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A series of novel 10-N-substituted acridones, bearing alkyl side chains with tertiary amine groups at the
terminal position, were designed, synthesized, and evaluated for the ability to enhance the potency of quinoline
drugs against multidrug-resistant (MDR) Plasmodium falciparum malaria parasites. A number of acridone
derivatives, with side chains bridged three or more carbon atoms apart between the ring nitrogen and terminal
nitrogen, demonstrated chloroquine (CQ)-chemosensitizing activity against the MDR strain of P. falciparum
(Dd2). Isobologram analysis revealed that selected candidates demonstrated significant synergy with CQ in the
CQ-resistant (CQR) parasite Dd2 but only additive (or indifferent) interaction in the CQ-sensitive (CQS) D6.
These acridone derivatives also enhanced the sensitivity of other quinoline antimalarials, such as desethyl-
chloroquine (DCQ) and quinine (QN), in Dd2. The patterns of chemosensitizing effects of selected acridones
on CQ and QN were similar to those of verapamil against various parasite lines with mutations encoding
amino acid 76 of the P. falciparum CQ resistance transporter (PfCRT). Unlike other known chemosensitizers
with recognized psychotropic effects (e.g., desipramine, imipramine, and chlorpheniramine), these novel
acridone derivatives exhibited no demonstrable effect on the uptake or binding of important biogenic amine
neurotransmitters. The combined results indicate that 10-N-substituted acridones present novel pharmaco-
phores for the development of chemosensitizers against P. falciparum.

Malaria remains a major world health problem and con-
tinues to be a leading cause of morbidity and mortality,
particularly in developing countries (64). The devastating
situation is largely attributed to and aggravated by the emer-
gence and spread of multidrug-resistant (MDR) Plasmo-
dium falciparum, the cause of the most deadly form of ma-
laria (3, 28, 47, 67). Chloroquine (CQ) (Fig. 1) and other
quinoline antimalarials, including the naturally occurring
quinine (QN) (Fig. 1), were among the most successful
chemotherapeutic agents for treatment of malaria for de-
cades, if not centuries. Unfortunately, at present, resistance
to CQ exists virtually wherever P. falciparum does, making it
essentially useless in nearly all regions where malaria is
endemic (3, 22, 63, 67). Although resistance to pregnancy-
safe QN is far less extensive, reports of QN resistance are
steadily increasing (3, 32, 48, 49, 53, 67).

In the 1980s, artemisinin-based drugs were not readily avail-
able. The lack of new effective drugs heightened the urgency
for quick fixes to restore the usefulness of CQ and to counter
the spread of CQ resistance. The discovery of MDR chemo-
sensitizers (or so-called “resistance reversal agents”) in the
cancer research field stimulated a study by Martin et al., which
revealed that the calcium channel blocker verapamil (Fig. 1)
also restored CQ sensitivity to MDR P. falciparum parasites
(39). Since then, many structurally and functionally diverse

compounds have been identified and reported to demonstrate
chemosensitization activity against malaria parasites, with
antihistamines (e.g., chlorpheniramine) (Fig. 1) (4, 6, 42, 43,
46, 55) and tricyclic antidepressants (e.g., desipramine) (Fig. 1)
(5, 8, 10, 11, 13, 40, 51, 57) among the most effective and best
studied (27, 59).

While the mechanism of chemosensitization is not fully un-
derstood, recent studies suggest that mutations in the P. fal-
ciparum CQ resistance transporter (PfCRT) protein, particu-
larly amino acid substitutions at position 76, may play key roles
in the mode of action of verapamil (14, 18, 37). Structure-
activity profiling and three-dimensional quantitative structure-
activity relationship (QSAR) studies by Bhattacharjee and col-
leagues revealed a pharmacophore with critical features for
potent CQ-chemosensitizing activity, which consists of two ar-
omatic hydrophobic groups and a hydrogen bond acceptor site
at the side chain, preferably on a nitrogen atom (8, 9, 25).

Our previous work described functionalized tricyclic xantho-
nes that exert their antimalarial activities by accumulation in
the acidic digestive vacuole of the parasite and formation of
soluble complexes with heme (29, 30, 33–35, 50, 65). Here, we
switched to the acridone nucleus to facilitate the attachment of
a suitable R group (e.g., alkyl amine) at the 10-N position for
chemosensitization function (Fig. 2). A further motivation for
switching to the acridone system is for the design of a dually
functional agent, with structural modifications to facilitate
binding to heme and to the central nitrogen atom to introduce
chemosensitization. The present paper focuses attention on
functionalizing the acridone nucleus for the chemosensitiza-
tion phenomenon. A series of novel 10-N-substituted acri-
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dones (Fig. 3), bearing alkyl side chains (with lengths ranging
from two to eight carbons) with tertiary amino groups at the
terminal position, were designed, synthesized, and evaluated
for the ability to enhance the potencies of quinoline drugs
against MDR malaria parasites.

MATERIALS AND METHODS

Chemicals. CQ, QN, verapamil, desipramine, chlorpheniramine, and 9(10H)-
acridone were purchased from Sigma-Aldrich Company (St. Louis, MO). Des-
ethylchloroquine (DCQ) was a generous gift from Dennis Kyle of the Walter
Reed Army Institute of Research (Silver Spring, MD).

Synthesis of 10-N-substituted acridones. Methods for the chemical syntheses
of 10-N-substituted acridones are illustrated in Fig. 4. The two-carbon chain
derivative was prepared from 9(10H)-acridone by refluxing with 2-(diethyl-
amino)ethyl chloride hydrochloride in anhydrous acetone in the presence of
K2CO3. N-alkylation of the ring nitrogen with longer side chains (n � 2) was
achieved in two steps. First was the reaction of 9(10H)-acridone with 1,n-chlo-
robromoalkanes in the presence of potassium carbonate in anhydrous acetone
under reflux conditions to yield the corresponding N-10-(n-chloroalkyl)-acri-
dones. Following isolation of this intermediate, the N-10-(n-chloroalkyl)-acri-
dones were stirred with diethylamine in dimethyl sulfoxide in the presence of
NaI, leading to formation of the desired alkylamino-substituted acridones. The
final product was purified by crystallization or column chromatography and
analyzed for identity and purity by proton nuclear magnetic resonance (NMR)
and combustion analysis prior to use.

Cultivation of P. falciparum. Two strains of P. falciparum were used in the
initial study. The CQ-sensitive (CQS) clone D6 and the CQ-resistant (CQR) and
MDR clone Dd2 were obtained from the Malaria Research and Reference
Reagent Resource Center (Manassas, VA). The parasites were cultured accord-
ing to the method of Trager and Jensen (58) with minor modifications. The
cultures were maintained in human erythrocytes (Lampire Biological Laborato-
ries, Pipersville, PA); suspended at 2% hematocrit in RPMI 1640 (Sigma) con-
taining 0.5% Albumax (Invitrogen Corporation, Carlsbad, CA), 45 �g/liter hy-
poxanthine (Lancaster), and 50 �g/liter gentamicin (Invitrogen); and incubated
at 37°C under a gas mixture of 5% O2, 5% CO2, and 90% N2.

In vitro drug susceptibility testing in P. falciparum. In vitro antimalarial
activity was determined by a malaria SYBR Green I-based fluorescence (MSF)
method described previously by Smilkstein et al. (54) with slight modification
(66). Stock solutions of each test drug were prepared in sterile distilled water at
a concentration of 10 mM. The drug solutions were serially diluted with culture
medium and distributed to asynchronous parasite cultures on 96-well plates in
quadruplicate in a total volume of 100 �l to achieve 0.2% parasitemia with a 2%
hematocrit in a total volume of 100 �l. Automated pipetting and dilution were
carried out with a programmable Precision 2000 robotic station (Bio-Tek,
Winooski, VT). The plates were then incubated for 72 h at 37°C. After incuba-
tion, 100 �l of lysis buffer with 0.2 �l/ml SYBR Green I (54, 66) was added to
each well. The plates were incubated at room temperature for an hour in the
dark and then placed in a 96-well fluorescence plate reader (Spectramax Gemini-
EM; Molecular Diagnostics) with excitation and emission wavelengths at 497 nm
and 520 nm, respectively, for measurement of fluorescence. The 50% inhibitory
concentration (IC50) was determined by nonlinear regression analysis of logistic
dose-response curves (GraphPad Prism software).

Alamar Blue assay for mammalian cell viability. The general cytotoxic effects
of acridone derivatives on host cells were assessed by functional assay as de-
scribed previously (1, 66, 69), using murine splenic lymphocytes induced to
proliferate and differentiate by concanavalin A. Splenic lymphocytes isolated
from C57BL/6J mice were washed twice in RPMI 1640 medium and resuspended
in complete RPMI containing 10% fetal bovine serum, 50 �g/ml penicillin/
streptomycin, 50 �M �-mercaptoethanol, and 1 �g/ml concanavalin A. Cells (100
�l/well) then were seeded into 96-well flat-bottom tissue culture plates contain-
ing drug solutions (100 �l) serially diluted with complete culture medium to a
final cell density of 2 � 105 per well. The plates were then incubated for 72 h in
a humidified atmosphere at 37°C and 5% CO2. An aliquot of a stock solution of
resazurin (Alamar Blue, prepared in 1� phosphate-buffered saline) was then
added at 20 �l per well (final concentration, 10 �M), and the plates were
returned to the incubator for another 24 h. After this period, the fluorescence in
each well was measured in a Gemini EM plate reader with an excitation wave-
length at 560 nm and an emission wavelength at 590 nm. IC50s were determined
by nonlinear regression analysis of logistic concentration-fluorescence intensity
curves (GraphPad Prism software).

Evaluation of the in vitro chemosensitizing activity of acridones. For drug
interaction studies, a fixed subinhibitory concentration (500 nM) of the selected

FIG. 2. Design pathway of acridone chemosensitizers.

FIG. 1. Chemical structures of selected antimalarials and chemosensitizers.
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acridone was combined with the pre-serially diluted quinoline-containing drug.
The effects of the acridones on the activities of quinoline antimalarials were
assessed by comparing concentration-response curves for quinoline alone and in
the presence of the selected acridone. The data were transformed and expressed
as the response modification index (RMI). The RMI is defined as the ratio of the
IC50 of drug A in the presence of drug B to the IC50 of drug A alone, where drug
A is the quinoline antimalarial and drug B is the selected acridone. An RMI of
1.0 indicates no change in the IC50 of drug A upon addition of drug B. An RMI
of less than 1.0 represents chemosensitization (including possible synergy), and
an RMI of more than 1.0 represents antagonism (42). This method is widely used
in the field as an initial screening tool for chemosensitization effect, mainly due
to its ease of operation.

Effects of PfCRT mutations on chemosensitization activities of KF-A6 on CQ
and QN. Details of the single-step selection of the P. falciparum pfcrt mutant
lines 106/176I, 106/176N, and 106/176T have been described previously by Cooper
et al. (14). The IC50s of drugs alone or in combination (e.g., CQ/KF-A6, CQ/
verapamil, QN/KF-A6, and QN/verapamil) were determined by a modified MSF
method in which 1% parasitemia and 1% hematocrit were used.

Fixed-ratio isobologram analysis of drug interactions between CQ and acri-
dones. For definitive determination of synergy, selected acridones were tested in
combination with CQ using a modified fixed-ratio method described by Fivelman
et al. (20). After determination of the IC50s for selected drugs, stock solutions
were prepared with each drug at concentrations such that the final concentration
in our 96-well drug susceptibility assay after four or five twofold dilutions ap-
proximated the IC50. If we call these stock solutions drug A and drug B, then six
final stock solutions were prepared from this initial stock: drug A alone, drug B
alone, and volume-volume mixtures of drugs A and B in the following ratios: 4:1,
3:2, 2:3, and 1:4. Twofold dilutions of each of the six final stock solutions were
performed robotically across a 96-well plate in quadruplicate. Subsequent steps
were typical of the standard drug susceptibility methods as described above.
Initial data analysis yielded the intrinsic dose-response curve for each drug alone
and four different fixed-ratio combination dose-response curves, with corre-
sponding IC50s. The fractional inhibitory concentrations (FICs) were then cal-
culated by the following formulas: FIC (A) � IC50 of drug A in combination/IC50

of drug A alone; FIC (B) � IC50 of drug B in combination/IC50 of drug B alone;
FIC index � FIC (A) � FIC (B). The isobolograms were constructed by plotting
a pair of FICs for each combination of CQ and the selected compound. Tradi-

tionally, an interpretation of a straight diagonal line (FIC index � 1) on the
isobologram indicates a purely additive effect between the two drugs. A concave
curve below the line (FIC index � 1.0) indicates synergy of the combination,
while a convex curve above the line (FIC index � 1.0) indicates antagonism.
However, conventions have been adopted that define a FIC index of �0.5 as
synergy, a FIC index of �4.0 as antagonism, and a FIC index between 0.5 and 4.0
as no interaction or indifference (2, 41). Isobologram analysis with fixed-ratio
combinations is a more sophisticated and disciplined method to establish the
definitive determination and the degree of synergy (or antagonism) for drug
interaction.

Effects of acridone derivatives on inhibition of substrate uptake by recombi-
nant hDAT, hSERT, and hNET transporters. The uptake assays employed for
this study were adapted from the method of Eshleman et al. (17). Human
embryonic kidney (HEK)-human dopamine (hDAT), -serotonin (hSERT),
and -norepinephrine (hNET) cells were grown on 150-mm-diameter tissue
culture dishes. The medium was removed, and the plates were washed twice
with Ca2�- and Mg2�-free phosphate-buffered saline. The cells were gently
scraped from the plates in Krebs-HEPES assay buffer, and cell clusters were
separated by trituration with a pipette. Aliquots (50 �l) of the suspended cells
were added to assay tubes containing drugs and Krebs-HEPES assay buffer in
a final volume of 0.5 ml. Competition experiments were conducted with
triplicate determinations for each point. After a 10-min preincubation in a
25°C water bath, 3H-labeled neurotransmitter (20 nM [final concentration] of
[3H]DA (dopamine), [3H]5-HT (serotonin), or [3H]NE (norepinephrine), 56,
26.9, or 60 Ci/mmol, respectively) was added, and the assay mixture was
incubated for 10 min at 25°C. The reaction was terminated by filtration
through Wallac filtermat A filters presoaked in 0.05% polyethylenimine,
using a Tomtec cell harvester. Scintillation fluid was added to each filtered
spot, and radioactivity remaining on the filters was determined using a Wallac
1205 Betaplate scintillation counter. Specific uptake was defined as the dif-
ference in uptake observed in the absence and presence of 5 �M mazindol
(hDAT and hNET) or 5 �M imipramine (hSERT). Prism software was used
to analyze the uptake data.

Effects of acridone derivatives on radioligand binding to histamine receptors.
[3H]pyrilamine binding assays were conducted using the modified radioligand
binding methods of Janowsky et al. (31). [3H]pyrilamine and recombinant human
histamine receptor subtype 1, expressed in CHO cells, were purchased from
Perkin-Elmer Life and Analytical Sciences (Boston, MA). [3H]pyrilamine bind-
ing assay mixtures contained an aliquot of a membrane preparation (approxi-
mately 50 �g protein), drug, and [3H]pyrilamine (5 nM final concentration) in a
final volume of 500 �l. Tris-HCl buffer (50 mM; pH 7.4) was used for all assays.
Specific binding was defined as the difference in binding observed in the presence
and absence of 10 �M hydroxyzine. Membranes were preincubated with drugs at
room temperature for 10 min before the addition of [3H]pyrilamine unless
otherwise indicated. The reaction mixture was incubated for 90 min at room
temperature in the dark and was terminated by filtration through Wallac Filter-
mat A filters (the filters were soaked in 0.05% polyethyeneimine for 15 min prior
to filtration), using a 96-well Tomtec cell harvester. Scintillation fluid (50 �l) was
added to each filtered spot, and radioactivity remaining on the filter was deter-
mined using a Wallac 1205 Betaplate or 1405 microBeta scintillation counter.
Competition experiments were conducted with duplicate determinations for each

FIG. 3. Chemical structures of profiled 10-N-substituted acridone derivatives.

FIG. 4. Synthetic routes for 10-N-substituted acridone derivatives.
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point. GraphPad Prism software was used to analyze all kinetic and competition
binding data.

RESULTS

Intrinsic antimalarial activity, effect on mammalian cell vi-
ability, and biophysical properties. Each of the acridone de-
rivatives and the prototypical chemosensitizers was tested
against a CQS strain (D6), as well as an MDR strain (Dd2), of
P. falciparum. As shown in Table 1, the acridone derivatives
exhibited moderate intrinsic antimalarial activity, with IC50s in
the low micromolar range. The intrinsic activities of acridone
derivatives were comparable to those of verapamil, desipra-
mine, and chlorpheniramine against the selected strains of P.
falciparum.

These 10-N-substituted acridones did not exhibit profound
in vitro cytotoxicity against the proliferation of mitogen-in-
duced splenic lymphocytes, with IC50s ranging from 17.6 to
59.5 �M (Table 1).

The calculated biophysical properties of these acridones sug-
gest that the compounds are moderately lipophilic at physio-
logical pH, with cLogP values from 3.11 to 5.49 (Table 1). As
indicated by pKa values ranging from 9.81 to 10.65 (Table 1),
the acridone derivatives with the ionizable alkyl amine side
chains, KF-A2, KF-A3, KF-A4, KF-A5, KF-A6, and KF-A8,
exist as a mixture of unprotonated and protonated forms at pH
7 (physiological conditions) and predominantly as positively
charged forms at pH values close to 5 (approximating condi-
tions of the parasite food vacuole) (7, 16, 23, 24, 26, 36, 68).

Chemosensitization of CQ in MDR P. falciparum. To exam-
ine the abilities of the acridone derivatives to enhance CQ
potency against P. falciparum, the IC50s of CQ were deter-
mined in combination with 500 nM of the test acridone against
the CQR strain Dd2 and the CQS strain D6 (Table 2). At the
selected drug concentration, the acridones with a tertiary
amine at the ends of the various-length carbon chains exhibited
CQ-chemosensitizing activities against an MDR strain of P.
falciparum (Dd2) ranging from indifferent (KF-A2) to partial
(KF-A3 and KF-A8) to considerable (KF-A4, KF-A5, and KF-
A6). In the presence of 500 nM KF-A6, the antimalarial ac-
tivity of CQ was potentiated �80-fold in the MDR strain
(Dd2) to a level (19.0 nM) similar to that observed for the CQS

strain, D6 (14.7 nM). As revealed in Table 2, KF-A5 and
KF-A6 exhibited a CQ-chemosensitization effect (against the
CQR strain Dd2) superior to those of the well-studied chemo-
sensitizers verapamil and chlorpheniramine and comparable to
the effect of desipramine at the equivalent drug concentration.
There was no apparent enhancement of the sensitivity of CQ
against the CQS strain (D6) with either the acridone deriva-
tives or the reference chemosensitizers (Table 2).

Interestingly, 10-(6-chlorohexyl)-acridone (KF-A6-Cl), bearing
the N-10 alkyl chain but terminated with a chlorine atom (i.e.,
instead of the terminal amine group), was without CQ chemo-
sensitization effectiveness against the CQR strain Dd2, thereby
demonstrating the critical role of the terminal amine for the CQ
chemosensitization effect (Table 2).

Isobolar analysis of drug interactions between CQ and se-
lected chemosensitizers. To assess whether the degree of che-
mosensitization met the current definition of synergy, in vitro
interaction studies between CQ and selected acridone deriva-
tives against both CQR (Dd2) and CQS (D6) parasites were
evaluated by the more sophisticated isobolar analysis using the
fixed-ratio combination method (Fig. 5). In these studies, sig-
nificant synergy was observed in the combinations of CQ/KF-
A4, CQ/KF-A5, and CQ/KF-A6 against the CQR parasite

TABLE 1. Intrinsic in vitro antimalarial activities, in vitro cytotoxicities, and biophysical properties of selected chemosensitizers

Compound
IC50

a (�M) for P. falciparum IC50
b (�M)

for MSLCs cLogPc Calculated
pKa

d
D6 Dd2

KF-A2 11.8 � 0.8 7.5 � 1.0 28.5 � 1.8 3.11 9.81
KF-A3 8.1 � 0.5 1.6 � 0.3 22.5 � 1.0 3.36 10.28
KF-A4 7.6 � 0.7 10.2 � 1.5 34.5 � 2.8 3.37 10.46
KF-A5 3.7 � 0.3 5.8 � 2.2 30.5 � 3.0 3.90 10.53
KF-A6 3.2 � 0.4 2.7 � 0.7 26.4 � 2.3 4.43 10.56
KF-A8 2.6 � 0.2 1.8 � 0.2 17.6 � 2.1 5.49 10.65
KF-A6-Cl 1.3 � 0.1 2.6 � 0.3 59.5 � 4.8 4.29
Verapamil 1.3 � 0.3 2.0 � 0.2 55.0 � 6.2 4.47 8.6
Desipramine 11.4 � 0.5 16.6 � 1.5 22.9 � 1.6 4.47 10.4
Chlorpheniramine 61.2 � 3.2 3.9 � 0.4 33.4 � 2.5 3.15 10.2

a Values are the means � standard errors of the mean for three independent experiments, each in quadruplicate.
b Values are the means � standard errors of the mean for two independent experiments, each in quadruplicate. MSLCs, murine splenic lymphocytes.
c cLogP (calculated n � octanol/water partition coefficient) values were calculated with ChemDraw Ultra 8.0 software.
d pKa values were calculated with ChemSketch I-lab.

TABLE 2. In vitro chemosensitizing effects of acridone derivatives
and other known chemosensitizers on CQ against P. falciparum

Drug combination

Dd2 D6

IC50
a

(nM) RMIb IC50
a

(nM) RMIb

CQ alone 106.4 � 7.5 14.7 � 1.8
CQ � 500 nM KF-A2 113.3 � 9.6 1.06 13.7 � 1.1 0.93
CQ � 500 nM KF-A3 46.7 � 4.2 0.44 14.7 � 1.6 1.00
CQ � 500 nM KF-A4 42.8 � 2.2 0.40 15.4 � 0.8 1.05
CQ � 500 nM KF-A5 30.8 � 4.8 0.29 13.7 � 0.9 0.93
CQ � 500 nM KF-A6 19.0 � 1.7 0.18 13.1 � 0.9 0.89
CQ � 500 nM KF-A8 48.9 � 3.6 0.46 14.3 � 1.2 0.97
CQ � 500 nM KF-A6-Cl 143.8 � 14.4 1.35 16.0 � 1.4 1.09
CQ � 500 nM verapamil 56.8 � 6.0 0.53 14.1 � 1.2 0.96
CQ � 500 nM desipramine 18.9 � 2.1 0.18 16.0 � 1.1 1.09
CQ � 500 nM chlorpheniramine 44.3 � 2.6 0.42 15.0 � 1.8 1.02

a Values are the means � standard errors of the mean for three independent
experiments, each in quadruplicate.

b RMI is calculated as the ratio of the IC50 of CQ in the presence of chemo-
sensitizer to the IC50 of CQ alone.
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Dd2, with mean FIC indices of 0.3, 0.27, and 0.25, respectively.
The CQ/KF-A4, CQ/KF-A5, and CQ/KF-A6 combinations ex-
hibited superior synergy compared to the reference drug com-
bination CQ/verapamil (FIC index � 0.41) against the CQR
parasite Dd2.

In contrast, as indicated by the additive (or indifferent) di-
agonal isobologram (Fig. 5), KF-A4, KF-A5, and KF-A6 did
not exhibit synergism with CQ against the CQS parasite D6,
with mean FIC indices of 1.1, 1.2, and 1.0, respectively. Similar
results were observed for the CQ/verapamil combination (Fig.
5). These findings are consistent with the characteristics of
classical chemosensitizers based on previous reports (39).

Chemosensitization to DCQ and QN in MDR P. falciparum.
The lead acridone derivative KF-A6 enhances the sensitivity of
other quinoline-containing antimalarials, DCQ (a major me-
tabolite of CQ) and QN, in the MDR parasite Dd2 but has no
effect on the CQS strain D6 (Table 3). In the presence of 500
nM KF-A6, the IC50 of DCQ against Dd2 was lowered more
than 80% and the IC50 of QN against Dd2 was lowered to
approximately the same level as that observed for the sensitive
strain, D6.

Effects of PfCRT mutations on the chemosensitization ac-
tivity of KF-A6 on CQ and QN. Recent studies have suggested
that mutations in PfCRT, particularly amino acid substitutions
at position 76, may play key roles in the mode of action of
verapamil (14, 18, 37). Several novel CQR pfcrt mutant lines

with different point mutations at codon 76 have been derived
from a CQS parent line, 106/1K76 (14). This is a Sudanese
isolate that contains six out of seven PfCRT mutations typically
found in Old World CQR parasite lines but lacks the critical
K76T polymorphism (14). For this study, mutant lines 106/176I

and 106/176N, along with 106/176T, were chosen (due to their
common isogenic background) to explore the effects of PfCRT
mutations on the chemosensitization behavior of selected ac-
ridone derivatives.

Table 4 shows the effect of PfCRT position 76 mutations on
the chemosensitizing activity of KF-A6 and verapamil when
tested in combination with either CQ or QN. The results reveal
mutation-specific changes in intrinsic sensitivity and chemo-
sensitizing activity for all drugs. Verapamil and KF-A6 showed
moderate intrinsic antimalarial activity, with micromolar IC50s
against the mutant lines 106/176T and 106/176I. In the 106/176N

line, however, a much greater intrinsic sensitivity to KF-A6 and
verapamil was observed when the drugs were tested alone. The
potency of CQ was enhanced by both drugs against all tested
mutant lines, and the potency of QN was enhanced by both
drugs against the mutant lines 106/176T and 106/176N. KF-A6
was a more potent chemosensitizing agent (for both CQ and
QN) than verapamil in these cases. Most significantly, the

FIG. 5. Isobologram of the in vitro interaction between CQ and chemosensitizers against the MDR strain of P. falciparum, Dd2 (A), and the
CQS strain of P. falciparum, D6 (B). The x axis represents the FICs of CQ, and the y axis represents the FICs of selected chemosensitizers. Each
point represents a FIC of the respective chemosensitizer and its corresponding FIC of CQ. The diagonal (dashed) line indicates the hypothetical
additive drug effect.

TABLE 3. In vitro chemosensitizing effects of KF-A6 on DCQ and
QN against P. falciparum

Drug combination
Dd2 D6

IC50
a (nM) RMIb IC50

a (nM) RMIb

DCQ alone 372.0 � 51.6 18.2 � 1.5
DCQ � 500 nM KF-A6 64.2 � 3.7 0.17 18.5 � 2.1 1.01
QN alone 59.8 � 3.6 12.6 � 1.0
QN � 500 nM KF-A6 17.8 � 1.1 0.30 12.7 � 1.1 1.00

a Values are the means � standard errors of the mean for three independent
experiments, each in quadruplicate.

b RMI is calculated as the ratio of the IC50 of DCQ (or QN) in the presence
of KF-A6 to the IC50 of DCQ (or QN) alone.

TABLE 4. Effects of PfCRT position 76 mutations on in vitro
chemosensitization of CQ and QN by KF-A6 and

verapamil in P. falciparum

Compound
IC50

a (nM) for P. falciparum

106/176T 106/176N 106/176I

Verapamil alone 4,053 � 940.2 653.0 � 92.6 7,074 � 1407
KF-A6 alone 4,499 � 609.7 596.0 � 67.1 3,656 � 410.9
CQ alone 102.2 � 3.7 48.0 � 5.9 127.0 � 7.0
CQ � 500 nM verapamil 59.9 � 3.5 31.5 � 1.9 64.8 � 2.6
CQ � 500 nM KF-A6 37.1 � 2.5 29.6 � 2.8 63.6 � 2.4
QN alone 153.0 � 16.1 60.6 � 4.3 19.0 � 0.8
QN � 500 nM verapamil 103.3 � 5.7 39.2 � 3.6 30.3 � 1.5
QN � 500 nM KF-A6 91.8 � 4.7 31.1 � 1.9 35.5 � 1.6

a Mean IC50s from three to eight independent modified MSF assays (see
Materials and Methods for details).
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unique inhibitory activity of verapamil against QN in the 106/
176I line was also observed with KF-A6. Against all parasite
lines, the chemosensitization patterns of KF-A6 on CQ and
QN mirrored that of verapamil.

Effects of acridone derivatives on inhibition of neurotrans-
mitter uptake activity and binding to histamine receptor H1.
The clinical utility of tricyclic antidepressants and antihista-
mine compounds as antimalarial chemosensitizers is limited by
adverse effects at the high doses required for chemosensitizing
efficacy. Since the antidepressants are believed to inhibit neu-
rotransmitter uptake by the biogenic amine transporters (17)
and the antihistamines act by competing with histamine for H1
receptor sites on effector cells (31), the acridone chemosensi-
tizers were evaluated with well-established assays for their ef-
fects on the uptake of biogenic amines by recombinant hDAT,
hSERT, and hNET transporters stably expressed in HEK 293
cells, as well as their effects on binding to recombinant human
histamine H1 receptor from CHO cells labeled with [3H]pyril-
amine.

As shown in Table 5, the well-studied chemosensitizers tri-
cyclic antidepressants desipramine and imipramine showed
high specificity for blocking the uptake of serotonin and nor-
epinephrine. In contrast, acridone derivatives showed essen-
tially no effect on all three transporters.

Chlorpheniramine, an H1 antagonist antihistamine, was a
potent competitor for the specific binding of [3H]pyrilamine to
human histamine H1 receptor, with an IC50 (from the compe-
tition curve) of 66 nM, whereas KF-A6 at an effective chemo-
sensitizing concentration, was substantially weaker, with a IC50

of 3.6 �M.

DISCUSSION

The combined results demonstrate that the novel 10-N-sub-
stituted acridones, with the rigid aromatic tricyclic ring system,
represent efficacious chemosensitization pharmacophores. The
acridone derivatives, with the side chain bridged three or more
carbon atoms apart between ring nitrogen and terminal nitro-
gen, possess marked ability to enhance the efficacy of CQ and
its major metabolite, DCQ, as well as other quinoline antima-
larials, such as QN, against MDR P. falciparum. Moreover, the
acridone constructs demonstrate significant synergy with CQ in
MDR parasites by FIC isobologram analysis.

The discussion of possible mechanisms of action for acri-
dones and chemosensitizers in general to reverse quinoline
resistance undoubtedly needs to start with the antimalarial
mode of action of the quinolines and the mechanism of resis-
tance to these drugs in malaria parasites. Unfortunately, de-
spite years of use and study, both mechanisms remain unre-
solved. However, it is widely accepted that the site of action for
CQ is the acidic food vacuole, where CQ accumulates via acid
trapping. It has also been proposed that CQ inhibits the for-
mation of hemozoin, the detoxification product formed upon
hemoglobin degradation, leading to heme-induced parasite
death. CQ resistance appears to be the result of reduced drug
accumulation in the food vacuole, leading to decreased drug
access to the target heme (19), although various models for the
explanation of this phenomenon are still under debate (12, 21,
44, 45). While specific P. falciparum quinoline-resistant phe-
notypes are likely to be multigenic in origin (15), the most
important determinant of CQR is conferred by point muta-
tions in a putative transporter protein, PfCRT, located in the
food vacuole membrane of the parasite, with one amino acid
change at position 76 playing a critical role (14, 15, 18, 60).
Mutations within PfCRT, particularly changes from a charged
amino acid residue (lysine, K76) to an uncharged residue (such
as threonine [76T], asparagine [76N], or isoleucine [76I]),
seem to be important not only in the acquisition of resistance
to quinoline antimalarials (e.g., by allowing efflux of diprotic
CQ), but also in the mechanism of resistance reversal actions
for chemosensitizers (14, 15, 18, 37, 61, 62).

Similarly to the proposed mechanism of action for verap-
amil, the acridone chemosensitizers may compete for the CQ
binding site in PfCRT and reduce CQ efflux from the food
vacuole by a charge-repulsion effect, replacing the lost positive
charge of K76 with a protonated amino group. Presumably, the
weakly basic acridone derivatives (such as KF-A4, KF-A5, and
KF-A6) diffuse across biological membranes of the parasite in
the unprotonated form, and once they enter the acidic food
vacuole, they are rapidly trapped via weak base properties
(acid trapping) as ionized forms. In the acidic vacuole, these
acridones may alter the pH of the environment or interfere
with the efflux of CQ, restoring the efficacy of CQ and other
quinoline antimalarials. While the effect of position 76 muta-
tions on the chemosensitizing activity of KF-A6 offers evidence

TABLE 5. Inhibition of 	3H
neurotransmitter uptake in HEK-hDAT, HEK-hSERT, and HEK-hNET cells and inhibition of 	3H
pyrilamine
binding to histamine H1 receptor

Compound

IC50
a (�M)

	3H
DA uptake
in HEK-hDAT

	3H
5-HT uptake
in HEK-hSERT

	3H
NE uptake in
HEK-hNET

	3H
pyrilamine
binding H1

KF-A2 �10 �10 �10
KF-A3 �10 �10 �10
KF-A4 �10 �10 �10
KF-A5 �10 7.8 � 0.6 9.1 � 1.1
KF-A6 �10 3.5 � 0.2 �10 3.6 � 0.4
Desipramine 82.0 � 6.3 0.064 � 0.008 0.0042 � 0.0004
Imipramine 25.6 � 1.5 0.008 � 0.001 0.074 � 0.009
Cocaineb 0.13 � 0.03 0.18 � 0.01 1.9 � 0.2
Chlorpheniramineb 0.066 � 0.008

a Values are the means � standard errors of the mean for two independent experiments, each in duplicate.
b Cocaine and chlorpheniramine were used as positive controls.
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for a direct interaction with the PfCRT protein, the absence of
chemosensitizing activity from KF-A6-Cl (lacking the proton-
able terminal tertiary amine group) further supports our hy-
pothesis. Given the ease of chemical synthesis of 10-N-substi-
tuted acridones, additional studies to explore the relationship
of structural modifications of acridone derivatives and their
chemosensitization activities, most importantly in PfCRT mu-
tants, could help us to further understand the molecular basis
of chemosensitizers and possibly provide greater insight into
the resistance mechanism of quinoline antimalarials.

A major problem with existing antimalarial chemosensitizers
is their neurological side effects at the high doses required to
achieve optimal chemosensitization effects. The dose-limiting
toxic effects of the antidepressants and antihistamines are me-
diated by their modes of action, which involve the inhibition of
neurotransmitter uptake by the biogenic amine transporters
and competition with histamine for receptor sites on effector
cells, respectively (17, 52, 56). We believe it is important to
show that novel tricyclic chemosensitizers without these effects
are possible, and therefore, we have adopted a screening
model to assess the effects of drugs on the uptake of biogenic
amines by recombinant hDAT, hSERT, and hNET transport-
ers, as well as on binding to human histamine receptor H1.
These well-established high-throughput assays represent a
valuable aid for the assessment of chemosensitizers, as well as
for down-selection of candidate compounds in antimalarial-
drug development. The absence of effect on the uptake of
biogenic amines or binding to the histamine receptor distin-
guishes these acridones from other known chemosensitizers
(i.e., desipramine, imipramine, and chlorpheniramine) and
demonstrates that chemosensitization potency is achievable
without the undesirable collateral sequelae.

Chemosensitizers clearly remain of great importance in
mechanistic studies, but the challenges of putting them into
clinical use reach far beyond safety obstacles. The idea of
restoring CQ usefulness is still enticing for the following rea-
sons: (i) CQ remains the least expensive and most readily
available antimalarial in Africa (22), (ii) CQ is safe to use in
pregnant women and children, and (iii) withdrawal of CQ
resistance in some areas raises the possibility of a CQ come-
back (38). However, challenges remain, as a chemosensitizer
would provide assistance to CQ only in combination therapy,
and hence, a “cocktail” with an additional partner drug may be
required, making it less efficient, more costly, and thus imprac-
tical for malaria treatment where resources are greatly limited.
In recognition of this predicament and the need for combina-
tion therapy in the age of increasing drug resistance, studies
are under way to investigate the feasibility of combining che-
mosensitization utility with intrinsic antimalarial potency in the
same acridone molecule.
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