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INTRODUCTION

The deep sea is the largest habitat on Earth, but is
still relatively unexplored with respect to microbiol-
ogy due to the difficulty of sampling such a distant
and sparsely inhabited environment. In particular,
small eukaryotes have only been examined and enu-
merated at depths below 1000 m in a few studies (Pat-
terson et al. 1993, Tanaka & Rassoulzadegan 2002,
Countway et al. 2007, Fukuda et al. 2007, Soh rin et al.
2010). In the surface ocean, heterotrophic nanoflagel-
late abundances are 102 to 104 cells ml−1 and bacterial
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ABSTRACT: The meso- and bathypelagic ocean
comprises the largest habitat on earth, yet we know
very little about the distribution and activity of pro-
tists in this environment. These small eukaryotes are
responsible for controlling bacterial abundance in
the surface ocean and are major players in the mate-
rial and energy transfer of pelagic food webs. In this
paper, we quantify microbial eukaryotes in the deep
North Atlantic, as well as provide a basic characteri-
zation of eukaryote community changes through the
water column. To this end, we counted organisms
using 2 different approaches: (1) catalyzed reporter
deposition fluorescence in situ hybridization (CARD-
FISH, also known as TSA-FISH) with the EUK516
probe and the newly developed KIN516 probe for
kinetoplastids, and (2) 4’,6-diamidino-2-phenylin-
dole in combination with fluorescein isothiocyanate
staining (DAPI-FITC). We performed several tests to
compare the abundances measured by these 2 meth-
ods, and quantified losses at each step in the process.
We also used the morphology of nuclei stained with
DAPI as a quick method to characterize some groups
of protists. We found that eukaryotes and kinetoplas-
tids both decreased in abundance with increasing
depth at a greater rate than bacteria or viruses.
Below 1000 m and to the maximum depth collected in
this study (i.e. 5000 m) the concentration of eukary-
otic  microbes counted using both methods remained
constant. Kinetoplastids represented a significant
fraction  (average 21.8%) of total eukaryotic microbes
counted by CARD-FISH throughout the water col-
umn, and this percentage increased somewhat with
depth. One unique yet unidentified nuclear morpho-
type as identified by DAPI staining remained equally
abundant throughout the entire water column, and
was the most abundant protist in deep-sea samples.
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Bathypelagic eukaryotes with DAPI-FITC staining. The 2
lower cells are of the split-nucleus morphotype which domi-
nated deep-water samples. 

Image: D. Morgan-Smith
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abundances are 105 to 107 cells ml−1 (Gasol & Vaque
1993), and flagellates are known to control bacterial
densities through grazing (Fenchel 1986). Whereas in
the mesopelagic flagellates may still be important
grazers on bacteria  (Fu kuda et al. 2007), they may
play a less important role in the bathypelagic envi-
ronment (Aristegui et al. 2009).

Based on 18S rRNA sequences, Countway et al.
(2007) found protistan communities in the deep sea
distinct from those in the surface ocean. Fukuda et al.
(2007) found that biomass of eukaryotic microbes
dropped off more sharply with depth than prokary-
otic biomass. In another study, a large diversity of
diplonemids was reported in the deep sea (Lara et al.
2009). A recent review of deep-sea microbial oceano -
graphy included a comparison of eukaryote numbers
between the Pacific and Atlantic Oceans, and the
Mediterranean Sea (Aristegui et al. 2009). Most
recently, protist numbers were reported for a large
longitudinal transect from 10° S to 53° N at depths of
5 to 5000 m in the Pacific Ocean (Sohrin et al. 2010),
and protist diversity in the deep, anoxic Cariaco
Basin was re ported (Edgcomb et al. 2011). Of the
many available methods, only direct counts yield
absolute numbers of protists in water samples, which
is a critical piece of information to better understand
microbial trophodynamics. Using samples collected
on the same cruise used in the present study, Parada
et al. (2007) found that abundances of picoplankton
decreased exponentially from about 2.9 × 105 cells
ml−1 at 100 m to 0.2 × 105 cells ml−1 at 4000 m. One
may thus hypothesize that flagellates do not thrive in
the deep sea because the abundance of prokaryote
prey falls below their feeding threshold (ca. 105 cells
ml−1; Andersen & Fenchel 1985, Wikner & Hagström
1991), and that viruses, which maintain very high
concentrations in the deep sea (Parada et al. 2007),
are more likely to control prokaryotic abundance in
deep water.

Three stains have been commonly used to obtain
nanoflagellate counts in the ocean. These are 4’,6-
diamidino-2-phenylindole (DAPI), fluorescein iso -
thiocyanate (FITC), and 3-6-diamino-acridine hemi-
 sulfate (Proflavine). Of these, DAPI stains the nucleus
only, and is used in combination with FITC (Paffen-
höfer et al. 2003, Fukuda et al. 2007) or Proflavine
(Tanaka & Rassoulzadegan 2002), which stain the
entire cell body. Here we report cell abundances
based on conventional DAPI-FITC staining and com-
pare them with catalyzed reporter deposition fluores-
cence in situ hybridization (CARD-FISH; Beardsley
et al. 2005) based on a probe considered universal to
eukaryotes.

MATERIALS AND METHODS

Sample collection

Water samples of 200 to 1250 ml were collected
using Niskin bottles from 17 stations in the North
Atlantic during the ARCHIMEDES-I cruise (Fig. 1)
between November 13 and December 9, 2005. Sam-
ples were taken at depths of 100 to 5000 m, with most
stations sampled at 900, 2750, and 4000 m, represent-
ing Antarctic Intermediate Water, North Atlantic
Deep Water, and Antarctic Bottom Water, respecti -
vely (Tomczak & Godfrey 2003). Samples were fixed
overnight in formaldehyde (2% final concentration,
stabilized with methanol), then filtered onto 0.2 or
0.8 µm pore size white polycarbonate filters (Milli-
pore GTTP and ATTP, respectively) at a vacuum of
−200 mbar. The relatively long fixation at room tem-
perature was necessary so that supersaturated gases
were able to escape and thus not form bubbles on the
filters, which would lead to non- uniform cell distrib-
utions. Filters were rinsed twice with 1× phosphate
buffered saline (PBS), then with MilliQ water and
immediately frozen at −80°C. They were transported
from the Netherlands to Norfolk on dry ice via
courier and subsequently stored in a −80°C freezer
until CARD-FISH or direct staining was performed.

CARD-FISH

Prior to hybridization, pie-shaped pieces of approx-
imately 1/8 filter were cut so that multiple analyses
could be run on a single filter representing a single
water sample. The CARD-FISH protocol (Pernthaler
et al. 2002, Teira et al. 2004) was undertaken on each
filter section, with 10 to 12 sections hybridized simul-
taneously from various filters. Filter sections were
embedded in warm 0.1% agarose to prevent cells
from detaching from the filters during the hybridiza-
tion and washing procedures. Permeabilization steps
common for FISH with prokaryotes (Proteinase K or
lysozyme treatment) were not used as they would
damage the more fragile protist cell bodies. Probes
labeled with horseradish peroxidase (HRP) were
EUK516 (Amann et al. 1990) and KIN516 (Bochdan-
sky & Huang 2010) (Table 1), and competitor probes
(probes not labeled with HRP displaying one central
mismatch with the active probe, Table 1) were used
for all hybridizations except for the depressurization
tests (see ‘Effects of depress urization’ below).

Hybridization took place at 35°C for 14 to 17 h in
hybridization buffer containing 55% formamide (1 g
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dextran sulfate, 1.8 ml 5 M NaCl, 200 µl 1 M Tris-
HCl, 5 µl 100% Triton X-100, 5.5 ml formamide, 1 ml
10% blocking reagent, 1.5 ml Barnstead Nanopure
water). Filters were then washed with washing
buffer (30 µl 5 M NaCl, 1 ml 1 M Tris-HCl, 500 µl
0.5 M EDTA, 50 µl 10% sodium dodecyl sulphate
[SDS], brought to 50 ml with Barnstead Nanopure
water) for 15 min at 37°C, followed by PBS-T solution
(5 ml 10× PBS, 25 µl Triton X-100, brought to 50 ml
with Barnstead Nanopure water) for 10 min at room
temperature. Amplification was performed at 37°C
for 15 min in the dark in amplification substrate B
(493 µl amplification buffer, 5 µl Alexafluor 488, 5 µl
amplification substrate A; amplification buffer: 2 g
dextran sulfate, 8 ml 5 M NaCl, 200 µl 10% blocking
reagent, 11.8 ml 1× PBS; amplification substrate A:
1 µl H2O2, 200 µl amplification buffer), then washed
at room temperature in PBS-T solution for 10 min in
the dark. After CARD-FISH, filters were mounted
individually on microscope slides using Vectashield
liquid mounting medium with DAPI as counter-stain,
and stored horizontally at −20°C in the dark.

Robotic microscopy

Samples were analyzed on a modified Olympus
BX51 epifluorescence microscope with computer
con trol of the stage in X, Y, and Z planes using a mo -
torized stage with linear encoding (Prior Scientific).
An X-Cite 120 (Exfo) light source provided highly
consistent illumination. Band-pass filters (40 nm
band at 360 nm, 15 nm band at 484 nm, and 25 nm
band at 555 nm; Chroma Technology) in a Lambda
10-3 filter wheel (Sutter Instrument) along with a
multi-band beamsplitter (61000v2bs, Chroma Tech-
nology) and emission filter (20 nm band at 450 nm,
35 nm band at 520 nm, 45 nm band at 605 nm;
61000v2m, Chroma Technology) allowed scanning of
the slide for both DAPI and the hybridization signal,
with automatic shutters switching between the 2 ex -
citation wavelengths at each image field. Images
were taken with a QICam Fast 1394 (Qimaging)
cooled charge-coupled device camera. Microscope
control and image acquisition were performed with
Objective Imaging software in combination with
Image-Pro Plus software with customized macros for
microscope operation.

Filter slices were scanned using a semi-automated
process. First, the entire filter area was scanned in
brightfield illumination at 40× total magnification.
This allowed the area of the filter to be defined
within the Image-Pro software as a custom scan area.
The Z-stack for the scan was defined by noting the 
Z-plane of best focus for several points on the filter
and setting a Z-range based on those values. The fil-
ter area was then scanned at 400× using the auto-
mated stage and the resulting images stitched into a
mosaic of approximately 300 to 600 fields for display
in Image-Pro, with images from the blue and green
emission channels overlaid to create a single false-
colored image on-screen. The Z-stack for each image
in the mosaic, consisting of approximately 30 to
50 images for each stack, was assembled using an
algorithm which combined areas of greatest contrast,
to create focus across each image and the entire mo -

saic. The coordinates of each image
pixel were stored so that the operator
was able to return to any location on
the filter to re-examine specific
organisms and to take additional pic-
tures at higher mag nification. Organ-
isms with positive hybridization
 signals as well as DAPI-stained
nuclei were iden tified, counted, and
individually photo graphed at 1000×
total magnification in each channel.
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Fig. 1. Stations sampled in the North Atlantic. Station num-
bers are the same as in Parada et al. (2007). Stations along
the western portion of the cruise track followed the North 

Atlantic Deep Water along the Mid Atlantic Ridge

Name Sequence Source

EUK516 5’-ACC AGA CTT GCC CTC C-3’ Amann et al. (1990),
Beardsley et al. (2005)

KIN516 5’-ACC AGA CTT GTC CTC C-3’ Bochdansky & Huang (2010)

Table 1. The 2 horseradish peroxidase (HRP)-labeled probes (Beardsley et al.
2005) used in this study. As there is only one central mismatch (bold, under-
lined), unlabeled sequences of each probe were used as competitor probes to 

increase discriminatory power
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These photo graphs were sorted based on the mor-
photype of the nucleus in DAPI. Depending on the
abundance of or ganisms in the sample, 5 to 446 pro-
tists were counted per sample using EUK516, and 0
to 232 kinetoplastids were coun ted using KIN516.

Nuclear morphology

Nuclear morphological categories as they ap -
peared in DAPI were defined as ‘crescent’, ‘long’
(longest dimension at least 3 times greater than the
shortest dimension), ‘kinetoplastid’ (nucleus coupled
with a distinctive kinetoplast), ‘donut’ (round nucleus
with a dark center), ‘bean’ (one convex and one con-
cave side), ‘split’ (round nucleus with a distinctive
dark line down the center), ‘round’, and ‘miscella-
neous’ (all nuclei that do not fit into any of these
groups). Fig. 2 shows examples for each of these mor-
photypes.

Effect of depressurization

This experiment was designed to determine
whether there were any pre-fixation losses of cell
num bers while the water samples were raised
through the water column. Samples were collected
from 2750 and 4000 m depths at 6 stations in four
200 ml titanium chambers designed to retain in situ
pressure. Pressure was released in 2 of the chambers
before fixation with formaldehyde (2% final conc.).
In the 2 other chambers, formaldehyde (2% final
conc.) was injected through a high pressure liquid
chromatography pump (Rainin Instrument) without
loss of pressure. After 0.5 h of fixation to cross-link

proteins and thus harden cells, pressure was
released. All samples were filtered through 0.2 µm
Millipore polycarbonate filters and hybridized with
the EUK516 probe as described in ‘CARD-FISH’
above, but without the use of a competitor probe.

Methodological tests

In order to assess a variety of potential sources of
error, we performed a series of tests. We quantified
each of them separately, then arrived at an overall
correction factor. In this fashion, our results can be
compared with many different methods and proto-
cols employed in other studies.

Prokaryotes on hybridized and unhybridized fil-
ters. To determine whether material was lost from
the filter surface during the hybridization procedure,
1/8 slices of 25 mm, 0.8 µm pore size polycarbonate
filters were hybridized with the EUK516 or KIN516
probe, counterstained with DAPI and then analyzed
under epifluorescence microscopy for DAPI signals
of prokaryotes. These counts were compared with
counts taken from 1/8 sections of the same filter
stained with DAPI and not put through hybridization.

Pore size comparison. In order to determine
whether any eukaryotic microbes were lost through
the pores of the 0.8 µm pore-size filters, paired
deep-sea samples taken from a single Niskin bottle
at each of 8 stations were formaldehyde-fixed and
filtered through 0.2 and 0.8 µm pore size polycar-
bonate filters at a vacuum of 200 mbar. Sample vol-
umes were 250 ml for the 0.2 µm filters and 1000 ml
for the 0.8 µm filters. Filters were stored at −80°C
and 1/8 (for 0.8 µm) or 1/4 (for 0.2 µm, the larger
portion necessary to count sufficient organisms
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Fig 2. (A−I) 5 examples for each of the
nuclear morphotypes. (A) Cres cent,
(B) donut, (C) bean, (D) kinetoplastid
(with the characte ris tically large mito-
chondrion), (E) long, (F) miscellaneous
(non-round), (G) round, (H) tiny, and
(I) split. All photos show DAPI-stained
nuclei of organisms from the deep sea
with positive EUK516 hybridization,
except for the kinetoplast morphotype,
which were all positive with the
KIN516 probe. (J, K) Examples of cul-
tured diplomonads: 2 known organ-
isms with double nuclei for compari-
son with the split nucleus morphotype.
(J) Hexamita pusilla ATTC #50336, (K) 

Trepomonas agilis ATTC #50337
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given the smaller volume filtered) of the filter was
mounted on a slide using Vectashield with DAPI
mounting medium and counted using epifluores-
cence micro scopy.

Test for detachment of organisms from filters. The
purpose of this test was to determine whether mater-
ial would fall off the filters during shipping and stor-
age. A culture of Cafeteria roenbergensis was fixed
with 2% formaldehyde and 10 ml aliquots were fil-
tered through 0.8 µm pore size polycarbonate filters.
Five such filters were placed gently into Petri Slides
(Millipore) and stored at −80°C for 1 wk. The other 5
filters were placed into PetriSlides, then shaken vig-
orously, and knocked against the surface of the lab
bench. These filters were then stored at −80°C in the
PetriSlides, removed several times to be shaken and
dropped on the lab bench to simulate handling
rougher than occurred with the deep-sea samples. At
the end of 1 wk, all filters were allowed to thaw and
were then mounted on slides using Vectashield with
DAPI mounting medium and counted using epifluo-
rescence microscopy.

DAPI-FITC staining test. In order to compare the
efficiency of DAPI and FITC staining procedures
with each other, slices of 1/8 of a filter of cultured fla-
gellates (Neobodo designis, Paraphysomonas vestita,
and Cafeteria roenbergensis) were embedded in
agarose, as in the CARD-FISH protocol, then soaked
for 10 min in 30% H2O2 to reduce background fluo-
rescence. Filters were then soaked in FITC solution
(2.5 ml sodium carbonate buffer, pH 9.5; 11 ml potas-
sium phosphate buffer, pH 7.2; 11 ml 0.85% NaCl;
10 mg FITC) for 10 min, and washed in sodium car-
bonate buffer (pH 9.5) for 20 min. Filter slices were
mounted on microscope slides and counterstained
using Vectashield with DAPI mounting medium. This
FITC staining pro cedure was not performed on deep-
sea samples, only on cultured flagellates, and differs
somewhat from the method used for deep-sea sam-
ples. Organisms were counted first in UV excitation
for DAPI only, then in DAPI-FITC (i.e. a positive sig-
nal in both color channels was required for an organ-
ism to be counted).

DAPI versus EUK516+KIN516 in lagoon samples.
Samples of ambient water, marine snow particles,
and sediment were collected in Carrie Bow Cay,
Belize, formaldehyde fixed and filtered through
0.8 µm pore size polycarbonate filters. Sections of 1/8
filter each were hybridized with EUK516 and KIN516
probes. All filters were mounted on slides using Vec-
tashield with DAPI mounting medium. Epifluores-
cence counts were done first counting protists in
DAPI only, then counting organisms with both a pos-

itive hybridization signal and a visible nucleus in
DAPI. This test was designed to account for organ-
isms whose sequences do not match that of either
probe. Details of this test can be found in Bochdansky
& Huang (2010).

Manual counts. Slices of 1/8 filter mounted in Vec-
tashield with DAPI medium were first counted robot-
ically (see ‘Robotic microscopy’ above), and then
later recounted using the same microscope described
in ‘Robotic microscopy’ but with manual control of
the stage without the aid of camera and imaging soft-
ware over a minimum of 200 fields. This was per-
formed on all CARD-FISH samples to assess whether
the robotic scanning process introduces error.

DAPI-FITC counts. Sections of 1/8 of a 0.8 µm pore
size polycarbonate membrane filter were taken from
the same filters used for CARD-FISH. These were
placed on top of a 3.0 µm pore size polycarbonate
membrane backing filter on a glass filtration tower.
The filter slices were flooded with 1 ml of FITC stain-
ing solution (10 mg FITC, 11 ml potassium phosphate
buffer, 11 ml 0.85% NaCl, 2.5 ml sodium carbonate
buffer; Sherr & Sherr 1983). After 10 min of incuba-
tion in the dark, vacuum was applied to remove
staining solution, then filters were rinsed twice with
10 ml cold (4°C) sodium carbonate buffer under
~200 mbar vacuum. Filters were mounted on slides
using Vectashield with DAPI mounting medium, and
stored at −20°C in the dark until they were counted
on an Olympus BX50 epifluorescence microscope.

Prokaryotic size spectrum

To obtain prokaryotic counts, we scanned a ran-
dom pattern of at least 100 fields per filter section at
1000× total magnification. This was performed on
0.2 µm pore size membrane filters from all stations.
Minimum size and intensity cutoffs were set based
on which objects appeared to be prokaryotes (i.e.
those that would be counted as prokaryotes in DAPI),
and image analysis was run using Image-Pro Plus to
count such objects in each field. Concentrations of
prokaryotes (cells ml−1) were then calculated, ac -
coun ting for the volume of water filtered and the pro-
portion of the total filter area included in the scanned
region.

Statistical analyses

Pearson correlation analyses were conducted to
compare biological and environmental parameters,
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including total eukaryote, kinetoplastid and split
nucleus abundances by CARD-FISH, depth, lati-
tude, longitude, distance to nearest land, and mea-
sured nitrogen and phosphorus species. Pearson
correlation analyses were also used to compare
prokaryotic abundances obtained using image
analysis to CARD-FISH abundances of total euka -
ryotes, kinetoplastids and the split nucleus organ-
ism. Linear regression of kinetoplastid abundance
and kinetoplastids as a percentage of total CARD-
FISH eukaryotes against depth were performed.
Paired t-tests and Wilcoxon signed rank tests were
conducted on groups 1, 2, 4, 5, 6, 7, and 8 of the
methodological tests (Table 2). Student’s t-tests and
Wilcoxon rank sum tests were used for group 3,
which did not have paired samples. All tests were
performed using Matlab Statistics Toolbox.

RESULTS

Abundances of eukaryotes counted using DAPI-
FITC staining were an average of 228 cells ml−1 (SD =
248) in samples from the lower part of the euphotic
zone (100 m), 25.7 cells ml−1 (SD = 19.6) in the Ant -
arctic Intermediate Water (750−1000 m), 11.2 cells
ml−1 (SD = 5.7) in the North Atlantic Deep Water
(2400−2750 m), and 12.1 cells ml−1 (SD = 7.3) in the
Antarctic Bottom Water (3500−5000 m) (Fig. 3D).
DAPI-FITC eukaryote abundance was significantly
higher in the central water (100–500 m) than in any
of the lower water masses (Table 3), none of which
were significantly different (1-way ANOVA with
Tukey-Kramer multiple comparison correction, p <
0.0001, F = 9.91). Similarly, we found that overall eu -
karyote abundances counted by CARD-FISH de crea -
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Test group Mean SD n t p Rank sum/ p
(cells ml−1) (cells ml−1) signed rank

1a. Prok. on hyb. filters 38775 20629 58 11.3 <0.0001 5 <0.0001
1b. Prok. on fresh filters 50828 25098 58

2a. Euk. on 0.2 µm filters 37.1 16.6 8 4.06 0.0048 0 0.0078
2b. Euk. on 0.8 µm filters 26.5 10.9 8

3a. Caf. on shaken filters 10964 1081 5 −0.409 0.703 28 >0.999
3b. Caf. on unshaken filters 11022 998 5

4a. Pressurized samples 1.06 0.815 14 0.986 0.342 36 0.326
4b. Depressurized samples 0.782 0.554 14

5a. Cultures in DAPI-FITC 6884 7649 12 0.381 0.710 33 0.677
5b. Cultures in DAPI 6666 6993 12

6a. Protists in DAPI 1594 1195 11 6.28 <0.0001 0 0.0009
6b. EUK516+KIN516 1236 1327 11

7a. EUK+KIN robotic 10.5 26.2 60 −3.75 0.0004 109 <0.0001
7b. EUK+KIN manual 15.8 32.8 60

8a. Deep-sea EUK+KIN 15.9 33.3 58 3.50 0.0009 0 <0.0001
8b. Deep-sea DAPI-FITC 77.9 163.8 58

Table 2. Results of statistics for methodological tests. Bold numbers indicate significant results at the α = 0.05 level. Since the
assumptions of parametric tests were not always fulfilled, the results of the non-parametric equivalents are shown as well. For
test group 3 an unpaired Student’s t-test and Wilcoxon rank sum test were used; for all other groups, paired Student’s t-tests
and Wilcoxon signed rank tests were performed. Group 1: counts of prokaryotes (Prok.) in DAPI on hybridized versus unhy-
bridized deep-sea filters. Group 2: eukaryotes (Euk.) counted in DAPI on 0.2 µm versus 0.8 µm pore size deep-sea filters.
Group 3: counts in DAPI of cultured Cafeteria roenbergensis (Caf.) on filters subjected to shaking versus filters which were left
undisturbed. Group 4: eukaryotes counted in CARD-FISH on deep-sea samples maintained at in situ pressure until after
fixation versus samples depressurized prior to fixation. Group 5: counts of several flagellate cultures using DAPI versus DAPI-
FITC staining techniques. Group 6: eukaryotes from ambient and untreated lagoon waters of Carrie Bow Cay, Belize, counted
in DAPI versus using CARD-FISH (details in Bochdansky & Huang 2010). Group 7: counts of the same deep-sea filter slices
 hybridized with the EUK516 and KIN516 probe pair using robotic versus manual control of the microscope stage. Group 8:
deep-sea samples using CARD-FISH with the EUK516 and KIN516 probe pair versus counts on different sections of the same
filter using DAPI-FITC staining. DAPI: 4’,6-diamidino-2-phenylindole staining; FITC: fluorescein isothiocyanate staining; 

CARD-FISH: catalyzed reporter deposition fluorescence in situ hybridization
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Depth (m) DAPI-FITC FISH robotic FISH manual Fukuda Sohrin Tanaka Patterson

0−100 1400 (180−3300) 316 (210−738) 300 (20−900)
100−110 525 (269−725) 82 (47−111) 109 (76−149) 218 (177−262) 60 (13−170) 60
200−250 89 (48−145) 12 (1.7−46) 16 (8.2−34) 42 (29−57) 25 (17−30) 60
500 47 (27−68) 6.3 (0.44−28) 12 (3.5−34) 60 (5.7−260) 20 (12−24) 15 (6−20) 10
750−1000 26 (6.6−82) 1.2 (0.09−4.8) 4.3 (1.6−8.4) 13 (10−19) 5 (2.5−10) 10
1500− 3500 12 (6.5−31) 0.50 (0.04−1.8) 2.6 (0.68−6.4) 6.6 (1.4−12) 8.9 (6.2−12) 2 (1.1−8) 20
3500−5000 12 (6.4−32) 0.40 (0.16−1.1) 2.0 (0.77−4.7) 8.8 (5.5−9.9)

Table 3. Mean (range) of eukaryote abundances measured at various depth ranges (in cells ml−1). Columns 2 to 4 show data
from the present study, counted manually in CARD-FISH (catalyzed reporter deposition fluorescence in situ hybrid ization)
and in DAPI-FITC (4’,6-diamidino-2-phenylindole and fluorescein isothiocyanate staining) as described in ‘Materials and
methods’. The last 4 columns show results from previous studies which used DAPI and FITC staining (Fukuda et al. 2007,
Sohrin et al. 2010), DAPI and Proflavine (Tanaka & Rassoulzadegan 2002) or live counts (Patterson et al. 1993). Data from
Tanaka & Rassoulzadegan (2002) and Patterson et al. (1993) are estimated visually from published figures. Samples were
taken at different depths within the given ranges in each study.  The values shown for Fukuda are medians for samples taken 
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Fig 3. (A−C) Counts in cells ml−1 of eukaryotes (EUK516 + KIN516 probes), kinetoplastids (KIN516 probe) and split nucleus
(based on morphology), respectively. (D) Mean values of virus-like particle (VLP), picoplankton (PP), CARD-FISH (FISH)
eukaryote, and DAPI-FITC (FITC) eukaryote abundances. Error bars represent SD over the depths sampled. VLP abundances
remain within a factor of 2, PP decrease by about an order of magnitude, and eukaryotes decrease by about 2 orders of mag-
nitude with both methods. VLP and PP from Parada et al. (2007). (E, F) Kinetoplastids and the split nuclear morphotype as a
proportion of total eukaryotes (EUK516 + KIN516), respectively. All eukaryote and kinetoplastid graphs based on manually
counted CARD-FISH samples, except FITC portion of (D). Split nucleus abundance in (C) and (F) are based on morphology
observed in robotically counted samples. DAPI-FITC: 4’,6-diamidino-2-phenylindole and fluorescein isothiocyanate staining; 
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sed sharply from a mean of 109 cells ml−1 (SD = 25,
range = 76 to 149, n = 6) in samples from the lower
part of the euphotic zone (100 m) to 4.3 cells ml−1

(SD = 2.1, range = 1.6 to 8.4, n = 12) in the Antarctic
Intermediate Water (750−1000 m), then remained
fairly constant through the North Atlantic Deep
Water (2400−2750 m) with a mean of 2.6 cells ml−1

(SD = 1.6, range = 0.68 to 6.4, n = 16), and the Antarc-
tic Bottom Water (3500−5000 m) with a mean of
2.0 cells ml−1 (SD = 1.2, range = 0.77 to 4.7, n = 14)
(Fig. 3). Eukaryote distribution was strongly corre-
lated with depth and therefore with other factors that
were strongly depth-dependent, such as nutrient
concentrations (Table 4). The same trends held for
kinetoplastids, but not for the split-nucleus morpho-
type, which was not significantly correlated with
depth or nutrients. No significant correlations existed
with latitude, longitude, or distance to nearest land
for any group (Table 4).

Because of an apparent discrepancy between
counts obtained by DAPI-FITC and CARD-FISH me -
thods, we undertook the series of methodological
tests described in ‘Methodological tests’ above.
These tests led us to several sources of error poten-
tially accounting for the discrepancy observed; these
sources are summarized in Table 2. Significant differ-
ences were found in groups 1, 2, 6, and 7 (i.e. losses
due to hybridization procedure, filter pore size, stain-
ing method, and robotic control of the microscope
stage, respectively). These comparisons all showed
that CARD-FISH with robotic microscopy underesti-
mated protist abundance, counting 76.3, 71.4, 76.1,
and 66.7%, respectively, of the organisms compared

to the control, for groups 1, 2, 6, and 7, respectively.
Compounding the errors for the 4 factors tested in
these groups, the CARD-FISH method should count
38.7% of protists in a sample, a 2.6-fold difference on
average compared with DAPI-FITC. This is approxi-
mately half of the 4.9-fold overall difference between
the 2 methods, comparing DAPI-FITC and CARD-
FISH estimates of eukaryotes in deep-sea samples
(group 8, Table 2). Factors that we tested and that did
not contribute to the observed discrepancies were
detachment of cells from filters (group 3), depressur-
ization of samples before fixation (group 4), and dif-
ferences between independent DAPI and DAPI-FITC
counts (group 5) (Table 2). Factors we did not investi-
gate, but which could contribute to the other half of
the discrepancy observed, include differences in the
rRNA and protein content of eukaryotic cells, count-
ing of dead eukaryotic cells, or inclusion of some
large prokaryotes in the DAPI-FITC counts.

Based on manual CARD-FISH counts, kinetoplas-
tid abundance averages were 5.7 cells ml−1 (SD =
6.1) in the upper water column (100−500 m), drop-
ping off sharply to 0.84 cells ml−1 (SD = 0.50) in the
Antarctic Intermediate Water, 0.56 cells ml−1 (SD =
0.39) in the North Atlantic Deep Water, and 0.44
cells ml−1 (SD = 0.21) in the Antarctic Bottom Water.
Using the empirical correction factor of 4.9 as
assessed above, corrected kinetoplastid abundances
were 27.9 cells ml−1 for 100−500 m, 4.1 cells ml−1 for
the Antarctic Intermediate Water, 2.7 cells ml−1 for
the North Atlantic Deep Water, and 2.2 cells ml−1 for
the Antarctic  Bottom Water. The abundance of kine-
toplastids decreased significantly with depth (linear

regression on semi-log transformed
data, Fig. 3; F = 106, p < 0.0001, n =
60). As a percentage of total CARD-
FISH eukaryotes, however, kineto-
plastids increased with depth (linear
regression on semi-log transformed
data, Fig. 3; F = 5.87, p = 0.019, n =
60). Kinetoplastid percentage aver-
ages of total eukaryotic microbes
were 15.9% (SD = 7.4) at 100−500 m,
21.5% (SD = 9.0) in the Antarctic
Intermediate Water, 24.0% (SD =
20.3) in the North Atlantic Deep
Water, and 27.1% (SD = 13.3) in the
Antarctic Bottom Water.

Community composition based on
nuclear morphotype changed with
depth. Images of DAPI-stained nuclei
for all FISH-positive organisms were
sorted into 9 categories and labeled
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Variable Eukaryotes Kinetoplastids Split nuclei
r p r p r p

Depth (m) −0.487 <0.0001 −0.474 0.0001 −0.135 0.318

Latitude (°N) 0.223 0.086 0.233 0.073 0.068 0.617

Longitude (°W) −0.003 0.981 0.008 0.954 −0.049 0.717

Distance to nearest −0.047 0.724 −0.062 0.639 −0.019 0.886
land (km)

PO4 (µmol ml−1) −0.704 <0.0001 −0.669 <0.0001 −0.055 0.687

NH4 (µmol ml−1) 0.292 0.028 0.330 0.012 −0.061 0.653

NOx (µmol ml−1) −0.718 <0.0001 −0.681 <0.0001 −0.027 0.842

NO2 (µmol ml−1) 0.904 <0.0001 0.882 <0.0001 −0.010 0.461

TP (µmol ml−1) −0.691 <0.0001 −0.658 <0.0001 −0.052 0.702

TN (µmol ml−1) −0.697 <0.0001 −0.659 <0.0001 −0.023 0.862

Table 4. Pearson correlation coefficients (r) between cell abundances
(cells ml–1) measured by manual counting of CARD-FISH samples and geo-
graphic and chemical variables, with corresponding p-values, n = 57. NOx = 

NO2 + NO3, TP = total phosphorus, TN = total nitrogen
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as crescent, long, kinetoplastid, donut, bean, split,
tiny, round and miscellaneous (see Fig. 2). Round and
miscellaneous made up the majority of nuclei at all
depths, but became less dominant in deeper samples
due to an increase in the relative abundance of the
split morphotype (Figs. 3 & 4). The split morphotype
was remarkably constant in ab solute abundance
throughout the water column from 100 to 5000 m,
which consequently increased their relative abun-
dance from 0.07% of total CARD-FISH eukaryotes in
the lower euphotic zone (100 m) to 24% in deep
water masses (3500−5000 m) (Fig. 4).

Automated counts of prokaryotes using DAPI stain-
ing showed that prokaryotic abundance correlates
negatively with depth (r = −0.734, p < 0.0001, n = 59),
positively with total flagellate abundance (r = 0.630,

p < 0.0001, n = 59), and positively with kinetoplastid
abundance (r = 0.338, p = 0.0089, n = 59), but not with
split nucleus abundance (r = 0.065, p = 0.627, n = 59).
Image analysis of the size of DAPI signals on these
filters showed a continuum, with no clear demarca-
tion between prokaryotes and eukaryotic nuclei, ren-
dering a cutoff based on size arbitrary (Fig. 5).

DISCUSSION

Protist abundance decreased exponentially from
100 to 900 m, then did not decrease further between
900 and 5000 m. This result is consistent with previ-
ous studies which have shown low but relatively sta-
ble numbers for heterotrophic nanoflagellates (the
primary eukaryotes in deep-sea samples) below
1000 m (Fig. 6 in Sohrin et al. 2010). Using picoplank-
ton and virus-like particle abundances from the same
expedition (Parada et al. 2007), eukaryote abun-
dances decrease by more than 2 orders of magnitude
over the depths sampled, compared to one order of
magnitude for picoplankton, and less than one for
virus-like particles (Fig. 3). This suggests that viruses
are relatively more important and small eukaryotes
less important in the control of bacterial numbers in
the bathypelagic region than in surface waters,
which is also consistent with the conclusions reached
by Aristegui et al. (2009).
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Fig 4. Relative abundance (percent of total CARD-FISH
eukaryotes) of morphotypes (see Fig. 2 for details) in various
water masses. Note the increase in the split morphotype
with increasing depth, which is due to a constant absolute
abundance of this  morphotype as total eukaryotes declined.
NACW/SACW: North/South Atlantic Central Water (sam-
ples taken be tween 250 and 500 m depth), AAIW/MSOW:
Antarctic Intermediate Water/Mediterranean Sea Outflow
Water (samples taken between 750 and 1000 m), NADW:
North Atlantic Deep Water (samples taken between 2400
and 2750 m), AABW: Antarctic Bottom Water (samples taken
between 3500 and 5000 m). Sample depth varied in order to
target the center of each water mass. C: crescent; CARD-
FISH: catalyzed reporter deposition fluorescence in situ

hybridization

Fig 5. Frequency distribution of size of DAPI signals (total
number of occurrences = 1 995 252) on 0.2 µm filters. Mea-
surements were made using the automated microscope and
Image-Pro Plus image analysis software. At least 100 ran-
dom fields per filter from 60 filters (total fields = 6502) repre-
senting all stations and depths sampled were analyzed. The
size of nuclei of 2 eukaryotic microbes (i.e. tiny and split
mor photypes, arrows) demonstrates the size overlap be -

tween prokaryotes and eukaryotes
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Counts obtained using FITC staining were higher
than those using CARD-FISH for all samples. There
are several possible reasons for this discrepancy, and
we tested for such effects including loss of material
from filters during the hybridization process, rough
handling of filters, depressurization of samples, and
the robotic scanning process of the microscope.
Other factors that we were not able to test directly
include eukaryotes which have too few copies of
rRNA to show a positive CARD-FISH signal, which
may be due to low activity levels of living cells (i.e.
CARD-FISH could undercount) or to faster de -
gradation of rRNA compared to the proteins and
DNA which bind DAPI and FITC in dead cells. Con-
versely, a source of error in the DAPI-FITC counts
could be the inclusion of a small fraction of prokary-
otes in the tally that appear like eukaryotes because
of very thick cell walls and DNA concentrated inside
a nucleoid. Given the much higher abundance of
prokaryotes in the samples, even the inclusion of a
very small percentage of prokaryotes could make a
big difference (Fig. 5).  Although the scanning pro-
cess of the robotic microscope introduced a signifi-
cant error into counts of our samples (Table 3), it is
nonetheless a useful tool for the quantification of
very rare events, where the errors in manual count-
ing would be at least as high due to the large number
of empty fields to be assessed. By comparison, our
counts of eukaryote abundances using the DAPI-
FITC protocol are very similar to those of other
 workers despite the fact that they were collected at
many different locations ranging from the Pacific
(Sohrin et al. 2010) to the Mediterranean (Tanaka &
Rassoulzadegan 2002). These data suggest that dif-
ferences in the abundances of eukaryotic microbes
do not primarily arise among ocean basins but are
rather due to latitudinal differences (Sohrin et al.
2010) and due to different methodology employed
(Table 5 in Nagata et al. 2010).

In our samples, depressurization pre- versus post-
fixation did not significantly affect the number of
eukaryotes counted by CARD-FISH in deep-sea sam-
ples. This finding is consistent with previous work,
which has shown that many eukaryotes can be
 isolated from the deep sea after depressurization
 (At kins et al. 1998, Arndt et al. 2003) and that
eukaryotes cultured under pressure can survive and
continue dividing after repeated depressurization
(Turley et al. 1988). It is also consistent with the find-
ing that protists do not burst due to intracellular bub-
ble formation during pressure loss, and have nearly
100% survival when samples are depressurized over
0.5 to 1 h (Hemmingsen & Hemmingsen 1979). This

validates the common practice of collecting samples
for protist counts in non-pressurized samplers such
as Niskin bottles, which allow for collection of the
large volumes of water necessary for accurate counts,
but do not maintain these samples at in situ pressure.
It is important to emphasize, however, that while
cells may not disappear due to depressurization, their
physiology may be greatly impacted by changes in
pressure. Any measurements to that effect (e.g. res-
piration, growth, feeding) may thus need to be per-
formed under in situ pressure and temperature to
obtain accurate results.

We used nuclear morphology to quantify certain
types of organisms without knowing their taxonomic
affiliation. The most striking example of this was the
split morphotype (Fig. 2), in which the nucleus
appears divided into 2 equal halves, which could be
due to a double nucleus such as that found in the
diplomonads (Lee et al. 2000; our Fig. 2) or possibly
some feature of the cell blocking the center of the
nucleus from view. These organisms were distinctive
in the size, shape, and the relative brightness of their
nucleus as viewed with DAPI staining and they read-
ily hybridized with the EUK516 probe but not with
KIN516. In individual deep-sea samples, the split
nucleus type sometimes made up more than 50% of
positive organisms using the EUK516 probe and
robotic counting method, thus making this morpho-
type the most abundant in the deep sea where we
sampled (Fig. 3). It showed no correlation with pro -
karyotic abundance, which was strongly correlated
with depth while the split nucleus remained constant
over the depth range sampled. The high abundance
and consistent appearance of the nucleus mean that
it would be impossible for the cells to be arranged on
the filter in random orientations and we therefore
propose that these organisms have cells which are
flattened or are otherwise forced to land on the filter
in a consistent orientation, similar to what we ob ser -
ved in diplomonads (Fig. 2).

We have not yet resolved the taxonomic affiliation
of the split nucleus organism. It appears most similar
to the twin nuclei of diplomonads, though it does not
match precisely with the shape of the nuclei of cul-
tured Hexamita pusilla ATTC #50336 or Trepo monas
agilis ATTC #50337 (Fig. 2). Interestingly, the
appearance of split nucleus type from our ocean sam-
ples had much less variation in appearance than that
found in monocultures of both Hexamita and Tre-
pomonas (Fig. 2). As we suspect for the split-nucleus
type, Hexamita and Trepomonas are dor so-ventrally
flattened and come to rest on the filter  surface at a
preferred orientation exposing their pe culiar 2-
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nucleus feature to view in the majority of individuals
counted in our test (65.6% in Hexamita, 81.5% in
Trepomonas). Most diplomonads are parasitic or live
in anoxic, high nutrient environments (Lee et al.
2000), which makes them unlikely candidates for the
most abundant eukaryote in the oxygenated, olig-
otrophic deep sea. However, microenvironments
with anoxic and high-nutrient conditions exist in
marine snow particles (Alldredge & Cohen 1987),
which could provide a niche for diplomonads in the
deep sea. Diplomonads are not currently known to
exist in the deep sea, and are not to be confused with
the diplonemids, reported to be very diverse in deep
water (Lara et al. 2009).

Our examination of community composition based
on nuclear morphotype shows that distinctive shifts
occur between shallow and deep water samples,
which independently validates the observations by
Countway et al. (2007) based on 18S rRNA se quen -
ces. The abundance of organisms with recognizable
nuclear morphologies means that a simple DAPI
stain and visual inspection of a filter can be used as a
first rough assessment of its eukaryotic community,
allowing rapid characterization of some eukaryote
types without FISH or sequencing. Classifying or -
ganisms based on morphology, including that of the
nucleus, is an important tool of classical protist ecol-
ogy. For example, the permanently condensed chro-
mosomes typical of dinoflagellates and Diplonema
have long been used to recognize these organisms
(Lee et al. 2000, Lukeš et al. 2009). Given the abun-
dance of the unusual split morphotype in our sam-
ples, we suggest that this simple tool can be used as
a first step in the classification of some morphologi-
cally identifiable organisms from environmental
samples prior to molecular characterization.

No correlation was found between eukaryote
abundance by CARD-FISH and geographical factors
such as latitude, longitude, or distance to nearest
land, which may affect organic carbon input to the
deep sea (Rowe 1983; our Table 4). This suggests a
de coupling between surface water conditions and
eu karyote abundance in the deep water. This decou-
pling may be due to the disconnect between the
upper water masses with wind-driven circulation and
the deep waters where thermohaline circulation
dominates. In this data set, however, the apparent
decoupling may also be due to the high between-
sample variability and statistical type II errors, which
are an inherent problem with any quantification of
rare events. Some of the high between-sample vari-
ability (Table 4, Fig. 3) may also be attributable to the
presence of aggregates in the deep sea. Recently,

Bochdansky et al. (2010) found that macroscopic
aggregates are found in increased numbers in some
layers of the deep sea, particularly below 2000 m. If
protists of the deep sea are primarily located on
aggregates because numbers of freely-suspended
prey items fall below threshold feeding levels
(Wikner & Hagström 1991), much of the observed
variability may be the result of this spatial hetero-
geneity.

Using the 6 supergroups proposed by Adl et al.
(2005), Not et al. (2007) found the dominant eukary-
otes in the deep Sargasso Sea to be Chromalveolata
and Rhizaria, represented primarily by alveolate and
radiolarian sequences, respectively. Another study in
the Sargasso Sea found Chromalveolata and Rhizaria
to dominate as well, but also found the supergroup
Excavata represented by euglenozoan sequences
(Countway et al. 2007). The taxonomic details within
the euglenozoan sequences in that study were un -
clear, but Euglenazoa includes the kinetoplastids
which we found to be numerically important in our
deep-sea samples, as well as the diplonemids which
have recently been discovered to be highly diverse in
the deep sea (Lara et al. 2009). More studies using
FISH probes targeted at apparently abundant groups
such as the alveolates and radiolarians need to
be undertaken on deep-sea samples to establish
whether these groups are actually the dominant
deep-sea eukaryotes or if biases inherent in PCR-
based methods have led to this conclusion.

The kinetoplastids should be included in any
future quantification of eukaryotes from the deep
ocean, and care must be taken to include them in
studies using molecular techniques. In water mass
averages of our samples, their contribution to total
CARD-FISH eukaryotes ranged from 15.9 to 27.1%.
Kinetoplastids are a diverse branch of the eukaryotic
tree (Simpson et al. 2006), and are as important in
deep waters as in surface waters and sediments
(Atkins et al. 2000, Arndt et al. 2003, Bochdansky &
Huang 2010). Some kinetoplastids such as Bodo are
barotolerant (Turley et al. 1988) or even barophilic
(Turley & Carstens 1991). They have been collected
from both the water column and sediments of the
deep sea and successfully cultured in pressure ves-
sels (Patterson et al. 1993). The kinetoplastids Neo-
bodo saliens (formerly Bodo saliens, Simpson et al.
2006) and Rhynchomonas nasuta as well as an
unknown kinetoplastid have been isolated from
deep-sea hot vent sites (Atkins et al. 1998, 2000).
Kinetoplastids have generally not been recorded
specifically in sequences from the deep sea, but they
are part of the Euglenozoa, whose sequences are
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more abundant in deep water than in the euphotic
zone (Countway et al. 2007). Kinetoplastids and
euglenids, both members of the Euglenozoa, have
also been found to be abundant in live counts and
enrichment cultures from the deep sea (Arndt et al.
2003). Also, the recent discovery that diplonemids,
another member of the Euglenozoa, are highly
diverse in the deep sea (Lara et al. 2009) suggests
that deep branches of the eukaryotic tree comprise a
significant portion of deep-sea eukaryotes.
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