as

a{U}+a{F1+G1}+3{F2+G2} = 0
ot 9 X ay

(5.1)

where {U} is the vector of conservation variables, {F1} and {F»} are inviscid flux

components; and {G1} and {Gy} are viscous flux components.

These vectors are given by

o128
pv (5.2)
pe
(5.3)
{FnJ\ Pgii;p } ; {F2}={ p{;’}p }
(pe+p)u (pe+p)v
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s 0 (5.4)
X X
(Gy)=- ; (Go)= - oy

Txy yy

Uty +V O'yy-qy

UOxx+V Txy-Ux

where p is density, u and v are velocity components, € is the total energy, oxx,

Oyy and ™y are the stress components, and gy and qy are the components of

the heat-flux vector. A calorically perfect gas is assumed where
p=pRT (5.5)

The stress components are given by

oxx-—um[za—“-a—v} (5.6)

ax dy
Ju 9dv
xy= 1 (T .
Txy = u()[ay ax} (5.7)
and

dv odu

=£ 2 —-— ‘

Oyy IJ-(T){ 3y ax] (5.8)

where p(T) is the temperature dependent viscosity, computed from Sutheriand's
law ,

/2 To + S
(To) T+ S (5'9)

where subscript O refers to a reference value and S is Sutherland's constant.
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The components of the heat-flux vector are given by

oT
=-k(T)—
Ox 3 x (5.10)

aT
ay=-k(M=—
y 3y (5.11)

where k(T) is the thermal conductivity computed from the viscosity and a

constant Prandtl number of 0.72.

This set of governing equations is solved subject to appropriate initial
and boundary conditions. The initial conditions consist of specifying the
distributions of the conservation variables at time zero. Typical boundary

conditions may include:

1. Specifying all conservation variables for supersonic inflow,

2. No-slip boundary condition on a fluid-solid interface ,

3. Specified wall temperature, and

4, Supersonic outflow where the flow variables are free to change.

5.2 Solution Algorithm

The governing equations expressed in equation (5.1) can also be written

as

3(U}  a(F1) 3lFa) _ 2(Gi) 3(Gy)
at a X ay ax ay (5.12)
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by combining viscous and inviscid fluxes together. Then equation (5.12) can be

expressed as

afu) , atFi) _ alGi

ot d X d X (5.13)

in the indicial notation where {F;} is the inviscid flux vector, {Gi} is the viscous
flux vector, and {U} is the conservation variable vector. On direct application
of the Green's theorem , equation (5.13) yields the following expression for a

typical element (E).

2 4 - (-M-E"_Gi’.)dshj o (-{F)- (@) dr
T'e

O ot aXi 09X

(5.14)

where QE is the area of the element (E), nj are the direction cosines and I'e is

the edge of the element.

Assuming that the conservation variables are constant over the

element, equation (5.14) can be written in the form

(AUE} = (Ug)™! - {Uel™ = AL ((IC)™! + (VCI™)
Qe (5.15)
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where {Ug} is the element level conservation variable vector, {AUg} is the
vector representing the element level changes in the conservation variables, At
is the local time step for the element (E) and superscript m is the time step
index . {IC} is the element level inviscid flux vector and {VC} is the element
level viscous flux vector and are expressed as,

{lC}m+1 = -II'E N {Fi}m+1 dr' = 'L-E{Fn}rm.1 dr (516)

{VC}m'H =- IFE nj {Gi}m+1 dar = - L--E{Gn}m‘ll1 dr (51 7)

where subscript n denotes flux components normal to the element edge. Thus

the total element level flux contribution is evaluated by summing the individual
contribution from each of the element sides I'gg. Assuming normal fluxes are

constant over an element edge, the analytical normal flux vectors {Fn} and {Gn)

are replaced by the numerical normal flux vectors {En] and {an} as

NSIDE

(Ici™! =- Ea™
s% Fol™ 3 (5.18)

ot =3 (G™ &
- (5.19)

where NSIDE is the number of sides in the element (E), and dgis the length of

the side s.
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5.2.1 Inviscid solution procedure

Consider the inviscid contribution alone for a typical side s of the
element (E) whose length is 8g which interfaces element E on the left side and

element R on the right side as shown in the sketch given below.

ELEMENT SIDES
”””’r.‘\\\\‘ T —
88
\‘*LE/

Roe's averaging procedure [46] is used to construct the Jacobian matrix

[As] such that

(Fee) - {Fe) = [Ad] ({UR)-{Ve}) (5.20)

where subscripts R and E denote elements R and E respectively. Matrix [Ag]

can be factored as

(Ad=[R " [A] [A] (5.21)
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where [R] is the eigenvector matrix of [A] and [A] is the diagonal eigen-value
matrix of [As]. The components of each of the matrices in equation (5.21) are

given in Appendix C.

Gnoffo [47] used a first-order dissipation term defined as

{Ds}) =[IAd] ({Ur}-{Ue}) (5.22)

where [ |Ag| ] is given by the following expression,
[lad]=[R [ |Al) (R (5.23)

where [ A | ] is the diagonal absolute eigenvalue matrix of [As] . Using this
dissipation term as given by equation (5.22), Gnoffo [47] formulated the
numerical normal flux vector associated with the side under consideration as

(Ful = L [Fl + (Fre) - [1Ad ] (1UR)-(Ve))] (5.24)

The minimum allowable value for the sigenvalues A; are restricted according to

d ie such that

N I waawe

Al [nl > en

2
l0.5 (h-+ ex), |M| <€y

€xr (5.25)
where e is the eigenvalue limiter. In this work a value of 0.5 is used forthe ey
for inviscid problems. Thus for a typical side "s" , the inviscid contribution at the

time instant m+1 can be written as
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(0 =-8s (F™ = - SS[(Fal™ !+ (Fogh™ - [IAT™! (1URI™ - (U™ )]

(5.26)
Considering the inviscid contributions alone as expressed in equation (5.18),
equation (5.15) yields the following implicit time marching scheme for inviscid

flows.

NSIDE
{AUE) = ;gL 3f 8 [(Fr)™" +{Fae™ - [IAJT™ ({UR)™" - (UEI™')]
E s=i

(5.27)

The scheme represented by equation (5.27) is implicit because of the terms on
the RHS correspond to the m+1 instant of time, and hence the system of
equations it represents are coupled. The scheme can be made explicit by taking
the value of these terms on the RHS attime m instead of m+1 so that equations

become uncoupled. So an explicit time marching scheme can be expressed as

NSIDE
{AUg) = --AL gf 8s [{Far)™ + (Fre)™ - [IAdI™({UR)™ - (UEI™)]
ZQE smi
and

(Ug™ = (Ug)" + {AUE} (5.28)

To improve the speed of convergence of the scheme, the implicit time
stepping scheme as given in equation (5.27) can be converted into a point-
implicit scheme, where a 4x4 matrix system is solved for each element, one
element at a time. This conversion is made by taking: (1) the element level

conservation variables corresponding to the element (E) at instant m, (2) all the
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quantities corresponding to elements surrounding (E) from the latest available

values, and (3) the flux vector of element (E) atinstant m+1, as shown below.

(Fag)™' = (Foe)™+ [JAdT™' {AUE) (5.29)

After including the above changes, equation (5.27) can be written as

(AUg) = --Z?ZEL"?E 8s [(Fea) + (Fel™+[IAdT (aUE)- [IAdT (tUR)" - (UE)")]

smi

(5.30)

where superscript * refers to the latest value available. By taking the underlined

term in equation (5.30) to the LHS of the equation we obtain

[l LAY [N]‘] (aUe) -

2QE Smi

N E * * * *
A s Rl (Fee™ - [ALT (VR - (Ue))]
20e et (5.31)

The above point -implicit scheme is solved using an iterative method which can
be considered as a point Gauss-Seidel method where the most current solution
is used for the elements surrounding (E). The above scheme is marched in time,
and at each time step the 4x4 system of element equations are solved. The Lo-
norm of {AU E} values at each time step is computed for the four variables and
is used as a measure of convergence. A Courant number of 300 is used for
inviscid problems in computing the time step At for each element. Once the
desired convergencs is achieved all element level quantities are converted to

nodal quantities.
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5.2.2 Explicit Viscous Solution Procedure

The viscous fluxes given by equation (5.18) can be easily
accommodated in the explicit inviscid procedure given in equation (5.28) by
just adding them to the right hand side of the equation. This explicit viscous

solution procedure can be expressed as

NSIDE
{AUg) = 2—?11— 3? 8s [{Foa)™ + {Fae)™- [JAdI™({UR)™-{UE)") + 2{Gis]]
E s=1

and
(ug™ = (Ug)" + {aUg) (5.32)

where {Gns} represents the normal viscous flux vector. The evaluation of the
numerical viscous fluxes involves computation of first derivatives of primitive
variables like the components of velocity and the temperature 2! the nodes. In
the cell-centered scheme discussed above, the primitive variables are
assumed to be piecewise constant, that is, they are assumed to ue constant for
an element. So a bilinear variation in quadrilateral elements and a linear
variation in triangular element. are assumed for the first derivatives, in order to
compute them at the nodes. Under these assumptions, the first derivative of a

variable, for example, derivatives of temperature T at any point in the element

(E) can be approximated as,
oT _N] {a_T}
a X ax (5.33)
9T _N] {ﬂ}
ay oy (5.34)
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ot

where [N] is the shape functions and \a Y} is the nodal first derivative vector
of element (E). By multiplying the LHS of equation (5.33) by {N} and

integrating by parts we obtain
et
ax

%—T{N}dQ=I nxT{N}dI‘-j
Qe X Te Qe

(5.35)

aT

where n are the direction cosines. Substituting for {a x} using equation
(5.33), the LHS becomes

LHS = {N}[N] {%T-} dQ = J {N}[N] da {3—T}
QE X QE X
= M {QI\
ax/ (5.36)

where [M.] is the lumped mass matrix approximation for the integral. By

equating equations (5.35) and (5.36) we have the following expression

foN

(MJ {a_T-} - I T{Nbar - | T ——} dQ
I Ie o \2x
E

(5.37)

To compute the first derivative at a particular node K, an assembly operation

has to be performed where contributions from all the elements that have K as a
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common node have to be summed. This operation results in the following

relation for the first derivative at node K.

1| BT NZE {aN
= K - Te{—; dQ
oxlk M & ax}

Qe (5.38)

where My is the coefficient of the global (assembled) lumped mass matrix for
node K, BT, is the assembled boundary term including contributions from all
the elements NE surrounding node K, and Tg is the temperature of the element

E. Similarly we can write

=1 BTyK-§ Tgl?ﬁ dQ
aylk M \ay

E=1
Q
E (5.39)

Since the partial derivatives associated with the viscous fluxes are the
derivatives of primitive variables, the following conversion is required in terms of

AUE, i.e. the conservative variables.

_ (A(pu)e - ueApe)

Aug
PE (5.40)

(Apv)e - veApE)
PE (5.41)

AVE =

2 2 . _u
(L-;L -g) Ap)e - Lapue

ATE =gl;

.y 1
0 Alpv)e + 5 Afpee 5.4
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Now equation (5.32) is solved explicitly at each time step and marched in time
until the desired convergence over the error norm is obtained. This explicit
scheme for viscous flows was found to be unstable at high Courant numbers
and hence resulted in slower convergence compared to the explicit inviscid
procedure.
5.2.3 Point-implicit viscous solution procedure

The point-implicit scheme for inviscid flows as represented by equation
(5.31) can be extended to viscous flows to obtain faster convergence in the
solution procedure compared to the explicit scheme discussed above. This
extension is possible by breaking the element level viscous flux vector into two

parts as shown below. This procedure is suggested by Thareja et al. [44].

(Gus)™" = {Gns) " + [Bs] {AUE) (5.43)

where superscript * refers to the latest values available, and the matrix [Bg] is
the viscous analogue of the matrix [Ag] . The components of the matrix [Bg] are
given in Appendix D. Due to the complexities involved in evaluating {Gns} , in

the current implementation it is assumed that

(Gns} " = (Gns) ™ (5.44)

Incorporating equations (5.43) and (5.44) in equation (5.31) we obtain the

following expression.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[l A 5 [IAJJ'] (aUg) =

S=1

NSIDE - * * *
2_?:_ N s [(Forl” + (Fae)™- [IAd] ({UR)" - (UE)") +2{(Gas) ™ +[Bs] {aUE))]
E s=i

(5.45)

By taking the underiined term on the RHS of equation (5.45) to the LHS we

have the following point-implicit scheme for viscous flow.

[l o AU 5 ([IAdT+ 2084 )} (aUg) =

ZQE Sm

N E * * * *
88"V 5 [tFual" + (Fag)™ (AT (V)" - (V)" ) +2 (Ges) ™]
20F ui (5.46)

Because of the assumption given in equation (5.44) the solution algorithm is
like a point Jacobi method for the viscous contributions unlike for inviscid
contributions where the algorithm is like a point Gauss-Seidel method [44].
Higher Courant numbers are permissible with this point-implicit scheme for
viscous flows compared to the explicit viscous scheme but yet are much smaller
than that used for inviscid procedures. In the current work a Courant number of
3.0 is used for viscous flows. In order to remove the artificial diffusion due to the

upwinding, the eigenvalue limiter 3 is made very small (1.E-07) within the

boundary layer.

5.2.4 Boundary condition treatment
For a supersonic inflow boundary, {UR} = {USP} is employed where

subscript SP refers to specified boundary conditions . For a supersonic outflow
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boundary {UR} = {UE} is employed. For an inviscid flow the following set of
wall boundary conditions are used, |

PR = PE

UnR = “UnE

URr - UE

PR = PE

where u, is the normal velocity, and u; is the tangential velocity. For a no-
slip boundary for solid-fluid interface in a viscous problem the following set of

conditions are imposed.

PR - PE
UR = -UE
VR =-VE
Tr - Tsr
The above set of boundary conditions impose the normal pressure gradient to

be zero which is a fairly reasonable assumption for most boundary layer flows.
5.3 Closure

Input data for the computer program developed based on the numerical
algorithm discussed above include properties of the fluid, connectivity
information for the elements in the mesh, nodal coordinates, nodal initial
conditions and the boundary conditions. Connectivity information for the
elements is the global numbers of the nodes that are associated with each
element. For triangular elements, the number for the fourth node is entered as

zero. The boundary conditions are specified for each of the boundary segments
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joining any two consecutive nodes on the boundary in counter-clockwise
manner. The initial front information given by the remeshing program can be
used for this purpose. A boundary condition code is set up for each of the

boundary conditions described in section 5.1.

Although the viscous terms in the algorithm are formally second-order
accurate (by the assumption that the first derivatives of the primitive variables
are linear in an element), the overall numerical scheme is not second-order
accurate since the the convective terms are formally first-order accurate. A grid
refinement study on a simple viscous problem with a flow over a flat plate
showed that the order of accuracy of the scheme for a viscous flow with no
strong inviscid effects is about 1.5 (details are given in appendix E). Research is
underway to implement formally second-order accurate upwind algorithms in
the finite element context. These schemes may require less number of nodes
and be more accurate compared to the first-order scheme, but questions
regarding their stability are yet to be answered. On the otherhand the point-
implicit algorithm is stable at large Courant numbers (of the order of 1000) for
inviscid flows and residuals on the conservation variables reduce to machine
zero within 500 time steps. The maximum Courant number used for viscocus
flows is 3. In this work it was observed that the residuals of the conservation
variables reduced 5 to 6 orders of magnitude within about 10,000 time steps for
a typical viscous problem. The point-implicit scheme for the viscous flows took
0.000612 CPU seconds per node per time step on the CRAY-YMP machine.
The results obtained for the flow problems using this program are discussed in

the next chapter.
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Chapter 6
ADAPTIVE REMESHING FOR HIGH SPEED
COMPRESSIBLE FLOWS

The adaptive remeshing method is employed to solve inviscid and
viscous problems for high speed compressible flows. Comparisons are made
with either analytical or experimental results. The discussion of the results
focusses on the adaptation procedures and the method of mesh generation.
The point-implicit algorithm described in the preceding chapter is used for the

flow analysis.

6.1 Inviscid Shock Reflection

This is an inviscid flow problem_ that is solved to demonstrate the
adaptation of the method to shocks. The problem statement is given in Fig. 20.
A Mach 3 flow intersects another supersonic flow coming at an angle producing
an inviscid shock that reflects on an inviscid wall. This is a classical test problem
referred to as the "Collela” problem in the literature [49].

The computational domain is a rectangle with dimensions of 4x1 and the
boundary conditions are shown in Fig. 20. Two analysis sequences were
performed for this problem, one using a uniform refinement starting from a
uniform mesh consisting of 400 elements and the other using adaptive

remeshing, starting from a uniform mesh consisting of 1600 elements.
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Fig. 21 shows the uniform h refinement and the corresponding finite
element solution for the density distribution. The relatively large thickness of the
shock even in the most refined mesh occurs because the solution algorithm is
first-order accurate. Thareja et al. [44] observed a similar result with the same
algorithm and showed a higher order extension would reduce the thickness of
the shock. However, they observed that such an extension wouid give rise to
convergence related problems when applied to viscous flows. Since the
objective of the current research is to analyze viscous flows, the first order

algorithm is used for all analyses.

Starting from the solution on the uniform mesh of 1600 elements,
adaptive remeshing was performed. Initially, density was used as an error
indicator. The finite element solution had a steep gradient of density at the core
of the shock, and hence second derivatives were small in this region. When
the principle of equi-distribution of error was employed in computing the
spacings, bigger spacings were computed at the core of the shock and hence
bigger elements resulted in the core of the shock as shown in Fig. 22a. This
mesh in turn produced a more diffused solution near the shock, and

subsequent adaptation was polluted.

To rectify this problem a concept of "multiple indicators™ was used where
a combination of flow variables was used to compute the spacings required for
mesh generation. In this concept, the mesh generation parameters are
computed independently based on two or more flow variables and on any node
on the background mesh, the set of mesh generation parameters with the
smallest h, value is taken for adaptation. Combinations of density and Mach

number and density and temperature were attempted in generating meshes.
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These combinations resulted in similar looking meshes as in Fig. 22a, since
the Mach number and temperature distributions showed similar behavior near
the shock as the density distribution. A combination of density and the absolute
value of the gradient of density as multiple indicators resulted in a mesh as
shown in Fig. 22b which rectified the 'problem with using density alone as an
indicator. This result may be due to the distribution of the absolute value of the
gradient of density near the core of the shock being different from that of
density.

Two successive adaptive remeshes were created with 2809
elements and 4466 elements respectively consisting of predominantly
quadrilaterals. The adaptive remeshes and the corresponding finite element
solution for density are shown in Fig. 23. Table 4 gives a comparison of
adaptive remeshing with the uniform refinement in terms of an Lo - norm of the
error in density. The Lz - norm is computed from an exact solution obtained from
oblique shock relations and the finite element solution. Resuits show with
adaptive remeshing the error was reduced less than that of uniform refinement

with one-third less number of unknowns.
6.2 Hypersonic boundary layer flow

This problem is solved to demonstrate the remeshing capability for
viscous adaptation. The problem statement is given in Fig. 24. The inflow
profiles were obtained from a boundary layer solution [50]. This solution at the
inflow plane was obtained at a distance away from the leading edge such that
the leading edge shock effects are eliminated from the computational
domain.The computational domain includes a laminar boundary layer region

and an undisturbed inviscid region.
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(i) 1600 elements ; 1701 nodes

/

\

(i) Density distribution

- (a) Initial mesh

Fig. 23 Adaptive remeshing for the inviscid shock reflection.
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(i) 2809 elements ; 2616 nodes

(i) Density distribution

(b) First remesh

Fig. 23 Adaptive remeshing for the inviscid shock reflection (continued).
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(i) 4466 elements ; 4452 nodes

(i) Density distribution

(c) second remesh

Fig. 23 Adaptive remeshing for the inviscid shock reflection (concluded).
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Table 4 Comparative Solution Errors for Inviscid Shock Reflection

Uniform h Refinement

Error, || e ||

Mesh Nodes h in Density

1 451 0.1 0.43124

2 1701 0.05 0.33011

3 6601 0.025 0.25164

Adaptive Remeshing
Error, || e |

Mesh Nodes in Density

1(uniform) 1701 0.33011

2 2616 0.29357

3 4452 0.23822
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A fairly uniform mesh consisting of 800 elements was used as an initial
mesh. Fig. 25 shows this mesh which is scaled in the y direction. The inlet
profiles were input as initial conditions throughout the domain. The finite
element solution was obtained with a Courant number of 3. The solution
converged within 1200 iterations. Though this problem appears to be simple, it
involves important flow features such as a very high temperature gradient near
the wall. The heat flux distribution(magnitude of the heat flux vector) normal to
the wall at the inlet, is shown in Fig. 26a. The shearing stress , Txy, distribution
normal to the wall at the same section is shown in Fig. 26b. The converged
solution on this mesh gave a wall heat flux distribution as shown in Fig. 27.
The finite element solution on this mesh does not agrese well with the
boundary layer solution [50]. The shearing stress txy was computed at every
node, and this information was used to identify the boundary layer edge in the
next mesh by making use of the fact that the shear stresses are predominant in
the boundary layer. It can be viewed from Fig. 26b, as the boundary layer edge
is reached the shear stress approaches zero. A limiting value of 1.0E-07 for the
numerical shear stress was used to identify the boundary layer region. Again
the derivatives in the shear stress computation were evaluated by the numerical
procedure given in Appendix B. After two successive remeshings the final
mesh as shown in Fig. 28 was obtained. This mesh is again scaled in the y
direction so that the thin elements near the wall are visible. Absolute velocity
was used as an error indicator for remeshing in the boundary layer. The number
of wall nodes in this mesh reduced compared to the initial mesh and so did the
number of nodes and the number of elements in the entire domain. While the
boundary layer region was discretized by structured remeshing, the inviscid

region was discretized in an unstructured manner using density as an indicator.
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(a) Heat flux distribution

Fig. 26 Viscous fluxes normal to the wall at the inflow section
of the flat plate.
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(b) Shear stress distribution

Fig. 26 Viscous fluxes normal to the wall at the inflow section
of the flat plate.
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Fig. 27. Wall heat flux distribution on the initial mesh.
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746 elements and 797 nodes.

Mesh stretched in the y direction with a stretching factor of 10.45

Fig. 28. Stretched final remesh for the boundary layer problem.
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The mesh without the scaling, shown in Fig. 29, looks more or less uniform in
the inviscid region except for a few triangles that were created as transition
elements to accommodate a small change in the spacing resulted from

numerical inaccuracy.

The wall heat flux distribution from a converged finite element solution
on the final mesh is shown in Fig. 30. The finite element solution compares
well with the boundary layer solution. As a matter of fact the remeshing
improved the solution quality with respect to the wall heat flux distribution on
the initial mesh as shown in Fig. 27 and yet reduced the number of nodes from

841 to 746 in this viscous problem.

6.3 Hypersonic flow over a compression corner

6.3.1. Problem description

The adaptive remeshing capability to predict flow details for a viscous
problem with strong inviscid interaction is illustrated by solving the hypersonic
flow over a compression corner. This kind of interaction is common in the
design of control surfaces for high speed vehicles such as the aerospace plane.
The flow features in a hypersonic flow over a 159 compression corner are
shown in Fig. 31. This pfoblem has been experimentally investigated by
Holden [51]. Inflow at Mach 11.68 interacts with a sharp leading edge at zero
angle of attack producing a weak shock due to the displacement thickness of
the boundary layer. The boundary layer separates ahead of the compression
corner due to a strong adverse pressure gradient and reattaches on the ramp.
The compression fan generated in the separation region eventually coalesces
to form a strong induced shock. This shock interacts with the leading edge

shock to produce a resultant shock, an expansion fan and a shear layer.
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Fig. 29. Final remesh for the boundary layer problem.
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Fig. 30. Wall heat flux distribution on the final remesh.
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Ramakrishnan et al. [52] have solved the problem by dividing the entire
flow domain into three regions. These three regions are: (1) the sharp leading
edge section, (2) the flat plate section, and (3) the ramp section. The results
predicted by Ramakrishnan et al. were in good agreement with the strong
interaction theory [53] in region 1 and with the experimental results of Holden
[54] in region 3. The region of interest among the three discussed above is
region 3 where the boundary layer separates and thickens due to the coupling
with the strong induced shock and thins down over the ramp where the
gradients become larger. This region requires the solution of the full Navier-
Stokes equations, and it has been chosen for the adaptive analysis. This region
starts at about the midpoint of the flat plate section and goes to the location of
shock-shock interaction on the ramp. The inlet profiles for this region are
obtained from the results of Ramakrishnan et al. [52]. This inlet section is
chosen sufficiently far upstream such that the flow separation effects do not

influence the inflow.

The problem statement is shown in Fig. 32. An initial mesh was
constructed with 5283 nodes and 5142 elements. A structured mesh is
constructed to a height of 0.4 from the wall and the rest of the region is
discretized in an unstructured manner. User specified values on a crude
background mesh for the mesh generation parameters are used to generate the
entire mesh. This initial mesh is shown in Fig. 33. The interpolated values at the

inlet section from the solution of Ramakrishnan et al. are shown in Fig. 34.

A finite element solution was obtained after 5000 iterations until the Lo-

norm of the residuals of all the conservation variables reduced at least three
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5142 elements ; 5283 nodes

Fig. 33. Initial mesh for the hypersonic flow over a compression corner.
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Fig. 34 Interpolation of flow variables at the inflow section
of the compression corner.
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'Fig. 34 Interpolation of flow variables at the inflow section
of the compression corner (continued).
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Fig. 34 Interpolation of flow variables at the inflow section
of the compression corner (concluded).
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orders of magnitude. The solution features are shown in Fig. 35. Some
oscillations near the exit section are probably due to the larger elements in the

shock region in this section

6.3.2 Detalls of adaptation

The two variables that were predominant in the boundary layer region
were the absolute velocity and heat flux distribution of the finite element solution
on the initial mesh. These contour plots are showivn in Figs 36a and 36b. Both of
these variables did not show the shocks because the absolute velocity change
across the shock was not as significant as it was in the boundary layer and heat
flux was predominant in the viscous boundary layer region compared to the
shock region. Though the heat flux distribution identified the thermal boundary
layer alone, it was sufficient to capture the high gradients at the wall. On the
initial mesh, the concept of "muitiple indicators™ was employed again, but in this
example in a slightly different sense. The mesh generation parameters are
computed based on the second derivatives of absolute velocity in the boundary
layer identified by the heat flux distribution and in the inviscid region the mesh
generation parameters are computed based on the second derivatives of
density. During the mesh generation process, the structured mesh is created
in the region where the heat flux is predominant and unstructured mesh is
generated in the inviscid region. This resulted in the first adaptive remesh as
shown in Fig. 37. For the sake of clarity, only the nodal distribution is shown in
this mesh where the boundary layer region and the shock region are
identifiable. This initial mesh consisted of 3823 elements and 3470 nodes.

Initial conditions for this mesh are interpolated linearly from the initial mesh.
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(a) Density contours

Fig. 35 Finite element solution features on the initial mesh
for the compression corner.
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(b) Temperature contours

Fig. 35 Finite element solution features on the initial mesh
for the compression corner (continued).
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(c) Mach number contours

Fig. 35 Finite element solution features on the initial mesh
for the compression corner (concluded).
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(a) Heat flux distribution

Fig. 36 Boundary layer indicators based on the finite element
solution on the initial mesh for the compression corner.
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(b) Absolute velocity distribution
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Fig. 36 Boundary layer indicators based on the finite element
solution on the initial mesh for the compression corner
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Fig. 37. Node distribution on the first remesh.
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A finite element solution was obtained after the Lo-norm on the residuals
of the conservation variables reduced three orders of magnitude. The key
solution features of the wall pressure distribution and wall heat flux distribution
are shown in Figs 38a and 38b. In these figures, the coefficient of pressure is
given by

c Pw

oo Pw
(%p“”i) 6.1)

where subscripts w, correspond to wall and free stream conditions
respectively, and Cy is the heat-transfer coefficient given by

Ch = G
H = oo u. YoviTres - Twl (6.2)

where subscript "res” corresponds to free-stream stagnation conditions. The
finite element solution did not contain a separation region and hence predicted
higher heating rates near the corner as well as on the ramp section. A second
remesh was generated based on the finite element solution on the first remesh.
The second mesh had 4807 elements and 4177 nodes. The mesh generation
was in a similar manner as in the case of the first remesh, that is, the boundary
layer was identified from the heat fiux distribution. The inviscid region is
discretized using the second derivatives of density and the boundary layer
region was discretized using the second derivatives of absolute velocity. The
node distribution in this mesh is shown in Fig. 39. A finite element solution is
obtained on this mesh and the key solution features are shown in Fig. 40.
Though this solution predicted flow separation, it predicted the separation point
at a location closer to the corner compared to the experimental value. Though

the wall pressure distribution agreed well with the experimental
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(a) Wall pressure distribution

Fig. 38 Finite element solution features on the first remesh
for the compression corner.
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(b) Wall heat flux distribution

Fig. 38 Finite element solution features on the first remesh
for the compression corner (concluded).
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Fig. 39. Node distribution on the second remesh.
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(a) Wall pressure distribution

Fig. 40 Finite element solution features on the second remesh
for the compression corner.
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(b) Wall heat flux distribution

Fig. 40 Finite element solution features on the second remesh
for the compression corner (concluded).
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data on the ramp section, it failed to predict the plateau in the separation region.
A similar trend was observed in the wall heat flux distribution in the region of
separation and subsequently predicted a higher wall heating rate over the ramp

section.

At this point it was observed that the tangential velocity is a better
indicator in refining the separation region than the absolute velocity. The reason
being that the gradients of tangential velocity are much stronger than that of
absolute velocity in the separation region. Fig. 41 shows the value of hy spacing
along the wall when tangential velocity is used as an indicator. This figure
shows that the spacing along the wall dropped two orders of magnitude near
the separation region, indicating a large number of wall nodes are required in

this region.

A third remesh was created with tangential velocity as an indicator in the
boundary layer and density as an indicator in the inviscid region. This mesh
consisted of 14626 nodes and 14663 elements and is shown in Fig. 42. A finite
element solution is obtained on this mesh after 10,000 iterations until the error
norm on the residuals of the conservation variables reduced at least 4 orders of
magnitude. Distribution plots of different flow variables are shown in Fig. 43.
The wall pressure distribution and the heat fiux distribution are shown in Fig. 44.
Though the solution is predicting separation further down stream than the
experimental value, the heat flux distribution is closer to the experimental data
compared to that of earlier meshes. The finite element solution is predicting the
peak heating rate within 5% of the peak experimental value. The number of
elements in the boundary layer are about 9000 out of which nearly 6000

elements are placed in the region where the wall spacing value was two orders
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Fig. 41. Wall spacing distribution computed based on tangential
velocity as an error indicator.

136

C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fig. 42. Third remesh.
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Fig. 43 Boundary layer profiles from the finite element solution
on the third remesh for the compression corner
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(a) Wall pressure distribution

Fig. 44 Finite element solution features on the third remesh
for the compression corner.
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(b) Wall heat flux distribution

Fig. 44 Finite element solution features on the third remesh
for the compression corner (concluded).
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of magnitude less than that on the flat plate portion of the domain. There is a
significant improvement in the overall prediction of the heat flux distribution
through successive remeshing. Further refinement may improve the heat flux
prediction in the separation region which would subsequently lower the heat

flux on the ramp portion.
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Chapter 7
CONCLUDING REMARKS

7.1 Recapitulation

This dissertation presents a new adaptive remeshing method for high
speed compressible flows. The method uses quadrilateral elements where
possible, and triangles are introduced as needed. The primary goal of this study
was to develop a new remeshing method which uses both the concepts of
unstructured and structured meshes for the finite element analysis to predict
accurate aerodynamic heating in problems related to high speed viscous flows.
Though the method was developed for high speed compressible flows, it can be

used for any field problem with steep gradients.

The remeshing method uses a solution based on an old mesh to create a
new mesh. Second derivatives of the previous solution are used to compute
parameters that determine the size and orientation of elements on the new
mesh. The new mesh is created one element at a time using an advancing front
technique. The front begins from the discretized boundary of the solution
domain and advances into the domain as the mesh evolves. As the mesh
construction continues, the front continuously changes its shape and vanishes
when the mesh is complete. In the present implementation for viscous flows, a
structured mesh is created in the boundary layer based on the solution on a

previous mesh and the front covering the "no-slip” surface will move to the edge

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of the boundary layer and the remaining domain is remeshed in an unstructured

manner.

The remeshing method is first applied to three elliptic problems for steady
state heat conduction, to study the convergence rates compared with uniform h
refinement. Next the method is applied to three high speed compressible flow
problems in association with an upwind, cell-centerad finite element scheme to
demonstrate its capability of adaptation to critical flow features such as shocks

and thin boundary layers.

7.2 Conclusions on Applications

The remeshing method is applied to three pure conduction problems with
exact analytical solutions. To assess the effectiveness of the approach, a global
error measure was used to study solution convergence rates as meshes were
adaptively refined. Comparisons were also made with convergence rates for
solutions obtained on successively refined uniform, structured meshes. For the
problem with a smooth solution with no steep gradients, the method offersd no
advantage. However for the problems with steep gradients, the method gave
much faster convergence compared to uniform refinement. Moreover in these
problems with steep gradients the error in the solution reduced even though the

number of unknowns decreased during remeshing.

The remeshing method is applied on three high speed compressible flow
problems which include complexities characteristic of these flows. Results for
an inviscid shock reflection showed a reduction in the error by adaptive

remeshing compared to uniform refinement. This problem has an exact solution
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computed from oblique shock relations. The error norm in this example is not as
relisble as in the thermal problems since a certain amount of artificial diffusion
is always associated with shock capturing and since the solution algorithm is
first-order accurate the optimal error-reduction is O(h). For the hypersonic
boundary layer problem the adaptive remeshihg method identified the
boundary layer edge using the shear stress distribution in the flow and created
a mesh that had a structured portion within the boundary layer and an
unstructured portion in the inviscid region. The final remesh for this problem
consisted of fewer number of elements and unknowns compared to the initial
mesh. The results for this problem showed very good agreement on the wall

heat flux distribution with the boundary layer solution .

For the problem of hypersonic flow over a compression corner, the
adaptive remeshing demonstrated the capability of handling problems with
strong viscous-inviscid interactions. Density was used as an indicator for the
inviscid region of the flow and the flow heat flux distribution is used to identify
the boundary layer region. Tangential velocity was used as an indicator for the
structured remeshing within the boundary layer because the tangential velocity
refined the region near the separation point better than other indicators. The
wall sbacing distribution with this indicator showed that a very close spacing is
required in the separation region. So structured remeshing created a large
number of elements in this region. On the whole, adaptive remeshing improved
‘the aerodynamic heating prediction through successive remeshes. Though the
first order accurate finite element solution did not predict the separation point
very accurately, tiie overall trend and the peak heating rates are in agreement

with the experimental results. This is mainly due to the solution algorithm being
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first order accurate. The wall pressure distribution agreed well with the

experimental results except in the plateau region near the flow separation.

The ability of an adaptive refinement scheme to capture complex details
depends strongly on the capability of the numerical scheme to solve the flow
problem effectively. Since a new remesh depends on the solution from a
previous mesh, the quality of the solution determines the resolution capability of
the new mesh. The flow applications presented in this dissertation made use of
a point-implicit, upwind, piecewise constant solution algorithm. The first order
accuracy tended to give low quality solutions on some meshes, and special
attention was required to develop error indicators that could effectively guide

the development of a remesh.

An advantage of the remeshing method is that it is implemented in a
code independent of the analysis program. Thus when higher quality, second
order accurate finite element algorithms become available, the remeshing
method developed in this dissertation could easily be applied. The author
believes (and expects) that the remeshing method would be even more

effective in association with a second order accurate flow analysis algorithm.
7.3 Recommendations for future research
The present study has shown some benefits of adaptive remeshing but

further enhancement of the method is required to make it more general. The

following recommendations are made for future research.
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(1) Handling of curved boundary segments needs to be incorporated to
make the method applicable to any two-dimensional geometry with curved
boundaries.

(2) Extension of the method to three-dimensions will involve using a
combination of hexahedral, tetrahedral, pyramid, and prismatic elements.
Investigation of the advancing frontal technique in generating these elements is
to be made. However, structured remeshing using hexahedra elements alone
for three-dimensional boundary layers in a straight forward extension of the
two-dimensional concepts.

(3) The remeshing method needs to be tested in association with
second-order accurate flow analysis algorithms to see an improvement in the
overall performance. The method can be used in association with a "h-p" hybrid
algorithm too, which is still under research.

(4) Though the remeshing algorithm does not have strong vecterization
properties, a local remeshing can be deviced for transient problems to reduce
the total CPU time required. A local front surrounding a region of steep
gradients may be preserved and remeshing can be performed in this local
region for this class of problems.

(5) Different error indicators need to be tested to define the edge of the
boundary layers and predict aerodynamic heating accurately for flow problems
with strong viscous-inviscid interactions and for turbulent flow problems.

(6) Wall spacing distribution for the hypersonic flow over a compression
corner suggests an unstructured mesh may be desirable in the flow separation
region where the number of unknowns can be reduced compared to a

structured mesh.
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Appendix A
SEARCH ALGORITHM

The interpolation of mesh generation parameters in the new mesh uses a
search algorithm to identify the element on the background mesh where the
point of interest P lies. This search is made on a global basis since the

background mesh is unstructured.

An array is created in the program that gives

XMIN - minimum X coordinate
XMAX - maximum X coordinate
YMIN - minimum Y coordinate
YMAX - maximum Y coordinate

for all the elementé on the background mesh. As the search begins the
coordinates of P are checked to determine if they lie within the limits of each
element. This check is made one limit at a time so that a negative response
avoids the remaining checks. When the response is possitive for all four checks,
the point lies in the neighbourhood of an element shown as the rectangle ABCD

in the following sketch.
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A second set of checks are made to determine if point P lies within the
element (shaded region). The second set of checks are made by computing the
areas of the triangles 12p, 23p, 34p, and 41p where 1, 2, 3, and 4 are the nodes
numbered in an counter-clockwise manner. If any of the areas are negative or
zero (within a specified tolerance) the response is negative and the search

proceeds to the next element.
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Appendix B
COMPUTATION OF DERIVATIVES

For the elements used in the remeshing method the value of the

dependent variable within an element is interpolated from nodal values by

o xy) = INxy)] o) (B.1)

where for a triangle the interpolation functions [N] are linear and for a
quadrilateral the interpolation functions are bilinear. From equation (B.1), first
derivatives can be computed, but it is not possible to compute the second
derivatives that are needed for remeshing. As an alternate approach the

following procedure [36] is used.

From equation (B.1) element first derivatives are computed by direct

differentiation. For example,

%"’; = [%%} (o)

(B.2)

values of the first derivatives are computed at nodal points by assembling

system equations from element contributions of the form,

J{N}[N] dA{a_q’-} _ J (N} da 28
A ax A X (B3)
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S —

The coefficient matrix on the left-hand side of (B.3) is diagonalized to yield an
explicit set of equations that are solved for the nodal values of the derivatives.
The procedure given by equation (B.3) may be interpreted as computing the
nodal derivative as a weighted average of the derivatives from the elements

surrounding the node. Element area factors serve as the weighting factors.

The computation of the second derivative follows the same steps.

Element second derivatives are computed from nodal derivatives by
CA 2y {Qi}
o x2 |9x]\dx (B.4)

and then second derivatives are computed from system equations assembled

from,

| az¢} _ & ¢°
(N} [N] dA {5'—)(3 = | (N} dA 505
A A (B.5)

The procedure described by equations (B.1) - (B.5) lacks mathematical
rigor, but it has proven adequate for computing the second derivatives needed
for remeshing. The second derivatives computed on the boundaries typically

are less accurate than those computed at interior nodes.
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Appendix C

ELEMENTS OF THE MATRIX [As]

The matrices [Rl [A], and [R] thatdefine the matrix [Ag] in equation

(5.23) of Chapter 5 are given below.

Rl =

af - UC

| oap+UC

1 1
0 L 1
2c2 2¢c?

N U+ Cx u-GCy
d 22 2C2

n VvV + Cy V- Cy
* 2c? 2C?

a+Ue, 1 @-Uc 1

Y 2c2 28 2C% 28 |
Ul 0 0 0
0 W] 0 0
0 0 u+g ©
] 0 o u-g
-Bu —pv B
Ty MNx 0
Cx-fpu Cy- Bv B
-Cx - pu -Gy - Pv B
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(C.2)

(C.3)



where

u=Ung+ Vig=Un,-Vny
v=Uny+ Vly=Uny,+ Vn, (C.4)
U= uny+vny
v=ul, + vl
= -U ny+ VNy (0.5)

ly=-ny;ly= Ny (C.6)

u2+v2) , ot

2 P

p=(y-1) [pe-%p(uzwz)]

B=v-1;a=

(C.7)
€= 0 + %(u2+v2); = y—Fl) P
h = e = 'y[e— -;—(u2+v2)]
Total enthalpy H=h+1§(“2+v2) - Wﬁ(—v;—l)— (U2+V2) (C.8)
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Appendix D
ELEMENTS OF THE MATRIX [Bs]

The components of the matrix [Bs] related to the viscous fluxes in

equation (5.46) (shown as equation D.1 below)

2QE 8=l

[. o AU 5 ([IAdT's 2084 )] (aUg) =

N E * * *
&t " s [+ (Fog™- (ALY (VR - (Ue)) +2 (Grs) ™]
20E sa1 , (D.1)

are as follows,
Byt =Bia=By3=By =0

DyUg+ DoV ] 7,
Bz1=(1 ° 29);322= 1 [ Bag=—2;By=0

pe pe pe

DalUg+ Dy Vv -2 -

531=(3 : 49);Bsa= 3 i Bgg=—2;Bg=
Pe Pe Peo
a= -
Pe peCV
; (-5 + 2, u,) . (@6 +27vs) -
42 = ; Baa= ; Baa=—
Pe PoCv Pe
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@1 = nds (g— Nxbse + nycSe) ; D2 =uds (-g“ NyCse + nbee)
D3 = uSs( nche'gnbee) ; D4 = IJ-SSV(' Nxbse +§'"be6)

Ds = UD1 + VD3 ; De = UeD2 + VeD4

i 8s Cp ( nybse + NyCse)
@7 = Pr
e o) - o 1 f INM 4o
b3e=§-(bm+bNe) ; sz:(ML)u =
Ja,
- L(Gm+Eie) ; Gm = o do
CSG"E CMG e ) (ML)MJ ay
Qe
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Appendix E

GRID REFINEMENT STUDY FOR
A VISCOUS PROBLEM

To determine the order of accuracy of the point-implicit upwind algorithm
used in the current work for the compressible flow analysis, a uniform grid
refinement study was performed for a simple viscous problem. The problem
statement is shown in Figure E.1. The inlet profile for the problem is taken from

a boundary layer solution.

A uniform mesh consisting of 800 elements and 861 nodes (41 nodes in
x direction and 21 nodes in the y direction) was chosen as an initial mesh ( this
mesh looks similar to that shown ir Figure 25 in the main text). Two uniform
refinements in the y direction were performed on the initial mesh to give a mesh
consisting of 1600 elements and 1681 nodes (41X41) and a mesh with 3200
elements and 3321 nodes(41X81). Refinement was performed in the y
direction alone, since change in the flow variables was predominant in this
direction. The element dimension in the y direction "h", in these meshes was
0.012in, 0.006in, 0.003in respectively. '

Finite element solutions were obtained on these meshes using the point-
implicit flow algorithm. One more refinement is performed on the third mesh to
give a fourth mesh consisting of 6400 elements and 6601 nodes (41X161) and

the finite element solution on this mesh was treated as the exact solution for
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comparison since it was the best solution available. For each of the first three
meshes, Lp-norm of the error was computed based on the finite element
solution and the exact solution (finite element solution on the most refined
mesh) for two conservation variables, density (p) and density*u-velocity (pu)
respectively. Results are shown in Figures E.2 and E.3. The gradient of the
linear curve relating the logorithm of the error with the logorithm of h was found
out to be 1.49 for density and 1.51 for density*u-velocity. It can be conciuded
from these results that the order of accuracy of the point-implicit, cell-centered
upwind finite element algorithm for a viscous problem with no strong inviscid

effects is close to 1.5.
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Fig. E.2 Density error norm versus element dimension for viscous
algorithm convergence study
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