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ABSTRACT 
 

Problem: Several approaches to analyze seatbelt use have been proposed in the 
literature. Two methods that has not been explored are the use of unweighted and 
weighted logistic regression model and the use of item response theory (IRT) or 
the Rasch model. Since accurate methods to predict seatbelt use behavior based 
upon observed data must include a built-in design method and model, and 
overcome computation challenges, weighted and IRT method deem to be other 
options for an observational survey of seat belt use in the state of Virginia.  
 
Method: The observed data from 136 sites within the Commonwealth of Virginia 
over two years was collected in a two stage systematic stratified proportional to 
size sampling plan. The data is analyzed using a weighted Rasch model.  
 
Results: A relationship between seatbelt use of drivers weighted for county 
aggregate population size and length of the road segment observed and the factors 
of vehicle type and gender standardized using a standardized scale is confirmed 
using logistic regression model selection and AIC analysis. IRT model was 
considered and was found highly significant.  
 
Practical Application: The addition of socio-economic measures, measure of road 
and driving difficulty, and data from other states may allow the prediction of 
seatbelt use with a in a new methodology: the models provide tools for policy 
decision-making. 

 
Keywords: Seatbelt use; logistic regression, item response theory; structure design; 
sampling weight 
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INTRODUCTION 
 

The goal of this manuscript is to apply unweighted and weighted logistic regression 
models and the item response theory (IRT), specifically the Rasch model to analyze seatbelt use 
data for the years 2012, 2013, and 2014 from the Commonwealth of Virginia, under a sampling 
weight estimation methodological model.  

 
The sampling methodology proposed has a two stage design associated with primary 

sampling unit (PSU) strata from 15 counties and secondary sampling units (SSU) from 136 road 
segments within the counties, under National Highway Transportation Safety Authority 
(NHTSA) guidelines. Because of that, the design is called higher order. If sampling weights are 
ignored, then the model parameter estimates can be biased (Lohr, 1999). In fact, since the sample 
is collected from a two stage stratified sampling design, standard underlying assumptions of 
parametric statistical models may be violated, and guidelines based on the statistical design 
cannot be ignored. Thomas and Heck (2001) provide guidelines for data analysis under weighted 
and designed data. Hahs-Vaughn (2005) provides examples of analysis weighting and design 
effects. Korn and Graubard (1995) provide regression models under weighted and unweighted 
schemes with incorrectly specified models and conclude that results of analyses can be 
misleading if the weighting is ignored in the large population of interest. Weighting allows us to 
measure the impact of factors when a simple random data sample is not collected.  

 
Several studies have explored the factors affecting seatbelt usage. Preusser et al. (1991), 

Pickrell and Ye (2009), and Vivoda et al. (2004) concluded that females are more likely to wear 
seatbelts than males. The relationship between vehicle type and seatbelt use has been explored 
by Eby et al. (2002), Glassbrenner and Ye (2006), and Boyle and  Vanderwolf (2004) who 
concluded that seatbelt use in pickup trucks is lower than other passenger vehicles. Nambisan 
and Vasudevan (2007) suggested that passenger and driver use are related. Shults and Beck 
(2012) assert that the seatbelt use is increased in those states within the United States that have 
primary seatbelt enforcement laws and actively enforce seatbelt use. Studies have also explored 
relationships between race, socio-economic status, age, rural/urban environments, law 
enforcement type (primary, secondary), the amount of fines, and the type of road traveled 
(primary, secondary, tertiary). Molnar, et al. (2012) employed a multivariate approach using the 
aforementioned factors along with cultural variables to explain the differences in seatbelt use 
between states using self-reported information, direct observation, and crash reports. However, 
Özkan, et al. (2012) demonstrated that the validity of self-reported seatbelt use in surveys is 
questionable compared to observed seatbelt usage. Our data which is from the direct 
observations of drivers eliminates self-reporting bias. Initially, we explore bivariate and also 
multivariate relationships between factors such as driver gender, vehicle type, traffic volume, 
road segment length, weather conditions, driver cellphone use, passenger presence, lane, and 
passenger seatbelt use. 
 

Others authors (Hardouin and Mesbah, 2004, and Bartolucci, 2007) have proposed 
adding a score variable due to the measurement of concern. Those authors have incorporated 
latent traits of data in a score function. Models built under that structure fall in the class of Item 
Response Theory (IRT), and the Rasch model (Rasch, 1961) is a version of IRT. Suitable 
measurement methods and variables are used to reflect meaningful information that can be 
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translated into quantitative measures. We consider that case of the Rasch model. However, 
because of the multidimensional nature of the data, and since the Rasch model is based on 
unidimensionality, a standard version of score function will be built. 
 

Moreover, ignoring weights may lead to imperfection in the sample (as departing from 
the reference population) and serious bias in latent variable models (Kaplan and Ferguson, 
1999). To avoid that problem, we apply a weight which is a function of the location strata size, 
and we account for potentially significant factors such as age, race, political leaning and religious 
affiliation which are not quantifiable using direct observations. Molnar et al. (2012) cautioned 
about the use of other factors to develop more effective countermeasures for increasing seatbelt 
use. We propose the weighted logistic model with IRT after variable selections and compare the 
finding with the logistic model under unweighted and weighted constraints. Analysis is 
performed on seatbelt use data in the Commonwealth of Virginia in the years 2012, 2013 and 
2014. The manuscript is organized as follows. In Section 2, we present background on the 
selection probabilities at two different stages of sampling and present the data, then build the 
model in Section 3. In Section 4, the weighting scales are built into the models. The IRT is also 
reviewed. In Section 5, we use the available tools in SAS® software version 9.4 to perform the 
analyses under weighted and unweighted schemes and compare the results. 
 
 

THE SAMPLING PLAN AND DATASET 
 

In this paper, we analyze data collected in the summers of 2012, 2013, and 2014 for 
Virginia seat belt use.   Sampling and data collection are in accordance with the final rule for 23 
CFR Part 1340: Uniform Criteria for State Observational Surveys of Seat Belt Use. The rule is 
published in the Uniform Criteria for State Observational Surveys of Seat Belt Use (2011). The 
sampling design is a two-stage stratified systematic probability proportional to size (PPS) 
sampling plan. Primary sampling units (PSU) are county aggregates and were stratified using the 
five-year average annual VMT (vehicle miles traveled) in millions. Out of 97 total county 
aggregates, 57 account for 87.2 percent of passenger vehicle crash related fatalities. The 57 
eligible county aggregates were grouped by VMT into three strata: low, medium, and high. 
Within each stratum, five PSU’s were selected with PPS where the measure of size (MOS) was 
the five-year average annual VMT. The PSU sampling weights are calculated by taking the 
inverse of the five year average annual VMT, and varied from approximately 0.089 to 
approximately 0.967. Secondary sampling units (SSU) are road segments.  Road segments were 
stratified by type (primary, secondary, and local) and by segment length (short, medium and 
long) within each county. The eligible SSU were then selected by PPS with segment length as 
the MOS resulting in 136 selected road sites for observation. The SSU weights are calculated by 
taking the inverse of the segment length and varied from approximately 0.0001 to approximately 
0.1657. 

 
The weighting was added so that information from the whole population would be 

captured. If the selection mechanism is not informative, the parameter estimates will remain 
consistent regardless of the weights, and weights should be excluded from the model 
(Asparouhov et al. 2004). Moreover, if the strata sample sizes are large enough, the parameter 
estimates are unbiased. In sampling surveys, it is not always possible to determine whether the 
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weights are informative. However, the observations should reflect the sampling weights to avoid 
biased sampling. 

 
Trained data collectors recorded observations at their randomly assigned collection sites 

(SSU). Trained quality control (QC) monitors performed random and unannounced visits to the 
collection sites. More than 10% of all sites were visited by QC Monitors. Observations were 
performed on all days of the week between the hours of 7:00 am and 5:30 pm. Data collectors 
were assigned 90 minute intervals during which 50 minutes of active observation, and recording 
occurred. If inclement weather (rain which damages recording media) prevented collection of at 
least 25 minutes of data, then the site was rescheduled for observation for that interval.  

 
The data collected includes the following observed binary data: driver seat belt use (yes, 

no), driver gender (female, male), passenger present (yes, no), passenger seatbelt use (yes, no), 
and visible driver cellphone use (yes, no). The other observed data is categorical: vehicle type 
(car, truck, SUV, van, or minivan), lane of the road (1-5, where lane 1 represents the lane 
furthest to the right and lane 5 denotes the fifth lane from the right in the direction of travel), and 
weather (sunny/clear, light rain, cloudy, fog, or clear but wet conditions). The VMT for each site 
observed is classified (Road Class) within each county aggregate as lower, average, and upper. 
Vehicle type was assigned in no particular order, and later we reclassified it to describe the size 
of the vehicle which crudely correlates to seatbelt use. Weather is also not ordered in its 
assignment, and we reclassify it based on severity and impediment of driving ability. The data 
set also includes the following continuous variables: VMT, road segment length, and selection 
probabilities determined in the sampling design stage.  
 

Table 1 gives the summary measures of the variables and their basic proportions for the 
two years. The data shows a slight decrease in driver seat belt use and a slight increase in visible 
driver cell phone use. The number of observed drivers increased by 5.8% in 2013 compared to 
2012. The number of drivers observed in 2014 decreased by 1.2% compared with 2012. When 
the seat belt information for driver or passenger is unknown, the data will be dropped. The 
weight for each driver is obtained by taking the product of the PSU and SSU weights. All 
calculations are performed using SAS® software version 9.4. 
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TABLE 1: Summary of 2012, 2013, and 2014 Virginia Seatbelt Data 

 
Variables 

 
Levels 

2012 
 Sample 

2013 
Sample 

2014 
Sample 

2012 
Percent 

2013 
Percent 

2014 
Percent 

Driver Seatbelt 
Use 

Yes 10956 11396 10072 80.37 79.01 74.83 
No 2230 2581  16.36 17.89 19.61 

Unknown 446 447 749 3.27 3.10 5.56 

Passenger Seatbelt 
Use 

Yes 2817 2937 2669 73.86 72.88 67.98 
No 675 724 785 17.70 17.97 19.99 

Unknown 322 369 472 8.44 9.16 12.02 

Passenger Present Yes 9783 10145 9467 71.94 70.32 70.69 
No 3815 4282 3926 28.06 29.68 29.31 

Driver Gender 
Male 7990 8511 8022 60.47 60.28 61.32 

Female 5223 5607 5060 39.53 39.71 38.68 
Unknown 1 1 - 0.01 0.01 - 

Driver Cellphone 
Use 

Yes 782 840 712 5.80 6.4 5.32 
No 12703 12277 12671 94.20 93.60 94.68 

Vehicle Type 

Car 6800 7057 6471 49.92 48.95 48.08 
Truck 2401 2739 2490 17.63 19.00 18.50 
SUV 3130 3309 3370 22.98 22.95 25.04 
Van 342 354 305 2.51 2.46 2.27 

Minivan 948 958 823 6.96 6.64 6.11 
Road Class 

(Vehicle Miles 
Traveled, VMT) 

Lower 5066 5246 4758 37.23 36.36 35.34 
Average 4170 4523 4387 30.65 31.35 32.59 
Higher 4371 4658 4317 32.12 32.29 32.07 

Lane Observed 

1 10090 10225 9586 74.03 70.89 71.27 
2 3207 3820 3470 23.53 26.48 25.80 
3 282 270 279 2.07 1.87 2.07 
4 35 84 100 0.26 0.58 0.74 
5 16 25 16 0.12 0.17 0.12 

Weather 

Clear/Sunny 10999 9703 10302 80.83 73.31 76.54 
Light Rain 235 331 34 1.73 2.50 0.25 

Cloudy 2353 2902 3089 17.29 21.93 22.95 
Fog 20 - 20 0.15 - 0.15 

Clear/Wet - 299 15 - 2.26 0.11 
Road Segment 

Length 
< 0.30 11805 12690 11826 86.60 87.96 87.85 

0.31 - 0.81 1827 1737 1636 13.40 12.04 12.15 
Total - 13632 14427 13462 - - - 

 
 

STATISTICAL MODELS 
 

Generalized linear models were considered in the investigation of the data. First, a classic 
linear model was suggested to obtain a general relationship between the response (driver seatbelt 
use) and predictive variables. However, use of a linear model on binary responses is not 
recommended (Kleinbaum, et al.) since predicted values may be outside of the domain of the 
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response variable. From this point forward, a classic model also known as classical test theory 
(CTT) is considered. We consider fitting a logistic model to the data.  
 

Models are fit using stepwise selection in PROC Logistic. Once the model is selected, the 
predictors that were not selected are removed and PROC Logistic is performed on the selected 
predictors without a selection process since they are known to be significant; results provided in 
this manuscript are from this final analysis.  

Initial Proposed Model 
 

In this model, p = P(Y=1) is the probability that the driver is wearing a seat belt, and 1 - p 
= P(Y=0) is the probability that the driver is not wearing a seatbelt. The initial model is: 

 
Log� 𝑝𝑝

1−𝑝𝑝
� = β0 + βvXv + βrXr + βgXg + βsXs + βlXl + βcXc + βwXw + βppXpp + βpsXps 

 
where  β0 denotes the intercept of the model, Xv denotes Vehicle Type (car, truck, SUV, van, or 
mini-van),  Xr denotes Road Classification for VMT (low, average, high),  Xg denotes Driver 
Gender (male/female),  Xl denotes Lane in which vehicle observed (right to left), Xc denotes 
Driver Cell Phone Use (yes/no), Xw denotes Weather (clear, light rain, cloudy, foggy, or clear 
but wet),  Xpp denotes Passenger Present (yes/no), Xps denotes Passenger Seatbelt Use (yes/no). 
This notation is used consistently throughout this manuscript. The weights 𝑤𝑤𝑖𝑖𝑖𝑖 are obtained as 
𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖 ∗ 𝑝𝑝𝑗𝑗(𝑖𝑖) where 𝑝𝑝𝑖𝑖 is the selected probability of the selected county, and 𝑝𝑝𝑗𝑗(𝑖𝑖) is the 
selection probability of the 𝑗𝑗th road type selected within the 𝑖𝑖th county; 𝑖𝑖 = 1, 2 … , 15, and  𝑗𝑗 =
1, 2, … , 𝑛𝑛𝑖𝑖. 
 

The estimated non-weighted seat belt use for each year is 𝑝̂𝑝 = 0.8037 𝑓𝑓𝑓𝑓𝑓𝑓 2012, 𝑝̂𝑝 =
0.7901 𝑓𝑓𝑓𝑓𝑓𝑓 2013,  𝑎𝑎𝑎𝑎𝑎𝑎 𝑝̂𝑝 = 0.7483 𝑓𝑓𝑓𝑓𝑓𝑓 2014. Table 2 below gives the estimates of the 
proportion of seat belt use by county aggregates.  
  

Virginia Journal of Science, Vol. 67, No. 3, 2016 https://digitalcommons.odu.edu/vjs/vol67/iss3



7 
 

TABLE 2: Seat Belt Use by County Aggregate for the Years 2012, 2013, and 2014 

County 
Aggregate 

2012 
Unweighted 
Seatbelt Use 

2012 
Weighted 
Seatbelt 
Use 

2013 
Unweighted 
Seatbelt Use 

2013 
Weighted 
Seatbelt 
Use 

2014 
Unweighted 
Seatbelt Use 

2014 
Weighted 
Seatbelt 
Use 

Alleghany 0.7106 0.7350 0.7101 0.7784 0.6594 0.7214 
Carroll 0.7301 0.7890 0.8472 0.8477 0.6667 0.7225 
Fairfax 0.9006 0.9032 0.8999 0.8974 0.8876 0.8910 
Halifax 0.8297 0.8704 0.7813 0.8064 0.7338 0.7657 
Henry 0.8531 0.8816 0.7260 0.7958 0.6729 0.7133 
Loudoun 0.8012 0.7867 0.8548 0.8532 0.8595 0.8801 
Mecklenburg 0.7273 0.7875 0.7376 0.7696 0.7013 0.7519 
Prince George 0.8240 0.8355 0.7759 0.7796 0.7567 0.7582 
Rockbridge 0.8128 0.7331 0.7647 0.7617 0.7627 0.7098 
Shenandoah 0.7444 0.7402 0.7422 0.7616 0.7031 0.7056 
Southampton 0.8482 0.8871 0.8258 0.8455 0.8189 0.7977 
Southeast 0.8741 0.8781 0.8232 0.8400 0.8063 0.8131 
Stafford 0.8399 0.8398 0.8599 0.8420 0.8714 0.8746 
Tazewell 0.7394 0.7492 0.7414 0.7438 0.6419 0.5978 
Washington 0.7569 0.8380 0.7773 0.7605 0.8115 0.8042 

 

Model Fitting 
 

The model is fit using the logistic procedure in SAS® 9.4 with stepwise selection at a p = 
0.15 significance level for both entry into the model and retention in the model. The results are 
verified using forward selection with p=0.15 for entry into model and backward selection with 
p=0.15 for retention in the model. The three procedures produce the same results.  
 

Analysis of the effects of weather on seatbelt use revealed inconsistent associations 
between seatbelt use and weather severity for the three years. Further, the selection process does 
not identify weather as significant for any combined data. Hence, weather has been removed 
from the model and the analysis repeated. Analysis of the predictor variables reveals a high 
correlation (Spearman’s correlation coefficient, 𝑟𝑟𝑠𝑠 = 0.94, 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 < 0.0001) between road 
segment length and road class which indicates a confounding condition. Other correlations are 
less than 0.15 and do not indicate the presence of other confounding effects. As a result, road 
segment length was removed from the model and the analysis performed again. 
 

Table 3 provides the Wald Test for significance in the selected Model with variables as 
Vehicle type, Road class, driver gender, and so on. For 2012, all remaining predictors are 
significant at p=0.01, while passenger presence is removed due to a p-value > 0.15. For 2013, all 
predictors are significant at p=0.01. For the combined 2012 and 2013 data, five of the six 
remaining predictor variables have p-values <0.0001, however passenger presence is only 
significant at p=0.10. For the combined data for 2012, 2013, and 2014, all six of the remaining 
predictors are significant at p=0.05.  
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TABLE 3: Type 3 Analysis of Effects 

 2012 2013 Combined 2012 
and 2013 

Combined 2012, 
2013, and 2014 

Effect DF Wald 
ChiSq 

Pr >  
ChiSq 

Wald 
ChiSq 

Pr >  
ChiSq 

Wald 
ChiSq 

Pr > 
ChiSq 

Wald 
ChiSq 

Pr > 
ChiSq 

Vehicle Type 4 272.927 <.0001 238.353 <.0001 513.796 <.0001 773.573 <.0001 
Road 

Classification 2 58.9336 <.0001 14.0610 .0009 62.3872 <.0001 63.9249 <.0001 

Driver Gender 1 22.9354 <.0001 29.4874 <.0001 51.2621 <.0001 58.2420 <.0001 
Lane 4 24.0216 <.0001 32.8055 <.0001 52.3698 <.0001 57.5625 <.0001 

Driver Cell 
Phone Use 1 14.4898 0.0001 9.7584 .0018 25.6445 <.0001 49.5231 <.0001 

Passenger 
Present 1 - - 12.2656 .0005 2.8089 .0937 5.3603 .0206 

 
 
The close agreement between the models may indicate that the aggregate data follows a 

standard model which also fits the individual data sets. The test of the global hypothesis of null 
model, shown in Table 4, of 𝛽𝛽𝑖𝑖  = 𝛽𝛽𝑗𝑗 = 0 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 ≠ 𝑗𝑗  versus at least one 𝛽𝛽𝑖𝑖 ≠ 0 (𝑖𝑖, 𝑗𝑗 =
𝑟𝑟, 𝑔𝑔, 𝑙𝑙, 𝑐𝑐, 𝑟𝑟, 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝 depending upon the model) indicates significant evidence exists (p < 0.0001) to 
support the claim that the models are not explained solely by the intercept (i.e. the response is 
not a constant) for 2012, 2013, the combined 2012/2013 data, and for the combined 2012/ 
2013/2014 data which is consistent with the Wald Test results in Table 3. 

 
 

TABLE 4: Testing Global Null Hypothesis: β=0 

 2012 2013 Combined 2012 
and 2013 

Combined 2012, 
2013, and 2014 

Test Chi-
Square 

Pr > 
ChiSq 

Chi-
Square 

Pr > 
ChiSq 

Chi-
Square 

Pr > 
ChiSq 

Chi-
Square 

Pr > 
ChiSq 

Likelihood Ratio 485.5235 <.0001 452.3717 <.0001 917.5154 <.0001 1299.7313 <.0001 
Score 521.6322 <.0001 470.3904 <.0001 972.3826 <.0001 1377.5713 <.0001 
Wald 488.6745 <.0001 446.5182 <.0001 918.1369 <.0001 1305.6547 <.0001 

DF 12 13 13 13 
 
 
Computational efficiency is measured by Akaike Information Criterion (AIC) numbers, 

displayed in Table 5, which assess the goodness of fit of the model: smaller numbers indicate a 
better fit. AIC is defined as follows: 

AIC =  2p +  n log �
SS𝑟𝑟

𝑛𝑛
� 

 
where p is the number of parameters in the model, 𝑆𝑆𝑆𝑆𝑟𝑟 is the residual sum of squares, and N is 
the number of observations in the dataset.  
 

The results of the AIC for logistic regression performed on the significant variables 
identified during the selection process are in the 10 thousands. Since the intercept alone is not a 
sufficient explanation of the model, we use the values for intercept and covariance. The AIC 
numbers obtained for individual years are approximately 30% lower than those obtained by 
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Molnar (2012); however, the combined data is significantly higher. The significantly higher 
numbers for the combined data indicate a significant amount of variation in the model, or a less 
than optimum fit. 

 
 

TABLE 5: Model Fit Statistics 

 2012 2013 Combined 2012 
and 2013 

Combine 2012, 
2013, and 2014 

Criterion Intercept 
and Covariates 

Intercept 
and Covariates 

Intercept 
and Covariates 

Intercept and 
Covariates 

AIC 11159.889 11856.530 23015.856 35333.162 
SC 11256.770 11960.618 23129.764 35452.647 

-2 Log L 11133.889 11828.530 22987.856 35305.162 
 

Selected Model  
 

Since the models for 2012, 2013, and the combined data are very similar, and the 
combined data results in all predictors with p<0.05, we select the following model at this step of 
the analysis: 
 

Log� 𝑝𝑝
1−𝑝𝑝

� = β0 + βvXv + βrXr + βgXg + βlXl + βcXc+ βppXpp 
 

Again, the test of the global hypothesis that the model is expressed by the intercept alone 
is not accepted with p < 0.0001. 
 

Figure 1 displays the predicted probability of seat belt use (for female drivers in lane 5 
using a cellphone with a passenger present) versus the vehicle type for each road class (VMT). 
The oscillating trend indicates that the model is not designed to predict an increase in seatbelt use 
for increasing values of the predictors in this subset of predictor variable levels. (Please note that 
the authors have only included one chart for this model due to the excessive space required to 
depict all 40 such combinations.) Therefore, we investigate other methods to improve the fit of 
the model.  
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Figure 1.  

 
 
The AIC model criterion is used to compare the models of the years 2012, 2013, and the 

combined years. As we see there is no evidence that the model based on the combined years is 
better than the individual year models. As discussed by Rosenthal (1978) there could be issues 
with the validity of the data collected in our sampling as well due to observer error of 
approximately 1%. Moreover, there could be carryover effects in the years, and as such, data 
from 2012 should be taken as baseline for 2013 and so on. It is satisfactory to see that variables 
selected in 2012 are also selected for 2013 and the combinations of the years, but then the 
question is how is the relative efficiency of the combined data models compared to the 2013 
model and to the 2012 model. To partially answer the questions, we propose to review the 
variables at hand in the next section. 

 

Variable Standardization and Reclassification 
 

The goal of this manuscript is to develop a prediction model using the Rasch / IRT 
model. Such an IRT technique is built to control the source of sampling error using an unknown 
latent variable from the selected variables which we will call the score. The latent variables are 
described next. Since vehicle types are listed in no particular order, vehicle type is reclassified to 
indicate size of the vehicle which negatively correlates to driver seatbelt use: i.e. in general, the 
drivers of larger vehicles tend to wear seatbelts less often than drivers of smaller vehicles as 
suggested in Eby et al. (2002).  Preliminary analysis of the data appears to support this 
hypothesis, so smaller vehicle types are given a larger value to indicate that the driver is more 
likely to wear a seatbelt. Table 6 below contains the reclassifications of vehicle type. The 
remaining five predictor variables have positive correlations to driver seatbelt use and 
reclassification is not necessary.  

FIGURE 1. Model 1: Multivariate Logistic Regression on Combined 2012-2014 
Raw Data 
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It is known that the variance is larger for population parameters where the measurement 

of interest is a large value than in population parameters where the measurements are small 
values. In order to make the variance between variables more homogenous and reduce the 
overall model variance, each variable of interest was standardized by dividing its value by its 
third quartile (Q3) in an approach similar to Illi et al. (2012) in which the weighted variables 
were standardized by their quartiles. Standardizing the variables may affect whether they are 
selected in the model, so all six of the predictors are standardized. The Q3 values of the variables 
after reclassification are listed in Table 7 below. 

 
 

TABLE 6: Reclassification of Variables 

Vehicle Type Original Value New Value for Size 
Car 1 3 
Truck 2 1 
SUV 3 1 
Van 4 1 
Mini-Van 5 2 

 
 

TABLE 7: Third Quartiles After Reclassification (No Weight) 
Variable 2012: 75th 

Percentile (Q3) 
2013: 75th 

Percentile (Q3) 
2012-2013: 75th 
Percentile (Q3) 

2012-2014: 75th 
Percentile (Q3) 

Vehicle Type 3 3 3 3 
Gender 1 1 1 1 
Lane 2 2 2 2 
Road Class 3 3 3 3 
Cell Phone 1 1 1 1 
Passenger Present 1 1 1 1 

 

Model Fitting: Standardized and Reclassified Variables 
 

The logistic selection process with p = 0.15 for entry and retention in the model is 
performed on the reclassified and standardized variables. The significant variables indicated 
prior to standardization in 3.2 above remain significant (Table 8). The model fit statistics are 
comparable to the previous analysis (Table 9). The global null hypothesis test indicates that the 
model is not sufficiently described solely by the intercept (Table 10). All variables selected are 
significant (p < 0.01) for all datasets analyzed. In this analysis, it is reasonable to select the 
model fit by the combined 2012, 2013, and 2014 data: 
 

Log� 𝑝𝑝
1−𝑝𝑝

� = β0 + βvXv + βrXr + βgXg + βlXl + βcXc + βppXpp. 
 

Figure 2 displays the predicted probability of seat belt use for female drivers in lane 5 
using a cellphone with a passenger present) versus the vehicle type for each road class (VMT). 
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The general upward trend indicates that the reclassification has resulted in a model that is 
showing an increased probability of seatbelt use based on road classes with higher VMT for each 
vehicle size. Please note that the authors have only included one chart for this model due to the 
excessive space required to depict all 40 such combinations. 

 
 

 

TABLE 8: Type 3 Analysis of Effects for Standardized and Reclassified Variables 

 2012 2013 Combined 2012 
and 2013 

Combined 2012, 
2013, and 2014 

Effect DF Wald 
ChiSq 

Pr >  
ChiSq 

Wald 
ChiSq 

Pr >  
ChiSq 

Wald 
ChiSq 

Pr > 
ChiSq 

Wald 
ChiSq 

Pr > 
ChiSq 

Vehicle Type 2 86.0490 <.0001 72.5569 <.0001 158.944 <.0001 198.594 <.0001 
Road Classification 2 56.2572 <.0001 16.5001 .0003 63.0613 <.0001 62.6709 <.0001 

Driver Gender 1 78.1552 <.0001 89.9920 <.0001 167.328 <.0001 227.771 <.0001 
Lane 4 32.1929 <.0001 39.7865 <.0001 67.3511 <.0001 76.9267 <.0001 

Driver Cell Phone 
Use 1 15.9983 <.0001 9.5138 .0020 25.9062 <.0001 48.904 <.0001 

Passenger Present 1 - - 16.8325 <.0001 7.5306 .0061 14.047 .0002 
 
 

TABLE 9: Model Fit Statistics for Standardized and Reclassified Variables 

 2012 2013 Combined 2012 
and 2013 

Combined 2012, 
2013, and 2014 

Test Chi-
Square 

Pr > 
ChiSq 

Chi-
Square 

Pr > 
ChiSq 

Chi-
Square 

Pr > 
ChiSq 

Chi-
Square 

Pr > 
ChiSq 

Likelihood Ratio 307.1437 <.0001 291.3205 <.0001 575.7315 <.0001 741.4629 <.0001 
Score 300.7339 <.0001 281.3758 <.0001 560.1672 <.0001 722.7031 <.0001 
Wald 291.7697 <.0001 273.5035 <.0001 544.4533 <.0001 704.7331 <.0001 

DF 10 11 11 11 
 
 

TABLE 10: Global Null Hypothesis: 𝛃𝛃=0 for Standardized and Reclassified Variables 

 2012 2013 Combined 2012 and 
2013 

Combine 2012, 2013, 
and 2014 

Criterion Intercept 
and Covariates 

Intercept 
and Covariates 

Intercept 
and Covariates 

Intercept and 
Covariates 

AIC 11334.269 12013.581 23353.640 35887.431 
SC 11416.246 12102.799 23451.276 35989.846 

-2 Log L 11312.269 11989.581 23329.640 35863.431 
 
 

The AIC and SC numbers remain undesirably large and indicate that reclassification and 
standardization are not sufficient actions to improve model fit. Therefore it is reasonable to 
investigate the cause for the poor model fit. 
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Figure 2.  

 

 
 

In all the previous sections, the AIC, BIC and log likelihood have been used as best 
measures of goodness fit for the most parsimonious models. They turn out to be high, which is 
an evidence of over-dispersion, which could be an indication there is more variability in the data 
than expected from the fitted model, which is an indication of a poor fit. Over-dispersion is quite 
evident for count data under the Poisson regression model. Since the sample size is large, the 
corrected AIC would not lead us to better improvements. Variables have been selected for each 
dataset and the selection process results in about the same model. We will use these criteria as 
comparisons when adding the weights to the models we will consider in the next section. 
 

WEIGHTED STATISTICAL MODELS 
 

Weights 
 

In all of the above analyses, the weights associated with the data were ignored. However, 
driver seat belt behavior is intricate and quite certainly involves non-collected data. Ignoring 
sample weights leads to inflated standard errors and biased estimates (Lohr, 1999). Thomas and 
Heck (2001) provide guidelines for data analysis under weighted and designed data which 
reduces bias that would result in over sampled strata. The weights are under stratum size and 
length of road segments. The inclusion of weights results in a significantly different model than 
selected in section 3 above as inferred by Korn and Graubard (1995). Additionally, the goodness 
of fit criteria is significantly reduced. The sampling plan for the data in this manuscript was 
developed as a joint effort between two of the authors (N. Diawara and B.E. Porter) and NHTSA. 
Therefore, in order to correct for bias due to stratum size and length of road segment, we 
included the weight designed for this analysis in our model, in accordance with NHTSA 
requirements as: 

FIGURE 2. Model 2: Multivariate Logistic Regression on Reclassified and 
Standardized Variables (2012-2014 Data) 
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𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡 = (𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ) 𝑥𝑥 (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). 

 
In this section, we will compare the results of the analysis based on the sampling weights 

and validate the appropriateness of the uses of the weights.  

WEIGHTED LOGISTIC MODELS 

Model Fitting: Weighted Logistic Regression 
 

Prior to performing analysis on the reclassified and standardized variables, the 75th 
percentiles for the weighted reclassified variables is determined, see Table 11, and the predictors 
are standardized using the weighted 3rd quartiles.  

 
 

TABLE 11: Weighted Third Quartiles for Reclassified Variables 
Variable 2012: 75th 

Percentile (Q3) 
2013: 75th 

Percentile (Q3) 
2012-2013: 75th 
Percentile (Q3) 

2012-2014: 75th 
Percentile (Q3) 

Vehicle Type 3 3 3 3 
Gender 1 1 1 1 
Lane 2 2 2 2 
Road Class 3 3 3 3 
Cell Phone 1 1 1 1 
Passenger Present 1 1 1 1 

 
 
The selection process using the weighted logistic regression model and the surveylogistic 

procedure resulted in two significant predictors at p=0.15: driver gender and vehicle type for 
2012.The selection process for both the 2013 data and the combined 2012-2013 data also 
indicates that passenger presence is significant at p=0.15. In addition, the combined data for 
2012, 2013, and 2014 indicates the significance of passenger presence (Table 12).  In the 
aggregate data for 2012-2014, the selection process results in four significant variables at p=0.15. 
The model is significant as indicated by the global null hypothesis test in Table 13.  
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TABLE 12: Type 3 Analysis of Effects for Weighted, Standardized and Reclassified 
Variables 

 2012 2013 Combined 2012 
and 2013 

Combined 2012, 
2013, and 2014 

Effect DF Wald 
ChiSq 

Pr >  
ChiSq 

Wald 
ChiSq 

Pr >  
ChiSq 

Wald 
ChiSq 

Pr > 
ChiSq 

Wald 
ChiSq 

Pr > 
ChiSq 

Vehicle Type 2 4.0806 0.1300 5.2866 .0711 9.3692 .0092 11.2742 .0036 
Driver Gender 1 4.2080 0.0402 6.0867 .0136 10.3672 .0013 12.5182 .0004 

Driver Cell 
Phone Use 1 - - - - - - 3.1076 .0779 

Passenger 
Present 1 - - 2.6228 .1053 2.1891 .1390 2.9222 .0874 

 
 

TABLE 13: Global Null Hypothesis: 𝛃𝛃=0 for Weighted, Standardized, and Reclassified 
Variables 

 2012 2013 Combined 2012 
and 2013 

Combined 2012, 
2013, and 2014 

Test Chi-
Square 

Pr > 
ChiSq 

Chi-
Square 

Pr > 
ChiSq 

Chi-
Square 

Pr > 
ChiSq 

Chi-
Square 

Pr > 
ChiSq 

Likelihood Ratio 10.3152 .0161 16.3853 .0025 26.3513 <.0001 35.1654 <.0001 
Score 9.9895 .0187 15.6510 .0035 25.3421 <.0001 34.1321 <.0001 
Wald 9.7190 .0211 15.1265 .0044 25.5806 <.0001 33.1892 <.0001 

DF 3 4 4 5 
 
There is great gain in the AIC when the weights are added to the model, matching 

comments of Richards et al. (2011) that in the context of behavioral ecology a simple controlled 
model does not show all the complexity of the data. Table 14 contains the AIC and SC values, 
which are lower than the corresponding unweighted models by a factor of approximately 20. 
 

 

TABLE 14: Model Fit Statistics for Weighted, Standardized and Reclassified Variables 

 2012 2013 Combined 2012 
and 2013 

Combine 2012, 2013, 
and 2014 

Criterion Intercept 
and Covariates 

Intercept 
and Covariates 

Intercept 
and Covariates 

Intercept and 
Covariates 

AIC 548.455 661.001 1201.336 1812.153 
SC 578.296 698.644 1242.273 1863.365 

-2 Log L 540.455 651.001 1191.336 1800.153 
 
 

Figure 3 displays the predicted probability of seat belt use (for drivers using a cellphone 
with a passenger present) versus the vehicle type for each gender. The same general upward 
trend exists in the weighted model as that shown in the unweighted model but using less 
predictors. Please note that the authors have only included one chart for this model due to the 
excessive space required to depict all 24 such combinations. 
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MODEL SELECTION: WEIGHTED LOGISTIC REGRESSION 
 

The final model selected for the 2012-2014 aggregate data is 
 

Log� 𝑝𝑝
1−𝑝𝑝

� = β0 + βvXv + βgXg + βcXc + βppXpp 
 
where β0, βv, βg, βc, and βpp are the estimates calculated using the weights. 
 

As expected, the combination of the data results in an improvement in the significance of 
the predictors: vehicle type (0.0036), gender (0.0004), and passenger presence (0.0874). 
However, the models have different selected variables and two of the variables selected for the 
2012-2014 combined data have p-values > 0.05 indicating the necessity for a different analytical 
method.  
 

One suggestion is to develop an IRT model for prediction of seatbelt use, and it is 
advisable to include only very significant predictor variables. We explore a reduced model using 
a selection process with p=0.05 significance on the combined data. Vehicle type and gender are 
very significant predictors while passenger presence was excluded at p=0.05 which provides a 
consistent model with the preliminary analysis of 2012 and 2013 data individually. However, 
cellphone use is marginally significant at p=0.0439 suggesting that the combination of data from 
2014 may have exposed an inherent association between cellphone and seatbelt use. Tables 18 
through 20 contain the results of the selection at p=0.05 for the 2012-2014 data. The AIC and SC 
values are comparable to those of the four variable model. The final weighted logistic model 
using reclassified and standardized predictor variables with p=0.05 selection criteria is  
 

FIGURE 3. Model 3: Multivariate Weighted Logistic Regression on Model with 
p=0.15 Selection (2012-2014 Data) 
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Log� 𝑝𝑝
1−𝑝𝑝

� = β0 + βvXv + βgXg + βcXc. 
 
 
 

 
TABLE 18: Type 3 Analysis of Effects 

Combined 2012, 2013, and 2014: Reduced Model 

Effect DF 
Wald 
Chi-

Square 

Pr > 
ChiSq 

Vehicle Type 2 11.7957 .0027 
Driver Gender 1 11.8360 .0006 

Driver Cell Phone Use 1 4.0604 .0439 
 
 

TABLE 19: Testing Global Null Hypothesis: BETA=0 
Combined 2012, 2013, and 2014: Reduced Model 

Test Chi-
Square DF Pr > ChiSq 

Likelihood Ratio 32.4833 4 <.0001 
Score 31.5075 4 <.0001 
Wald 30.6313 4 <.0001 

 
 

TABLE 20: Model Fit Statistics 
Combined 2012, 2013, and 2014: Reduced 

Criterion Intercept and Covariates 
AIC 1817.440 
SC 1860.122 

-2 Log L 1807.440 
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WEIGHTED ITEM RESPONSE THEORY MODEL 
 
Background 
 

To analyze dichotomous events or polytomous level response data (as usually found in 
the quality of life field), the item response theory (IRT) model provides a complement to the 
classical test theory (CTT) as the behavior and characteristic of the driver is not directly 
understandable. The measurement of driver behavior is not suitable since it is based on 
qualitative indicators such as the type of vehicle used, and other ad hoc parameters that are not 
easy to translate into quantitative information to be used in a CTT statistical analysis. Because of 
that, IRT and its famous Rasch model have also been implemented to measure drivers’ 
behaviors. The IRT model allows the inclusion of the latent factor common to all drivers that can 
be described by a score function. We applied such a model based on specified traits that reflect 
the dichotomy of the data such as gender, and made comparisons. We then compare the 
efficiency and effectiveness of the overall indicators by computing goodness of fit statistics. 

Model 
 

Because the model requires consideration of several conditions, the Rasch model is 
considered, as it provides a tool to analyze characteristics even when they are latent. Such a 
model can be included in the class of Item Response Theory in the framework proposed by 
Bartolucci (2007). Driving habits can be seen as a variable which depends on many factors. Our 
primary focus is on seat belt use and indicators which give additional information to evaluate 
seat belt use. We propose to extend the theory of logistic regression to include characteristics 

FIGURE 4. Model 4: Weighted Multivariate Logistic Regression on Combined 
2012-2014 Data with p=0.05 
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associated with driver seatbelt use which is translated into the driver’s condition as an associated 
score. In such a context, the Rasch model (Rasch 1961, Samejima 1996) is an option where we 
can include each driver’s behavior regarding seat belt use. One main concern is the associated 
measurement of the score. That score is based on the qualitative information to be translated into 
quantitative measure. Using ideas from Mesbah (2010), we develop a score function that can be 
used to build the sensitive attributes and behaviors of drivers. As mentioned in Beaumont et al. 
(2014), the bias reduction is achieved through appropriate weight adjustements. 

 
A score function is built using a linear combination of significant predictor variables. The 

proposed score attempts to capture the features of vehicle type driven, driver gender, and driver 
cellphone use. Those features can alter the probability of seat belt use and they can be seen as 
sufficient statistics for the response (See Hardouin and Mesbah 2004).  In our case, due to the 
logistic analysis on driver seat belt use, we propose to use a score function composed of driver 
gender, vehicle type, and handheld cellphone use as follows: 

 
S = Xg + Xv + Xc 
 

where Xg = driver gender (male = 0 and female = 1), Xv = size of vehicle driven standardized by 
the 3rd quartile (1/3 = SUV/Van/Truck, 2/3 = Minivan, and 1 = car), and Xc = driver cellphone 
use  (no = 0 and yes = 1). 

 
The final model is  
 

Log� 𝑝𝑝
1−𝑝𝑝

� = β0 + β1S . 
 

 
RESULTS 

 
The logistic regression analysis yields parameter estimates (standard error) 𝛽𝛽0� = 0.6891 

(0.1855) and 𝛽𝛽1� = 0.4691 (0.0930) for the 2012-2014 combined data.  
 

The AIC values are comparable to the AIC values in the traditional logistic analysis 
shown in 4.1.2 above indicating a satisfactory fit of the model.  Figure 5 shows the regression 
line and 95% confidence limits for predicted probability of seatbelt use versus the weighted score 
function. The narrow confidence band and the linear upward trend also indicate a satisfactory fit 
of the model to the data. All such results conform with the findings by Beaumont et al. (2014) in 
the bias reductions even in the nonresponse situation, and provide an improvement on their 
suggested approach. 

 
 

 
TABLE 21: Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate Standard 
Error 

Wald Chi-
Square 

Pr>ChiSq 

Intercept 1 0.6891 0.1855 13.7984 0.0002 
Score 1 0.4691 0.0930 25.4537 <0.0001 
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TABLE 22: Model Fit Statistics 
Combined 2012, 2013, and 2014 

Criterion 
Intercept 

and 
Covariates 

AIC 1817.789 
SC 1834.862 

-2 Log L 1813.789 
 
 

TABLE 23: Testing Global Null Hypothesis: BETA=0 
Combined 2012, 2013, and 2014 

Test Chi-Square DF Pr > ChiSq 
Likelihood Ratio 26.1341 1 <0.0001 

Score 25.8679 1 <0.0001 
Wald 25.4537 1 <0.0001 

 
 

TABLE 24: Odds Ratio Estimates 
Effect Point Estimate 95% Wald 

Confidence Limits 
Score_Std_Reduced 1.599 1.332 1.918 

 
 
 
 
 

 

FIGURE 5. Logistic Regression of Seatbelt Use versus Weighted Score 
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The present IRT model offers many more advantages than the classical test theory (CTT) 
methods developed in Section 3. The model is parsimonious and allows driver seat belt behavior 
to be easily estimated from scaled psychometric item measures under a weighted design model. 
 

CONCLUSION 
 

Driver seatbelt use in the Commonwealth of Virginia may be satisfactory described using 
driver gender, vehicle type, and cellphone use in a multivariate logistic model using weights 
designed specifically for the dataset. However, prediction of seatbelt behavior is more 
appropriate using item response theory. As such, we have endeavored to build a score function 
considering driver gender, vehicle type driven, and cellphone usage by applying the Rasch model 
in logistic regression and through the application of weights within the model. The resulting 
models are greatly affected by the application of weights. Fitting a weighted model results in 
significant improvements in goodness of fit statistics, such as AIC numbers, by a factor of 18 to 
20.  
 

We suggest that a sound approach may be developed using a weighted IRT model which 
should also potentially include social factors such as education level, political affiliation, 
religion, education level, original background, race, socio-economic status, fine level, and 
current law enforcement policies. Such a model could be used to develop programs and 
interventions that can increase seatbelt use and save lives. 
 

More research is needed in which the sample size and the time for data collection 
allocated to each site (based on the 50 minutes time frame) are not fixed in advance but depend 
on the outcomes of the successive observations being taken. Results from such sequential 
analysis in the discrete case will allow us to save resources.  
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